Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming

Michael, Katharina GND; Kreiß, Cornelia; Hu, Marian Y.; Koschnick, Nils; Bickmeyer, Ulf; Dupont, Sam; Pörtner, Hans Otto GND; Lucassen, Magnus GND

Marine teleost fish sustain compensation of extracellular pH after exposure to hypercapnia by means of efficient ion and acid–base regulation. Elevated rates of ion and acid–base regulation under hypercapnia may be stimulated further by elevated temperature. Here, we characterized the regulation of transepithelial ion transporters (NKCC1, NBC1, SLC26A6, NHE1 and 2) and ATPases (Na+/K+ ATPase and V-type H+ ATPase) in gills of Atlantic cod (Gadus morhua) after 4 weeks of exposure to ambient and future PCO2 levels (550 micro-atm, 1200 micro-atm, 2200 micro-atm) at optimum (10 degrees C) and summer maximum temperature (18 degrees C), respectively. Gene expression of most branchial ion transporters revealed temperature- and dose-dependent responses to elevated PCO2. Transcriptional regulation resulted in stable protein expression at 10 degrees C, whereas expression of most transport proteins increased at medium PCO2 and 18 degrees C. mRNA and protein expression of distinct ion transport proteins were closely co-regulated, substantiating cellular functional relationships. Na+/K+ ATPase capacities were PCO2 independent, but increased with acclimation temperature, whereas H+ ATPase capacities were thermally compensated but decreased at medium PCO2 and 10 degrees C. When functional capacities of branchial ATPases were compared with mitochondrial F(1)F(o) ATP-synthase strong correlations of F(1)F(o ) ATP-synthase and ATPase capacities generally indicate close coordination of branchial aerobic ATP demand and supply. Our data indicate physiological plasticity in the gills of cod to adjust to a warming, acidifying ocean within limits. In light of the interacting and non-linear, dose-dependent effects of both climate factors the role of these mechanisms in shaping resilience under climate change remains to be explored.

Vorschau

Zitieren

Zitierform:

Michael, Katharina / Kreiß, Cornelia / Hu, Marian / et al: Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming. 2016.

Rechte

Nutzung und Vervielfältigung:

Export