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Parallel evolution in Ugandan crater lakes:
repeated evolution of limnetic body shapes in
haplochromine cichlid fish
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Abstract

Background: The enormous diversity found in East African cichlid fishes in terms of morphology, coloration, and
behavior have made them a model for the study of speciation and adaptive evolution. In particular, haplochromine
cichlids, by far the most species-rich lineage of cichlids, are a well-known textbook example for parallel evolution.
Southwestern Uganda is an area of high tectonic activity, and is home to numerous crater lakes. Many Ugandan
crater lakes were colonized, apparently independently, by a single lineage of haplochromine cichlids. Thereby, this
system could be considered a natural experiment in which one can study the interaction between geographical
isolation and natural selection promoting phenotypic diversification.

Results: We sampled 13 crater lakes and six potentially-ancestral older lakes and, using both mitochondrial and
microsatellite markers, discovered strong genetic and morphological differentiation whereby (a) geographically
close lakes tend to be genetically more similar and (b) three different geographic areas seem to have been
colonized by three independent waves of colonization from the same source population. Using a geometric
morphometric approach, we found that body shape elongation (i.e. a limnetic morphology) evolved repeatedly
from the ancestral deeper-bodied benthic morphology in the clear and deep crater lake habitats.

Conclusions: A pattern of strong genetic and morphological differentiation was observed in the Ugandan
crater lakes. Our data suggest that body shape changes have repeatedly evolved into a more limnetic-like form
in several Ugandan crater lakes after independent waves of colonization from the same source population. The
observed morphological changes in crater lake cichlids are likely to result from a common selective regime.
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Background

The spectacular species richness of cichlid fishes and
their famous phenotypic diversity in terms of morphology,
coloration, and behavior have made them a well-known
textbook model system for the study of speciation and
adaptive evolution [1-3]. The adaptive radiations of cichlid
fishes in East Africa are also renowned for their astonish-
ingly fast rates of speciation [4-7]. The most species-rich
endemic cichlid species flocks are made up entirely of
species that belong to one particular lineage of cichlids
known as the Tribe Haplochromini [2,4,5,8,9]. The
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adaptive radiation of cichlids in Lake Victoria has attracted
particular attention of biologists because its ~500 endemic
species probably arose within less than 100,000 years [5,6],
which translates to one of the fastest known rates of speci-
ation [10].

Another fascinating aspect of cichlid evolution is the
frequent occurrence of evolutionary parallelisms, where
species from different lakes have independently evolved
a remarkable phenotypic resemblance, converging on
several traits, including coloration, body shape, and
trophic morphology [1,9,11,12]. Parallel morphological
evolution has been considered to be strong evidence for
similar regimes of natural selection being at work in
driving diversification [13]. By studying repeated parallel
evolution, the independent evolution of similar morph-
ologies from a recent common ancestor in isolated and
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similar environments, we are investigating whether nat-
ural selection alone might be sufficient to produce these
parallel morphologies, or whether genetic drift, geographic
isolation, developmental or genetic bias has influenced the
direction of diversification [14-16]. Multiple crater lakes
are an ideal system for the study of parallel evolution in
body shape in cichlids where similar morphs have repeat-
edly evolved under comparable ecological niches [17,18].

The crater lakes in southwestern Uganda (close to the
Kazinga Channel that connects Lakes Edward and George,
Figure 1) represent one of the few natural experiments in
which one can study whether independent parallel diversi-
fication took place after independent colonization events.
This region of Uganda is biologically almost completely
unexplored. Over 50 crater lakes were created in this area
by extensive volcanic activity in the East African Great Rift
Valley. Geologists date the earliest volcanic activity in this
region to approximately 50,000 years ago [19]. Some of
these lakes were established through temporal connec-
tions with nearby river systems. Until now, only a few of
these crater lakes (e.g., Lake Kyamwiga and Lake Nkugute)
have been studied [20,21], and each lake was found
to contain one genetically and morphologically distinct
haplochromine species (Haplochromis “Lutoto” in Lake
Nkugute and H. “Nshere” in Lake Kyamwiga). Analyses
using mitochondrial and nuclear markers [20] suggested
that these two new species are distinct, but originated
from the same founding populations derived from the
Kazinga Channel (Figure 1).

Based on these initial findings, it is reasonable to pre-
dict that more Ugandan crater lakes might harbor en-
demic haplochromine cichlid species — making these
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lakes an interesting natural experiment that permits one
to study the interaction between geographical isolation
and natural selection promoting phenotypic diversification
and speciation. Each crater lake probably provides new
and different habitats that are not found in the rivers or
great lakes, such as clear and deep open water niches,
each of which might exert similar selective regimes.

Here, we report on the first phylogeographical inves-
tigation of the haplochromine cichlids of the Ugandan
crater lakes combining morphological and population
genetic analyses. Using both mitochondrial and micro-
satellite markers, we inferred the phylogeographic rela-
tionships among 16 lakes within the region (Figure 1).
Based on this, we also reconstructed the source popu-
lations as well as estimated time of colonization for
each of the studied crater lakes. We then tested, using
geometric morphometrics, whether independently col-
onized crater lakes, with characteristic larger pelagic
zones, promoted the repeated evolution of limnetic-
like body shapes from the ancestral deeper-bodied col-
onizing species.

Results

Genetic differentiation

Medium to high levels of genetic polymorphism were
detected for most of the microsatellite loci (Table 1).
Allelic richness ranged from 2.77 (MAF) to 6.46 (KAZ).
Despite the fact that heterologous primers were used, no
sign of null alleles was detected. Moreover, no clear signal
of balancing or directional selection was detected with
LOSITAN software for the panel of 15 microsatellites
employed in this study.
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Figure 1 Map showing the different lakes sampled in southwestern Uganda. Localities are color coded according to the different identified
geographic clusters: gray, yellow, blue and purple for Source, Northern, Central and Southern lakes, respectively. Map source: Google Earth©2014.
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Table 1 Genetic diversity based on 15 microsatellites
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Lake Abbreviation Surface area (km?) Coordinates N Allelic richness Gene diversity Fish

Edward EDW 2320 0°8'51.80"S 29°52'52.37"E 36 6.24 0911 0.113
Kazinga KAZ - 0°7'30.35"S 30°2'52.96"E 32 6.46 0.932 0.126
George GEO 250 0°1'48.82"S 30°9'0.91"E 18 5.98 0.895 0.06

Chibwera CHI 0.87 0°9'2.94"S 30°8'18.18"E 16 524 0.824 0.019
Bugwagi BUG 061 0°11'42.72"S 30°11'1.56"E 20 3.65 0.654 0.037
Kabarogi KAB 028 0°13'37.20"S 30°12'43.50'E 21 379 0.71 0.016
Katinda KAT 0.52 0°13'3.42"S 30°6'19.68"E 31 3.83 0.608 0.06

Mirambi MIR 0.58 0°13'30.30"S 30°6'27.36"E 7 3.06 0533 0.071
Rwizongo RWI 0.55 0°16'15.90"S 30°5'20.40"E 18 287 0.507 0.096
Mafulo MAF 0.31 0°16'2.88"S 30°6'14.04"E 19 2.77 0.501 0.168
Kamweru KAW 0.27 0°15'36.90"S 30°7'19.80"E 21 426 0.716 0.012
Kamonsuku KAM 023 0°15'51.36"S 30°9'14.76"E 15 3.07 047 0.094
Kigezi KIG 0.15 0°17'16.26"S 30°6'42.96"E 19 377 0662 0.059
Mugogo MUG 115 0°17'42.72"S 30°7'13.62"E 38 5.02 0.807 0117
Kako KAK 020 0°18'18.72"S 30°5'53.58"E 5 5.04 0813 0.016
Nkugute NKU 1.03 0°19'51.60"S 30°6'12.36'E 11 447 0.754 0.121

N = sample size.

Strong genetic differentiation was found between
crater lakes using both microsatellite and mtDNA
markers, in marked contrast to high levels of gene flow
between the great Rift Valley Lakes Edwards and
George (EDW and GEO) and the Kazinga Channel that
connects them (Tables 2 and 3). High levels of genetic
differentiation between lakes and regions were also
suggested by means of a principal coordinate analysis
(Additional file 1) and the clustering pattern deter-
mined with STRUCTURE (Figure 2). The most likely
number of clusters was determined to be three, follow-
ing Evanno’s Delta K correction procedure [22]. This
suggests that there are three geographically distinct
groups: one group composed of both great lakes and
the river connecting them (EDW-KAZ-GEO, in gray),
one formed by the northern and central crater lakes (in
green), and one including the southwestern crater
lakes (in purple). Interestingly, further differentiation
was detected when each of the previously mentioned
clusters was analyzed separately. This is in agreement
with high levels of differentiation found even within re-
gions (Table 2). The group affiliations are in concord-
ance with the results found in the haplotype network
(see Figure 3).

Central haplotypes in the haplotype network were al-
most exclusively from great lakes Edward and George
(EDW-KAZ-GEOQ), supporting the hypothesis that these
are the ancestral populations (Figure 3). Moreover, three
different mitochondrial lineages (northern, central and
southern haplotypes are shown in yellow, blue and
purple, respectively) were found corresponding to the

geographically defined groups of crater lakes. Most of
the haplotypes found in the crater lakes were only a
few mutations apart from the ancestral ones, providing
evidence that these populations have diverged rather
recently.

Colonization time

Most of the crater lake populations showed a distinctive
pattern of population expansion (Fu’s tests were signifi-
cantly negative), probably following colonization (Table 4).
However, this pattern was not so clear in the great lakes
Edward and George, where the population sizes seem to
be more stable.

Clear asymmetric gene flow was detected for all the
crater lakes, with, as expected, a much higher effective
migration from the great lakes (EDW-KAZ-GEO) to the
crater lakes than in the other direction (Table 3). This
pattern reinforces the idea that the great lakes George
and Edward were the older, larger and ancestral popula-
tions for the haplochromine cichlids that subsequently
colonized the crater lakes of southwest Uganda.

Estimation of divergence times, together with the fact
that three different mitochondrial lineages were found
(see Figure 3), suggests that there were at least three in-
dependent waves of colonization from the source popu-
lation (Table 5). The oldest colonization event took
place around 89,000 years ago to the crater lakes located
geographically closer to the source lakes, those in the
center (CEN) of the study area (KAT and MIR). Fittingly,
these lakes also contain the largest haplotype diversity
among the haplochromine cichlids sampled (Figure 3).



Table 2 Pairwise genetic differentiation (Fst) based on microsatellite (below) and mtDNA control region loci (above diagonal)

EDW KAZ GEO CHI BUG KAB KAT MIR RWI MAF KAW KAM KIG MUG KAK NKU

EDW - 0.176* 0.150* 0.405** 0.486** 0.535** 0.375** 0471% 0.362** 0.666™* 0.486** 0.699*¢ 0.651** 0.382** 0.490** 0.615*
KAZ 0021 - 0.168™ 0.217* 0.257* 0.275** 0.287** 0.220™ 0.243* 0.381** 0.307** 0.396** 0.375** 0.311%* 0217™ 0.328*
GEO 0.101** 0.039™ - 0.512% 0.611% 0.725** 0.378* 0.619% 0.607** 0.881** 0.658** 0.866** 0.863** 0497** 0.711% 0.815*
CHI 0.378** 0.361** 0.370** - 0.106** 0.180** 0441 0.647** 0.653** 0.868** 0.687** 0.853** 0.852** 0.592** 0.711% 0.803**
BUG 0.523%* 0.488** 0.481%* 0.147%* - 0.008 ns 0.468** 0.749%* 0.749%* 0.928** 0.761%* 0.909** 0.914** 0.650%* 0.823** 0.879**
KAB 0.488** 0.482%* 0.502%* 0.276** 0.374** - 0.504** 0.864** 0.817%* 0.982** 0.813** 0.958** 0.968** 0.688** 0.927** 0.943**
KAT 0.529%* 0.510% 0.523** 0.239* 0.302** 0.220%* - 0.079™ 0472%¢ 0.609** 0.470%* 0.650** 0.595** 0.396** 0.361** 0.560**
MIR 0.589%* 0.578** 0.617%* 0.279** 0.547%* 0.324** 0.146" - 0.669** 0.914** 0.631%* 0.872%* 0.885** 0.505%* 0.648* 0.807**
RWI 0423 0.430** 0.511% 0436™ 0.666** 0.589** 0.658** 0.754** - 0.504** 0141™ 0.749** 0.468** 0.254** 0.581%* 0.593**
MAF 0.468** 0.491** 0.559** 0.529** 0.728** 0.687** 0.723** 0.782** 0.147% - 0.091™ 0.928** 0.001™ 0.346** 0.908** 0.833**
KAW 0.324** 0.318** 0.328** 0.334** 0.514** 0.545%* 0.588** 0.669%* 0.367%* 0.354** - 0.649** 0.067" 0.159% 0.406* 0411%*
KAM 0.556** 0.560** 0.579** 0.577** 0.747%* 0.736** 0.737** 0.894** 0.660** 0.559** 0.316* - 0.894** 0.548** 0.839** 0.834**
KIG 0.459%* 0.462%* 0475** 0.322* 0.546** 0.565** 0.584** 0.741%* 0.525** 0.525** 0.130** 0.493** - 0.318** 0.836** 0.763**
MUG 0.231%* 0.232%* 0.250** 0.283** 0.439** 0.523** 0.535** 0.571%* 0.339** 0.321%* 0.043™ 0.248** 0.124* - 0.247™ 0252"
KAK 0.353** 0.347** 0.297% 0425 0.645%* 0.627%* 0.649%* 0.843** 0.577% 04997 0.084"™ 0.427% 0.325** 0.070™ - 0.7047*
NKU 0.450** 0.480** 0481* 0.553** 0.728** 0.707** 0.718** 0.845** 0.611% 0.467** 0.284** 0.323** 0.463** 0.178* 0.205** -

NS, not significant; *P < 0.05 and **P < 0.01 after sequential Bonferroni correction [70].
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Table 3 Effective migrants estimated with MIGRATE
(five independent runs) based on microsatellite data
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more distant lakes (southern part of the study area) were

colonized more recently, around 50,000 years ago. This pat-

Source and receiving pop Nem 95% Cl tern is also supported by the fact that southern crater lakes
KAZ — EDW 7.82 697 - 892 share some central haplotypes with the great lakes, suggest-
EDW — KAZ 363 317 — 407 ing a more recent divergence or several colonization events.
KAZ — GEO 538 508 - 274 Based on the phylogenetic analyses of the mlcrosatelllte
data, all southern crater lakes grouped together in a NJ tree
CEO = Az 328 284 -3.78 and were clearly separated from the central and northern
KAZ — CHI 590 522 -668 lakes (Additional file 2).
CHI— KAZ 532 462 - 6.27
KAZ — BUG 6.86 582 - 8.10 Morphological differentiation
BUG —s KAZ 015 012 - 018 No morphological differentiation was detected among
KAZ — KAB 1009 874 - 1164 fish collected from the great lakes (]‘EDWTI(AZ—(?E‘O).
However, a clear pattern of morphological differentiation
KAB = (AZ 053 046 - 061 was found between the haplochromine cichlids from the
KAZ—KAT 947 833-1129  source and crater lake populations. No overlap was de-
KAT — KAZ 175 1.50 - 1.99 tected in the measured morphospace between the great
KAZ — RWI 749 648 - 9.19 lakes and the crater lakes except in a few individuals
RWI — KAZ 069 059 — 0.80 from the southern lakes (Figure 4A).
KAZ s MAF 199 168 - 238 Only one morphometrlc cl.uster was ff)und .for each
crater lake, suggesting no intralacustrine differenti-
MAF — KAZ 0.22 0.18 - 0.26 . . NERT
ation. Nevertheless, we found that haplochromine cichlids
KAZ— KAW 195 128 - 191 from the source and the young crater lakes have sig-
KAW — KAZ 042 036-053 nificantly different body shapes (Hotelling’s T test,
KAZ — KAM 3.08 253 - 359 P <0.0001). Crater lake cichlids have more shallow body
KAM —> KAZ 108 168 - 239 shapes (Landmarks 6, 9 and 10) relative to the great lake
KAZ — KIG 196 108 - 148 source cichlids (see‘t.he thlI‘l plate spline ‘represer‘ltatlon in
Figure 4 B and Additional file 3). Interestingly, this pattern
MUG — KAZ 0.52 044 - 062 . . L.
of morphological differentiation between source and
KAZ — MUG 14.19 1261-1603  crater lakes was consistent for most of the pairwise com-
MUG — KAZ 1.26 112 -142 parisons (Additional file 3) providing evidence for repeat-

edly evolved limnetic body shapes.
A positive correlation (r=0.448, P =0.052) between

The older age of these crater lake haplochromine popu-
lations is also supported by the presence of many exclu-
sive alleles and the fact that their private haplotypes are
separated by several mutations in the haplotype network
(Figure 3). The crater lakes located in the northern region
of the study area (CHI, BUG, KAB) were colonized around
71,000 years ago, whereas it seems that the geographically

genetic (Fst) and morphometric (Procrustes) distance was
found, suggesting that younger crater lakes (e.g. southern
lakes) are more similar to the source populations.

Discussion
We found clear evidence for strong genetic and morpho-
logical differentiation of haplochromine cichlid fishes

“Source” Lakes

Crater Lakes

KAZ

GEO

is shown.

T 1 DR

KAT

KAT

Figure 2 Bayesian population assignment test based on 15 microsatellite loci with STRUCTURE. A hierarchical analysis was performed. The
most likely number of clusters after DeltaK Evanno’s correction corresponds to K= 3 (source, northern + central and southern lakes represented in
gray, green and purple, respectively). Further analyses were performed for each of these clusters separately and the most likely number of clusters

T

MR  RWI MAF KAW KAM KIG MUG KAK NKU

K=7
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Figure 3 Median-Joining network showing the relationships among haplotypes, defined by mitochondrial control region sequence
variation. The size of the circles is proportional to the frequency of each haplotype. Haplotypes from Kivu, Victoria, source, northern, central and
southern lakes are shown in red, light blue, gray, yellow, blue and purple, respectively.
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from the crater lakes and the source lakes (Edward and
George) in Uganda. Based on mitochondrial markers, at
least three different waves of colonization were sug-
gested to have occurred, coinciding with increased geo-
logical activity around 50,000 years ago [19]. In addition
to genetic differences, morphological differentiation was
associated with the colonization of the Ugandan crater
lakes. Crater lake fish are more slender than those from
the shallow source lakes. Thus, the repeated evolution of
elongated body shapes is likely to be an adaptation to
living in the open, clear and deep waters of crater lakes
compared to the murky and shallow waters of their an-
cestral lakes and riverine habitats.

Genetic differentiation

As expected, higher levels of genetic diversity were
found in the great lakes than in the much younger crater
lakes. The degree of genetic differentiation between
crater lakes, even among those from the same region,
supports a scenario in which each of the crater lakes
constitutes a geographically isolated population. More-
over, no intralacustrine differentiation was detected, and

each crater lake (except for Mugogo) consists of only
one genetic cluster based on the genetic marker set
employed.

Although based on only a relatively small number of
individuals (N =38), clear genetic differentiation was
found between riverine and crater lake haplochromine
cichlids in Lake Mugogo (see STRUCTURE plot for
Lake Mugogo, MUG in Figure 2), suggesting no gene
flow between riverine and crater lake populations. Con-
sequently, our results indicate that these populations di-
verged mainly in allopatry, which is generally considered
to be the most common and plausible mode of speci-
ation [23-25].

Clear genetic and morphological differences exist be-
tween several lakes, suggesting that some of these crater
lakes likely harbor undescribed and endemic haplo-
chromine species. These findings should be corroborated
by further taxonomic investigations.

Colonization/parallelism
The observed patterns of genetic differentiation and
asymmetric gene flow found with both kinds of genetic



Table 4 Demographic changes inferred using mitochondrial control region

EDW KAZ GEO CHI BUG KAB KAT MIR RWI KAW KAM KIG MUG  KAK NKU
Mean Number of differences 4221 17957 1895 2608 0.830 0.200 4953 1714 2275 2914 0819 0316 3572 1400 0873
Tau 4998 40883 0001 0914 0930 3.000 4977 2.000 3580 0.001 1123 3.000 8621 1844 0914

T (MYA) 0093 0758 0000 0017 0017 0.056 0092 0037 0.066 0.000 0021 0.056 0160 0034 0017
Theta0 0001 0.001 0.007 0.001 0.001 0.001 0.001 0.001 0002 0.001 0.004 0.001 0001 0.001 0001
Thetal 35508  7.765 103525 99999 99999 0255 99999 99999 4985 99999 2705 0235 3477 99999 99999
SSD 0015™  0040™ 04897  0133°  0004™  0002"  0002"  0055™ 0024 03097  0005" 0008  0094"™ 0068 0001
Raggedness Index 0031™  0018™ 0053™  0062"  0091™  0413"  0021™  0234™  0069™  0165"  0064™ 0493  0206™ 0350"  0063™
Fu's Fs 78427 0530™  -1599™ 3075 6083 1863 -2542" 3709 —0108™ 00311 -2041" 1085  1203™ 1648  -1026™

Fs =Fu’s test of neutrality. SSD tests the validity of a stepwise expansion model based on the sum of squares deviations between the observed and expected mismatch, non-significant mismatch values suggest
population expansion. Raggedness Index is calculated similarly, non-significant raggedness values suggest population expansion. Time since lineage expansion (t) is calculated from Tau = 2ut, where p = 3.25%/MYR
for 830 bp. Significance level: NS, non-significant; *P < 0.05 and **P < 0.001.
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Table 5 Divergence times and effective migration rates estimated using a coalescent approach from the mitochondrial
control region data (MDIV software)

Location KAZ vs. T (u=0.057) M T (u=0.0325)
Great lake Source EDW 7.0 (0-14.2) 312 (1.080) 12.3 (0-25)
Great lake Source GEO 45 (0-10.2) 7671 (0.216) 79 (0-17.7)
Crater lake North BUG 49.0 (423 - 557) 0.009 (0.006) 859 (74.1-97.7)
Crater lake North CHI 826 (795 -85.7) 0.008 (0.006) 1449 (139.2 - 1506)
Crater lake North KAB 46.6 (41.5-51.7) 0.025 (0.034) 81.8 (73-90.6)
Crater lake Central KAT 94.3 (90.3-982) 0.003 (0.001) 1654 (1583 - 172.5)
Crater lake South KAM 56.8 (53.3 - 60.3) 0.009 (0.006) 99.6 (93.5 - 105.7)
Crater lake South KAW 445 (37.2-518) 0.989 (0.076) 78.1 (65.6 - 90.6)
Crater lake South MAF 60.5 (514 - 69.1) 0.009 (0.007) 106.2 (909 - 121.5)
Crater lake South Rwi 1(343-519) 0.251 (0.018) 756 (60.3 - 90.9)
Crater lake South NKU 47.6 (39-56.2) 0.004 (0.001) 834 (683 - 98.5)
Group 1 North CHI'+ BUG + KAB 71.5 (626 - 804) 0.0006 (0.0004) 1254 (109.8 - 141)
Group 2 Central KAT +MIR 89.0 (758 - 102.2) 0.002 (0.001) 156.1 (133-179.2)
Group 3 South Southern craters 544 (505 - 58.3) 0.687 (0.049) 954 (88.6 - 102.2)

Estimates are based on four independent runs. T in thousands of years (95% confidence interval), M =2 Ne m. Group 1, 2 and 3 correspond to the different

mitochondrial lineages suggested from Figure 3.

markers support at least three independent colonization
events from the great lakes into sets of geographically-
clustered crater lakes. This finding is in line with evi-
dence from previous studies that suggest that two crater
lakes within this region were colonized by the Edward-
Kazinga-George system [20]. Moreover, several central
haplotypes were shared with those found in the older
Lake Kivu, which was suggested to be ancestral to Lake
Victoria [6]. Interestingly, the central haplotype 56 that
connects Lake Kivu (LK) with Lake Victoria was sug-
gested to be exclusive to lake Kivu in previous studies,
supporting the crucial role of Lake Kivu haplochromines
in the evolution of the haplochromines of eastern Africa
[6]. However, in the present study we did find that this
haplotype is also present in the Edward-Kazinga-George
system, highlighting the relevance of this region during
the stepwise colonization by haplochromine cichlids of
the Lake Victoria region from the Lake Kivu region.
Strikingly, every independent colonization event of
Ugandan crater lake cichlids was associated with a
morphological change in the same direction - that is,
the evolution of a more slender (limnetic-like) body
shape. An elongated, more streamlined body is usually
associated with the exploitation of open water habitats
[26-28]. Moreover, the repeated pattern of phenotypic
divergence in concert with the use of certain habitats
has been taken as evidence for the important role of
natural selection in the generation of diversity [29,30].
Alternatively, only a limited set of phenotypes might
be obtained in evolution, and the entire morphospace
is not available for all lineages [14,31,32]. Indeed, an
eco-morphological differentiation along the limnetic-

benthic axis is taxonomically widespread and has long
been reported as the most common pattern of diver-
gence in freshwater fishes [28,33-36]. Also, divergence
along a benthic to limnetic axis is common in cichlids
[17,37-40] and we are beginning to identify the gen-
omic basis for such ecologically divergent body shapes
[41]. In our case, even though phenotypic plasticity
cannot be completely ruled out, it does not explain much
of the variance in shape found when wild larvae fish are
reared in the lab (see Additional file 4). Clear morpho-
logical differentiation between lab-reared crater lake fish
and fish from the source lakes was found (Hotelling’s T*
test, P <0.001, Additional file 4). Thus, crater lake fish
reared in lab conditions maintain shallower body shapes
than those of wild fish captured in the great lakes.
Altogether, this would suggest a genetic component of the
elongated body shape characteristic of Ugandan crater
lake cichlids.

A scenario in which the riverine haplochromine had
first differentiated into more elongated shape and later
colonized the crater lakes cannot be completely dis-
carded, however, it is rather unlikely due to the fact that
all the haplochromine cichlids found in the ancestral
lakes (including the river Kazinga) have deeper body
shapes, and that each of the three mitochondrial lineages
(waves of colonization) originated from the central hap-
lotypes (Figure 3, in gray). Moreover, riverine species
inhabiting the proximity of the crater lakes were genetic-
ally different from the crater lake populations (see the
STRUCTURE plot for Lake Mugogo, MUG in Figure 2).
Unfortunately, the low number of riverine specimens in-
cluded in this study precluded the proper geometric
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Figure 4 Body shape differentiation between Haplochromine cichlids from source and crater lakes. (A) Canonical variate analysis.
(B) Cross validation analysis between source and crater lakes. Shape changes along CV 1 and 2 are indicated by thin plate splines (scale factor = 2).
The line terminus refers to the shape change along a particular axis, compared with the average shape (black dot).

morphometric comparison between crater lake and
riverine individuals.

No intralacustrine diversification

Although clear genetic and morphological differentiation
was found between each crater lake and the great lakes,
no signal of intra-lacustrine diversification was detected.
Different factors, such as temporal and spatial variation,

ecological opportunity, and lineage-specific features have
been proposed to affect the propensity for intralacustrine
radiation [1,42,43].

Obviously, linage-specific characteristics do not seem
to cause the absence of divergence within Ugandan
crater lakes due to the fact that members of the same
tribe, the haplochromine cichlids, have undergone some
of the greatest radiations in other African lakes [2,4,5].



Machado-Schiaffino et al. BMC Evolutionary Biology (2015) 15:9

A positive correlation between the size of the lake and
its species richness is expected [17,42]. In general, one
would expect that the area of a lake is positively corre-
lated with higher environmental heterogeneity. Hence,
niche diversity would tend to increase with size as well
as the opportunity for isolation by distance (but see
Wagner et al. [44] 2012). Even though Ugandan crater
lakes are generally very small (<1 km? see Table 1),
intralacustrine diversification has been found even in
smaller crater lakes such as those in Cameroon [45]
and Nicaragua [46,47]. The estimates of divergence
times are similar to those previously calculated for two
other Ugandan crater lakes [20]. It might be expected
that because colonization occurred so recently (around
50,000 years ago), there has not been enough time to
complete speciation within each lake. However, intrala-
custrine divergence in cichlid fishes has been detected
in much younger lakes, such as Neotropical and African
crater lakes, where ecological speciation has been sug-
gested [48,49]. Possible reasons for the perceived lack of
intralacustrine diversification in the Ugandan crater lakes
might be that deep, clear open-water niches, like those
found in the Nicaraguan crater lakes [47], might be much
smaller or missing in the very small and relatively shallow
crater lakes of Uganda.

Conclusions

A pattern of strong genetic and morphological differ-
entiation was observed in the Ugandan crater lakes,
suggesting that this system might still harbor several
undescribed endemic species. The patterns of colonization
events suggest that lakes that are geographically close tend
to be genetically more similar, and that crater lakes in
three different geographic areas have been colonized by
three independent waves of colonization. Our data suggest
that body shape changes have repeatedly evolved into a
more limnetic-like form in several of these natural repli-
cates. The observed morphological changes in Ugandan
crater lake cichlids are likely to result from a common se-
lective regime.

Methods

Sampling

A total of 337 haplochromine cichlids were collected
(sample collection permit FISH201011/AU1) from 13
different lakes in southwestern Uganda, from Lakes
Edward and George, and the Kazinga Channel (Figure 1
and Table 1) in November 2011. Fish from both the
shore and the middle of the lakes were sampled when-
ever possible in order to have representative samples
from each lake. In addition, riverine haplochromine
fish were also collected from a river close to the crater
lake Mugogo. Fish were caught using seine nets and
hand nets with the assistance of local fishermen. Each
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fish was euthanized with an overdose of MS-222, labeled
and photographed in the field. A small tissue sample
was preserved in pure ethanol and stored at 4°C until
DNA extraction. These specimens were combined with
previously-collected samples from Lakes Victoria, Albert
and Kivu [6] stored in Axel Meyer’s collection at the
University of Konstanz.

DNA extraction and amplification

Total DNA was extracted from 1 mm? tissue using a
proteinase K digestion followed by sodium chloride ex-
traction and ethanol precipitation [50]. All samples were
genotyped for 15 microsatellite loci: Abur25, Abur30,
Abur51, Abur82, Abur94, Aburl62, Aburl65 [51];
OSU19, OSU20 [52]; TmoM5, TmoM7, TmoMll,
TmoM27 [53]; UNHO001, UNHO002 [54]. All loci were
PCR amplified with fluorescent reverse primers (HEX,
FAM and NED dyes) and fragment length was analyzed
with an internal size marker, Genescan-500 ROX (Applied
Biosystems), on an ABI 3130 Automated Sequencer
(Applied Biosystems) and scored with GeneMapper v4.0
(Applied Biosystems) software.

The mitochondrial control region (CR) (838 bp) was
PCR amplified using published primers and reaction
conditions (L-Pro-F [55]; 12S5R, 5'-GGC GGA TAC
TTG CAT GT-3’) on a GeneAmp PCR System 9700
Thermocycler (Applied Biosystems). The PCR products
were purified using the QIAquick PCR Purification kit
(QIAGEN), and sequenced in both directions with the
BigDye Terminator Cycle Sequencing Ready Reaction kit
(Applied Biosystems). Sequencing products were analyzed
on an ABI 3130 Automated Sequencer (Applied Biosystems).
Mitochondrial DNA sequences were aligned using the
software SEQUENCHER v. 4.2 (Gene Code Corporation)
and verified by eye.

Mitochondrial data analysis

Mitochondrial CR sequences were edited using the BioEdit
Sequence Alignment Editor software [56] and aligned with
the ClustalW application included in BioEdit. The different
haplotypes were obtained with the program DNASP
[57] and submitted to Genebank (Accession number
KP406813 - KP406919). MODELTEST v3.7 [58] was
employed to determine the model of sequence evolu-
tion that best fit the datasets and to calculate the pro-
portion of invariable sites and the value of the gamma
distribution shape parameter.

Mitochondrial variation was analyzed with the program
ARLEQUIN version 3.01 [59], weighting 1:2 transitions
and transversions, respectively. Within-species variation
was estimated by nucleotide diversity (ir) and haplotype
diversity (h) [60]. Haplotype networks were inferred with
HAPSTAR v. 0.7 [61] based on connection lengths calcu-
lated in ARLEQUIN [62].
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Deviations from equilibrium were tested with Fu’s Fs
[63] neutrality tests based on infinite-site model without
recombination. Negative values of Fu’s F are expected
under a model of sudden population expansion. Mis-
match distributions [64] were also calculated to investi-
gate demographic changes. Time since lineage expansion
(t) was calculated from tau =2 pt, where t is the expan-
sion time and p is the mutation rate per million years
per nucleotide.

Divergence times and migration rates among source
and crater lake populations were estimated by compar-
ing mitochondrial sequences with the program MDIV
[65]. Initial runs were tested under a finite sites (HKY)
model of evolution and default priors (M =10, T =5) to
approximate the posterior distribution of scaled migra-
tion rate (M) and time since divergence (T), while allow-
ing MDIV to estimate 6. We ran the MCMC for 5
million generations with 600,000 generations discarded
as burn-in. Convergence was determined by evaluating
the consistency of model values for each of the three pa-
rameters across four runs, which were then averaged to
calculate mean 6, M and T values + standard deviation.
Time of divergence was calculated as tdiv=T0/2Ly [65]
where T (or TMRCA) and 6 were estimated by the
height of the posterior distribution, L is the sequence
length analyzed, and p is the mutation rate. Divergence
times were estimated based on two different substitution
rates [66] (see Table 5).

Microsatellite data analysis

Scoring errors, large allele dropout and null alleles were
checked in MICROCHECKER [67]. The LOSITAN soft-
ware [68] was used in order to test for neutrality. Micro-
satellite variation (allelic richness per locus, observed
and expected heterozygosity) was calculated with the
program GENETIX 4.05 [69].

The program ARLEQUIN [59] was employed for es-
timates of Fgt values and their statistical significance
between samples pairs, i.e. the significance of population
differentiation, with the following settings: 1000 permuta-
tions for significance, 10,000 steps in Markov chain. Levels
of significance for multiple tests were determined using
sequential Bonferroni adjustments for simultaneous tests
[70] whenever relevant.

The software STRUCTURE v2.3 [71] was used to as-
sess the number of genetic clusters (K) using a Bayesian
approach. A burn-in period of 50,000 steps followed by
500,000 Markov chain Monte Carlo (MCMC) iterations
were enough to ensure convergence. Five independent
runs were performed using an admixture (each individ-
ual draws some fraction of its genome from each of the
K populations) and correlated allele frequencies model.
The STRUCTURE software provides an estimation of
the membership fraction in each of the inferred clusters.
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A hierarchical structure analysis was performed until no
more resolution was observed. Evanno’s correction [22]
was implemented and visualized using STRUCTURE
HARVESTER [72] software. Thus, Delta K values were
used to infer the most likely number of genetic clusters
(K) at each hierarchical level. Genetic clusters were fur-
ther validated using a principal coordinate analysis
(PCoA) based on genetic distance in GenAIEX [73].

The program MIGRATE-N version 3.5.1 [74] was then
used to estimate dispersal rates and long-term effective
population size (N.) from the microsatellite data, using a
maximum-likelihood (ML) coalescent approach and
averaging over five runs. The program estimates O,
which is the product of the effective population size and
mutation rate: 4Ny, where p is the mutation rate per
generation. The effective number of migrants per gener-
ation, N, is estimated as well as migration rate, m. As
program settings, we employed a stepwise-mutation
model (Brownian motion approximation) and used the
default settings for other parameters. For each run,
starting estimates for O were based on Fgr values, with a
burn-in of 15,000 trees, 14 short chains with a total of
100,000 genealogies sampled, and three long chains with
1,000,000 genealogies sampled, for each locus. Adaptive
chain heating, with four different temperatures, was
used to achieve an efficient exploration of the data.

A Neighbor-Joining tree was constructed based on a
distance matrix calculated from the frequency data for
the 15 microsatellite loci employing the computer package
PHYLIP [75]. Statistical support of nodes was estimated
with 1000 bootstrap replicates.

Morphological analysis: body shape

We examined body shape differentiation among source
and crater lake fishes using geometric morphometrics.
Fifteen homologous body landmarks were digitized in
TPSDIG2.17 [76] from standardized pictures of 370 indi-
viduals (see Figure 4 for landmark description).

Shape analyses were performed in MorphoJ1.03d [77].
Landmarks were first aligned using a full Procrustes
superimposition, which involves scaling all shapes to
unit centroid size, translation to a common position,
and rotation to minimize the Procrustes distance be-
tween landmark configurations [78,79]. Allometry is
common in fish and thus morphology and total body
size are typically related [79]. Therefore, a multivariate
regression of body shape (Procrustes coordinates) on
size (centroid size) was used to correct for allometric
effects. Regression residuals were then used for all
downstream geometric morphometric analyses.

Individual variation in body shape across and within
lakes was visualized using Canonical Variate Analysis
(CVA) and Discriminant Function Analysis (DFA) on the
regression residuals (Figure 4). Shape differences between
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groups were visualized using thin plate splines [78]. Body
shape differentiation of source and crater lakes was assessed

with Hotelling’s T* test as implemented in Morpho].

Availability of supporting data

The data sets supporting the results of this article are avail-
able in LabArchives, https://mynotebook.labarchives.com/
share/Uganda_BMC-Evol-Biol/ MjAuOHw2NzM5Mi8xNi9U

c¢cmVITm9kZS83MTASNDY50TISNTIuOA==.

Additional files

Additional file 1: Principal coordinates analysis based on genotypic
data from 15 microsatellites loci showing the genetic differentiation
among the four considered groups. Analyses were performed using
the covariance matrix with data standardization of genetic distance using
GenAlEx.

Additional file 2: Neighbor-joining tree estimated from allele
frequency data of 15 microsatellite loci for different lakes. Lake Kivu
(KIV) was employed as an outgroup.

Additional file 3: Pairwise body shape differentiation among source
and crater lakes. Shape changes along CV 1 or 2 are indicated by thin
plate splines (scale factor = 2). The line terminus refers to the shape
change along a particular axis, compared with the average shape (black
dot). Some pairwise comparisons are not shown due to low sample sizes.

Additional file 4: Body shape differentiation among lab-reared
(n = 25), source (n=86) and crater lake (n =241) Haplochromine
cichlids. A) Canonical variate analysis. B) Cross validation analysis
between source and lab-reared fish.
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