# Tissue-Specific Fatty Acids Response to Different Diets in Common Carp (*Cyprinus carpio* L.)



## Markus Böhm<sup>1,2</sup>, Sebastian Schultz<sup>1,2</sup>, Apostolos-Manuel Koussoroplis<sup>1</sup>, Martin J. Kainz<sup>1</sup>\*

1 WasserCluster – Biologische Station Lunz, Dr. Carl Kupelwieser, Lunz am See, Austria, 2 University of Vienna, Department of Limnology, Wien, Austria

### Abstract

Fish depend on dietary fatty acids (FA) to support their physiological condition and health. Exploring the FA distribution in common carp (*Cyprinus carpio*), one of the world's most consumed freshwater fish, is important to understand how and where FA of different sources are allocated. We investigated diet effects on the composition of polar and neutral lipid fatty acids (PLFA and NLFA, respectively) in eight different tissues (dorsal and ventral muscle, heart, kidney, intestine, eyes, liver and adipose tissue) of common carp. Two-year old carp were exposed to three diet sources (i.e., zooplankton, zooplankton plus supplementary feeds containing vegetable, VO, or fish oil, FO) with different FA composition. The PLFA and NLFA response was clearly tissue-specific after 210 days of feeding on different diets. PLFA were generally rich in omega-3 polyunsaturated FA and only marginally influenced by dietary FA, whereas the NLFA composition strongly reflected dietary FA profiles. However, the NLFA composition in carp tissues varied considerably at low NLFA mass ratios, suggesting that carp is able to regulate the NLFA composition and thus FA quality in its tissues when NLFA contents are low. Finally, this study shows that FO were 3X more retained than VO as NLFA particularly in muscle tissues, indicating that higher nutritional quality feeds are selectively allocated into tissues and thus available for human consumption.

Citation: Böhm M, Schultz S, Koussoroplis A-M, Kainz MJ (2014) Tissue-Specific Fatty Acids Response to Different Diets in Common Carp (Cyprinus carpio L.). PLoS ONE 9(4): e94759. doi:10.1371/journal.pone.0094759

Editor: Marià Alemany, University of Barcelona, Faculty of Biology, Spain

Received August 19, 2013; Accepted March 20, 2014; Published April 14, 2014

**Copyright:** © 2014 Böhm et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Austrian Science Fund (L516-B17) to MJ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

\* E-mail: martin.kainz@donau-uni.ac.at

#### Introduction

Fatty acids (FA) play a major role in the nutrition of fish [1,2,3] and humans [4,5,6]. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated FA (PUFA), including eicosapentaenoic (20:5n-3, EPA), docosahexaenoic (22:6n-3, DHA), and arachidonic acid (20:4n-6, ARA) are particularly important for somatic growth, reproduction, and general health of freshwater fish [7,8]. As is the case for almost all animals, the ability of fish to bioconvert essential precursor PUFA, such as alpha-linolenic (ALA) or linoleic (LIN) acid, is very limited and also depends on dietary supply of target PUFA [9]. Moreover, from a human consumption perspective, the PUFA composition in fish strongly determines their nutritional quality since fish are key in supplying particularly n-3 PUFA to humans [10,11,12].

In freshwater fish tissues, FA occur as cell membrane (polar lipid fatty acids, PLFA) and storage lipids (neutral lipid fatty acid, NLFA) [13]. The composition of PLFA affects the physical and biochemical properties of fish cell membranes and therefore their general physiological condition. Cell membrane lipids are particularly rich in long-chain n-3 and n-6 PUFA (LC-PUFA) that are important for maintaining cell membrane fluidity, elasticity, and permeability at colder temperatures [8]. Cell membrane PUFA are also involved in chemical signaling related to immunity, inflammation, mineral balance, and reproductive processes [14,15]. In contrast, NLFA are stored as long-term energy sources in fish and mobilized during periods of high-energy demand, such as reproduction and migration or during starvation [3]. Results of several studies demonstrate that the NLFA composition in fish usually reflects the FA composition of their diets [16,17,18], whereas the PLFA composition in cell membranes is strongly regulated to meet taxa-dependent requirements [19,3,18].

Dietary FA have a direct bearing on the FA composition and somatic growth of marine and freshwater fish [8]. However, little is known about dietary FA effects on the FA composition in one of the world's most consumed freshwater fish, common carp (Cyprinus carpio L.) [20,21,22,23]. As most studies focus on effects of dietary lipids on the FA composition of edible muscle tissues, there is a lack of knowledge on how dietary FA affect the FA composition of other tissues. Besides a basic physiological interest in learning more about the way FA are retained in different carp tissues, it is relevant to understand how tissues, such as liver, heart, eyes, and intestines that are typically not consumed by humans, retain dietary lipids relative to commonly consumed dorsal and ventral muscle tissues. The scientific rationale of this interest is based on the assumption that some non-edible tissues may accumulate dietary FA more strongly, but are not accessible for human consumption. Understanding how and where dietary FA are allocated within carp may help understand how to design modern aquaculture diets to increase particularly omega-3 FA in dietary muscle tissues and/or how to reuse fish tissues for subsequent feeds rich in omega-3 FA.

We investigated how diet composition influences the retention and subsequently FA composition of polar and neutral lipids in several tissues of farm-raised common carp; i.e., dorsal muscle, ventral muscle, liver, heart, kidney, eyes, intestine and adipose tissue. Assuming that the response of common carp to dietary FA is organ- and lipid class-specific, it was hypothesized that, a) carp regulate their PLFA according to tissue-specific requirements relatively independent of their dietary FA composition ('quasi homeostasis'), whereas, b) NLFA of all investigated tissues reflect the dietary FA supply and are not tissue-specific. To make results of this study directly applicable to 'real world' aquaculture, we designed this study in natural carp ponds rather than fully controlled fish tanks. This study will thus provide detailed information about basic lipid physiology of pond-fed common carp, one of the most important species in freshwater aquaculture worldwide [24,25].

#### **Materials and Methods**

#### Experimental design

Two-year old common carp from the same batch of eggs were initially introduced to and randomly distributed among 3 different aquaculture ponds in temperate Lower Austria (N 48.815049, E 15.297321) to investigate tissue- and lipid class-specific response of FA signatures to different diets. Because fish were not exposed to any dietary threat, harm or experienced any pain or genetic modification it was not required to pass the Ethics Commission. Carp of all ponds had access to natural zooplankton. Carp of pond 1 fed exclusively on zooplankton (N), whereas carp of ponds 2 and 3 were supplied with a supplementary diet of different lipid quality: carp of pond 2 obtained commonly used cereal diet (triticale) enriched with 3% milk thistle (Silvbum marianum) oil (vegetable oil; VO), while carp of pond 3 were supplemented with a commercially available (GARANT Austria; www.garant.co.at/) compound feed based on marine fishmeal enriched with 18% fish oil (FO; Table 1). Although the latter diet is not typically applied as carp feed, we used this feed to investigate how considerably higher amounts of dietary lipids affects carp and its organs in an effort to

**Table 1.** Relative composition (>0.5%) and ingredients of the used commercial compound feeds containing fish oil (FO; Garant-Tiernahrung, Austria).

| Composition           | FO   |
|-----------------------|------|
| Crude protein         | 36.0 |
| Total lipids          | 18.0 |
| Fiber                 | 2.5  |
| Ash                   | 9.0  |
| Ingredients           | FO   |
| Soybean meal          | 25.3 |
| Wheat                 | 13.3 |
| Rapeseed press cake   | 7.5  |
| Corn                  | 3.5  |
| Peas                  | 5.0  |
| Fish meal (68%)       | 24.3 |
| Soy beans             | 5.0  |
| Fish oil              | 3.0  |
| Fish oil (sprayed on) | 10.5 |
| Monocalciumphosphate  | 1.3  |
| Calcium carbonate     | 0.5  |

doi:10.1371/journal.pone.0094759.t001

elucidate the effect of diet lipid composition on this important freshwater diet fish.

Feeds were supplied using pendulum feeders (www.alles-fisch.at) that were activated by the fish [26], which allowed us to understand how diet quality, rather than automated supply of feed quantity, affected the FA composition and accumulation in carp. In addition to pond zooplankton as the major diet for carp (see below), supplementary fish feeds were supplied to add VO and FO. The marine compound feed contained a mixture of fishmeal, soybean, wheat, and to a lesser degree rapeseed and corn meal.

#### Sampling

To assess the dietary contribution of zooplankton in carp (using stable isotope mixing models; see below), pond zooplankton were sampled using vertical and horizontal net hauls in spring, summer, and fall in each pond. After having been exposed to one of the three different feeds, carp (n = 5 per pond; separately analyzed) of each pond were collected after the cultivation period (210 days; April to November) by professional fishermen, rendered unconscious (blow on the head) and then killed by cardiac incision following the Federal Act on the Protection of Animals, Austria (http://www.ris.bka.gv.at) specifically for this research. All fish were purchased, legally obtained, and analyzed in the lab according to contracts approved for the research project from the Austrian Science Fund (L516-B17). Fish were measured  $(\pm 0.1 \text{ cm})$  and weighed  $(\pm 0.1 \text{ g})$ , and subsequently samples of eight tissues were taken from each fish (i.e., dorsal and ventral muscle, heart, kidney, intestine, eye balls without the optic nerve after the sclera, liver and visceral adipose tissue) and kept frozen  $(-80^{\circ}C)$  to limit possible lipolytic degradation until further analysis. Zooplankton taxa were identified using a counting chamber (# 435 011; Hydro-bios, Germany) under a microscope.

#### Lipid analysis

Total lipids and FA were analyzed as described elsewhere [27]. In brief, homogenized (using mortar and pestle), freeze-dried samples (15–30 mg dry material, DM) were sonicated and vortexed (4X) in a chloroform-methanol (2:1) mixture. Organic layers were removed and transferred into solvent-rinsed vials. For gravimetrical determination of total lipid mass ratios (i.e., mg lipids g dry weight<sup>-1</sup>), subsamples (100  $\mu$ L) of the extracts (duplicates) were evaporated and weighed.

Lipid extracts were separated into lipid classes by thin-layer chromatography (TLC). Mass ratios of lipid extracts were adjusted after gravimetry with chloroform to obtain similar lipid amounts (15–25 µg) in the volume (50 µL) applied to the TLC plates for all samples. Polar and neutral lipids were separated by one-dimensional TLC on  $10 \times 10$  cm silica gel plates (Merck TLC silica gel 60) using hexane:diethylether:methanol:formic acid (90:20:3:2, v/v/v/v) as solvents. After development, plates were sprayed with 0.05% (wt/vol) 8-anilino-4-naphthosulphonic acid in methanol and viewed under UV light to detect lipid fractions. An internal standard (5 µL; nonadecanoic acid in chloroform; 4 mg mL<sup>-1</sup>) was added to each lipid fraction before individual lipid fractions were scraped from the TLC plates and transferred into solvent-rinsed vials.

Fatty acids were derivatized to obtain fatty acid methyl esters (FAME) using toluene and sulfuric acid-methanol-solution  $(1\% v/v, 16 h at 50^{\circ}C)$ . In contrast to Heissenberger et al. [27], hexane without butylated hydroxytoluene (BHT) was used for each washing step after methylation to avoid possible problems with BHT-related peak interference in chromatograms (data not shown). FAME were identified by comparison with known standards (Supelco37 FAME Mix) using a gas chromatograph

(Thermo Scientific TRACE GC Ultra) equipped with a flame ionization detector (FID) and a Supelco SP-2560 column (100 m, 25 mm i.d., 0.2  $\mu$ m film thickness). Quantification of FA was performed by comparison with a known concentration of the internal standard using Excalibur 1.4 (Thermo Electron Corporation).

#### Data analysis

To assess how carp retained FA from different diet sources, data from stable isotope mixing models [26], using  $\delta^{13}$ C and  $\delta^{15}$ N signatures in carp and its diet sources (VO and FO feeds as well as seasonal means of zooplankton), were used to calculate FA accumulation ratios. These mixing models showed that, on average, only 18% of the VO-feeds were retained, whereas FO-feeds by 60% relative to pond zooplankton. Based on these results of diet source retention, we assessed FA accumulation ratios (AR) for carp as:

$$AR = \frac{\left[FA_{organs}\right]}{\left[FA_{zoo(v)}\right] + \left[FA_{VO(y)}\right]} or \frac{\left[FA_{organs}\right]}{\left[FA_{zoo(f)}\right] + \left[FA_{FO(z)}\right]}$$

where  $[FA_{organs}]$  were the FA mass ratios of the investigated carp organs and  $[FA_{zoo(v \text{ or } f)}]$ ,  $[FA_{VO(y)}]$ , and  $[FA_{FO(z)}]$  were the respective parts of dietary FA mass ratios retained in carp tissues; i.e.,  $FA_{zoo(v)}$  were 82% of zooplankton FA mass ratios and 18% of FA mass ratios from VO-feeds ( $[FA_{VO(y)}]$ ); whereas  $FA_{zoo(f)}$  were 40% of zooplankton FA mass ratios and 60% of FA mass ratios from FO-feeds ( $[FA_{FO(z)}]$ ).

One-way analysis of variance (ANOVA) followed by Tukey's HSD *post-hoc* tests was employed to analyze concentration differences of total lipids and FA among samples. Principal component analyses (PCA) based on arcsin-transformed FA proportions (% of total PLFA or NLFA) were performed separately for PLFA and NLFA to obtain the sample scores ( $PC_{score}$ ) on the first two principal components PC1 and PC2 for each sample. The  $PC_{scores}$  were further used for statistical analysis as new variables, representing the major trend in the FA composition [28]. The Pearson correlation coefficient was calculated to relate the  $PC_{score}$  to single FA.

Two-way ANOVA were used to assess the effects of tissue and diet on the FA composition (PC<sub>scores</sub>) of the different samples (separately for PLFA and NLFA). The interaction term between the independent variables "tissue" and "diet" of the two-way ANOVA was used to test for tissue-specific NLFA and PLFA response to diet. Data were log-transformed (FA mass ratios per unit biomass) or arcsine-transformed (FA relative proportions) before analysis to meet requirements for normal distribution and homogeneity of variances. Significance level was set at p<0.05. All statistical tests were performed using the XLSTAT software package (version 7.5.2).

#### Results

Zooplankton represent the main natural food source for farmraised common carp in these ponds [29]. In all ponds, the taxonomic composition remained similar with *Daphnia longispina* and *Bosmina longirostis* being the dominant zooplankton species, followed by cyclopoid (*Eucyclops sp.*) and, to a lesser extent, calanoid copepods (*Eudiaptomus sp.*). No benthic invertebrates were observed in sediments (analyses of sediments) or in carp guts (visual inspection of gut contents). While zooplankton were the major diet source in N, results of a previous study on stable isotope analysis ( $\delta^{13}$ C and  $\delta^{15}$ N) in these diets and carp showed that on average only 18% of supplied VO feeds, but 60% of FO were retained in carp [26]. Carp feeding on N and VO were smaller  $(28\pm3 \text{ cm} \text{ and } 29\pm2 \text{ cm}, \text{ respectively})$  and lighter  $(723\pm238 \text{ g} \text{ and } 655\pm134 \text{ g}, \text{ respectively})$  than carp feeding on FO  $(33\pm2 \text{ cm} \text{ and } 1413\pm228 \text{ g}).$ 

#### Total lipids

Total lipids in carp (total body contents) exposed to FO-feeds were significantly higher than in carp exposed to N and VO-feeds; the latter did not differ significantly, but varied substantially among carp tissues (Table S1 in File S1). Carp exposed to FOfeeds had the highest total lipid mass ratios in adipose tissues and eyes ( $770\pm47$  and  $770\pm151$  mg g<sup>-1</sup>, respectively). Similarly, adipose tissues and eyes had also the highest total lipids in carp exposed to N and VO-feeds, although at significantly lower mass ratios. When compared with carp exposed to N, total lipid mass ratios increased >8X in ventral muscle and >4X in dorsal muscle tissues and eyes in carp exposed to FO-feeds. Liver and intestine total lipid mass ratios were the least affected between carp feeding on N and FO (only 1.6X and 1.5X higher lipid mass ratios, respectively).

#### Fatty acid composition

Zooplankton had clearly higher PUFA mass ratios than SAFA and MUFA in all ponds during the entire study period, and consistently more n-3, in particular ALA, SDA, and EPA, than n-6 PUFA. By contrast, supplementary diets had relatively less PUFA, but more MUFA than zooplankton (Table 2). In carp, irrespective of feeding on different diets, palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1n-9), ARA, EPA, and DHA were the most abundant FA in PLFA of all tissues (Table S3 in File S1).

#### Fatty acid contents in carp tissues

Polar lipid fatty acids (PLFA; Table S4 in File S1) were generally less retained compared with neutral lipid fatty acids (NLFA; Table S6 in File S1). In general, mostly n-6 C-20 PUFA accumulated in the intestine, kidney, heart, and adipose tissue, but the n-3 PUFA mass ratios of the PLFA fraction in the tissues were less than those of their diets (Table S2 in File S1). PLFA mass ratios were highest in kidneys of carp feeding on pond zooplankton ( $66.2\pm3.1$  mg  $g^{-1}$ ; Table S3 in File S1) and kidneys had generally the highest mass ratios of total SAFA, MUFA and PUFA. The lowest PUFA mass ratios of all investigated tissues  $(4.4\pm0.7 \text{ mg g}^{-1}; \text{ FO})$  were found in eves. The lowest SAFA mass ratios were detected in dorsal muscle tissue  $(9.5\pm0.8 \text{ mg g}^{-1})$  of carp exposed to FO diet, whereas the lowest MUFA mass ratios were measured in ventral muscle tissue of carp exposed to VO diet  $(4.4\pm0.7 \text{ mg g}^{-1})$ . Individual PUFA mass ratios differed among the investigated tissues with highest LIN mass ratios measured in the heart of VOexposed carp  $(3.3\pm0.6 \text{ mg g}^{-1})$  and highest DHA mass ratios in adipose tissue and kidneys of FO-carp  $(7.9\pm2.4 \text{ mg g}^{-1} \text{ and}$  $7.8 \pm 1.3 \text{ mg g}^{-1}$ , respectively). For all tissues, n-6 PUFA mass ratios were lower in FO-exposed carp and the n-3/n-6 ratios were higher in all tissues of FO-  $(\geq 2)$  than in N-or VO-exposed carp (<1.7). Consequently, carp exposed to FO diet had significantly higher EPA/ARA ratios than N-or VO-fed fish.

Within NLFA (mainly triacylglycerols, TAG), carp accumulated almost all FA from FO-feeds in the eyes, heart, and muscle tissues. In particular, PUFA were strongly accumulated in eyes and ventral muscle tissue, whereas N- and VO-carp did not accumulate dietary PUFA in their tissues relative to their diets (Table S2 in File S1). The NLFA 16:0, 18:1n-9, LIN, and ALA were the most abundant FA (Tables S5 and S6 in File S1). Eyes of FO-fed carp had the highest total NLFA mass ratios (661.9 $\pm$ 74.1 mg g<sup>-1</sup>), followed by ventral muscle tissue **Table 2.** Fatty acid mass ratios (mg g<sup>-1</sup> dry weight, mean  $\pm$  (SD), n = 3) of zooplankton (>500  $\mu$ m) in the three ponds (April-November) and experimental diets: N = natural diet (zooplankton); VO = diet enriched with 3% vegetable oil; FO = diet enriched with 18% marine fish oil; PUFA = polyunsaturated fatty acids.

|             | Zooplan | kton  |      |       |      |       | Supplementa | ary diets |
|-------------|---------|-------|------|-------|------|-------|-------------|-----------|
| Fatty acids | FO      |       | vo   |       | Ν    |       | FO          | vo        |
| 14:0        | 5.5     | (2.0) | 6.0  | (2.4) | 5.7  | (2.1) | 9.2         | 0.7       |
| 15:0        | 1.0     | (0.3) | 2.7  | (0.4) | 0.9  | (0.1) | 0.7         | 0.0       |
| 16:0        | 17.7    | (1.8) | 15.7 | (1.2) | 12.6 | (1.0) | 25.2        | 4.2       |
| 17:0        | 1.1     | (0.1) | 1.7  | (0.2) | 1.0  | (0.1) | 0.4         | 0.0       |
| 18:0        | 4.9     | (0.6) | 3.9  | (0.6) | 3.8  | (0.3) | 3.9         | 1.0       |
| 20:0        | 0.1     | (0.1) | 0.1  | (0.0) | 0.2  | (0.1) | 0.3         | 0.3       |
| 22:0        | 0.1     | (0.0) | 0.2  | (0.0) | 0.2  | (0.0) | 0.1         | 0.3       |
| 16:1n-7     | 4.7     | (0.5) | 5.0  | (0.7) | 5.2  | (0.4) | 8.8         | 0.0       |
| 18:1n-9     | 6.7     | (0.6) | 9.8  | (1.5) | 5.4  | (0.3) | 22.7        | 11.7      |
| 18:2n-6     | 4.7     | (0.5) | 5.8  | (0.6) | 4.2  | (0.4) | 9.3         | 13.5      |
| 18:3n-6     | 0.4     | (0.0) | 0.9  | (0.1) | 0.6  | (0.0) | 0.2         | 0.0       |
| 18:3n-3     | 13.6    | (1.5) | 12.9 | (1.2) | 8.1  | (0.5) | 2.9         | 1.3       |
| 18:4n-3     | 19.4    | (3.4) | 11.4 | (1.2) | 10.1 | (1.0) | 5.0         | 0.0       |
| 20:2n-6     | 1.5     | (0.4) | 2.4  | (1.8) | 1.6  | (0.9) | 0.0         | 0.0       |
| 20:3n-6     | 0.1     | (0.0) | 0.2  | (0.0) | 0.2  | (0.0) | 0.2         | 0.0       |
| 20:3n-3     | 0.7     | (0.2) | 0.2  | (0.0) | 0.1  | (0.0) | 0.2         | 0.0       |
| 20:4n-6     | 2.0     | (0.2) | 3.5  | (0.5) | 2.7  | (0.2) | 1.0         | 0.0       |
| 20:4n-3     | 3.0     | (0.6) | 1.4  | (0.5) | 1.1  | (0.1) | 1.2         | 0.0       |
| 20:5n-3     | 17.9    | (2.1) | 11.7 | (1.3) | 12.6 | (0.8) | 13.3        | 0.0       |
| 22:2n-6     | 0.3     | (0.1) | 0.1  | (0.0) | 0.1  | (0.0) | 0.0         | 0.0       |
| 22:6n-3     | 9.0     | (3.7) | 3.5  | (1.2) | 6.9  | (2.3) | 14.2        | 0.0       |
| 24:1n-9     | 0.3     | (0.1) | 0.3  | (0.0) | 0.3  | (0.1) | 1.0         | 0.0       |
| PUFA        | 71.0    | (7.2) | 51.7 | (5.1) | 46.5 | (2.9) | 47.7        | 14.9      |
| n-3 PUFA    | 62.0    | (6.5) | 38.8 | (5.6) | 37.1 | (3.0) | 36.9        | 1.3       |
| n-6 PUFA    | 9.0     | (1.0) | 12.9 | (2.6) | 9.4  | (1.2) | 10.8        | 13.5      |

doi:10.1371/journal.pone.0094759.t002

 $(391.8\pm33.99 \text{ mg g}^{-1})$ . Among all tissues, liver tissues generally contained the lowest total NLFA mass ratios independent of diet exposures. Only intestine of FO-carp had lower mean NLFA mass ratios than liver tissues of FO exposed carp. As was the case for PLFA, FO-diet exposure resulted in higher n-3/n-6 ratios in NLFA of all examined tissues than N or VO diets.

# Fatty acid patterns in polar and neutral lipids of common carp

Principal component analysis of PLFA (Figure 1) revealed that the first two components (PC1 and PC2) explained 52% of FA eigenvalue variation in carp tissues. The first component (31%) separated fish of the reference (N) and VO pond (positive score), and carp of the FO pond (negative scores) due to positive loadings of n-6 PUFA, 20:3n-3, 20:4n-3, and 22:5n-3and negative loadings of 16:0, MUFA, and 22:6n-3. The second component accounted for 21% of eigenvalue variation and also separated FO-exposed carp (negative scores with the exception of eyes and ventral muscle tissue) from N and VO carp (positive scores) due to the positive loadings of C<sub>18</sub> PUFA, 18:0, and 18:1n-9, and the negative loadings of C<sub>20</sub> n-3 PUFA and 18:0. On PC1, there were some consistent patterns among carp tissues to different diet exposure with intestine and kidney showing more positive PC1<sub>score</sub> (more

16:0, MUFA, and 22:6n-3) than heart, muscle, liver, adipose tissue, and eyes. The eyes had always the most negative PC1<sub>score</sub> (more n-6 PUFA, 20:3n-3, 20:4n-3 and 22:5n-3), markedly different from the other tissues. A consistent pattern across diets was also found on PC2 with the eyes having the most positive PC2<sub>scores</sub> (more C<sub>18</sub> PUFA, 18:0 and 18:1n-9), followed by ventral muscle, intestine, dorsal muscle, heart, kidney, adipose tissue and liver. The PC<sub>score</sub> (PC1 and PC2) of the different samples showed significant correlations with FA proportions used in the PCA, thus justifying its use as a proxy for FA composition in carp (Table 3). The importance of the inter-diet and inter-tissue PLFA composition (PC1<sub>score</sub> and PC2<sub>score</sub>) was confirmed by the highly significant effect of the factors 'diet' and 'tissue' (ANOVA; Table 4). Furthermore, the significant interaction term of the ANOVA for both PC1<sub>score</sub> and PC2<sub>score</sub> demonstrates that the effect of 'diet' on the PLFA composition of 'tissues' was different.

The first two principal components for NLFA explained 67% of the total FA variation (Figure 2): PC1 accounted for 49% of the variation and separated n-3 from n-6 PUFA, SAFA and oleic acid, PC2 (18%) separated n-6 (positive loadings) from most n-3 PUFA (negative loadings). The factor plot revealed three groups on the basis of dietary treatment. Significant differences of tissue FA patterns were measured among diets (p<0.0001) and tissues

(p < 0.0001) with a significant interaction of these two factors (diet\*tissue; p = 0.01). PC1 did not separate FA of diets N and FO (p = 0.545), but PC2 showed that FA of all diet sources were different from each other (p < 0.0001). Within diet groups, FA in tissues differed significantly for N (p = 0.001) and VO (p = 0.009), but not significantly in tissues of fish exposed to FO (p = 0.097; Fig. 2B). For fish exposed to FO diet, all tissue FA were highly associated with n-3 PUFA and 16:1n-7 contained in TAG. Liver FA patterns were significantly different from all the other tissues (p = 0.006) and liver FA mass ratios were consistently lower compared to all other tissues.

#### Discussion

This study shows how tissue and lipid-class specific FA respond to different diet exposure in common carp. Fatty acids of neutral lipids are tissue specific at low NLFA mass ratios, but represent dietary FA patterns at high NLFA mass ratios. In contrast, the PLFA composition was altered to a far lesser extent, as only when high amounts of n-3 rich fish oil were available, PLFA responded to diet by preferentially incorporating n-3 PUFA in the investigated carp tissues. This tissue-specific FA examination

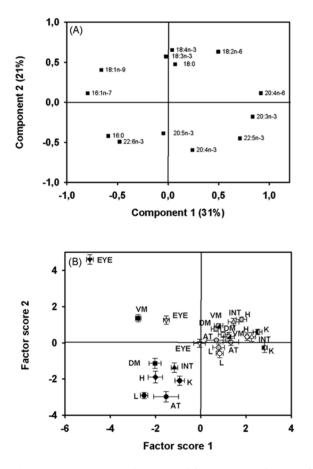



Figure 1. Component plot (A) and factor score plot (B) of the principal component analysis for the fatty acid profile of polar lipids in 8 different tissues of carp fed 3 different diets. White symbols refer to the natural diet (N), grey symbols refer to the vegetable oil (VO) diet and black symbols refer to the fish oil (FO) diet. Tissues are labeled by shortcuts: adipose tissue (AT), dorsal muscle (DM), eyes (EYE), heart (H), intestine (INT), kidney (K), liver (L), and ventral muscle (VM). Data values are represented in the factor score plot as mean  $\pm$  SEM (n = 5).

doi:10.1371/journal.pone.0094759.g001

indicates that common carp feeding on zooplankton and/or additional VO-feeds do not accumulate n-3 PUFA or other FA, per unit biomass, relative to their diet, but provides evidence that carp selectively retain 3X more FO-feeds that result in PUFA accumulation mostly in eyes and muscle tissues. This demonstrates that higher quality feeds, as evaluated by PUFA, are not dispersed to tissues equally, but allocated as NLFA to fatty ventral muscle tissues available for human consumption.

#### Polar lipid fatty acids (PLFA) in carp

The detected differences in PLFA composition among tissues indicate, confirmed by the highly significant effect of the factor 'tissue' (PC1<sub>score</sub> and PC2<sub>score</sub>), tissue-specific FA requirements of cell membranes in carp. The most marked pattern was the difference between the eyes, the ventral muscle and the rest of the tissues explained by their generally higher proportions of 18:1n-9, 16:1n-7, and 18:3n-3. Although less pronounced between N- and VO-exposed fish, diet had a significant effect on the PLFA composition of the different tissues (PC1<sub>score</sub> and PC2<sub>score</sub>). Among tissues, observed PLFA changes indicate that membrane FA composition in carp is both, internally regulated and affected to various degrees by diet. The two-way ANOVA detected significant interactive effects on the PLFA composition between tissues and diet (PC<sub>scores</sub>), indicating that inter-tissue PLFA patterns changed with diet. These results suggest that the regulation of PLFA composition varies among tissues, with some tissues being more influenced by dietary FA composition than others.

Based on PCA, C18PLFA (except 18:2n-6) differentiated eyes and ventral muscle in carp exposed to FO from the other tissues, which were more influenced by long-chain PUFA such as DHA and EPA. In addition, eyes and ventral muscle tissues showed lower PUFA mass ratios in PL than other tissues, irrespective of their diets. There is evidence from fish feeding studies that eyes of herring [30] and rainbow trout [31] are rich in DHA. Our results show that eyes had generally the highest DHA mass ratios of all tissues, but DHA in eyes varied dramatically with diet exposure. While DHA of PLFA and NLFA was similar when carp was exposed to N or VO diets, carp eyes had lower DHA mass ratios in their polar lipid fraction, but strongly increased DHA as NLFA when fed on and selectively retained (60%) FO diet, demonstrating that additional dietary DHA does not enrich cell membranes (intrinsic regulation), but it allocated and accumulated in storage lipids, and as such available to human consumers.

Fatty acids of polar lipids were similar between carp feeding on N and VO diets. Omega-6 PUFA, mainly LIN and ARA, were present at similarly high mass ratios in PLFA of carp fed on N and VO diets although the supplied VO contained particularly higher LIN than zooplankton. We interpret these similarly high n-6 PUFA because carp only retained 18% of the VO diet. In the presence of an n-3 PUFA-rich diet source (in particular FO), mostly EPA and DHA were preferentially incorporated into the polar lipid fraction at the expense of n-6 PUFA. As expected, PUFA were more efficiently accumulated in cell membranes (PLFA) than SAFA or MUFA (see also [32,33,34]) and suggest that carp preferentially retain n-3 and n-6 PUFA as structural lipids even when being exposed to diets that supply less PUFA, which is indicative of general instrinsic PUFA regulation in cell membranes of this or perhaps also other cyprinids.

#### Neutral lipid fatty acids in carp

Contrary to our hypothesis, FA in storage lipids were tissue specific in carp feeding on N and VO diets, suggesting that the retention of NLFA is not a simple function of dietary supply. By contrast, and confirming our assumption of tissue specific NLFA **Table 3.** Resulting coefficients of the correlations between the fatty acids (FA) and the principle component scores (PC1 and PC2) for PLFA and NLFA. The asterisks show the level of significance of the correlation coefficients (\*p<0.05, \*\*p<0.01, \*\*\*p<0.001).

|         | PLFA  |     |       |     | NLFA  |     |       |     |
|---------|-------|-----|-------|-----|-------|-----|-------|-----|
| FA      | PC1   |     | PC2   |     | PC1   |     | PC2   |     |
| 16:0    | -0,59 | *** | -0,43 | *** | -0,57 | *** | -0,73 | *** |
| 16:1n-7 | -0,81 | *** | 0,15  |     | 0,67  | *** | -0,57 | *** |
| 18:0    | 0,06  |     | 0,48  | *** | -0,74 | *** | 0,08  |     |
| 18:1n-9 | -0,66 | *** | 0,42  | *** | -0,58 | *** | -0,08 |     |
| 18:2n-6 | 0,48  | *** | 0,58  | *** | -0,40 | *** | 0,83  | *** |
| 18:3n-3 | -0,08 |     | 0,53  | *** | 0,60  | *** | 0,62  | *** |
| 18:4n-3 | -0,03 |     | 0,63  | *** | 0,83  | *** | -0,23 | **  |
| 20:3n-3 | 0,78  | *** | -0,05 |     | 0,59  | *** | 0,52  | *** |
| 20:4n-6 | 0,89  | *** | 0,16  |     | 0,13  |     | 0,58  | *** |
| 20:4n-3 | 0,05  |     | -0,49 | *** | 0,88  | *** | -0,03 |     |
| 20:5n-3 | -0,06 |     | -0,39 | *** | 0,79  | *** | -0,11 |     |
| 22:6n-3 | -0,48 | *** | -0,50 | *** | 0,59  | *** | -0,20 | *   |
| 22:5n-3 | 0,71  | *** | -0,30 | *** | 0,49  | *** | -0,03 |     |

doi:10.1371/journal.pone.0094759.t003

response, carp exposed to FO diets largely reflect their dietary FA compositions as shown in NLFA of marine fish [35,36,37,38]. Observed differences in NLFA composition among dietary exposure seem to be linked to the total NFLA mass ratios in different tissues that in turn are presumably related to excess dietary lipids. Total NLFA tissue mass ratios were consistently lower in N- and VO-carp than FO-carp and coincide with total

**Table 4.** Two-way analysis of variance (ANOVA) of the fatty acid composition (principal component 1 & 2 scores) among diet groups, tissues, and the interaction of diet and tissue in polar (PLFA) and neutral lipids (NLFA).

| Factors     | df | F     | p    |
|-------------|----|-------|------|
| PC1 (PLFA)  |    |       |      |
| Diet        | 7  | 61,5  | ***  |
| Tissue      | 2  | 544,5 | ***  |
| Interaction | 14 | 2,6   | **   |
| PC2 (PLFA)  |    |       |      |
| Diet        | 7  | 62,9  | ***  |
| Tissue      | 2  | 92,5  | ***  |
| Interaction | 14 | 40,7  | ***  |
| PC1 (NLFA)  |    |       |      |
| Diet        | 7  | 8,2   | ***  |
| Tissue      | 2  | 132,0 | ***  |
| Interaction | 14 | 2,3   | *    |
| PC2 (NLFA)  |    |       |      |
| Diet        | 7  | 5,3   | ***  |
| Tissue      | 2  | 266,2 | ***  |
| Interaction | 14 | 1,7   | n.s. |

Asterisks indicate significant differences: \* (p<0.05), \*\* (p<0.01), \*\*\* (p<0.001), n.s. = no significant difference (p≥0.05).

doi:10.1371/journal.pone.0094759.t004

lipid mass ratios in the examined carp tissues. These results suggest that tissue NLFA only track dietary FA when carp tissues are rich in storage lipids.

The NLFA composition results from excess dietary lipids allocated from the liver and deposited as storage lipids [3]. Such mobilized NLFA may differ among tissues as FA binding proteins facilitating the intracellular FA transport are known to be tissue specific [39,3] and may therefore promote specific NLFA patterns in carp, especially at low neutral lipid mass ratios. Main products of the lipogenesis in fish liver are 16:0 and 18:0 and also their desaturated products palmitoleic (16:1n-7) and oleic acid (18:1n-9; [3]). However, dietary n-3 long-chain PUFA effectively reduce lipogenesis [40,41] and therefore liver FA patterns in carp with dietary access to FO may have been less different from other tissues compared to carp exposed to N and VO, in which lipogenesis likely caused a significant difference in the FA profile compared to all other tissues, as supported by the factor plots (Fig. 2).

Eyes were particularly rich in NLFA as was also reported for fatty fish species such as Atlantic salmon (*Salmo salar*) and rainbow trout (*Oncorhynchus mykiss*) [42]. The low mass ratios of structural PUFA in eyes compared to other tissues was unexpected because fish eyes are generally rich in total PUFA, especially DHA [30]. However, it was also reported that the total amount of PUFA in eyes was higher for lean (<2% fat in muscle tissue) than fatty fish species [42]. Carp feeding on FO diets caused a 4X-6X increase of DHA mass ratios in storage lipids of carp eyes, suggesting organspecific allocation of excess dietary lipids. By having separated lipid classes of eyes we demonstrate that most of the DHA in carp eyes is associated with storage and less with structural lipids.

In conclusion, the examination of various tissues in carp exposed to different diets indicates the NLFA composition was tissue specific at low TAG mass ratios, but reflected dietary FA composition at high NLFA mass ratios. However, carp changed their PLFA composition by preferentially incorporating long-chain n-3 PUFA when high amounts of dietary fish oil were available. This study increases our overall understanding that commonly applied VO-feeds do not improve the dietary lipid quality of common carp, but the selective retention of PUFA-rich diets

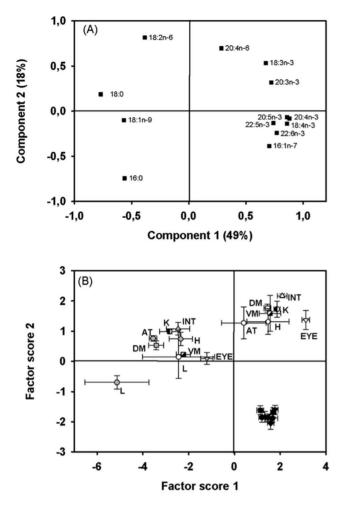



Figure 2. Component plot (A) and factor score plot (B) of the principal component analysis for the fatty acid profile of **neutral lipids in 8 different tissues of carp fed 3 different diets.** White symbols refer to the natural diet (N), grey symbols refer to the vegetable oil (VO) diet and black symbols refer to the fish oil (FO) diet. Tissues are labeled by shortcuts: adipose tissue (AT), dorsal muscle (DM), eyes (EYE), heart (H), intestine (INT), kidney (K), liver (L), and ventral muscle (VM). Data values are represented in the factor score plot as mean  $\pm$  SEM (n = 5). doi:10.1371/journal.pone.0094759.q002

results in favorable PUFA accumulation particularly in ventral muscle tissues, but much less in other tissues, which can render the world's mostly consumed freshwater fish an even more important dietary vector of PUFA for humans.

#### References

- Bell JG (1998) Current aspects of lipid nutrition in fish farming. Biology of Farmed Fish (K Black and A D Pickering, Eds) Sheffield, UK: 114–145.
- Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW, editors.Fish nutrition. 3rd edition ed. San Diego: Academic Press. pp. pp. 181– 257.
- Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science 11: 107–184.
- Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, et al. (1999) Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34: S39–S47.
- Simopoulos AP (2000) Human requirement for n-3 polyunsaturated fatty acids. Poultry Science 79: 961–970.
- Lands WEM (2005) Learning how membrane fatty acids affect cardiovascular integrity. Journal of Membrane Biology 206: 75–83.
- Sargent J, Bell G, McEvoy L, Tocher D, Estevez A (1999) Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177: 191–199.

#### **Supporting Information**

File S1 Table S1. Total lipid mass ratios in tissues of carp after feeding for 210 d on pond zooplankton (N) and zooplankton plus additional feeds containing vegetable oils (VO), and marine fish oils (FO). Table S2. Fatty acid accumulation factors calculated as the quotients of, a) PLFA, and, b) NLFA in carp tissues and food sources (N = pond zooplankton; VO = zooplankton and additional feeds containing vegetable oil; FO = zooplankton and additional feeds containing fish oil). Fatty acids from different food sources in carp were assessed by mixing models using stable isotope analysis of food sources and carp (see text). Fatty acid accumulation in carp tissues is indicated with factors >1 (in bold). Table S3. Relative (%) polar lipid fatty acid (PLFA) composition of common carp tissues (Cyprinus carpio) exposed to pond zooplankton (N) as well as on additional meals containing vegetable (VO) and fish (FO) oils (% of total FAME, mean  $\pm$  SD, n = 5). Table S4. Polar lipid fatty acid (PLFA) mass ratios (mg g dry weight<sup>-1</sup>) of common carp tissues (Cyprinus carpio) exposed to pond zooplankton (N) as well as to additional meals containing vegetable (VO) and fish (FO) oils (% of total FAME, mean  $\pm$  SD, n=5). Table S5. Relative (%) neutral lipid fatty acid (NLFA) composition of common carp tissues (Cyprinus carpio) exposed to pond zooplankton (N) as well as to additional meals containing vegetable (VO) and fish (FO) oils (% of total FAME, mean ± SD, n=5). Table S6. Neutral lipid fatty acid (NLFA) mass ratios (mg g dry weight<sup>-1</sup>) of common carp tissues (Cyprinus carpio) exposed to pond zooplankton (N) as well as to additional meals containing vegetable (VO) and fish (FO) oils (% of total FAME, mean  $\pm$  SD, n=5). (DOCX)

#### Acknowledgments

We thank two anonymous reviewers and M. Alemany for their useful comments that improved the manuscript. J. Watzke and Z. Changizi conducted lipid analysis and Teichwirtschaft Kainz maintained the fishponds. Fish feeds were provided by GARANT Tiernahrung, Austria.

#### **Author Contributions**

Conceived and designed the experiments: MB SS MJK. Performed the experiments: MB SS MJK. Analyzed the data: MB SS AK MJK. Contributed reagents/materials/analysis tools: MB SS AK MJK. Wrote the paper: MB SS AK MJK. Data analysis: MB SS AK MJK. Sampling design: SS MJK. Fish feed design: MJK. Permission of experiments: MJK.

- Arts MT, Kohler CC (2009) Health and condition in fish: the influence of lipids on membrane competency and immune response. In: Arts MT, Brett MT, Kainz MJ, editors. Lipids in Aquatic Ecosystems. New York: Springer. pp. 237– 256.
- Cook HW, McMaster CR (2004) Fatty acid desaturation and chain elongation in eukaryotes. In: Vance DE, Vance JE, editors.Biochemistry of lipids, lipoproteins and membranes. 4th edition ed.Amsterdam: Elsevier, pp. 181–204.
- Stansby ME (1990) Nutritional properties of fish oil for human consumptionmodem aspects. In: Stansby ME, editor.Fish Oils in Nutrition.New York: Van Nostrand Reinhold. pp. pp. 289–308.
- Steffens W (1997) Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture 151: 97–119.
- Calder PC (2001) Polyunsaturated fatty acids, inflammation, and immunity. Lipids 36: 1007–1024.

- Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46: 225–230.
- Sardesai VM (1992) Biochemical and nutritional aspects of eicosanoids. Journal of Nutritional Biochemistry 3: 562–579.
- Stanley-Samuelson DW, Pedibhotla VK (1996) What can we learn from prostaglandins and related eicosanoids in insects? Insect Biochemistry and Molecular Biology 26: 223–234.
- Lie O, Lied E, Lambertsen G (1986) Liver retention of fat and of fatty-acids in cod (Gadus-morhua) fed different oils. Aquaculture 59: 187–196.
- Jobling M (2004) Are modifications in tissue fatty acid profiles following a change in diet the result of dilution? Test of a simple dilution model. Aquaculture 232: 551–562.
- Benedito-Palos L, Navarro JC, Kaushik S, Perez-Sanchez J (2010) Tissuespecific robustness of fatty acid signatures in cultured gilthead sea bream (Sparus aurata L.) fed practical diets with a combined high replacement of fish meal and fish oil. Journal of Animal Science 88: 1759–1770.
- Regost Č, Arzel J, Robin J, Rosenlund G, Kaushik SJ (2003) Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima) - 1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture 217: 465–482.
- Fauconneau B, Alamidurante H, Laroche M, Marcel J, Vallot D (1995) Growth and meat quality relations in carp. Aquaculture 129: 265–297.
- Hadjinikolova L (2004) The influence of nutrative lipid sources on the growth and chemical and fatty acid composition of carp (Cyprinus carpio L.). Archives of Polish Fisheries 12: 111–119.
- Du ZY, Clouet P, Zheng WH, Degrace P, Tian LX, et al. (2006) Biochemical hepatic alterations and body lipid composition in the herbivorous grass carp (Ctenopharyngodon idella) fed high-fat diets. British Journal of Nutrition 95: 905–915.
- Steffens W, Wirth M (2007) Influence of nutrition on the lipid quality of pond fish: common carp (*Cyprinus carpio*) and tench (*Tinca tinca*). Aquaculture International 15: 313–319.
- Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 285: 146–158.
- FAO (2012) Fishery and aquaculture statistics Aquaculture production. Rome. 229 p.
- Schultz S, Vallant B, Kainz MJ (2012) Preferential feeding on high quality diets decreases methyl mercury of farm-raised common carp (Cyprinus carpio L.). Aquaculture 338: 105–110.
- Heissenberger M, Watzke J, Kainz MJ (2010) Effect of nutrition on fatty acid profiles of riverine, lacustrine and aquaculture-raised salmonids of pre-alpine habitats. Hydrobiologia 650: 243–254.
- van Dooremalen C, Suring W, Ellers J (2011) Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod. Journal of Insect Physiology 57: 1267–1273.

- Schlott K (2007) Die planktische Naturnahrung und ihre Bedeutung für die Fischproduktion in Karpfenteichen: Bundesamt für Wasserwirtschaft, Ökologische Station Waldviertel.
- Bell MV, Batty RS, Dick JR, Fretwell K, Navarro JC, et al. (1995) Dietary deficiency of docosahexaenoic acid impairs vision at low-ligth intensities in juvenile herring (Clupea-harengus L). Lipids 30: 443–449.
- Bell MV, Dick JR, Porter AEA (2001) Biosynthesis and tissue deposition of docosahexaenoic acid (22: 6n-3) in rainbow trout (*Oncorhynchus mykiss*). Lipids 36: 1153–1159.
- Linares F, Henderson RJ (1991) Incorporation of C-14-labeled polyunsaturated fatty-acids by juvenile turbot, scophthalmus-maximus (l) invivo. Journal of Fish Biology 38: 335–347.
- 33. Skalli A, Robin JH, Le Bayon N, Le Delliou H, Person-Le Ruyet J (2006) Impact of essential fatty acid deficiency and temperature on tissues' fatty acid composition of European sea bass (Dicentrarchus labrax). Aquaculture 255: 223–232.
- Glencross BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture 1: 71–124.
- Nanton DA, Vegusdal A, Rora AMB, Ruyter B, Baeverfjord G, et al. (2007) Muscle lipid storage pattern, composition, and adipocyte distribution in different parts of Atlantic salmon (Salmo salar) fed fish oil and vegetable oil. Aquaculture 265: 230–243.
- Mørkøre T, Netteberg C, Johnsson L, Pickova J (2007) Impact of dietary oil source on product quality of fanned Atlantic cod, Gadus morhua. Aquaculture 267: 236–247.
- Francis DS, Turchini GM, Jones PL, De Silva SS (2006) Effects of dietary oil source on growth and fillet fatty acid composition of Murray cod, Maccullochella peelii peelii. Aquaculture 253: 547–556.
- 38. Mourente G, Good JE, Bell JG (2005) Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandins E-2 and F-2 alpha, immune function and effectiveness of a fish oil finishing diet. Aquaculture Nutrition 11: 25–40.
- Veerkamp JH, Maatman R (1995) Cytoplasmic fatty-acid-binding proteins their structure and genes. Progress in Lipid Research 34: 17–52.
- Shikata T, Shimeno S (1994) Metabolic response to dietary stearic-acid, linoleicacid, and highly unsaturated fatty-acid in carp. Fisheries Science 60: 735–739.
- Wang JT, Liu YJ, Tian LX, Mai KS, Du ZY, et al. (2005) Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 249: 439–447.
- Stoknes IS, Okland HMW, Falch E, Synnes M (2004) Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranchs. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 138: 183– 191.

## 1 Supplementary material:

## 2 Table S1

|                | Total lipid mass ratios ( $\pm$ SD; mg g dry weight <sup>-1</sup> ) |          |              |  |  |  |  |  |  |  |
|----------------|---------------------------------------------------------------------|----------|--------------|--|--|--|--|--|--|--|
| Carp tissues   | N                                                                   | VO       | FO           |  |  |  |  |  |  |  |
| Eye            | 183 ± 22                                                            | 333 ± 66 | 770 ± 47     |  |  |  |  |  |  |  |
| Heart          | 107 ± 20                                                            | 143 ± 20 | 287 ± 104    |  |  |  |  |  |  |  |
| Kidney         | 167 ± 25                                                            | 154 ± 22 | 300 ± 74     |  |  |  |  |  |  |  |
| Liver          | 118 ± 11                                                            | 118 ± 11 | 186 ± 52     |  |  |  |  |  |  |  |
| Dorsal muscle  | 46 ± 8                                                              | 48 ± 5   | $200 \pm 76$ |  |  |  |  |  |  |  |
| Ventral muscle | 56 ± 4                                                              | 49 ± 6   | 482 ± 64     |  |  |  |  |  |  |  |
| Adipose tissue | 184 ± 21                                                            | 333 ± 10 | 770 ± 152    |  |  |  |  |  |  |  |
| Intestine      | 152 ± 12                                                            | 127 ± 14 | 221 ± 36     |  |  |  |  |  |  |  |

3

4

| a)        | T.  | ntestine |     |     | Eve |     | 1   | Vidno |        |     | Liver |     |
|-----------|-----|----------|-----|-----|-----|-----|-----|-------|--------|-----|-------|-----|
|           |     |          |     | NT  | Eye | EO  |     | Kidne | ,<br>, | NT  |       | FO  |
| PLFA      | N   | VO       | FO  | N   | VO  | FO  | N   | VO    | FO     | N   | VO    | FO  |
| 14:0      | 0.1 | 0.1      | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1   | 0.2    | 0.1 | 0.0   | 0.1 |
| 15:0      | 1.1 | 0.2      | 0.4 | 0.5 | 0.1 | 0.0 | 1.5 | 0.3   | 0.5    | 1.4 | 0.2   | 0.3 |
| 16:0      | 0.8 | 0.7      | 0.7 | 0.6 | 0.6 | 0.3 | 1.4 | 1.2   | 1.0    | 1.1 | 0.8   | 0.6 |
| 17:0      | 1.5 | 0.5      | 0.6 | 0.6 | 0.2 | 0.0 | 2.0 | 0.7   | 0.6    | 1.2 | 0.4   | 0.3 |
| 18:0      | 1.6 | 1.6      | 1.3 | 1.0 | 1.1 | 0.6 | 1.9 | 2.1   | 1.8    | 1.0 | 1.0   | 0.6 |
| 20:0      | 1.0 | 0.5      | 0.3 | 0.4 | 0.0 | 0.0 | 0.9 | 0.6   | 0.4    | 0.6 | 0.4   | 0.2 |
| 22:0      | 0.4 | 0.2      | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.4   | 0.0    | 0.2 | 0.1   | 0.0 |
| 16:1n-7   | 0.3 | 0.2      | 0.2 | 0.3 | 0.3 | 0.2 | 0.4 | 0.3   | 0.4    | 0.4 | 0.3   | 0.2 |
| 18:1n-9   | 0.7 | 0.3      | 0.3 | 0.7 | 0.4 | 0.2 | 1.0 | 0.5   | 0.4    | 0.8 | 0.4   | 0.2 |
| 18:2n-6   | 0.5 | 0.2      | 0.1 | 0.3 | 0.2 | 0.1 | 0.7 | 0.4   | 0.2    | 0.4 | 0.2   | 0.1 |
| 18:3n-6   | 0.0 | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0   | 0.0    | 0.0 | 0.0   | 0.0 |
| 18:3n-3   | 0.1 | 0.0      | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0   | 0.1    | 0.0 | 0.0   | 0.0 |
| 18:4n-3   | 0.1 | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1   | 0.0    | 0.0 | 0.0   | 0.0 |
| 20:2n-6   | 0.1 | 0.1      | 0.2 | 0.1 | 0.0 | 0.4 | 0.2 | 0.1   | 0.3    | 0.1 | 0.0   | 0.1 |
| 20:3n-6   | 1.4 | 1.8      | 0.7 | 0.8 | 1.1 | 0.0 | 2.7 | 3.8   | 1.4    | 1.2 | 1.5   | 0.4 |
| 20:3n-3   | 2.4 | 0.6      | 0.2 | 1.0 | 0.0 | 0.0 | 3.4 | 1.2   | 0.4    | 2.1 | 0.6   | 0.1 |
| 20:4n-6   | 2.4 | 1.7      | 1.4 | 1.1 | 0.8 | 0.2 | 4.3 | 3.4   | 2.6    | 2.0 | 1.4   | 0.8 |
| 20:4n-3   | 0.3 | 0.1      | 0.2 | 0.1 | 0.1 | 0.0 | 0.4 | 0.2   | 0.3    | 0.2 | 0.1   | 0.1 |
| 20:5n-3   | 0.3 | 0.2      | 0.2 | 0.1 | 0.1 | 0.1 | 0.4 | 0.3   | 0.4    | 0.2 | 0.1   | 0.1 |
| 22:2n-6   | 1.5 | 1.0      | 1.0 | 0.9 | 1.2 | 0.0 | 2.5 | 1.4   | 1.8    | 1.4 | 0.4   | 0.3 |
| 22:6n-3   | 0.6 | 0.9      | 0.5 | 0.7 | 1.3 | 0.1 | 0.7 | 1.0   | 0.6    | 0.5 | 0.8   | 0.4 |
| 24:1n-9   | 0.3 | 0.4      | 0.2 | 0.2 | 0.0 | 0.0 | 0.5 | 0.8   | 0.4    | 0.1 | 0.2   | 0.1 |
|           |     |          |     |     |     |     |     |       |        |     |       |     |
| PUFA      | 0.4 | 0.3      | 0.2 | 0.2 | 0.2 | 0.1 | 0.6 | 0.4   | 0.4    | 0.3 | 0.2   | 0.2 |
| n-3 total | 0.2 | 0.1      | 0.2 | 0.2 | 0.2 | 0.1 | 0.3 | 0.2   | 0.3    | 0.2 | 0.1   | 0.2 |
| n-6 total | 1.0 | 0.5      | 0.3 | 0.5 | 0.3 | 0.1 | 1.6 | 1.1   | 0.6    | 0.8 | 0.4   | 0.2 |

34

36

| 45 | a) cont'd |
|----|-----------|
|    |           |

|           | Der | 1      | 1.  |     | <b>TT</b> 4 |     |     |         |     | Mand | 1     | 1.  |
|-----------|-----|--------|-----|-----|-------------|-----|-----|---------|-----|------|-------|-----|
|           |     | sal mu |     | ЪT  | Heart       |     |     | pose ti |     |      | ral m |     |
| PLFA      | N   | VO     | FO  | N   | VO          | FO  | N   | VO      | FO  | N    | VO    | FO  |
| 14:0      | 0.0 | 0.0    | 0.0 | 0.1 | 0.1         | 0.1 | 0.1 | 0.1     | 0.1 | 0.0  | 0.0   | 0.1 |
| 15:0      | 0.5 | 0.1    | 0.2 | 0.9 | 0.3         | 0.4 | 0.9 | 0.2     | 0.4 | 0.4  | 0.1   | 0.0 |
| 16:0      | 0.6 | 0.5    | 0.3 | 0.8 | 1.0         | 0.6 | 1.1 | 1.0     | 0.9 | 0.5  | 0.5   | 0.3 |
| 17:0      | 0.6 | 0.2    | 0.2 | 1.2 | 0.6         | 0.3 | 0.9 | 0.4     | 0.6 | 0.5  | 0.2   | 0.0 |
| 18:0      | 0.9 | 0.8    | 0.5 | 1.3 | 2.2         | 1.1 | 1.4 | 1.4     | 1.5 | 0.7  | 0.8   | 0.6 |
| 20:0      | 0.4 | 0.3    | 0.1 | 0.9 | 1.0         | 0.3 | 0.6 | 0.4     | 0.2 | 0.3  | 0.2   | 0.0 |
| 22:0      | 0.1 | 0.1    | 0.0 | 0.2 | 0.1         | 0.0 | 0.4 | 0.0     | 0.6 | 0.1  | 0.1   | 0.0 |
| 16:1n-7   | 0.2 | 0.2    | 0.2 | 0.3 | 0.3         | 0.2 | 0.2 | 0.3     | 0.2 | 0.2  | 0.2   | 0.2 |
| 18:1n-9   | 0.8 | 0.4    | 0.2 | 0.7 | 0.5         | 0.3 | 0.9 | 0.4     | 0.3 | 0.6  | 0.3   | 0.2 |
| 18:2n-6   | 0.5 | 0.3    | 0.1 | 0.5 | 0.5         | 0.1 | 0.5 | 0.2     | 0.1 | 0.4  | 0.3   | 0.1 |
| 18:3n-6   | 0.0 | 0.1    | 0.0 | 0.0 | 0.0         | 0.0 | 0.0 | 0.0     | 0.0 | 0.0  | 0.1   | 0.0 |
| 18:3n-3   | 0.1 | 0.0    | 0.1 | 0.1 | 0.1         | 0.0 | 0.1 | 0.0     | 0.0 | 0.1  | 0.0   | 0.1 |
| 18:4n-3   | 0.0 | 0.0    | 0.0 | 0.1 | 0.1         | 0.0 | 0.0 | 0.0     | 0.0 | 0.0  | 0.0   | 0.0 |
| 20:2n-6   | 0.1 | 0.0    | 0.1 | 0.1 | 0.1         | 0.2 | 0.1 | 0.1     | 0.2 | 0.1  | 0.0   | 0.3 |
| 20:3n-6   | 1.0 | 1.6    | 0.3 | 1.3 | 2.9         | 0.5 | 2.1 | 2.0     | 0.6 | 0.8  | 1.4   | 0.0 |
| 20:3n-3   | 0.9 | 0.3    | 0.0 | 1.8 | 0.8         | 0.1 | 1.2 | 0.4     | 0.2 | 0.8  | 0.3   | 0.0 |
| 20:4n-6   | 1.1 | 0.9    | 0.5 | 2.2 | 2.6         | 1.3 | 2.7 | 2.2     | 2.1 | 0.9  | 0.8   | 0.4 |
| 20:4n-3   | 0.3 | 0.1    | 0.1 | 0.2 | 0.2         | 0.1 | 0.2 | 0.1     | 0.2 | 0.0  | 0.0   | 0.0 |
| 20:5n-3   | 0.2 | 0.2    | 0.2 | 0.2 | 0.3         | 0.2 | 0.2 | 0.1     | 0.4 | 0.2  | 0.2   | 0.1 |
| 22:2n-6   | 1.4 | 0.7    | 0.7 | 1.2 | 1.4         | 1.2 | 1.2 | 0.9     | 1.7 | 1.1  | 0.4   | 2.0 |
| 22:6n-3   | 0.5 | 1.0    | 0.3 | 0.6 | 1.4         | 0.5 | 0.6 | 1.0     | 0.6 | 0.4  | 0.8   | 0.2 |
| 24:1n-9   | 0.1 | 0.1    | 0.0 | 0.2 | 0.6         | 0.2 | 0.2 | 0.3     | 0.1 | 0.1  | 0.2   | 0.0 |
|           |     |        |     |     |             |     |     |         |     |      |       |     |
| PUFA      | 0.3 | 0.2    | 0.1 | 0.3 | 0.4         | 0.2 | 0.4 | 0.3     | 0.3 | 0.2  | 0.2   | 0.1 |
| n-3 total | 0.2 | 0.2    | 0.1 | 0.2 | 0.2         | 0.2 | 0.2 | 0.1     | 0.3 | 0.2  | 0.1   | 0.1 |
| n-6 total | 0.6 | 0.4    | 0.2 | 0.9 | 0.9         | 0.3 | 1.1 | 0.6     | 0.4 | 0.5  | 0.4   | 0.2 |

| 03 |  |
|----|--|

|           | Ir  | ntestine | e   |     | Eye |      | ]   | Kidney | y   |     | Liver |     |
|-----------|-----|----------|-----|-----|-----|------|-----|--------|-----|-----|-------|-----|
| NLFA      | Ν   | VO       | FO  | Ν   | VO  | FO   | Ν   | VO     | FO  | Ν   | VO    | FO  |
| C14:0     | 0.1 | 0.1      | 0.6 | 0.5 | 1.0 | 6.2  | 0.1 | 0.1    | 1.7 | 0.0 | 0.0   | 0.4 |
| C15:0     | 0.5 | 0.1      | 0.5 | 1.9 | 1.0 | 6.6  | 0.3 | 0.1    | 1.8 | 0.0 | 0.0   | 0.4 |
| C16:0     | 0.3 | 0.2      | 0.7 | 1.0 | 3.8 | 7.4  | 0.2 | 0.2    | 2.2 | 0.0 | 0.0   | 0.5 |
| C17:0     | 0.4 | 0.1      | 0.3 | 1.3 | 0.9 | 3.7  | 0.2 | 0.1    | 1.0 | 0.0 | 0.0   | 0.2 |
| C18:0     | 0.3 | 0.3      | 0.4 | 0.8 | 3.1 | 4.4  | 0.2 | 0.2    | 1.5 | 0.0 | 0.0   | 0.3 |
| C20:0     | 0.3 | 0.2      | 0.0 | 0.7 | 2.6 | 2.1  | 0.1 | 0.3    | 0.7 | 0.0 | 0.0   | 0.1 |
| C22:0     | 0.0 | 0.1      | 0.0 | 0.2 | 0.8 | 0.0  | 0.0 | 0.1    | 0.0 | 0.0 | 0.0   | 0.0 |
| C16:1n-7  | 0.3 | 0.2      | 0.8 | 1.3 | 3.8 | 9.6  | 0.2 | 0.2    | 3.0 | 0.0 | 0.0   | 0.7 |
| C18:1n-9  | 0.7 | 0.4      | 0.7 | 2.7 | 6.4 | 8.3  | 0.4 | 0.4    | 2.6 | 0.1 | 0.0   | 0.6 |
| C18:2n-6  | 0.8 | 0.4      | 0.5 | 3.3 | 5.6 | 6.2  | 0.5 | 0.4    | 1.6 | 0.1 | 0.0   | 0.4 |
| C18:3n-6  | 0.0 | 0.0      | 0.0 | 0.3 | 0.9 | 3.4  | 0.0 | 0.0    | 0.9 | 0.0 | 0.0   | 0.2 |
| C18:3n-3  | 0.3 | 0.0      | 0.3 | 1.0 | 0.7 | 4.5  | 0.2 | 0.0    | 0.9 | 0.0 | 0.0   | 0.2 |
| C18:4n-3  | 0.0 | 0.0      | 0.1 | 0.2 | 0.2 | 1.2  | 0.0 | 0.0    | 0.2 | 0.0 | 0.0   | 0.1 |
| C20:2n-6  | 0.1 | 0.0      | 1.6 | 0.6 | 0.4 | 16.8 | 0.1 | 0.0    | 3.6 | 0.0 | 0.0   | 0.4 |
| C20:3n-6  | 0.4 | 0.2      | 0.3 | 1.7 | 4.1 | 5.1  | 0.0 | 0.2    | 1.4 | 0.0 | 0.0   | 0.3 |
| C20:3n-3  | 1.2 | 0.0      | 0.2 | 3.9 | 1.9 | 3.5  | 0.6 | 0.1    | 0.8 | 0.0 | 0.1   | 0.2 |
| C20:4n-6  | 0.2 | 0.1      | 0.2 | 0.7 | 0.7 | 2.1  | 0.1 | 0.1    | 0.5 | 0.0 | 0.0   | 0.1 |
| C20:4n-3  | 0.2 | 0.0      | 0.2 | 0.6 | 0.5 | 2.0  | 0.1 | 0.0    | 0.5 | 0.0 | 0.0   | 0.2 |
| C20:5n-3  | 0.1 | 0.0      | 0.2 | 0.3 | 0.3 | 2.4  | 0.0 | 0.0    | 0.6 | 0.0 | 0.0   | 0.1 |
| C22:2n-6  | 1.5 | 0.2      | 2.3 | 6.3 | 4.3 | 28.4 | 0.8 | 0.2    | 7.3 | 0.2 | 0.0   | 0.8 |
| C22:6n-3  | 0.0 | 0.0      | 0.2 | 1.0 | 1.2 | 2.0  | 0.0 | 0.0    | 0.5 | 0.0 | 0.0   | 0.1 |
| C24:1n-9  | 0.6 | 0.0      | 0.1 | 0.0 | 0.0 | 0.5  | 0.7 | 3.6    | 0.3 | 0.0 | 0.0   | 0.1 |
| PUFA      | 0.2 | 0.1      | 0.2 | 0.8 | 1.3 | 3.0  | 0.1 | 0.1    | 0.7 | 0.0 | 0.0   | 0.2 |
| n-3 total | 0.1 | 0.0      | 0.2 | 0.6 | 0.5 | 2.3  | 0.1 | 0.0    | 0.5 | 0.0 | 0.0   | 0.1 |
| n-6 total | 0.5 | 0.2      | 0.6 | 1.9 | 3.4 | 6.4  | 0.3 | 0.3    | 1.6 | 0.0 | 0.0   | 0.3 |

76

| 83 | b) cont'd |
|----|-----------|
|    |           |

|           | Dor | sal mu | iscle |     | Heart |     | Adipose tissue |     |     | Ventral muscle |     |      |
|-----------|-----|--------|-------|-----|-------|-----|----------------|-----|-----|----------------|-----|------|
| NLFA      | Ν   | VO     | FO    | Ν   | VO    | FO  | Ν              | VO  | FO  | Ν              | VO  | FO   |
| 14:0      | 0.0 | 0.0    | 1.7   | 0.0 | 0.1   | 1.9 | 0.0            | 0.0 | 0.9 | 0.0            | 0.0 | 3.3  |
| 15:0      | 0.1 | 0.0    | 1.9   | 0.2 | 0.1   | 2.1 | 0.1            | 0.0 | 0.9 | 0.2            | 0.0 | 3.5  |
| 16:0      | 0.1 | 0.1    | 2.1   | 0.1 | 0.5   | 2.4 | 0.0            | 0.1 | 1.2 | 0.1            | 0.1 | 4.2  |
| 17:0      | 0.1 | 0.0    | 1.1   | 0.2 | 0.1   | 1.1 | 0.0            | 0.0 | 0.6 | 0.1            | 0.0 | 2.3  |
| 18:0      | 0.1 | 0.1    | 1.4   | 0.1 | 0.5   | 1.5 | 0.0            | 0.1 | 0.8 | 0.1            | 0.2 | 2.9  |
| 20:0      | 0.1 | 0.0    | 0.7   | 0.0 | 0.4   | 0.6 | 0.0            | 0.1 | 0.2 | 0.1            | 0.1 | 1.5  |
| 22:0      | 0.0 | 0.0    | 0.0   | 0.0 | 0.1   | 0.0 | 0.0            | 0.0 | 0.3 | 0.1            | 0.0 | 0.0  |
| 16:1n-7   | 0.1 | 0.1    | 2.7   | 0.1 | 0.4   | 3.3 | 0.0            | 0.1 | 1.7 | 0.1            | 0.1 | 5.8  |
| 18:1n-9   | 0.2 | 0.1    | 2.4   | 0.2 | 0.8   | 2.7 | 0.1            | 0.2 | 1.4 | 0.3            | 0.2 | 5.2  |
| 18:2n-6   | 0.2 | 0.1    | 1.6   | 0.2 | 0.9   | 1.7 | 0.1            | 0.2 | 0.9 | 0.3            | 0.2 | 3.5  |
| 18:3n-6   | 0.0 | 0.0    | 1.0   | 0.0 | 0.1   | 1.0 | 0.0            | 0.0 | 0.5 | 0.0            | 0.0 | 1.8  |
| 18:3n-3   | 0.0 | 0.0    | 1.1   | 0.1 | 0.1   | 1.2 | 0.0            | 0.0 | 0.6 | 0.1            | 0.0 | 2.3  |
| 18:4n-3   | 0.0 | 0.0    | 0.3   | 0.0 | 0.0   | 0.3 | 0.0            | 0.0 | 0.1 | 0.0            | 0.0 | 0.6  |
| 20:2n-6   | 0.0 | 0.0    | 3.9   | 0.1 | 0.1   | 5.5 | 0.0            | 0.0 | 2.6 | 0.1            | 0.0 | 9.6  |
| 20:3n-6   | 0.1 | 0.0    | 1.5   | 0.1 | 0.5   | 1.4 | 0.0            | 0.0 | 0.9 | 0.1            | 0.1 | 2.9  |
| 20:3n-3   | 0.2 | 0.0    | 0.9   | 0.4 | 0.2   | 0.9 | 0.1            | 0.0 | 0.5 | 0.4            | 0.0 | 1.8  |
| 20:4n-6   | 0.0 | 0.0    | 0.5   | 0.1 | 0.1   | 0.6 | 0.0            | 0.0 | 0.3 | 0.1            | 0.0 | 1.1  |
| 20:4n-3   | 0.0 | 0.0    | 0.6   | 0.1 | 0.0   | 0.6 | 0.0            | 0.0 | 0.3 | 0.1            | 0.0 | 1.2  |
| 20:5n-3   | 0.0 | 0.0    | 0.6   | 0.0 | 0.0   | 0.7 | 0.0            | 0.0 | 0.3 | 0.0            | 0.0 | 1.4  |
| 22:2n-6   | 0.2 | 0.1    | 7.3   | 0.5 | 0.4   | 8.9 | 0.1            | 0.0 | 5.1 | 0.4            | 0.2 | 17.2 |
| 22:6n-3   | 0.0 | 0.0    | 0.1   | 0.0 | 0.0   | 0.6 | 0.0            | 0.0 | 0.3 | 0.0            | 0.0 | 1.2  |
| 24:1n-9   | 0.1 | 0.1    | 0.5   | 0.0 | 0.2   | 0.2 | 0.0            | 0.0 | 0.1 | 0.0            | 0.1 | 2.7  |
|           |     |        |       |     |       |     |                |     |     |                |     |      |
| PUFA      | 0.0 | 0.0    | 0.7   | 0.1 | 0.2   | 0.8 | 0.0            | 0.0 | 0.4 | 0.1            | 0.0 | 1.7  |
| n-3 total | 0.0 | 0.0    | 0.5   | 0.0 | 0.0   | 0.6 | 0.0            | 0.0 | 0.3 | 0.0            | 0.0 | 1.3  |
| n-6 total | 0.1 | 0.1    | 1.6   | 0.1 | 0.5   | 1.8 | 0.1            | 0.1 | 0.9 | 0.2            | 0.1 | 3.6  |

| Т | 1        | 1 |   | n | $\mathbf{a}$ |
|---|----------|---|---|---|--------------|
|   | <u>0</u> | n | e | ~ | -            |
|   |          |   |   |   |              |
|   |          |   |   |   |              |

|           |                | Intestine      |                |                | Eye            |                |                | Kidney         |                |                | Liver          |                |
|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|           | N              | VO             | FO             |
| 16:0      | $24,0 \pm 1,6$ | $28,9 \pm 2,0$ | $33,2 \pm 0,6$ | $24,4 \pm 1,3$ | $28,1 \pm 1,2$ | 32,7 ± 1,3     | 27,2 ± 1,2     | $29,5 \pm 1,2$ | $33,4 \pm 1,2$ | $31,4 \pm 0,8$ | $34.4 \pm 1.6$ | $38,6 \pm 0,9$ |
| 16:1n-7   | $3,0 \pm 0,4$  | $2,5 \pm 0,4$  | $3,4 \pm 0,2$  | $4,3 \pm 0,4$  | $4,0 \pm 0,3$  | 6,6 ± 1,0      | $2,9 \pm 0,3$  | 2,4 ± 0,3      | $4,1 \pm 0,6$  | $4,5 \pm 0,3$  | $3.4 \pm 1.0$  | 5,2 ± 0,7      |
| 18:0      | $13,6 \pm 0,4$ | $16,1 \pm 0,7$ | $12,5 \pm 0,8$ | $12,1 \pm 0,5$ | $13,4 \pm 0,5$ | $14,8 \pm 0,6$ | $10,8 \pm 0,4$ | 13,0 ± 0,7     | $11,8 \pm 0,7$ | $8,3 \pm 0,5$  | $10.7 \pm 0.8$ | $7,9 \pm 0,4$  |
| 18:1n-9   | 8,8 ± 0,5      | $10,0 \pm 1,4$ | $10,5 \pm 0,8$ | $13,0 \pm 1,4$ | $15,3 \pm 1,1$ | $16,4 \pm 1,9$ | 8,4 ± 0,6      | 9,4 ± 0,9      | $11,1 \pm 0,7$ | $10,2 \pm 0,9$ | $11.3 \pm 1.0$ | $11,8 \pm 0,5$ |
| 18:2n-6   | 4,4 ± 1,2      | $5,2 \pm 0,8$  | $2,3 \pm 0,2$  | 4,1 ± 1,2      | $5,7 \pm 0,5$  | $4,0 \pm 0,4$  | 4,3 ± 1,0      | 5,6 ± 0,8      | $2,1 \pm 0,2$  | $4,2 \pm 1,0$  | $4.2 \pm 0.6$  | $1,8 \pm 0,2$  |
| 18:3n-3   | $1,2 \pm 0,3$  | $0,9 \pm 0,3$  | $0,8 \pm 0,3$  | $1,1 \pm 0,4$  | $0,9 \pm 0,3$  | $2,1 \pm 0,4$  | $0,9 \pm 0,2$  | 0,7 ± 0,2      | $0,6 \pm 0,1$  | 0,9 ± 0,2      | $0.6 \pm 0.4$  | $0,4 \pm 0,1$  |
| 18:4n-3   | 0,8 ± 0,2      | $0,5 \pm 0,1$  | 0,7 ± 0,2      | $0,5 \pm 0,1$  | $0,3 \pm 0,2$  | $0,4 \pm 0,6$  | 0,8 ± 0,2      | $0,6 \pm 0,1$  | $0,4 \pm 0,0$  | $0,7 \pm 0,2$  | $0.6 \pm 0.1$  | $0,4 \pm 0,1$  |
| 20:4n-6   | 14,8 ± 2,7     | $14,2 \pm 1,4$ | $4,6 \pm 0,3$  | 9,8 ± 1,5      | $8,5 \pm 1,0$  | $1,8 \pm 0,3$  | 17,6 ± 2,4     | 18,1 ± 1,2     | 5,7 ± 0,7      | $12,6 \pm 2,4$ | $12.9 \pm 1.9$ | 3,2 ± 0,3      |
| 20:5n-3   | 7,4 ± 1,5      | $4,9 \pm 0,8$  | 8,2 ± 1,3      | $5,1 \pm 0,6$  | $3,7 \pm 0,3$  | $5,2 \pm 0,7$  | 7,0 ± 0,9      | $5,4 \pm 0,5$  | 8,8 ± 1,1      | $6,1 \pm 0,6$  | $4.5 \pm 0.5$  | 6,5 ± 0,6      |
| 22:5n-3   | $1,9 \pm 0,4$  | 1,3 ± 0,2      | $1,4 \pm 0,6$  | $2,1 \pm 0,3$  | $1,7 \pm 0,3$  | 0,0 ± 0,0      | $3,1 \pm 0,3$  | $2,4 \pm 0,3$  | $2,2 \pm 0,2$  | $2,2 \pm 0,3$  | 2,8 ± 0,3      | $2,0 \pm 0,4$  |
| 22:6n-3   | 9,3 ± 1,1      | 7,3 ± 0,9      | $12,7 \pm 0,7$ | $15,9 \pm 0,5$ | $13,2 \pm 1,2$ | 8,5 ± 1,6      | 7,2 ±0,9       | 5,3 ± 0,6      | $11,8 \pm 1,0$ | 8,3 ± 1,0      | 7,2 ± 1,2      | $13,4 \pm 0,6$ |
| ΣSAFA     | 44,6 ± 2,8     | 50,0 ± 0,9     | $50,1 \pm 0,8$ | $40,9 \pm 1,6$ | 44,8 ± 0,8     | $51,1 \pm 1,9$ | $44,1 \pm 0,4$ | 46,6 ± 0,8     | $48,4 \pm 0,7$ | 46,8 ± 1,5     | $49.7 \pm 0.5$ | 50,4 ± 0,8     |
| ΣΜυγΑ     | 13,4 ± 0,8     | 13,6 ± 1,7     | $17,7 \pm 0,8$ | 18,8 ± 1,9     | 19,9 ± 0,9     | 25,6 ± 3,0     | 12,6 ± 0,9     | 12,9 ± 1,1     | 18,3 ± 1,5     | $16,0 \pm 0,9$ | 15,8 ± 1,9     | 20,5 ± 1,3     |
| EPUFA     | 42,1 ± 2,4     | 36,4 ± 2,0     | 32,2 ± 1,1     | 40,3 ± 2,9     | 35,3 ± 1,6     | 23,3 ± 2,7     | 43,3 ± 0,9     | 40,6 ± 1,1     | 33,2 ± 2,0     | 37,3 ± 1,4     | 34,5 ± 2,1     | 29,1 ± 1,4     |
| Σn-3      | 21,8 ± 2,7     | $15,5 \pm 1,5$ | $24,5 \pm 1,1$ | $25,4 \pm 1,5$ | $19,9 \pm 1,1$ | 16,3 ± 2,5     | 20,0 ± 1,7     | 15,2 ± 0,8     | $24,5 \pm 1,8$ | 19,3 ± 1,2     | $16.3 \pm 1.1$ | 23,6 ± 1,4     |
| Σn-6      | 20,3 ± 3,0     | $20,9 \pm 1,3$ | $7,7 \pm 0,2$  | $14,9 \pm 1,5$ | 15,5 ± 0,5     | $7,0 \pm 0,7$  | $23,3 \pm 2,0$ | 25,4 ± 1,2     | 8,8 ± 0,6      | $18,0 \pm 2,2$ | $18.2 \pm 1.6$ | 5,5 ± 0,3      |
| n-3/n-6   | $1,1 \pm 0,3$  | $0,7 \pm 0,1$  | $3,2 \pm 0,2$  | $1,7 \pm 0,1$  | $1,3 \pm 0,1$  | $2,3 \pm 0,4$  | $0,9 \pm 0,1$  | $0,6 \pm 0,1$  | $2,8 \pm 0,3$  | $1,1 \pm 0,2$  | $0.9 \pm 0.1$  | $4,3 \pm 0,4$  |
| EPA/ARA   | $0,5 \pm 0,2$  | $0,3 \pm 0,0$  | $1,8 \pm 0,4$  | $0,5 \pm 0,1$  | $0,4 \pm 0,0$  | $2,9 \pm 0,6$  | $0,4 \pm 0,1$  | $0,3 \pm 0,0$  | $1,5 \pm 0,2$  | $0,5 \pm 0,1$  | $0.4 \pm 0.0$  | $2,0 \pm 0,2$  |
| DHA/EPA   | $1,3 \pm 0,2$  | $1,5 \pm 0,2$  | $1,6 \pm 0,3$  | $3,2 \pm 0,4$  | $3,5 \pm 0,4$  | $1,6 \pm 0,2$  | $1,0 \pm 0,1$  | $1,0 \pm 0,1$  | $1,4 \pm 0,2$  | $1,4 \pm 0,2$  | $1.6 \pm 0.2$  | $2,1 \pm 0,2$  |
| DHA/ARA   | 0,7 ± 0,2      | $0,5 \pm 0,1$  | 2,8 ± 0,2      | $1,6 \pm 0,2$  | $1,6 \pm 0,2$  | 4,8 ± 0,7      | $0,4 \pm 0,1$  | $0,3 \pm 0,0$  | $2,1 \pm 0,3$  | 0,7 ± 0,2      | 0.6 ± 0,1      | 4,2 ± 0,5      |
|           |                | Dorsal muscle  |                |                | Heart          |                | 1              | Adipose tissue |                |                | Ventral muscle |                |
|           | N              | VO             | FO             |
| 16:0      | $24,5 \pm 1,2$ | $27,3 \pm 1,4$ | $28,8 \pm 0,9$ | $25,6 \pm 1,6$ | 26,7 ± 1,6     | 34,5 ± 1,7     | 30,2 ± 2,3     | 33,6 ± 1,9     | 36,0 ± 3,0     | 23,8 ± 1,0     | $27.3 \pm 1.4$ | 31,0 ± 1,4     |
| 16:1n-7   | $3,4 \pm 0,3$  | $2,8 \pm 0,3$  | $4,6 \pm 0,9$  | $3,2 \pm 0,2$  | $2,6 \pm 0,3$  | $4,2 \pm 0,6$  | $2,8 \pm 0,8$  | $2,9 \pm 0,1$  | $3,2 \pm 1,4$  | $3,1 \pm 0,2$  | $2.7 \pm 0.2$  | $5,8 \pm 0,8$  |
| 18:0      | $9,9 \pm 1,1$  | $10,0 \pm 0,5$ | 8,8 ± 0,6      | $12,2 \pm 0,6$ | $14,3 \pm 0,3$ | $11,2 \pm 0,7$ | $11,2 \pm 1,9$ | 12,1 ± 0,3     | $12,0 \pm 1,8$ | $10,1 \pm 0,9$ | $11.0 \pm 0.2$ | $12,0 \pm 1,3$ |
| 18:1n-9   | $12,4 \pm 1,6$ | $14,2 \pm 0,8$ | $13,5 \pm 0,6$ | 8,9 ± 0,3      | $10,3 \pm 0,7$ | $11,6 \pm 0,9$ | $10,7 \pm 0,8$ | $11,4 \pm 0,5$ | $10,2 \pm 2,5$ | $12,6 \pm 1,3$ | $14.5 \pm 0.9$ | $14,0 \pm 1,0$ |
| 18:2n-6   | $7,0 \pm 1,6$  | $8,5 \pm 0,9$  | $3,2 \pm 0,3$  | 4,8 ± 1,3      | $6,6 \pm 0,7$  | $2,1 \pm 0,4$  | $4,8 \pm 1,4$  | $4,1 \pm 0,2$  | $1,6 \pm 0,2$  | 6,7 ± 1,7      | 8,2 ± 0,8      | $3,6 \pm 0,4$  |
| 18:3n-3   | $2,7 \pm 0,6$  | $1,7 \pm 0,3$  | $1.8 \pm 0.4$  | $1,4 \pm 0,4$  | $1,1 \pm 0,3$  | 0,6 ± 0,3      | $0,8 \pm 0,2$  | 0,6 ± 0,2      | $0,4 \pm 0,3$  | $2,6 \pm 0,6$  | $1.6 \pm 0.3$  | $2,6 \pm 0,5$  |
| 18:4n-3   | $0,6 \pm 0,1$  | $0,5 \pm 0,1$  | 0,7 ± 0,2      | $0,8 \pm 0,2$  | $0,5 \pm 0,1$  | $0,3 \pm 0,1$  | $0,6 \pm 0,1$  | $0,4 \pm 0,0$  | $0,1 \pm 0,1$  | $0,7 \pm 0,1$  | $0.6 \pm 0.1$  | $0,9 \pm 0,5$  |
| 20:4n-6   | 8,9 ± 1,0      | 9,2 ± 0,9      | 3,2 ± 0,2      | $14,6 \pm 1,5$ | $14,8 \pm 1,6$ | $4,4 \pm 0,6$  | $15,2 \pm 1,2$ | 15,9 ± 1,9     | $5,6 \pm 0,9$  | 9,3 ± 1,0      | 9,6 ± 0,7      | $2,4 \pm 0,3$  |
| 20:5n-3   | $9,4 \pm 0,7$  | 7,2 ± 0,6      | $10,3 \pm 0,4$ | $6,2 \pm 0,4$  | $5,6 \pm 0,6$  | 7,2 ± 1,2      | $5,2 \pm 1,2$  | $3,2 \pm 0,5$  | 9,2 ± 4,4      | 9,3 ± 0,7      | $7.0 \pm 0.8$  | $8,4 \pm 0,6$  |
| 22:5n-3   | $2,4 \pm 0,3$  | $2,4 \pm 0,5$  | $1,9 \pm 0,2$  | $2,5 \pm 0,2$  | $2,0 \pm 0,3$  | $1,7 \pm 0,3$  | $2,0 \pm 0,3$  | $2,0 \pm 0,4$  | $1,4 \pm 0,2$  | $2,8 \pm 0,4$  | $2.5 \pm 0.4$  | $1,2 \pm 0,1$  |
| 22:6n-3   | $11,1 \pm 0,0$ | $10.3 \pm 0.7$ | $14,4 \pm 1,5$ | $10,4 \pm 0,8$ | $8,2 \pm 1,0$  | $14.0 \pm 1.7$ | 8,6 ± 0,7      | 7,5 ± 1,1      | $14.1 \pm 1.6$ | $11,5 \pm 0,6$ | $9.1 \pm 0.6$  | $9,7 \pm 1,1$  |
| ΣSAFA     | 38,6 ± 0,9     | $40,1 \pm 1,1$ | $40,6 \pm 0,7$ | $43,8 \pm 1,4$ | $45,0 \pm 1,3$ | 49,0 ± 2,6     | $46,0 \pm 1,7$ | $49,4 \pm 1,3$ | $50,6 \pm 2,1$ | $37,9 \pm 1,6$ | $41.2 \pm 1.3$ | 46,0 ± 2,6     |
| ΣMUFA     | $17,0 \pm 2,0$ | $17,9 \pm 0,7$ | $22,2 \pm 1,2$ | $13,3 \pm 0,2$ | $14,0 \pm 0,7$ | $19,3 \pm 1,7$ | $14,8 \pm 1,2$ | $15,3 \pm 0,4$ | $15,8 \pm 3,6$ | $17,0 \pm 1,6$ | $18.1 \pm 0.9$ | $23,4 \pm 1,6$ |
| ΣPUFA     | $44,4 \pm 2,5$ | $42,0 \pm 1,3$ | $37,2 \pm 1,5$ | $42,9 \pm 1,4$ | $41,0 \pm 2,0$ | $31,7 \pm 3,0$ | $39,1 \pm 2,8$ | $35,4 \pm 1,7$ | $33,6 \pm 5,4$ | $45,1 \pm 2,4$ | $40.7 \pm 1.9$ | 30,6 ± 2,3     |
| Σn-3      | $27,2 \pm 0,8$ | $22,7 \pm 0,7$ | 29,9 ± 1,6     | $22,3 \pm 1,4$ | $17,9 \pm 1,1$ | 24,3 ± 2,7     | $17,9 \pm 1,5$ | $14,0 \pm 0,0$ | $25,7 \pm 5,9$ | 27,9 ± 0,7     | $21.4 \pm 1.3$ | 22,8 ± 2,0     |
| Σn-6      | $17,2 \pm 1,8$ | $19,3 \pm 1,0$ | 7,3 ± 0,2      | $20,6 \pm 0,3$ | $23,1 \pm 1,7$ | $7,4 \pm 0,5$  | $21,2 \pm 1,9$ | 21,3 ± 1,7     | $8,0 \pm 0,9$  | 17,2 ± 1,9     | $19.2 \pm 0.8$ | $7,9 \pm 0,5$  |
| n-3/n-6   | $1,6 \pm 0,1$  | $1,2 \pm 0,1$  | $4,1 \pm 0,3$  | $1,1 \pm 0,1$  | $0,8 \pm 0,1$  | $3,3 \pm 0,3$  | $0,8 \pm 0,1$  | $0,7 \pm 0,1$  | $3,3 \pm 1,1$  | $1,6 \pm 0,2$  | $1.1 \pm 0.1$  | $2,9 \pm 0,2$  |
| EPA/ARA   | $1,1 \pm 0,1$  | $0,8 \pm 0,0$  | $3,2 \pm 0,3$  | $0,4 \pm 0,1$  | $0,4 \pm 0,0$  | $1,7 \pm 0,3$  | $0,3 \pm 0,1$  | $0,2 \pm 0,0$  | $1,7 \pm 1,1$  | $1,0 \pm 0,1$  | $0.7 \pm 0.0$  | $3,5 \pm 0,2$  |
| DULA /FDA | $1,2 \pm 0,1$  | $1,4 \pm 0,2$  | $1,4 \pm 0,2$  | $1,7 \pm 0,1$  | $1,5 \pm 0,3$  | $2,0 \pm 0,3$  | $1,7 \pm 0,3$  | $2,4 \pm 0,7$  | 1,8 ± 0,7      | $1,2 \pm 0,1$  | $1.3 \pm 0.2$  | $1,1 \pm 0,1$  |
| DHA/EPA   | 1,2 2 0,1      | -//-           | -//-           | -//-           | -//-           | -//-           | -//-           | -//-           | -//.           | -//-           |                | -//-           |

|     | 1 1 | <b>n</b> 1 |
|-----|-----|------------|
| Tal | h   | N/1        |
| 1 0 | .,, | <b>1</b>   |
|     |     |            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                             | Intestine                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           | Eye                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              | Kidney                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                | Liver                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                           | VO                                                                                                                                                                                                                                                                                                                                                                                                                                    | FO                                                                                                                                                                                                                                                                                                                                                                           | N                                                                                                                                                                                                                                                                                                                                                         | VO                                                                                                                                                                                                                                                                                                                                                                                                           | FO                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                            | VO                                                                                                                                                                                                                                                                                                                                                       | FO                                                                                                                                                                                                                                                                                                                                                           | N                                                                                                                                                                                                                                                                                                                              | VO                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FO                                                                                                                                                                                                                                                                                                                                                               |
| 16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10,6 <sup>ab</sup> ± 2,0                                                                                                                                                                                                                                                                                                                                                    | 9,7 <sup>b</sup> ± 1,7                                                                                                                                                                                                                                                                                                                                                                                                                | 14,8 <sup>a</sup> ± 3,9                                                                                                                                                                                                                                                                                                                                                      | $7,4^{ab} \pm 1,1$                                                                                                                                                                                                                                                                                                                                        | 8,0 <sup>a</sup> ± 1,0                                                                                                                                                                                                                                                                                                                                                                                       | $6,1^{b} \pm 0,6$                                                                                                                                                                                                                                                                                                         | 18,0 <sup>ab</sup> ± 1,5                                                                                                                                                                                                                                                                                     | 16,1 <sup>b</sup> ± 3,7                                                                                                                                                                                                                                                                                                                                  | 21,9 <sup>a</sup> ± 2,3                                                                                                                                                                                                                                                                                                                                      | 13,7 ± 2,3                                                                                                                                                                                                                                                                                                                     | 10,9 ± 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12,8 ± 1,4                                                                                                                                                                                                                                                                                                                                                       |
| 16:1n-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1,3^{ab} \pm 0,4$                                                                                                                                                                                                                                                                                                                                                          | $0,8^{b} \pm 0,2$                                                                                                                                                                                                                                                                                                                                                                                                                     | $1,5^{a} \pm 0,3$                                                                                                                                                                                                                                                                                                                                                            | $1,3 \pm 0,2$                                                                                                                                                                                                                                                                                                                                             | $1,1 \pm 0,2$                                                                                                                                                                                                                                                                                                                                                                                                | $1,2 \pm 0,3$                                                                                                                                                                                                                                                                                                             | $1,9^{b} \pm 0,2$                                                                                                                                                                                                                                                                                            | 1,3°±0,3                                                                                                                                                                                                                                                                                                                                                 | $2,7^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                                                            | $2,0^{a} \pm 0,4$                                                                                                                                                                                                                                                                                                              | $1,1^{b} \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1,7^{a} \pm 0,3$                                                                                                                                                                                                                                                                                                                                                |
| 18:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,0 ± 1,2                                                                                                                                                                                                                                                                                                                                                                   | $5,4 \pm 1,0$                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,5 ± 1,2                                                                                                                                                                                                                                                                                                                                                                    | $3,7^{a} \pm 0,4$                                                                                                                                                                                                                                                                                                                                         | 3,8 <sup>a</sup> ± 0,4                                                                                                                                                                                                                                                                                                                                                                                       | 2,8 <sup>b</sup> ± 0,3                                                                                                                                                                                                                                                                                                    | 7,2 ± 0,5                                                                                                                                                                                                                                                                                                    | $7,0 \pm 1,3$                                                                                                                                                                                                                                                                                                                                            | 7,8 ± 0,9                                                                                                                                                                                                                                                                                                                                                    | 3,6 <sup>a</sup> ± 0,5                                                                                                                                                                                                                                                                                                         | $3,4^{a} \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2,6^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                |
| 18:1n-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3,9 \pm 0,9$                                                                                                                                                                                                                                                                                                                                                               | 3,3 ± 0,8                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,6 ± 0,8                                                                                                                                                                                                                                                                                                                                                                    | $4,0^{ab} \pm 0,8$                                                                                                                                                                                                                                                                                                                                        | 4,3 <sup>a</sup> ± 0,5                                                                                                                                                                                                                                                                                                                                                                                       | $3,1^{b} \pm 0,5$                                                                                                                                                                                                                                                                                                         | $5,5^{b} \pm 0,6$                                                                                                                                                                                                                                                                                            | 5,1° ± 1,3                                                                                                                                                                                                                                                                                                                                               | $7,2^{a} \pm 0,4$                                                                                                                                                                                                                                                                                                                                            | 4,5 ± 0,9                                                                                                                                                                                                                                                                                                                      | $3,6 \pm 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3,9 \pm 0,4$                                                                                                                                                                                                                                                                                                                                                    |
| 18:2n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2,0^{a} \pm 0,7$                                                                                                                                                                                                                                                                                                                                                           | 1,7 <sup>ab</sup> ± 0,3                                                                                                                                                                                                                                                                                                                                                                                                               | $1,0^{b} \pm 0,3$                                                                                                                                                                                                                                                                                                                                                            | $1,2^{b} \pm 0,3$                                                                                                                                                                                                                                                                                                                                         | $1,6^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                                                                                                            | $0,8^{\circ} \pm 0,1$                                                                                                                                                                                                                                                                                                     | $2,9^{a} \pm 0,7$                                                                                                                                                                                                                                                                                            | 3,1°±1,1                                                                                                                                                                                                                                                                                                                                                 | $1,4^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                            | $1,9^{a} \pm 0,7$                                                                                                                                                                                                                                                                                                              | $1,3^{a} \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0,6^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                |
| 18:3n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0,6^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                                                                           | $0,3^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                                                                                     | $0,3^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                            | $0,3 \pm 0,1$                                                                                                                                                                                                                                                                                                                                             | $0,3 \pm 0,1$                                                                                                                                                                                                                                                                                                                                                                                                | $0,4 \pm 0,1$                                                                                                                                                                                                                                                                                                             | $0,6^{a} \pm 0,1$                                                                                                                                                                                                                                                                                            | $0,4^{\circ} \pm 0,1$                                                                                                                                                                                                                                                                                                                                    | $0,4^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                            | $0,4^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                              | $0,2^{b} \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0,1^{b} \pm 0,0$                                                                                                                                                                                                                                                                                                                                                |
| 18:4n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0,5^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                                                                           | $0,3^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                                                                                     | $0,4^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                            | $0,3 \pm 0,0$                                                                                                                                                                                                                                                                                                                                             | $0,2 \pm 0,0$                                                                                                                                                                                                                                                                                                                                                                                                | $0,3 \pm 0,1$                                                                                                                                                                                                                                                                                                             | $0,8^{a} \pm 0,2$                                                                                                                                                                                                                                                                                            | 0,5 <sup>b</sup> ± 0,2                                                                                                                                                                                                                                                                                                                                   | $0,5^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                            | $0,5^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                              | $0,3^{ab} \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0,2^{b} \pm 0,0$                                                                                                                                                                                                                                                                                                                                                |
| 20:4n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6,5^{a} \pm 1,7$                                                                                                                                                                                                                                                                                                                                                           | 4,8° ± 1,1                                                                                                                                                                                                                                                                                                                                                                                                                            | $2,0^{b} \pm 0,4$                                                                                                                                                                                                                                                                                                                                                            | $3,0^{a} \pm 0,4$                                                                                                                                                                                                                                                                                                                                         | $2,4^{a} \pm 0,5$                                                                                                                                                                                                                                                                                                                                                                                            | $0,3^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                         | $11,6^{\circ} \pm 1,5$                                                                                                                                                                                                                                                                                       | 9,8° ± 2,1                                                                                                                                                                                                                                                                                                                                               | 3,8 <sup>b</sup> ± 0,7                                                                                                                                                                                                                                                                                                                                       | $5,5^{a} \pm 1,3$                                                                                                                                                                                                                                                                                                              | $4,1^{a} \pm 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1 <sup>b</sup> ± 0,1                                                                                                                                                                                                                                                                                                                                           |
| 20:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3,4^{ab} \pm 1,2$                                                                                                                                                                                                                                                                                                                                                          | $1,7^{b} \pm 0,4$                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,7° ± 1,4                                                                                                                                                                                                                                                                                                                                                                   | $1,5^{a} \pm 0,1$                                                                                                                                                                                                                                                                                                                                         | 1,1 <sup>b</sup> ± 0,2                                                                                                                                                                                                                                                                                                                                                                                       | $1,0^{b} \pm 0,2$                                                                                                                                                                                                                                                                                                         | $4,6^{a} \pm 0,6$                                                                                                                                                                                                                                                                                            | 2,9° ± 0,5                                                                                                                                                                                                                                                                                                                                               | 5,8° ± 1,3                                                                                                                                                                                                                                                                                                                                                   | 2,7 <sup>a</sup> ± 0,6                                                                                                                                                                                                                                                                                                         | $1,4^{b} \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,2 <sup>a</sup> ± 0,2                                                                                                                                                                                                                                                                                                                                           |
| 22:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0,8^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                                                                           | $0,4^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                                                                                     | $0,6^{ab} \pm 0,2$                                                                                                                                                                                                                                                                                                                                                           | $0,6^{a} \pm 0,1$                                                                                                                                                                                                                                                                                                                                         | $0,5^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                                                            | $0,0^{\circ} \pm 0,0$                                                                                                                                                                                                                                                                                                     | $2,0^{a} \pm 0,2$                                                                                                                                                                                                                                                                                            | 1,3 <sup>b</sup> ± 0,2                                                                                                                                                                                                                                                                                                                                   | $1,5^{b} \pm 0,3$                                                                                                                                                                                                                                                                                                                                            | $1,0^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                              | $0,9^{ab} \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0,7^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                |
| 22:6n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4,1^{ab} \pm 1,1$                                                                                                                                                                                                                                                                                                                                                          | 2,5 <sup>b</sup> ± 0,6                                                                                                                                                                                                                                                                                                                                                                                                                | 5,7° ± 1,7                                                                                                                                                                                                                                                                                                                                                                   | $4,8^{a} \pm 0,4$                                                                                                                                                                                                                                                                                                                                         | $3,7^{b} \pm 0,5$                                                                                                                                                                                                                                                                                                                                                                                            | $1,6^{\circ} \pm 0,3$                                                                                                                                                                                                                                                                                                     | $4,7^{b} \pm 0,6$                                                                                                                                                                                                                                                                                            | $2,9^{2} \pm 0,8$                                                                                                                                                                                                                                                                                                                                        | 7,8° ± 1,3                                                                                                                                                                                                                                                                                                                                                   | $3,6^{a} \pm 0,7$                                                                                                                                                                                                                                                                                                              | $2,3^{b} \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4,5^{a} \pm 0,4$                                                                                                                                                                                                                                                                                                                                                |
| ΣSAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19,6 ± 3,6                                                                                                                                                                                                                                                                                                                                                                  | $16,7 \pm 2,7$                                                                                                                                                                                                                                                                                                                                                                                                                        | $22,3 \pm 5,6$                                                                                                                                                                                                                                                                                                                                                               | $12,4^{a} \pm 1,6$                                                                                                                                                                                                                                                                                                                                        | 12,7° ± 1,5                                                                                                                                                                                                                                                                                                                                                                                                  | 9,6 <sup>b</sup> ± 1,0                                                                                                                                                                                                                                                                                                    | 29,2 ab ± 1,4                                                                                                                                                                                                                                                                                                | 25,3° ± 5,1                                                                                                                                                                                                                                                                                                                                              | 31,8° ± 3,2                                                                                                                                                                                                                                                                                                                                                  | 20,3° ± 3,3                                                                                                                                                                                                                                                                                                                    | 15,8 <sup>b</sup> ± 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16,8 ab ± 1,7                                                                                                                                                                                                                                                                                                                                                    |
| ΣMUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $6,0^{ab} \pm 1,4$                                                                                                                                                                                                                                                                                                                                                          | $4,6^{b} \pm 1,0$                                                                                                                                                                                                                                                                                                                                                                                                                     | $7,8^{a} \pm 1,7$                                                                                                                                                                                                                                                                                                                                                            | 5,7 ± 1,1                                                                                                                                                                                                                                                                                                                                                 | $5,7 \pm 0,7$                                                                                                                                                                                                                                                                                                                                                                                                | 4,8 ± 0,9                                                                                                                                                                                                                                                                                                                 | 8,3 <sup>b</sup> ± 0,9                                                                                                                                                                                                                                                                                       | 7,1 <sup>b</sup> ± 1,7                                                                                                                                                                                                                                                                                                                                   | $12,0^{a} \pm 0,6$                                                                                                                                                                                                                                                                                                                                           | $7,0^{a} \pm 1,4$                                                                                                                                                                                                                                                                                                              | 5,0 <sup>b</sup> ± 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,8 ab ± 0,9                                                                                                                                                                                                                                                                                                                                                     |
| ΣPUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $18,8^{a} \pm 4,5$                                                                                                                                                                                                                                                                                                                                                          | $12,2^{b} \pm 2,3$                                                                                                                                                                                                                                                                                                                                                                                                                    | 14,3 <sup>b</sup> ± 3,8                                                                                                                                                                                                                                                                                                                                                      | $12,2^{a} \pm 0,3$                                                                                                                                                                                                                                                                                                                                        | 10,1 <sup>b</sup> ± 1,5                                                                                                                                                                                                                                                                                                                                                                                      | $4,4^{c} \pm 0,7$                                                                                                                                                                                                                                                                                                         | $28,6^{a} \pm 1,0$                                                                                                                                                                                                                                                                                           | 22,1 <sup>b</sup> ± 5,0                                                                                                                                                                                                                                                                                                                                  | 21,9 <sup>b</sup> ± 3,5                                                                                                                                                                                                                                                                                                                                      | 16,3° ± 3,3                                                                                                                                                                                                                                                                                                                    | $10,9^{b} \pm 1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                          | $9,6^{b} \pm 0,5$                                                                                                                                                                                                                                                                                                                                                |
| Σn-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $9,8^{a} \pm 2,9$                                                                                                                                                                                                                                                                                                                                                           | $5,2^{b} \pm 1,1$                                                                                                                                                                                                                                                                                                                                                                                                                     | $10,9^{a} \pm 3,0$                                                                                                                                                                                                                                                                                                                                                           | 7,7°±0,3                                                                                                                                                                                                                                                                                                                                                  | 5,7 <sup>b</sup> ± 0,9                                                                                                                                                                                                                                                                                                                                                                                       | $3,1^{c} \pm 0,6$                                                                                                                                                                                                                                                                                                         | 13,2° ± 1,2                                                                                                                                                                                                                                                                                                  | 8,2 <sup>b</sup> ± 1,6                                                                                                                                                                                                                                                                                                                                   | $16,2^{2} \pm 2,9$                                                                                                                                                                                                                                                                                                                                           | 8,4° ± 1,8                                                                                                                                                                                                                                                                                                                     | $5,2^{b} \pm 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $7.8^{a} \pm 0.4$                                                                                                                                                                                                                                                                                                                                                |
| Σn-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $9,0^{a} \pm 2,2$                                                                                                                                                                                                                                                                                                                                                           | $7,0^{a} \pm 1,4$                                                                                                                                                                                                                                                                                                                                                                                                                     | $3,4^{b} \pm 0,7$                                                                                                                                                                                                                                                                                                                                                            | $4,5^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                                                         | $4,4^{a} \pm 0,6$                                                                                                                                                                                                                                                                                                                                                                                            | 1,3 b ± 0,2                                                                                                                                                                                                                                                                                                               | $15,4^{a} \pm 1,4$                                                                                                                                                                                                                                                                                           | 13,9° ± 3,5                                                                                                                                                                                                                                                                                                                                              | 5,8 <sup>b</sup> ± 0,7                                                                                                                                                                                                                                                                                                                                       | $7,9^{a} \pm 1,8$                                                                                                                                                                                                                                                                                                              | 5,7 <sup>b</sup> ± 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.8^{\circ} \pm 0.2$                                                                                                                                                                                                                                                                                                                                            |
| n-3/n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1,1^{b} \pm 0,3$                                                                                                                                                                                                                                                                                                                                                           | $0,7^{c} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                                                                                     | $3,2^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                                                                            | $1,7^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                         | $1,3^{c} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                                                            | $2,3^{a} \pm 0,4$                                                                                                                                                                                                                                                                                                         | $0,9^{b} \pm 0,1$                                                                                                                                                                                                                                                                                            | $0,6^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                        | $2,8^{a} \pm 0,3$                                                                                                                                                                                                                                                                                                                                            | $1,1^{b} \pm 0,2$                                                                                                                                                                                                                                                                                                              | $0.9^{b} \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.3^{a} \pm 0.4$                                                                                                                                                                                                                                                                                                                                                |
| EPA/ARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.5^{b} \pm 0.2$                                                                                                                                                                                                                                                                                                                                                           | 0,3 <sup>b</sup> ± 0,0                                                                                                                                                                                                                                                                                                                                                                                                                | $1.8^{a} \pm 0.4$                                                                                                                                                                                                                                                                                                                                                            | $0.5^{b} \pm 0.1$                                                                                                                                                                                                                                                                                                                                         | $0.4^{b} \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                            | $2.9^3 \pm 0.6$                                                                                                                                                                                                                                                                                                           | $0.4^{b} \pm 0.1$                                                                                                                                                                                                                                                                                            | $0.3^{b} \pm 0.0$                                                                                                                                                                                                                                                                                                                                        | $1.5^{3} \pm 0.2$                                                                                                                                                                                                                                                                                                                                            | $0.5^{b} \pm 0.1$                                                                                                                                                                                                                                                                                                              | $0.3^{b} \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.0^{a} \pm 0.2$                                                                                                                                                                                                                                                                                                                                                |
| DHA/EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1,2 \pm 0,2$                                                                                                                                                                                                                                                                                                                                                               | $1,5 \pm 0,2$                                                                                                                                                                                                                                                                                                                                                                                                                         | $1,5 \pm 0,3$                                                                                                                                                                                                                                                                                                                                                                | $3.1^{a} \pm 0.4$                                                                                                                                                                                                                                                                                                                                         | $3.5^{a} \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                            | $1.6^{b} \pm 0.2$                                                                                                                                                                                                                                                                                                         | $1.0^{b} \pm 0.1$                                                                                                                                                                                                                                                                                            | $1,0^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                        | $1,3^{a} \pm 0,2$                                                                                                                                                                                                                                                                                                                                            | $1.4^{b} \pm 0.2$                                                                                                                                                                                                                                                                                                              | $1.6^{b} \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,1 <sup>a</sup> ± 0,2                                                                                                                                                                                                                                                                                                                                           |
| DHA/ARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.6^{b} \pm 0.2$                                                                                                                                                                                                                                                                                                                                                           | $0,5^{b} \pm 0,1$                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.8^{a} \pm 0.2$                                                                                                                                                                                                                                                                                                                                                            | $1.6^{b} \pm 0.2$                                                                                                                                                                                                                                                                                                                                         | 1.5 <sup>b</sup> ± 0,2                                                                                                                                                                                                                                                                                                                                                                                       | $4.7^{a} \pm 0.7$                                                                                                                                                                                                                                                                                                         | $0.4^{b} \pm 0.1$                                                                                                                                                                                                                                                                                            | $0.3^{b} \pm 0.0$                                                                                                                                                                                                                                                                                                                                        | $2.1^{a} \pm 0.3$                                                                                                                                                                                                                                                                                                                                            | $0.7^{b} \pm 0.2$                                                                                                                                                                                                                                                                                                              | $0.6^{b} \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.2^{a} \pm 0.5$                                                                                                                                                                                                                                                                                                                                                |
| total FAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44,3 ± 9,2                                                                                                                                                                                                                                                                                                                                                                  | 33,5 ± 5,8                                                                                                                                                                                                                                                                                                                                                                                                                            | $44.4 \pm 11.0$                                                                                                                                                                                                                                                                                                                                                              | 30,3 ± 2,9                                                                                                                                                                                                                                                                                                                                                | 28,5 ± 3,6                                                                                                                                                                                                                                                                                                                                                                                                   | 18,8 ± 2,0                                                                                                                                                                                                                                                                                                                | 66,2 ± 3,1                                                                                                                                                                                                                                                                                                   | 54,5 ± 11,8                                                                                                                                                                                                                                                                                                                                              | 65,7 ± 7,0                                                                                                                                                                                                                                                                                                                                                   | 43,6 ± 7,8                                                                                                                                                                                                                                                                                                                     | 31.7 ± 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33,22 ± 3,0                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           | Heart                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              | Adipose tissue                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                | Ventral muscle                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                             | Dorsal muscle                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                           | VO                                                                                                                                                                                                                                                                                                                                                                                                                                    | FO                                                                                                                                                                                                                                                                                                                                                                           | N                                                                                                                                                                                                                                                                                                                                                         | VO                                                                                                                                                                                                                                                                                                                                                                                                           | FO                                                                                                                                                                                                                                                                                                                        | N                                                                                                                                                                                                                                                                                                            | VO                                                                                                                                                                                                                                                                                                                                                       | FO                                                                                                                                                                                                                                                                                                                                                           | N                                                                                                                                                                                                                                                                                                                              | VO                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FO                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,0 ± 1,1                                                                                                                                                                                                                                                                                                                                                                   | VO<br>7,3 ± 0,8                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,8 ± 0,7                                                                                                                                                                                                                                                                                                                                                                    | 10,2 ± 1,8                                                                                                                                                                                                                                                                                                                                                | VO<br>13,5 ± 1,9                                                                                                                                                                                                                                                                                                                                                                                             | 14,2 ± 3,3                                                                                                                                                                                                                                                                                                                | 14,4 <sup>b</sup> ± 1,0                                                                                                                                                                                                                                                                                      | VO<br>13,3 <sup>b</sup> ± 2,1                                                                                                                                                                                                                                                                                                                            | FO<br>19,6°±3,6                                                                                                                                                                                                                                                                                                                                              | 6,3 ± 0,8                                                                                                                                                                                                                                                                                                                      | VO<br>6,7 ± 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                             | FO<br>7,1 ± 0,8                                                                                                                                                                                                                                                                                                                                                  |
| 16:1n-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,0 ± 1,1<br>1,1 <sup>a</sup> ± 0,1                                                                                                                                                                                                                                                                                                                                         | VO<br>7,3 ± 0,8<br>0,7 <sup>b</sup> ± 0,1                                                                                                                                                                                                                                                                                                                                                                                             | 6,8 ± 0,7<br>1,1 <sup>a</sup> ± 0,2                                                                                                                                                                                                                                                                                                                                          | 10,2 ± 1,8<br>1,3 ± 0,4                                                                                                                                                                                                                                                                                                                                   | VO<br>13,5 ± 1,9<br>1,3 ± 0,2                                                                                                                                                                                                                                                                                                                                                                                | 14,2 ± 3,3<br>1,7 ± 0,4                                                                                                                                                                                                                                                                                                   | 14,4 <sup>b</sup> ± 1,0<br>1,3 ± 0,4                                                                                                                                                                                                                                                                         | VO<br>13,3 <sup>b</sup> ± 2,1<br>1,2 ± 0,1                                                                                                                                                                                                                                                                                                               | FO<br>19,6 <sup>a</sup> ± 3,6<br>1,7 ± 0,5                                                                                                                                                                                                                                                                                                                   | 6,3 ± 0,8<br>0,8 <sup>b</sup> ± 0,1                                                                                                                                                                                                                                                                                            | VO<br>6,7 ± 1.0<br>0,6 <sup>b</sup> ± 0.1                                                                                                                                                                                                                                                                                                                                                                                                                   | FO<br>7,1 ± 0,8<br>1,3 <sup>a</sup> ± 0,1                                                                                                                                                                                                                                                                                                                        |
| 16:1n-7<br>18:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $8,0 \pm 1,1$<br>$1,1^{a} \pm 0,1$<br>$3,2^{a} \pm 0,4$                                                                                                                                                                                                                                                                                                                     | VO<br>7,3 ± 0,8<br>0,7 <sup>b</sup> ± 0,1<br>2,7 <sup>b</sup> ± 0,3                                                                                                                                                                                                                                                                                                                                                                   | 6,8 ± 0,7<br>1,1 <sup>a</sup> ± 0,2<br>2,1 <sup>c</sup> ± 0,2                                                                                                                                                                                                                                                                                                                | 10,2 ± 1,8<br>1,3 ± 0,4<br>4,9 <sup>b</sup> ± 1,1                                                                                                                                                                                                                                                                                                         | VO<br>13,5 ± 1,9<br>1,3 ± 0,2<br>7,3 <sup>a</sup> ± 0,9                                                                                                                                                                                                                                                                                                                                                      | 14,2 ± 3,3<br>1,7 ± 0,4<br>4,6 <sup>b</sup> ± 1,0                                                                                                                                                                                                                                                                         | 14,4 <sup>b</sup> ± 1,0<br>1,3 ± 0,4<br>5,4 ± 1,2                                                                                                                                                                                                                                                            | VO<br>13,3 <sup>b</sup> ± 2,1<br>1,2 ± 0,1<br>4,8 ± 0,3                                                                                                                                                                                                                                                                                                  | FO<br>19,6 <sup>a</sup> ± 3,6<br>1,7 ± 0,5<br>6,6 ± 2,0                                                                                                                                                                                                                                                                                                      | $6,3 \pm 0,8$<br>$0,8^{b} \pm 0,1$<br>$2,7 \pm 0,5$                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FO<br>7,1 ± 0,8<br>1,3 <sup>a</sup> ± 0,1<br>2,8 ± 0,5                                                                                                                                                                                                                                                                                                           |
| 16:1n-7<br>18:0<br>18:1n-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $8,0 \pm 1,1$<br>$1,1^{a} \pm 0,1$<br>$3,2^{a} \pm 0,4$<br>$4,0^{a} \pm 0,5$                                                                                                                                                                                                                                                                                                | $VO 7,3 \pm 0,8 0,7b \pm 0,1 2,7b \pm 0,3 3,8ab \pm 0,5$                                                                                                                                                                                                                                                                                                                                                                              | $6,8 \pm 0,7$<br>$1,1^{a} \pm 0,2$<br>$2,1^{c} \pm 0,2$<br>$3,2^{b} \pm 0,4$                                                                                                                                                                                                                                                                                                 | $10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7$                                                                                                                                                                                                                                                                                       | VO<br>13,5 ± 1,9<br>1,3 ± 0,2<br>7,3 <sup>a</sup> ± 0,9<br>5,2 <sup>a</sup> ± 0,7                                                                                                                                                                                                                                                                                                                            | $14,2 \pm 3,3 \\ 1,7 \pm 0,4 \\ 4,6^{b} \pm 1,0 \\ 4,7^{ab} \pm 0,7$                                                                                                                                                                                                                                                      | $14,4^{b} \pm 1,0$<br>1,3 ± 0,4<br>5,4 ± 1,2<br>5,1 ± 0,3                                                                                                                                                                                                                                                    | VO<br>$13,3^{b} \pm 2,1$<br>$1,2 \pm 0,1$<br>$4,8 \pm 0,3$<br>$4,5 \pm 0,7$                                                                                                                                                                                                                                                                              | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8 \\ b \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \end{array}$                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FO<br>7,1 ± 0,8<br>1,3 <sup>a</sup> ± 0,1<br>2,8 ± 0,5<br>3,2 ± 0,2                                                                                                                                                                                                                                                                                              |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 $                                                                                                                                                                                                                                                                                  | VO<br>7,3 ± 0,8<br>0,7 <sup>b</sup> ± 0,1<br>2,7 <sup>b</sup> ± 0,3<br>3,8 <sup>ab</sup> ± 0,5<br>2,3 <sup>a</sup> ± 0,5                                                                                                                                                                                                                                                                                                              | $6,8 \pm 0,7 \\1,1^{a} \pm 0,2 \\2,1^{c} \pm 0,2 \\3,2^{b} \pm 0,4 \\0,7^{b} \pm 0,1$                                                                                                                                                                                                                                                                                        | $10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8$                                                                                                                                                                                                                                                                    | VO<br>13,5 ± 1,9<br>1,3 ± 0,2<br>7,3 <sup>a</sup> ± 0,9<br>5,2 <sup>a</sup> ± 0,7<br>3,3 <sup>a</sup> ± 0,6                                                                                                                                                                                                                                                                                                  | $14,2 \pm 3,3 \\ 1,7 \pm 0,4 \\ 4,6^{b} \pm 1,0 \\ 4,7^{ab} \pm 0,7 \\ 0,8^{c} \pm 0,1$                                                                                                                                                                                                                                   | $14,4^{b} \pm 1,0$<br>1,3 ± 0,4<br>5,4 ± 1,2<br>5,1 ± 0,3<br>2,3 $^{a} \pm 0,8$                                                                                                                                                                                                                              | VO $13,3^{b} \pm 2,1$ $1,2 \pm 0,1$ $4,8 \pm 0,3$ $4,5 \pm 0,7$ $1,6^{ab} \pm 0,3$                                                                                                                                                                                                                                                                       | FO<br>19,6 <sup>a</sup> ± 3,6<br>1,7 ± 0,5<br>6,6 ± 2,0<br>5,4 ± 0,9<br>0,9 <sup>b</sup> ± 0,2                                                                                                                                                                                                                                                               | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8^{b} \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8^{a} \pm 0,4 \end{array}$                                                                                                                                                                                                                 | VO $6,7 \pm 1.0$ $0,6^{b} \pm 0.1$ $2,7 \pm 0.3$ $3,6 \pm 0.6$ $2,0^{a} \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                            | FO<br>7,1 ± 0,8<br>1,3 <sup>a</sup> ± 0,1<br>2,8 ± 0,5<br>3,2 ± 0,2<br>0,8 <sup>b</sup> ± 0,1                                                                                                                                                                                                                                                                    |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \end{array}$                                                                                                                                                                                                                                   | VO<br>7,3 $\pm$ 0,8<br>0,7 <sup>b</sup> $\pm$ 0,1<br>2,7 <sup>b</sup> $\pm$ 0,3<br>3,8 <sup>ab</sup> $\pm$ 0,5<br>2,3 <sup>a</sup> $\pm$ 0,5<br>0,5 <sup>b</sup> $\pm$ 0,1                                                                                                                                                                                                                                                            | $6,8 \pm 0,7 \\1,1^{a} \pm 0,2 \\2,1^{c} \pm 0,2 \\3,2^{b} \pm 0,4 \\0,7^{b} \pm 0,1 \\0,4^{b} \pm 0,1$                                                                                                                                                                                                                                                                      | $10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ \end{cases}$                                                                                                                                                                                                                                  | VO<br>13,5 ± 1,9<br>1,3 ± 0,2<br>7,3 * ± 0,9<br>5,2 * ± 0,7<br>3,3 * ± 0,6<br>0,6 * ± 0,1                                                                                                                                                                                                                                                                                                                    | $14,2 \pm 3,3 \\ 1,7 \pm 0,4 \\ 4,6^{b} \pm 1,0 \\ 4,7^{ab} \pm 0,7 \\ 0,8^{c} \pm 0,1 \\ 0,3^{b} \pm 0,1 \\ \end{array}$                                                                                                                                                                                                 | $14,4^{b} \pm 1,0$<br>1,3 ± 0,4<br>5,4 ± 1,2<br>5,1 ± 0,3<br>2,3 <sup>a</sup> ± 0,8<br>0,4 ± 0,1                                                                                                                                                                                                             | VO $13,3^{b} \pm 2,1$ $1,2 \pm 0,1$ $4,8 \pm 0,3$ $4,5 \pm 0,7$ $1,6^{ab} \pm 0,3$ $0,2 \pm 0,0$                                                                                                                                                                                                                                                         | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2 \pm 0,2$                                                                                                                                                                                                                                            | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8^{b} \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8^{a} \pm 0,4 \\ 0,7^{a} \pm 0,2 \end{array}$                                                                                                                                                                                              | $\begin{array}{c} & \text{VO} \\ \hline 6,7 \pm 1.0 \\ 0,6^{\text{b}} \pm 0.1 \\ 2,7 \pm 0.3 \\ 3,6 \pm 0.6 \\ 2,0^{\text{a}} \pm 0.3 \\ 0,4^{\text{b}} \pm 0.1 \end{array}$                                                                                                                                                                                                                                                                                | FO<br>7,1 ± 0,8<br>1,3 <sup>a</sup> ± 0,1<br>2,8 ± 0,5<br>3,2 ± 0,2<br>0,8 <sup>b</sup> ± 0,1<br>0,6 <sup>a</sup> ± 0,1                                                                                                                                                                                                                                          |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ \end{cases}$                                                                                                                                                                                                                              | VO<br>7,3 $\pm$ 0,8<br>0,7 <sup>b</sup> $\pm$ 0,1<br>2,7 <sup>b</sup> $\pm$ 0,3<br>3,8 <sup>ab</sup> $\pm$ 0,5<br>2,3 <sup>a</sup> $\pm$ 0,5<br>0,5 <sup>b</sup> $\pm$ 0,1<br>0,2 <sup>b</sup> $\pm$ 0,0                                                                                                                                                                                                                              | $6,8 \pm 0,7 \\1,1^{a} \pm 0,2 \\2,1^{c} \pm 0,2 \\3,2^{b} \pm 0,4 \\0,7^{b} \pm 0,1 \\0,4^{b} \pm 0,1 \\0,2^{ab} \pm 0,0$                                                                                                                                                                                                                                                   | $10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1$                                                                                                                                                                                                                              | VO $13,5 \pm 1,9$ $1,3 \pm 0,2$ $7,3^3 \pm 0,9$ $5,2^3 \pm 0,7$ $3,3^3 \pm 0,6$ $0,6^3 \pm 0,1$ $0,5^3 \pm 0,1$                                                                                                                                                                                                                                                                                              | $14,2 \pm 3,3 \\ 1,7 \pm 0,4 \\ 4,6^{b} \pm 1,0 \\ 4,7^{ab} \pm 0,7 \\ 0,8^{c} \pm 0,1 \\ 0,3^{b} \pm 0,1 \\ 0,3^{b} \pm 0,0 \\ \end{bmatrix}$                                                                                                                                                                            | $14,4^{b} \pm 1,0$<br>1,3 ± 0,4<br>5,4 ± 1,2<br>5,1 ± 0,3<br>2,3 <sup>a</sup> ± 0,8<br>0,4 ± 0,1<br>0,4 <sup>a</sup> ± 0,1                                                                                                                                                                                   | $\begin{array}{c} VO\\ 13,3^{b}\pm2,1\\ 1,2\pm0,1\\ 4,8\pm0,3\\ 4,5\pm0,7\\ 1,6^{ab}\pm0,3\\ 0,2\pm0,0\\ 0,3^{ab}\pm0,0 \end{array}$                                                                                                                                                                                                                     | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2 \pm 0,2$<br>$0,2^{b} \pm 0,0$                                                                                                                                                                                                                       | $\begin{array}{c} 6,3 \pm 0.8 \\ 0,8^{b} \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8^{a} \pm 0,4 \\ 0,7^{a} \pm 0,2 \\ 0,3 \pm 0,0 \end{array}$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FO<br>7,1 $\pm$ 0,8<br>1,3 <sup>a</sup> $\pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 <sup>b</sup> $\pm$ 0,1<br>0,6 <sup>a</sup> $\pm$ 0,1<br>0,4 $\pm$ 0,1                                                                                                                                                                                                 |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 8,0 \ \pm \ 1,1 \\ 1,1^{a} \ \pm \ 0,1 \\ 3,2^{a} \ \pm \ 0,4 \\ 4,0^{a} \ \pm \ 0,5 \\ 2,3^{a} \ \pm \ 0,6 \\ 0,9^{a} \ \pm \ 0,3 \\ 0,4^{a} \ \pm \ 0,1 \\ 2,9^{a} \ \pm \ 0,4 \end{array}$                                                                                                                                                             | VO<br>7,3 $\pm$ 0,8<br>0,7 <sup>b</sup> $\pm$ 0,1<br>2,7 <sup>b</sup> $\pm$ 0,3<br>3,8 <sup>ab</sup> $\pm$ 0,5<br>2,3 <sup>a</sup> $\pm$ 0,5<br>0,5 <sup>b</sup> $\pm$ 0,1<br>0,2 <sup>b</sup> $\pm$ 0,0<br>2,5 <sup>a</sup> $\pm$ 0,3                                                                                                                                                                                                | $\begin{array}{c} 6.8 \pm 0.7 \\ 1.1^{a} \pm 0.2 \\ 2.1^{c} \pm 0.2 \\ 3.2^{b} \pm 0.4 \\ 0.7^{b} \pm 0.1 \\ 0.4^{b} \pm 0.1 \\ 0.2^{ab} \pm 0.0 \\ 0.8^{b} \pm 0.1 \end{array}$                                                                                                                                                                                             | $10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1 \\ 5,9^{a} \pm 1,3 \\ \end{array}$                                                                                                                                                                                            | VO $13,5 \pm 1,9$ $1,3 \pm 0,2$ $7,3^{a} \pm 0,9$ $5,2^{a} \pm 0,7$ $3,3^{a} \pm 0,6$ $0,6^{a} \pm 0,1$ $0,5^{a} \pm 0,1$ $7,5^{a} \pm 0,7$                                                                                                                                                                                                                                                                  | $\begin{array}{c} 14,2 \pm 3,3 \\ 1,7 \pm 0,4 \\ 4,6 \ ^{b} \pm 1,0 \\ 4,7 \ ^{ab} \pm 0,7 \\ 0,8 \ ^{c} \pm 0,1 \\ 0,3 \ ^{b} \pm 0,1 \\ 0,3 \ ^{b} \pm 0,0 \\ 1,8 \ ^{b} \pm 0,6 \end{array}$                                                                                                                           | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $0,4^{a} \pm 0,1$ $7,3^{a} \pm 0,9$                                                                                                                                                                             | $\begin{array}{c} \hline VO \\ 13,3^{5} \pm 2,1 \\ 1,2 \pm 0,1 \\ 4,8 \pm 0,3 \\ 4,5 \pm 0,7 \\ 1,6^{30} \pm 0,3 \\ 0,2 \pm 0,0 \\ 0,3^{30} \pm 0,0 \\ 6,3^{3} \pm 0,1 \end{array}$                                                                                                                                                                      | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2 \pm 0,2$<br>$0,2^{b} \pm 0,0$<br>$3,0^{b} \pm 0,6$                                                                                                                                                                                                  | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8^{b} \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8^{a} \pm 0,4 \\ 0,7^{a} \pm 0,2 \\ 0,3 \pm 0,0 \\ 2,5^{a} \pm 0,2 \end{array}$                                                                                                                                                            | $\frac{\text{VO}}{6,7 \pm 1.0}$ $6,7 \pm 0.1$ $2,7 \pm 0.3$ $3,6 \pm 0.6$ $2,0^{3} \pm 0.3$ $0,4^{b} \pm 0.1$ $0,2 \pm 0.0$ $2,3^{3} \pm 0.2$                                                                                                                                                                                                                                                                                                               | FO<br>7,1 $\pm$ 0,8<br>1,3 <sup>a</sup> $\pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 <sup>b</sup> $\pm$ 0,1<br>0,6 <sup>a</sup> $\pm$ 0,1<br>0,4 $\pm$ 0,1<br>0,6 <sup>b</sup> $\pm$ 0,1                                                                                                                                                                   |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \end{array}$                                                                                                                                                                          | VO<br>7,3 $\pm$ 0,8<br>0,7 <sup>b</sup> $\pm$ 0,1<br>2,7 <sup>b</sup> $\pm$ 0,3<br>3,8 <sup>ab</sup> $\pm$ 0,5<br>2,3 <sup>a</sup> $\pm$ 0,5<br>0,5 <sup>b</sup> $\pm$ 0,1<br>0,2 <sup>b</sup> $\pm$ 0,0<br>2,5 <sup>a</sup> $\pm$ 0,3<br>1,9 <sup>c</sup> $\pm$ 0,2                                                                                                                                                                  | $\begin{array}{c} 6.8 \pm 0.7 \\ 1.1^{a} \pm 0.2 \\ 2.1^{c} \pm 0.2 \\ 3.2^{b} \pm 0.4 \\ 0.7^{b} \pm 0.1 \\ 0.4^{b} \pm 0.1 \\ 0.2^{ab} \pm 0.0 \\ 0.8^{b} \pm 0.1 \\ 2.4^{b} \pm 0.2 \end{array}$                                                                                                                                                                          | $10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1 \\ 5,9^{a} \pm 1,3 \\ 2,5 \pm 0,6 \\ \end{array}$                                                                                                                                                                             | VO<br>13,5 ± 1,9<br>1,3 ± 0,2<br>7,3 <sup>a</sup> ± 0,9<br>5,2 <sup>a</sup> ± 0,7<br>3,3 <sup>a</sup> ± 0,6<br>0,6 <sup>a</sup> ± 0,1<br>0,5 <sup>a</sup> ± 0,1<br>7,5 <sup>a</sup> ± 0,7<br>2,8 ± 0,2                                                                                                                                                                                                       | $14,2 \pm 3,3$ $1,7 \pm 0,4$ $4,6^{b} \pm 1,0$ $4,7^{ab} \pm 0,7$ $0,8^{c} \pm 0,1$ $0,3^{b} \pm 0,1$ $0,3^{b} \pm 0,0$ $1,8^{b} \pm 0,6$ $2,9 \pm 0,7$                                                                                                                                                                   | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $0,4^{a} \pm 0,1$ $7,3^{a} \pm 0,9$ $2,5 \pm 0,7$                                                                                                                                                               | $\begin{array}{c} \hline VO \\ 13,3^{b} \pm 2,1 \\ 1,2 \pm 0,1 \\ 4,8 \pm 0,3 \\ 4,5 \pm 0,7 \\ 1,6^{ab} \pm 0,3 \\ 0,2 \pm 0,0 \\ 0,3^{ab} \pm 0,0 \\ 6,3^{b} \pm 0,1 \\ 1,3 \pm 0,1 \end{array}$                                                                                                                                                       | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2 \pm 0,2$<br>$0,2^{b} \pm 0,0$<br>$3,0^{b} \pm 0,6$<br>$5,4 \pm 3,5$                                                                                                                                                                                 | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8 \\ b \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8 \\ ^{*} \pm 0,4 \\ 0,7 \\ ^{*} \pm 0,2 \\ 0,3 \pm 0,0 \\ 2,5 \\ ^{*} \pm 0,2 \\ 2,5 \\ ^{*} \pm 0,3 \end{array}$                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FO<br>7,1 $\pm$ 0,8<br>1,3 <sup>a</sup> $\pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 <sup>b</sup> $\pm$ 0,1<br>0,6 <sup>a</sup> $\pm$ 0,1<br>0,4 $\pm$ 0,1<br>0,6 <sup>b</sup> $\pm$ 0,1<br>1,9 <sup>b</sup> $\pm$ 0,3                                                                                                                                     |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 8,0 \ \pm \ 1,1 \\ 1,1^{a} \ \pm \ 0,1 \\ 3,2^{a} \ \pm \ 0,4 \\ 4,0^{a} \ \pm \ 0,5 \\ 2,3^{a} \ \pm \ 0,6 \\ 0,9^{a} \ \pm \ 0,3 \\ 0,4^{a} \ \pm \ 0,1 \\ 2,9^{a} \ \pm \ 0,4 \end{array}$                                                                                                                                                             | VO<br>7,3 ± 0,8<br>0,7 <sup>b</sup> ± 0,1<br>2,7 <sup>b</sup> ± 0,1<br>2,7 <sup>b</sup> ± 0,3<br>3,8 <sup>ab</sup> ± 0,5<br>2,3 <sup>a</sup> ± 0,5<br>0,5 <sup>b</sup> ± 0,1<br>0,2 <sup>b</sup> ± 0,0<br>1,9 <sup>c</sup> ± 0,2<br>0,6 <sup>b</sup> ± 0,1                                                                                                                                                                            | $\begin{array}{c} 6,8\pm0,7\\ 1,1^{a}\pm0,2\\ 2,1^{c}\pm0,2\\ 3,2^{b}\pm0,4\\ 0,7^{b}\pm0,1\\ 0,4^{b}\pm0,1\\ 0,2^{ab}\pm0,0\\ 0,8^{b}\pm0,1\\ 2,4^{b}\pm0,2\\ 0,5^{c}\pm0,1 \end{array}$                                                                                                                                                                                    | $10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1 \\ 5,9^{a} \pm 1,3 \\ \end{array}$                                                                                                                                                                                            | VO<br>13,5 ± 1,9<br>1,3 ± 0,2<br>7,3 * ± 0,9<br>5,2 * ± 0,7<br>3,3 * ± 0,6<br>0,6 * ± 0,1<br>0,5 * ± 0,1<br>7,5 * ± 0,7<br>2,8 ± 0,2<br>1,0 ± 0,2                                                                                                                                                                                                                                                            | $\begin{array}{c} 14,2 \pm 3,3 \\ 1,7 \pm 0,4 \\ 4,6 \ ^{b} \pm 1,0 \\ 4,7 \ ^{ab} \pm 0,7 \\ 0,8 \ ^{c} \pm 0,1 \\ 0,3 \ ^{b} \pm 0,1 \\ 0,3 \ ^{b} \pm 0,0 \\ 1,8 \ ^{b} \pm 0,6 \end{array}$                                                                                                                           | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $7,3^{a} \pm 0,9$ $2,5 \pm 0,7$ $1,0 \pm 0,2$                                                                                                                                                                   | $\begin{array}{c} \hline VO \\ 13,3^{5} \pm 2,1 \\ 1,2 \pm 0,1 \\ 4,8 \pm 0,3 \\ 4,5 \pm 0,7 \\ 1,6^{20} \pm 0,3 \\ 0,2 \pm 0,0 \\ 0,3^{20} \pm 0,0 \\ 6,3^{3} \pm 0,1 \\ 1,3 \pm 0,1 \\ 0,8 \pm 0,1 \end{array}$                                                                                                                                        | FO<br>$19,6^{3} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{5} \pm 0,2$<br>$0,2^{5} \pm 0,2$<br>$0,2^{5} \pm 0,0$<br>$3,0^{5} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$                                                                                                                                                            | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8 \\ ^{b} \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8 \\ ^{a} \pm 0,4 \\ 0,7 \\ ^{a} \pm 0,2 \\ 0,3 \pm 0,0 \\ 2,5 \\ ^{a} \pm 0,2 \\ 2,5 \\ ^{a} \pm 0,3 \\ 0,8 \\ ^{a} \pm 0,1 \end{array}$                                                                                              | $\begin{array}{c} \text{VO} \\ \hline & 6.7 \pm 1.0 \\ 0.6^{\text{b}} \pm 0.1 \\ 2.7 \pm 0.3 \\ 3.6 \pm 0.6 \\ 2.0^{\text{a}} \pm 0.3 \\ 0.4^{\text{b}} \pm 0.1 \\ 0.2 \pm 0.0 \\ 2.3^{\text{a}} \pm 0.2 \\ 1.7^{\text{b}} \pm 0.2 \\ 0.6^{\text{b}} \pm 0.1 \end{array}$                                                                                                                                                                                   | FO<br>7,1 $\pm$ 0,8<br>1,3 $^{3} \pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 $^{b} \pm$ 0,1<br>0,6 $^{a} \pm$ 0,1<br>0,4 $\pm$ 0,1<br>0,6 $^{b} \pm$ 0,1<br>1,9 $^{b} \pm$ 0,3<br>0,3 $^{c} \pm$ 0,0                                                                                                                                                       |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>22:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \\ 0,8^{a} \pm 0,1 \\ 3,6^{a} \pm 0,4 \end{array}$                                                                                                                                    | VO<br>7,3 ± 0,8<br>0,7 <sup>b</sup> ± 0,1<br>2,7 <sup>b</sup> ± 0,3<br>3,8 <sup>ab</sup> ± 0,5<br>2,3 <sup>a</sup> ± 0,5<br>0,5 <sup>b</sup> ± 0,1<br>0,2 <sup>b</sup> ± 0,0<br>2,5 <sup>a</sup> ± 0,3<br>1,9 <sup>c</sup> ± 0,2<br>0,6 <sup>b</sup> ± 0,1<br>2,8 <sup>b</sup> ± 0,4                                                                                                                                                  | $\begin{array}{c} 6,8 \pm 0,7 \\ 1,1^{a} \pm 0,2 \\ 2,1^{c} \pm 0,2 \\ 3,2^{b} \pm 0,4 \\ 0,7^{b} \pm 0,1 \\ 0,4^{b} \pm 0,1 \\ 0,8^{b} \pm 0,1 \\ 2,4^{b} \pm 0,2 \\ 0,5^{c} \pm 0,1 \\ 3,4^{ab} \pm 0,6 \end{array}$                                                                                                                                                       | $10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1 \\ 5,9^{a} \pm 1,3 \\ 2,5 \pm 0,6 \\ \end{array}$                                                                                                                                                                             | VO<br>13,5 ± 1,9<br>1,3 ± 0,2<br>7,3 <sup>a</sup> ± 0,9<br>5,2 <sup>a</sup> ± 0,7<br>3,3 <sup>a</sup> ± 0,6<br>0,6 <sup>a</sup> ± 0,1<br>0,5 <sup>a</sup> ± 0,1<br>7,5 <sup>a</sup> ± 0,7<br>2,8 ± 0,2                                                                                                                                                                                                       | $14,2 \pm 3,3$ $1,7 \pm 0,4$ $4,6^{b} \pm 1,0$ $4,7^{ab} \pm 0,7$ $0,8^{c} \pm 0,1$ $0,3^{b} \pm 0,1$ $0,3^{b} \pm 0,0$ $1,8^{b} \pm 0,6$ $2,9 \pm 0,7$                                                                                                                                                                   | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $0,4^{a} \pm 0,1$ $7,3^{a} \pm 0,9$ $2,5 \pm 0,7$                                                                                                                                                               | $\begin{array}{c} \hline VO \\ 13,3^{b} \pm 2,1 \\ 1,2 \pm 0,1 \\ 4,8 \pm 0,3 \\ 4,5 \pm 0,7 \\ 1,6^{ab} \pm 0,3 \\ 0,2 \pm 0,0 \\ 0,3^{ab} \pm 0,0 \\ 6,3^{b} \pm 0,1 \\ 1,3 \pm 0,1 \end{array}$                                                                                                                                                       | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2 \pm 0,2$<br>$0,2^{b} \pm 0,0$<br>$3,0^{b} \pm 0,6$<br>$5,4 \pm 3,5$                                                                                                                                                                                 | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8 \\ b \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8 \\ ^{*} \pm 0,4 \\ 0,7 \\ ^{*} \pm 0,2 \\ 0,3 \pm 0,0 \\ 2,5 \\ ^{*} \pm 0,2 \\ 2,5 \\ ^{*} \pm 0,3 \end{array}$                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FO<br>7,1 $\pm$ 0,8<br>1,3 <sup>a</sup> $\pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 <sup>b</sup> $\pm$ 0,1<br>0,6 <sup>a</sup> $\pm$ 0,1<br>0,4 $\pm$ 0,1<br>0,6 <sup>b</sup> $\pm$ 0,1<br>1,9 <sup>b</sup> $\pm$ 0,3                                                                                                                                     |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>22:5n-3<br>22:5n-3<br>22:6n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \\ 0,8^{a} \pm 0,1 \end{array}$                                                                                                                                                       | VO<br>7,3 ± 0,8<br>0,7 <sup>b</sup> ± 0,1<br>2,7 <sup>b</sup> ± 0,1<br>2,7 <sup>b</sup> ± 0,3<br>3,8 <sup>ab</sup> ± 0,5<br>2,3 <sup>a</sup> ± 0,5<br>0,5 <sup>b</sup> ± 0,1<br>0,2 <sup>b</sup> ± 0,0<br>1,9 <sup>c</sup> ± 0,2<br>0,6 <sup>b</sup> ± 0,1                                                                                                                                                                            | $\begin{array}{c} 6,8\pm0,7\\ 1,1^{a}\pm0,2\\ 2,1^{c}\pm0,2\\ 3,2^{b}\pm0,4\\ 0,7^{b}\pm0,1\\ 0,4^{b}\pm0,1\\ 0,2^{ab}\pm0,0\\ 0,8^{b}\pm0,1\\ 2,4^{b}\pm0,2\\ 0,5^{c}\pm0,1 \end{array}$                                                                                                                                                                                    | $10,2 \pm 1,8$ $1,3 \pm 0,4$ $4,9^{b} \pm 1,1$ $3,6^{b} \pm 0,7$ $1,9^{b} \pm 0,8$ $0,6^{a} \pm 0,3$ $0,5^{a} \pm 0,1$ $5,9^{a} \pm 1,3$ $2,5 \pm 0,6$ $1,0 \pm 0,3$                                                                                                                                                                                      | VO $13,5 \pm 1,9$ $1,3 \pm 0,2$ $7,3^{a} \pm 0,9$ $5,2^{a} \pm 0,7$ $3,3^{a} \pm 0,6$ $0,6^{a} \pm 0,1$ $7,5^{a} \pm 0,7$ $2,8 \pm 0,2$ $1,0 \pm 0,2$ $4,2 \pm 0,9$ $22,8 \pm 2,8$                                                                                                                                                                                                                           | $14,2 \pm 3,3$ $1,7 \pm 0,4$ $4,6^{b} \pm 1,0$ $4,7^{ab} \pm 0,7$ $0,8^{c} \pm 0,1$ $0,3^{b} \pm 0,1$ $0,3^{b} \pm 0,0$ $1,8^{b} \pm 0,6$ $2,9 \pm 0,7$ $0,7 \pm 0,2$                                                                                                                                                     | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $7,3^{a} \pm 0,9$ $2,5 \pm 0,7$ $1,0 \pm 0,2$                                                                                                                                                                   | $\begin{array}{c} \hline VO \\ 13,3^{5} \pm 2,1 \\ 1,2 \pm 0,1 \\ 4,8 \pm 0,3 \\ 4,5 \pm 0,7 \\ 1,6^{20} \pm 0,3 \\ 0,2 \pm 0,0 \\ 0,3^{20} \pm 0,0 \\ 6,3^{3} \pm 0,1 \\ 1,3 \pm 0,1 \\ 0,8 \pm 0,1 \end{array}$                                                                                                                                        | FO<br>$19,6^{3} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{5} \pm 0,2$<br>$0,2^{5} \pm 0,2$<br>$0,2^{5} \pm 0,0$<br>$3,0^{5} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$                                                                                                                                                            | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8 \\ ^{b} \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8 \\ ^{a} \pm 0,4 \\ 0,7 \\ ^{a} \pm 0,2 \\ 0,3 \pm 0,0 \\ 2,5 \\ ^{a} \pm 0,2 \\ 2,5 \\ ^{a} \pm 0,3 \\ 0,8 \\ ^{a} \pm 0,1 \end{array}$                                                                                              | $\begin{array}{c} \text{VO} \\ \hline & 6.7 \pm 1.0 \\ 0.6^{\text{b}} \pm 0.1 \\ 2.7 \pm 0.3 \\ 3.6 \pm 0.6 \\ 2.0^{\text{a}} \pm 0.3 \\ 0.4^{\text{b}} \pm 0.1 \\ 0.2 \pm 0.0 \\ 2.3^{\text{a}} \pm 0.2 \\ 1.7^{\text{b}} \pm 0.2 \\ 0.6^{\text{b}} \pm 0.1 \end{array}$                                                                                                                                                                                   | FO<br>7,1 ± 0,8<br>1,3 <sup>a</sup> ± 0,1<br>2,8 ± 0,5<br>3,2 ± 0,2<br>0,8 <sup>b</sup> ± 0,1<br>0,6 <sup>a</sup> ± 0,1<br>1,9 <sup>b</sup> ± 0,3<br>0,3 <sup>c</sup> ± 0,0<br>2,2 <sup>b</sup> ± 0,5                                                                                                                                                            |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>22:5n-3<br>22:5n-3<br>22:6n-3<br>25AFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \\ 0,8^{a} \pm 0,1 \\ 3,6^{a} \pm 0,4 \end{array}$                                                                                                                                    | VO<br>7,3 ± 0,8<br>0,7 <sup>b</sup> ± 0,1<br>2,7 <sup>b</sup> ± 0,3<br>3,8 <sup>ab</sup> ± 0,5<br>2,3 <sup>a</sup> ± 0,5<br>0,5 <sup>b</sup> ± 0,1<br>0,2 <sup>b</sup> ± 0,0<br>2,5 <sup>a</sup> ± 0,3<br>1,9 <sup>c</sup> ± 0,2<br>0,6 <sup>b</sup> ± 0,1<br>2,8 <sup>b</sup> ± 0,4                                                                                                                                                  | $\begin{array}{c} 6,8 \pm 0,7 \\ 1,1^{a} \pm 0,2 \\ 2,1^{c} \pm 0,2 \\ 3,2^{b} \pm 0,4 \\ 0,7^{b} \pm 0,1 \\ 0,4^{b} \pm 0,1 \\ 0,8^{b} \pm 0,1 \\ 2,4^{b} \pm 0,2 \\ 0,5^{c} \pm 0,1 \\ 3,4^{ab} \pm 0,6 \end{array}$                                                                                                                                                       | $10,2 \pm 1,8$ $1,3 \pm 0,4$ $4,9^{b} \pm 1,1$ $3,6^{b} \pm 0,7$ $1,9^{b} \pm 0,8$ $0,6^{a} \pm 0,3$ $0,5^{a} \pm 0,1$ $5,9^{a} \pm 1,3$ $2,5 \pm 0,6$ $1,0 \pm 0,3$ $4,2 \pm 1,2$                                                                                                                                                                        | VO<br>13,5 ± 1,9<br>1,3 ± 0,2<br>7,3 * ± 0,9<br>5,2 * ± 0,7<br>3,3 * ± 0,6<br>0,6 * ± 0,1<br>0,5 * ± 0,1<br>7,5 * ± 0,7<br>2,8 ± 0,2<br>1,0 ± 0,2<br>4,2 ± 0,9                                                                                                                                                                                                                                               | $14,2 \pm 3,3$ $1,7 \pm 0,4$ $4,6^{b} \pm 1,0$ $4,7^{ab} \pm 0,7$ $0,8^{c} \pm 0,1$ $0,3^{b} \pm 0,1$ $0,3^{b} \pm 0,0$ $1,8^{b} \pm 0,6$ $2,9 \pm 0,7$ $0,7 \pm 0,2$ $5,8 \pm 1,3$                                                                                                                                       | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $7,3^{a} \pm 0,9$ $2,5 \pm 0,7$ $1,0 \pm 0,2$ $4,1^{b} \pm 0,3$                                                                                                                                                 | $\begin{array}{c} \hline VO \\ 13,3^{5} \pm 2,1 \\ 1,2 \pm 0,1 \\ 4,8 \pm 0,3 \\ 4,5 \pm 0,7 \\ 1,6^{ab} \pm 0,3 \\ 0,2 \pm 0,0 \\ 0,3^{ab} \pm 0,0 \\ 6,3^{3} \pm 0,1 \\ 1,3 \pm 0,1 \\ 3,0^{5} \pm 0,8 \end{array}$                                                                                                                                    | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2^{b} \pm 0,0$<br>$3,0^{b} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$<br>$7,9^{a} \pm 2,4$                                                                                                                                                            | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8 \\ ^{b} \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8 \\ ^{a} \pm 0,4 \\ 0,7 \\ ^{a} \pm 0,2 \\ 0,3 \pm 0,0 \\ 2,5 \\ ^{a} \pm 0,2 \\ 2,5 \\ ^{a} \pm 0,3 \\ 0,8 \\ ^{a} \pm 0,1 \\ 3,1 \\ ^{a} \pm 0,3 \end{array}$                                                                       | $\begin{array}{c} \text{VO} \\ \hline & 6.7 \pm 1.0 \\ 0.6^{\text{b}} \pm 0.1 \\ 2.7 \pm 0.3 \\ 3.6 \pm 0.6 \\ 2.0^{\text{a}} \pm 0.3 \\ 0.4^{\text{b}} \pm 0.1 \\ 0.2 \pm 0.0 \\ 2.3^{\text{a}} \pm 0.2 \\ 1.7^{\text{b}} \pm 0.2 \\ 0.6^{\text{b}} \pm 0.1 \\ 2.2^{\text{b}} \pm 0.3 \end{array}$                                                                                                                                                         | FO<br>7,1 ± 0,8<br>1,3 <sup>3</sup> ± 0,1<br>2,8 ± 0,5<br>3,2 ± 0,2<br>0,8 <sup>b</sup> ± 0,1<br>0,6 <sup>3</sup> ± 0,1<br>1,9 <sup>b</sup> ± 0,3<br>0,3 <sup>c</sup> ± 0,0<br>2,2 <sup>b</sup> ± 0,5                                                                                                                                                            |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \\ 0,8^{a} \pm 0,1 \\ 3,6^{a} \pm 0,4 \\ 12,6^{a} \pm 1,3 \end{array}$                                                                                                                | VO<br>7,3 $\pm 0.8$<br>0,7 <sup>b</sup> $\pm 0.1$<br>2,7 <sup>b</sup> $\pm 0.3$<br>3,8 <sup>ab</sup> $\pm 0.5$<br>2,3 <sup>a</sup> $\pm 0.5$<br>0,5 <sup>b</sup> $\pm 0.1$<br>0,2 <sup>b</sup> $\pm 0.0$<br>2,5 <sup>a</sup> $\pm 0.3$<br>1,9 <sup>c</sup> $\pm 0.2$<br>0,6 <sup>b</sup> $\pm 0.1$<br>2,8 <sup>b</sup> $\pm 0.4$<br>10,8 <sup>b</sup> $\pm 1.1$<br>4,8 $\pm 0.6$<br>11,3 <sup>b</sup> $\pm 1.2$                       | $\begin{array}{c} 6.8 \pm 0.7 \\ 1.1^{a} \pm 0.2 \\ 2.1^{c} \pm 0.2 \\ 3.2^{b} \pm 0.4 \\ 0.7^{b} \pm 0.1 \\ 0.4^{b} \pm 0.1 \\ 0.2^{ab} \pm 0.0 \\ 0.8^{b} \pm 0.1 \\ 2.4^{b} \pm 0.2 \\ 0.5^{c} \pm 0.1 \\ 3.4^{ab} \pm 0.6 \\ 9.5^{b} \pm 0.8 \end{array}$                                                                                                                | $\begin{array}{c} 10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1 \\ 5,9^{a} \pm 1,3 \\ 2,5 \pm 0,6 \\ 1,0 \pm 0,3 \\ 4,2 \pm 1,2 \\ 17,7 \pm 3,8 \end{array}$                                                                                                                 | VO $13,5 \pm 1,9$ $1,3 \pm 0,2$ $7,3^{a} \pm 0,9$ $5,2^{a} \pm 0,7$ $3,3^{a} \pm 0,6$ $0,6^{a} \pm 0,1$ $7,5^{a} \pm 0,7$ $2,8 \pm 0,2$ $1,0 \pm 0,2$ $4,2 \pm 0,9$ $22,8 \pm 2,8$                                                                                                                                                                                                                           | $\begin{array}{c} 14,2 \pm 3,3 \\ 1,7 \pm 0,4 \\ 4,6^{b} \pm 1,0 \\ 4,7^{ab} \pm 0,7 \\ 0,8^{c} \pm 0,1 \\ 0,3^{b} \pm 0,1 \\ 0,3^{b} \pm 0,0 \\ 1,8^{b} \pm 0,6 \\ 2,9 \pm 0,7 \\ 0,7 \pm 0,2 \\ 5,8 \pm 1,3 \\ 20,2 \pm 4,5 \end{array}$                                                                                | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{*} \pm 0,8$ $0,4 \pm 0,1$ $0,4^{*} \pm 0,1$ $7,3^{*} \pm 0,9$ $2,5 \pm 0,7$ $1,0 \pm 0,2$ $4,1^{b} \pm 0,3$ $22,0 \pm 1,3$                                                                                                                | VO $13,3^{\circ} \pm 2,1$ $1,2 \pm 0,1$ $4,8 \pm 0,3$ $4,5 \pm 0,7$ $1,6^{\circ\circ} \pm 0,3$ $0,2 \pm 0,0$ $0,3^{\circ\circ} \pm 0,0$ $6,3^{\circ} \pm 0,1$ $1,3 \pm 0,1$ $0,8 \pm 0,1$ $3,0^{\circ} \pm 0,8$ $19,6 \pm 2,5$                                                                                                                           | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2^{b} \pm 0,2$<br>$0,2^{b} \pm 0,0$<br>$3,0^{b} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$<br>$7,9^{a} \pm 2,4$<br>$27,5 \pm 5,3$                                                                                                                     | $\begin{array}{c} 6,3\pm 0,8\\ 0,8^{b}\pm 0,1\\ 2,7\pm 0,5\\ 3,3\pm 0,5\\ 1,8^{a}\pm 0,4\\ 0,7^{a}\pm 0,2\\ 0,3\pm 0,0\\ 2,5^{a}\pm 0,2\\ 2,5^{a}\pm 0,3\\ 0,8^{a}\pm 0,1\\ 3,1^{a}\pm 0,3\\ 10,1\pm 1,4\\ \end{array}$                                                                                                        | $\begin{array}{c} \text{VO} \\ 6.7 \pm 1.0 \\ 0.6^{\text{b}} \pm 0.1 \\ 2.7 \pm 0.3 \\ 3.6 \pm 0.6 \\ 2.0^{\text{a}} \pm 0.3 \\ 0.4^{\text{b}} \pm 0.1 \\ 0.2 \pm 0.0 \\ 2.3^{\text{a}} \pm 0.2 \\ 1.7^{\text{b}} \pm 0.2 \\ 1.7^{\text{b}} \pm 0.2 \\ 0.6^{\text{b}} \pm 0.1 \\ 2.2^{\text{b}} \pm 0.3 \\ 10.1 \pm 1.4 \end{array}$                                                                                                                        | FO<br>7,1 $\pm$ 0,8<br>1,3 <sup>a</sup> $\pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 <sup>b</sup> $\pm$ 0,1<br>0,6 <sup>a</sup> $\pm$ 0,1<br>0,6 <sup>b</sup> $\pm$ 0,1<br>1,9 <sup>b</sup> $\pm$ 0,3<br>0,6 <sup>c</sup> $\pm$ 0,0<br>2,2 <sup>b</sup> $\pm$ 0,5<br>10,5 $\pm$ 1,3<br>5,3 $\pm$ 0,4<br>7,0 <sup>c</sup> $\pm$ 1,1                         |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>25AFA<br>EMUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \\ 0,8^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \\ 0,8^{a} \pm 0,4 \\ 12,6^{a} \pm 1,3 \\ 5,5 \pm 0,6 \end{array}$                                                                              | VO<br>7,3 $\pm 0,8$<br>0,7 <sup>b</sup> $\pm 0,1$<br>2,7 <sup>b</sup> $\pm 0,3$<br>3,8 <sup>ab</sup> $\pm 0,5$<br>2,3 <sup>a</sup> $\pm 0,5$<br>0,5 <sup>b</sup> $\pm 0,1$<br>0,2 <sup>b</sup> $\pm 0,0$<br>2,5 <sup>a</sup> $\pm 0,3$<br>1,9 <sup>c</sup> $\pm 0,2$<br>0,6 <sup>b</sup> $\pm 0,1$<br>2,8 <sup>b</sup> $\pm 0,4$<br>10,8 <sup>b</sup> $\pm 1,1$<br>4,8 $\pm 0,6$                                                      | $\begin{array}{c} 6.8 \pm 0.7 \\ 1.1^{a} \pm 0.2 \\ 2.1^{c} \pm 0.2 \\ 3.2^{b} \pm 0.4 \\ 0.7^{b} \pm 0.1 \\ 0.4^{ab} \pm 0.1 \\ 0.2^{ab} \pm 0.0 \\ 0.8^{b} \pm 0.1 \\ 2.4^{b} \pm 0.2 \\ 0.5^{c} \pm 0.1 \\ 3.4^{ab} \pm 0.6 \\ 9.5^{b} \pm 0.8 \\ 5.2 \pm 0.6 \end{array}$                                                                                                | $\begin{array}{c} 10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1 \\ 5,9^{a} \pm 1,3 \\ 2,5 \pm 0,6 \\ 1,0 \pm 0,3 \\ 4,2 \pm 1,2 \\ 1,7 \pm 3,8 \\ 5,4^{b} \pm 1,2 \end{array}$                                                                                               | VO $13,5 \pm 1,9$ $1,3 \pm 0,2$ $7,3^* \pm 0,9$ $5,2^* \pm 0,7$ $3,3^* \pm 0,6$ $0,6^* \pm 0,1$ $7,5^* \pm 0,7$ $2,8 \pm 0,2$ $1,0 \pm 0,2$ $4,2 \pm 0,9$ $22,8 \pm 2,8$ $7,1^* \pm 0,9$                                                                                                                                                                                                                     | $\begin{array}{c} 14,2\pm 3,3\\ 1,7\pm 0,4\\ 4,6^{b}\pm 1,0\\ 4,7^{ab}\pm 0,7\\ 0,8^{c}\pm 0,1\\ 0,3^{b}\pm 0,1\\ 0,3^{b}\pm 0,0\\ 1,8^{b}\pm 0,6\\ 2,9\pm 0,7\\ 0,7\pm 0,2\\ 5,8\pm 1,3\\ 20,2\pm 4,5\\ 7,8^{a}\pm 1,1 \end{array}$                                                                                      | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $0,4^{a} \pm 0,1$ $7,3^{a} \pm 0,9$ $2,5 \pm 0,7$ $1,0 \pm 0,2$ $4,1^{b} \pm 0,3$ $22,0 \pm 1,3$ $7,1 \pm 0,6$                                                                                                  | VO $13,3^{5} \pm 2,1$ $1,2 \pm 0,1$ $4,8 \pm 0,3$ $4,5 \pm 0,7$ $1,6^{ab} \pm 0,3$ $0,2 \pm 0,0$ $0,3^{ab} \pm 0,1$ $1,3 \pm 0,1$ $0,8 \pm 0,1$ $3,0^{b} \pm 0,8$ $19,6 \pm 2,5$ $6,1 \pm 0,8$                                                                                                                                                           | FO<br>$19,6^{\circ} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{\circ} \pm 0,2$<br>$0,2^{\circ} \pm 0,2$<br>$0,2^{\circ} \pm 0,0$<br>$3,0^{\circ} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$<br>$7,9^{\circ} \pm 2,4$<br>$27,5 \pm 5,3$<br>$8,4 \pm 1,4$                                                                            | $\begin{array}{c} 6,3 \pm 0,8 \\ 0,8^{b} \pm 0,1 \\ 2,7 \pm 0,5 \\ 3,3 \pm 0,5 \\ 1,8^{a} \pm 0,4 \\ 0,7^{a} \pm 0,2 \\ 0,3 \pm 0,0 \\ 2,5^{a} \pm 0,2 \\ 2,5^{a} \pm 0,2 \\ 2,5^{a} \pm 0,3 \\ 0,8^{a} \pm 0,1 \\ 3,1^{a} \pm 0,3 \\ 10,1 \pm 1,4 \\ 4,5 \pm 0,7 \end{array}$                                                 | $\begin{array}{c} \hline VO \\ \hline 6.7 \pm 1.0 \\ 0.6^{b} \pm 0.1 \\ 2.7 \pm 0.3 \\ 3.6 \pm 0.6 \\ 2.0^{a} \pm 0.3 \\ 0.4^{b} \pm 0.1 \\ 0.2 \pm 0.0 \\ 2.3^{a} \pm 0.2 \\ 1.7^{b} \pm 0.2 \\ 1.7^{b} \pm 0.2 \\ 0.6^{b} \pm 0.1 \\ 2.2^{b} \pm 0.3 \\ 10.1 \pm 1.4 \\ 4.4 \pm 0.7 \end{array}$                                                                                                                                                          | FO<br>7,1 $\pm$ 0,8<br>1,3 $^{3}$ $\pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 $^{b}$ $\pm$ 0,1<br>0,6 $^{a}$ $\pm$ 0,1<br>0,6 $^{b}$ $\pm$ 0,1<br>1,9 $^{b}$ $\pm$ 0,3<br>0,3 $^{c}$ $\pm$ 0,0<br>2,2 $^{b}$ $\pm$ 0,5<br>10,5 $\pm$ 1,3<br>5,3 $\pm$ 0,4                                                                                                 |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n-3<br>20:5n- | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{3} \pm 0,1 \\ 3,2^{3} \pm 0,4 \\ 4,0^{3} \pm 0,5 \\ 2,3^{3} \pm 0,6 \\ 0,9^{3} \pm 0,3 \\ 0,4^{3} \pm 0,1 \\ 2,9^{3} \pm 0,4 \\ 3,1^{3} \pm 0,3 \\ 0,8^{3} \pm 0,1 \\ 3,6^{3} \pm 0,4 \\ 12,6^{3} \pm 1,3 \\ 5,5 \pm 0,6 \\ 14,5^{3} \pm 1,9 \end{array}$                                                                             | VO<br>7,3 $\pm 0.8$<br>0,7 <sup>b</sup> $\pm 0.1$<br>2,7 <sup>b</sup> $\pm 0.3$<br>3,8 <sup>ab</sup> $\pm 0.5$<br>2,3 <sup>a</sup> $\pm 0.5$<br>0,5 <sup>b</sup> $\pm 0.1$<br>0,2 <sup>b</sup> $\pm 0.0$<br>2,5 <sup>a</sup> $\pm 0.3$<br>1,9 <sup>c</sup> $\pm 0.2$<br>0,6 <sup>b</sup> $\pm 0.1$<br>2,8 <sup>b</sup> $\pm 0.4$<br>10,8 <sup>b</sup> $\pm 1.1$<br>4,8 $\pm 0.6$<br>11,3 <sup>b</sup> $\pm 1.2$                       | $\begin{array}{c} 6.8 \pm 0.7 \\ 1.1^{a} \pm 0.2 \\ 2.1^{c} \pm 0.2 \\ 3.2^{b} \pm 0.4 \\ 0.7^{b} \pm 0.1 \\ 0.4^{b} \pm 0.1 \\ 0.2^{ab} \pm 0.0 \\ 0.8^{b} \pm 0.1 \\ 2.4^{b} \pm 0.2 \\ 0.5^{c} \pm 0.1 \\ 3.4^{ab} \pm 0.6 \\ 9.5^{b} \pm 0.8 \\ 5.2 \pm 0.6 \\ 8.7^{c} \pm 1.0 \end{array}$                                                                              | $10,2 \pm 1,8$ $1,3 \pm 0,4$ $4,9^{b} \pm 1,1$ $3,6^{b} \pm 0,7$ $1,9^{b} \pm 0,8$ $0,6^{a} \pm 0,3$ $0,5^{a} \pm 0,1$ $5,9^{a} \pm 1,3$ $2,5 \pm 0,6$ $1,0 \pm 0,3$ $4,2 \pm 1,2$ $17,7 \pm 3,8$ $5,4^{b} \pm 1,2$ $17,4^{ab} \pm 4,4$                                                                                                                   | VO $13,5 \pm 1,9$ $1,3 \pm 0,2$ $7,3^{a} \pm 0,9$ $5,2^{a} \pm 0,7$ $3,3^{a} \pm 0,6$ $0,6^{a} \pm 0,1$ $7,5^{a} \pm 0,7$ $2,8 \pm 0,2$ $1,0 \pm 0,2$ $4,2 \pm 0,9$ $22,8 \pm 2,8$ $7,1^{b} \pm 0,9$ $20,7^{a} \pm 2,2$                                                                                                                                                                                      | $\begin{array}{c} 14,2\pm 3,3\\ 1,7\pm 0,4\\ 4,6^{b}\pm 1,0\\ 4,7^{ab}\pm 0,7\\ 0,8^{c}\pm 0,1\\ 0,3^{b}\pm 0,1\\ 0,3^{b}\pm 0,0\\ 1,8^{b}\pm 0,6\\ 2,9\pm 0,7\\ 0,7\pm 0,2\\ 5,8\pm 1,3\\ 20,2\pm 4,5\\ 7,8^{a}\pm 1,1\\ 13,0^{b}\pm 2,8 \end{array}$                                                                    | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $0,4^{a} \pm 0,1$ $7,3^{a} \pm 0,9$ $2,5 \pm 0,7$ $1,0 \pm 0,2$ $4,1^{b} \pm 0,3$ $22,0 \pm 1,3$ $7,1 \pm 0,6$ $18,8 \pm 2,8$                                                                                   | VO $13,3^{5} \pm 2,1$ $1,2 \pm 0,1$ $4,8 \pm 0,3$ $4,5 \pm 0,7$ $1,6^{ab} \pm 0,3$ $0,2 \pm 0,0$ $0,3^{ab} \pm 0,0$ $6,3^{3} \pm 0,1$ $1,3 \pm 0,1$ $3,0^{b} \pm 0,8$ $19,6 \pm 2,5$ $6,1 \pm 0,8$ $14,0 \pm 0,8$                                                                                                                                        | FO<br>$19,6^{\circ} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{\circ} \pm 0,2$<br>$0,2^{\circ} \pm 0,2$<br>$0,2^{\circ} \pm 0,0$<br>$3,0^{\circ} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$<br>$7,9^{\circ} \pm 2,4$<br>$27,5 \pm 5,3$<br>$8,4 \pm 1,4$<br>$18,9 \pm 6,8$                                                          | $\begin{array}{c} 6,3\pm0,8\\ 0,8^{b}\pm0,1\\ 2,7\pm0,5\\ 3,3\pm0,5\\ 1,8^{a}\pm0,4\\ 0,7^{a}\pm0,2\\ 0,3\pm0,0\\ 2,5^{a}\pm0,2\\ 2,5^{a}\pm0,0\\ 2,5^{a}\pm0,1\\ 3,1^{a}\pm0,3\\ 10,1\pm1,4\\ 4,5\pm0,7\\ 11,9^{a}\pm0,7\\ \end{array}$                                                                                       | $\begin{array}{c} \hline VO \\ \hline 6.7 \pm 1.0 \\ 0.6^{b} \pm 0.1 \\ 2.7 \pm 0.3 \\ 3.6 \pm 0.6 \\ 2.0^{a} \pm 0.3 \\ 0.4^{b} \pm 0.1 \\ 0.2 \pm 0.0 \\ 2.3^{a} \pm 0.2 \\ 1.7^{b} \pm 0.2 \\ 1.7^{b} \pm 0.2 \\ 0.6^{b} \pm 0.1 \\ 2.2^{b} \pm 0.3 \\ 10.1 \pm 1.4 \\ 4.4 \pm 0.7 \\ 9.9^{b} \pm 0.9 \end{array}$                                                                                                                                       | FO<br>7,1 $\pm$ 0,8<br>1,3 <sup>a</sup> $\pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 <sup>b</sup> $\pm$ 0,1<br>0,6 <sup>a</sup> $\pm$ 0,1<br>0,6 <sup>b</sup> $\pm$ 0,1<br>1,9 <sup>b</sup> $\pm$ 0,3<br>0,3 <sup>c</sup> $\pm$ 0,0<br>2,2 <sup>b</sup> $\pm$ 0,5<br>10,5 $\pm$ 1,3<br>5,3 $\pm$ 0,4<br>7,0 <sup>c</sup> $\pm$ 1,1                         |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:6n-3<br>ΣSAFA<br>ΣMUFA<br>ΣPUFA<br>Σn-3<br>Σn-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \\ 0,8^{a} \pm 0,1 \\ 3,6^{a} \pm 0,4 \\ 12,6^{a} \pm 1,3 \\ 5,5 \pm 0,6 \\ 14,5^{a} \pm 1,9 \\ 8,9^{a} \pm 1,0 \end{array}$                                                          | $\begin{array}{c} & \text{VO} \\ & 7,3 \pm 0,8 \\ 0,7^b \pm 0,1 \\ 2,7^b \pm 0,1 \\ 2,7^b \pm 0,3 \\ 3,8^{ab} \pm 0,5 \\ 2,3^a \pm 0,5 \\ 0,5^b \pm 0,1 \\ 0,2^b \pm 0,0 \\ 2,5^a \pm 0,3 \\ 1,9^c \pm 0,2 \\ 0,6^b \pm 0,1 \\ 2,8^b \pm 0,4 \\ 10,8^b \pm 1,1 \\ 4,8 \pm 0,6 \\ 11,3^b \pm 1,2 \\ 6,1^b \pm 0,5 \\ \end{array}$                                                                                                      | $\begin{array}{c} 6.8 \pm 0.7 \\ 1.1^{a} \pm 0.2 \\ 2.1^{c} \pm 0.2 \\ 3.2^{b} \pm 0.4 \\ 0.7^{b} \pm 0.1 \\ 0.4^{b} \pm 0.1 \\ 0.2^{ab} \pm 0.0 \\ 0.8^{b} \pm 0.1 \\ 2.4^{b} \pm 0.2 \\ 0.5^{c} \pm 0.1 \\ 3.4^{ab} \pm 0.6 \\ 9.5^{b} \pm 0.8 \\ 5.2 \pm 0.6 \\ 8.7^{c} \pm 1.0 \\ 7.0^{b} \pm 0.8 \end{array}$                                                           | $10,2 \pm 1,8$ $1,3 \pm 0,4$ $4,9^{b} \pm 1,1$ $3,6^{b} \pm 0,7$ $1,9^{b} \pm 0,8$ $0,6^{a} \pm 0,3$ $0,5^{a} \pm 0,1$ $5,9^{a} \pm 1,3$ $2,5 \pm 0,6$ $1,0 \pm 0,3$ $4,2 \pm 1,2$ $17,7 \pm 3,8$ $5,4^{b} \pm 1,2$ $17,4^{ab} \pm 4,4$ $9,1 \pm 2,5$                                                                                                     | VO $13,5 \pm 1,9$ $1,3 \pm 0,2$ $7,3^* \pm 0,9$ $5,2^* \pm 0,7$ $3,3^* \pm 0,6$ $0,6^* \pm 0,1$ $7,5^* \pm 0,7$ $2,8 \pm 0,2$ $1,0 \pm 0,2$ $4,2 \pm 0,9$ $22,8 \pm 2,8$ $7,1^* \pm 0,9$ $20,7^* \pm 2,2$ $9,1 \pm 1,2$                                                                                                                                                                                      | $14,2 \pm 3,3$ $1,7 \pm 0,4$ $4,6^{b} \pm 1,0$ $4,7^{ab} \pm 0,7$ $0,8^{c} \pm 0,1$ $0,3^{b} \pm 0,0$ $1,8^{b} \pm 0,6$ $2,9 \pm 0,7$ $0,7 \pm 0,2$ $5,8 \pm 1,3$ $20,2 \pm 4,5$ $7,8^{a} \pm 1,1$ $13,0^{b} \pm 2,8$ $10,0 \pm 2,1$                                                                                      | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $0,4^{a} \pm 0,1$ $7,3^{a} \pm 0,9$ $2,5 \pm 0,7$ $1,0 \pm 0,2$ $4,1^{b} \pm 0,3$ $22,0 \pm 1,3$ $7,1 \pm 0,6$ $18,8 \pm 2,8$ $8,6 \pm 1,2$                                                                     | VO $13,3^{5} \pm 2,1$ $1,2 \pm 0,1$ $4,8 \pm 0,3$ $4,5 \pm 0,7$ $1,6^{35} \pm 0,7$ $1,6^{35} \pm 0,0$ $0,3^{35} \pm 0,0$ $6,3^{3} \pm 0,1$ $1,3 \pm 0,1$ $3,0^{5} \pm 0,8$ $19,6 \pm 2,5$ $6,1^{\pm} \pm 0,8$ $14,0 \pm 0,8$ $5,6 \pm 0,6$                                                                                                               | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2 \pm 0,2$<br>$0,2^{b} \pm 0,0$<br>$3,0^{b} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$<br>$7,9^{a} \pm 2,4$<br>$27,5 \pm 5,3$<br>$8,4 \pm 1,4$<br>$18,9 \pm 6,8$<br>$14,6 \pm 6,2$                                                                    | $\begin{array}{c} 6,3\pm0,8\\ 0,8^{b}\pm0,1\\ 2,7\pm0,5\\ 3,3\pm0,5\\ 1,8^{a}\pm0,4\\ 0,7^{a}\pm0,2\\ 0,3\pm0,0\\ 2,5^{a}\pm0,2\\ 2,5^{a}\pm0,2\\ 2,5^{a}\pm0,3\\ 0,8^{a}\pm0,1\\ 3,1^{a}\pm0,3\\ 10,1\pm1,4\\ 4,5\pm0,7\\ 11,9^{a}\pm0,7\\ 7,4^{a}\pm0,6\\ \end{array}$                                                       | $\begin{array}{c} \text{VO} \\ \hline & 6,7 \pm 1,0 \\ 0,6^{\text{b}} \pm 0,1 \\ 2,7 \pm 0,3 \\ 3,6 \pm 0,6 \\ 2,0^{\text{s}} \pm 0,3 \\ 0,4^{\text{b}} \pm 0,1 \\ 0,2 \pm 0,0 \\ 2,3^{\text{s}} \pm 0,2 \\ 1,7^{\text{b}} \pm 0,2 \\ 0,6^{\text{b}} \pm 0,1 \\ 2,2^{\text{b}} \pm 0,3 \\ 10,1 \pm 1,4 \\ 4,4 \pm 0,7 \\ 9,9^{\text{b}} \pm 0,9 \\ 5,2^{\text{b}} \pm 0,5 \end{array}$                                                                      | FO<br>7,1 $\pm$ 0,8<br>1,3 $^{a}$ $\pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 $^{b}$ $\pm$ 0,1<br>0,6 $^{a}$ $\pm$ 0,1<br>0,6 $^{b}$ $\pm$ 0,1<br>1,9 $^{b}$ $\pm$ 0,3<br>0,3 $^{c}$ $\pm$ 0,0<br>2,2 $^{b}$ $\pm$ 0,5<br>10,5 $\pm$ 1,3<br>5,3 $\pm$ 0,4<br>7,0 $^{c}$ $\pm$ 1,1<br>5,2 $^{b}$ $\pm$ 0,9<br>1,8 $^{b}$ $\pm$ 0,3                         |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>22:5n-3<br>22:6n-3<br>22:6n-3<br>25AFA<br>ΣMUFA<br>ΣMUFA<br>Σn-3<br>Σn-6<br>n-3/n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \\ 0,8^{a} \pm 0,1 \\ 3,6^{a} \pm 0,4 \\ 12,6^{a} \pm 1,3 \\ 5,5 \pm 0,6 \\ 14,5^{a} \pm 1,9 \\ 8,9^{a} \pm 1,0 \\ 5,6^{a} \pm 1,0 \end{array}$                                       | VO<br>7,3 ± 0,8<br>0,7 <sup>b</sup> ± 0,1<br>2,7 <sup>b</sup> ± 0,3<br>3,8 <sup>ab</sup> ± 0,5<br>2,3 <sup>a</sup> ± 0,5<br>0,5 <sup>b</sup> ± 0,1<br>0,2 <sup>b</sup> ± 0,0<br>2,5 <sup>a</sup> ± 0,3<br>1,9 <sup>c</sup> ± 0,2<br>0,6 <sup>b</sup> ± 0,1<br>2,8 <sup>b</sup> ± 0,4<br>10,8 <sup>b</sup> ± 1,1<br>4,8 ± 0,6<br>11,3 <sup>b</sup> ± 1,2<br>6,1 <sup>b</sup> ± 0,5<br>5,2 <sup>a</sup> ± 0,7<br>1,2 <sup>c</sup> ± 0,1 | $\begin{array}{c} 6.8 \pm 0.7 \\ 1.1^{a} \pm 0.2 \\ 2.1^{c} \pm 0.2 \\ 3.2^{b} \pm 0.4 \\ 0.7^{b} \pm 0.1 \\ 0.4^{b} \pm 0.1 \\ 0.2^{ab} \pm 0.0 \\ 0.8^{b} \pm 0.1 \\ 2.4^{b} \pm 0.2 \\ 0.5^{c} \pm 0.1 \\ 3.4^{ab} \pm 0.6 \\ 9.5^{b} \pm 0.8 \\ 5.2 \pm 0.6 \\ 8.7^{c} \pm 1.0 \\ 7.0^{b} \pm 0.8 \\ 1.7^{b} \pm 0.2 \end{array}$                                        | $\begin{array}{c} 10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1 \\ 5,9^{a} \pm 1,3 \\ 2,5 \pm 0,6 \\ 1,0 \pm 0,3 \\ 4,2 \pm 1,2 \\ 17,7 \pm 3,8 \\ 5,4^{b} \pm 1,2 \\ 17,4^{ab} \pm 4,4 \\ 9,1 \pm 2,5 \\ 8,3^{b} \pm 1,9 \end{array}$                                       | VO $13,5 \pm 1,9$ $1,3 \pm 0,2$ $7,3^{3} \pm 0,9$ $5,2^{a} \pm 0,7$ $3,3^{a} \pm 0,6$ $0,6^{a} \pm 0,1$ $0,5^{a} \pm 0,7$ $2,8 \pm 0,2$ $1,0 \pm 0,2$ $4,2 \pm 0,9$ $22,8 \pm 2,8$ $7,1^{b} \pm 0,9$ $20,7^{a} \pm 2,2$ $9,1 \pm 1,2$ $11,7^{a} \pm 1,3$                                                                                                                                                     | $14,2 \pm 3,3$ $1,7 \pm 0,4$ $4,6^{b} \pm 1,0$ $4,7^{ab} \pm 0,7$ $0,8^{c} \pm 0,1$ $0,3^{b} \pm 0,1$ $0,3^{b} \pm 0,0$ $1,8^{b} \pm 0,6$ $2,9 \pm 0,7$ $0,7 \pm 0,2$ $5,8 \pm 1,3$ $20,2 \pm 4,5$ $7,8^{a} \pm 1,1$ $13,0^{b} \pm 2,8$ $10,0 \pm 2,1$ $3,1^{c} \pm 0,7$                                                  | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{a} \pm 0,8$ $0,4 \pm 0,1$ $0,4^{a} \pm 0,1$ $7,3^{a} \pm 0,9$ $2,5 \pm 0,7$ $1,0 \pm 0,2$ $4,1^{b} \pm 0,3$ $22,0 \pm 1,3$ $7,1 \pm 0,6$ $18,8 \pm 2,8$ $8,6 \pm 1,2$ $10,2^{a} \pm 1,7$                                                  | $\begin{array}{c} \hline VO \\ 13,3^{5}\pm2,1 \\ 1,2\pm0,1 \\ 4,8\pm0,3 \\ 4,5\pm0,7 \\ 1,6^{ab}\pm0,3 \\ 0,2\pm0,0 \\ 0,3^{ab}\pm0,0 \\ 6,3^{3}\pm0,1 \\ 1,3\pm0,1 \\ 3,0^{5}\pm0,8 \\ 19,6\pm2,5 \\ 6,1\pm0,8 \\ 19,6\pm2,5 \\ 6,1\pm0,8 \\ 14,0\pm0,8 \\ 5,6\pm0,6 \\ 8,4^{4}\pm0,2 \\ 0,7^{5}\pm0,1 \\ \end{array}$                                  | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2^{b} \pm 0,0$<br>$3,0^{b} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$<br>$7,9^{a} \pm 2,4$<br>$27,5 \pm 5,3$<br>$8,4 \pm 1,4$<br>$18,9 \pm 6,8$<br>$14,6 \pm 6,2$<br>$4,3^{b} \pm 0,8$                                                                | $\begin{array}{c} 6,3\pm0,8\\ 0,8^{b}\pm0,1\\ 2,7\pm0,5\\ 3,3\pm0,5\\ 1,8^{a}\pm0,4\\ 0,7^{a}\pm0,2\\ 0,3\pm0,0\\ 2,5^{a}\pm0,2\\ 2,5^{a}\pm0,2\\ 2,5^{a}\pm0,3\\ 0,8^{a}\pm0,1\\ 3,1^{a}\pm0,3\\ 10,1\pm1,4\\ 4,5\pm0,7\\ 11,9^{a}\pm0,7\\ 7,4^{a}\pm0,6\\ 4,6^{a}\pm0,3\\ 1,6^{b}\pm0,2\\ \end{array}$                       | $\begin{array}{c} \text{VO} \\ \hline & 6,7 \pm 1,0 \\ 0,6^{b} \pm 0,1 \\ 2,7 \pm 0,3 \\ 3,6 \pm 0,6 \\ 2,0^{a} \pm 0,3 \\ 0,4^{b} \pm 0,1 \\ 0,2 \pm 0,0 \\ 2,3^{a} \pm 0,2 \\ 1,7^{b} \pm 0,2 \\ 0,6^{b} \pm 0,1 \\ 2,2^{b} \pm 0,3 \\ 10,1 \pm 1,4 \\ 4,4 \pm 0,7 \\ 9,9^{b} \pm 0,9 \\ 5,2^{b} \pm 0,5 \\ 4,7^{a} \pm 0,4 \end{array}$                                                                                                                  | FO<br>7,1 $\pm$ 0,8<br>1,3 $^{3} \pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 $^{b} \pm$ 0,1<br>0,6 $^{a} \pm$ 0,1<br>0,4 $\pm$ 0,1<br>1,9 $^{b} \pm$ 0,3<br>0,3 $^{c} \pm$ 0,0<br>2,2 $^{b} \pm$ 0,5<br>10,5 $\pm$ 1,3<br>5,3 $\pm$ 0,4<br>7,0 $^{c} \pm$ 1,1<br>5,2 $^{b} \pm$ 0,9<br>1,8 $^{b} \pm$ 0,3<br>2,9 $^{a} \pm$ 0,2                            |
| 16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:6n-3<br>25AFA<br>25MFA<br>25MFA<br>25MFA<br>25n-6<br>5n-6<br>n-3/n-6<br>EPA/ARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,4 \\ 3,1^{a} \pm 0,3 \\ 0,8^{a} \pm 0,1 \\ 3,6^{a} \pm 0,4 \\ 12,6^{a} \pm 1,3 \\ 5,5 \pm 0,6 \\ 14,5^{a} \pm 1,9 \\ 8,9^{a} \pm 1,0 \\ 5,6^{a} \pm 1,0 \\ 5,6^{a} \pm 1,0 \\ 1,6^{b} \pm 0,1 \end{array}$ | $\begin{array}{c} & \text{VO} \\ & 7,3 \pm 0,8 \\ 0,7^b \pm 0,1 \\ 2,7^b \pm 0,1 \\ 2,7^b \pm 0,3 \\ 3,8^{ab} \pm 0,5 \\ 2,3^a \pm 0,5 \\ 0,5^b \pm 0,1 \\ 0,2^b \pm 0,0 \\ 2,5^a \pm 0,2 \\ 0,6^b \pm 0,1 \\ 2,8^b \pm 0,4 \\ 10,8^b \pm 1,1 \\ 4,8 \pm 0,6 \\ 11,3^b \pm 1,2 \\ 6,1^b \pm 0,5 \\ 5,2^a \pm 0,7 \end{array}$                                                                                                         | $\begin{array}{c} 6.8 \pm 0.7 \\ 1.1^{a} \pm 0.2 \\ 2.1^{c} \pm 0.2 \\ 3.2^{b} \pm 0.4 \\ 0.7^{b} \pm 0.1 \\ 0.4^{ab} \pm 0.1 \\ 0.2^{ab} \pm 0.1 \\ 2.4^{b} \pm 0.2 \\ 0.5^{c} \pm 0.1 \\ 3.4^{ab} \pm 0.6 \\ 9.5^{b} \pm 0.8 \\ 5.2 \pm 0.6 \\ 8.7^{c} \pm 1.0 \\ 7.0^{b} \pm 0.8 \\ 1.7^{b} \pm 0.2 \\ 4.1^{a} \pm 0.3 \end{array}$                                       | $\begin{array}{c} 10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1 \\ 5,9^{a} \pm 1,3 \\ 2,5 \pm 0,6 \\ 1,0 \pm 0,3 \\ 4,2 \pm 1,2 \\ 17,7 \pm 3,8 \\ 5,4^{b} \pm 1,2 \\ 17,4^{ab} \pm 4,4 \\ 9,1 \pm 2,5 \\ 8,3^{b} \pm 1,9 \\ 1,1^{b} \pm 0,1 \end{array}$                    | $\begin{array}{c} \text{VO} \\ 13,5 \pm 1,9 \\ 1,3 \pm 0,2 \\ 7,3^{3} \pm 0,9 \\ 5,2^{3} \pm 0,7 \\ 3,3^{3} \pm 0,6 \\ 0,6^{3} \pm 0,1 \\ 0,5^{3} \pm 0,1 \\ 7,5^{3} \pm 0,7 \\ 2,8 \pm 0,2 \\ 1,0 \pm 0,2 \\ 4,2 \pm 0,9 \\ 22,8 \pm 2,8 \\ 7,1^{b} \pm 0,9 \\ 22,8 \pm 2,8 \\ 7,1^{b} \pm 0,9 \\ 20,7^{3} \pm 2,2 \\ 9,1 \pm 1,2 \\ 11,7^{a} \pm 1,3 \\ 0,8^{b} \pm 0,1 \end{array}$                       | $\begin{array}{c} 14,2\pm 3,3\\ 1,7\pm 0,4\\ 4,6^{b}\pm 1,0\\ 4,7^{ab}\pm 0,7\\ 0,8^{c}\pm 0,1\\ 0,3^{b}\pm 0,1\\ 0,3^{b}\pm 0,1\\ 0,3^{b}\pm 0,1\\ 1,8^{b}\pm 0,6\\ 2,9\pm 0,7\\ 0,7\pm 0,2\\ 5,8\pm 1,3\\ 20,2\pm 4,5\\ 7,8^{a}\pm 1,1\\ 13,0^{b}\pm 2,8\\ 10,0\pm 2,1\\ 3,1^{c}\pm 0,7\\ 3,3^{a}\pm 0,3\\ \end{array}$ | $14,4^{b} \pm 1,0$ $1,3 \pm 0,4$ $5,4 \pm 1,2$ $5,1 \pm 0,3$ $2,3^{b} \pm 0,8$ $0,4 \pm 0,1$ $0,4^{b} \pm 0,1$ $7,3^{b} \pm 0,7$ $1,0 \pm 0,2$ $4,1^{b} \pm 0,3$ $22,0 \pm 1,3$ $7,1 \pm 0,6$ $18,8 \pm 2,8$ $8,6 \pm 1,2$ $10,2^{b} \pm 1,7$ $0,8^{b} \pm 0,1$                                              | $\begin{array}{c} \hline VO \\ 13,3^{5} \pm 2,1 \\ 1,2 \pm 0,1 \\ 4,8 \pm 0,3 \\ 4,5 \pm 0,7 \\ 1,6^{ab} \pm 0,3 \\ 0,2 \pm 0,0 \\ 0,3^{ab} \pm 0,0 \\ 6,3^{3} \pm 0,1 \\ 1,3 \pm 0,1 \\ 0,8 \pm 0,1 \\ 3,0^{5} \pm 0,8 \\ 19,6 \pm 2,5 \\ 6,1 \pm 0,8 \\ 14,0 \pm 0,8 \\ 5,6 \pm 0,6 \\ 8,4^{3} \pm 0,2 \end{array}$                                    | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2^{b} \pm 0,0$<br>$3,0^{b} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$<br>$7,9^{a} \pm 2,4$<br>$27,5 \pm 5,3$<br>$8,4 \pm 1,4$<br>$18,9 \pm 6,8$<br>$14,6 \pm 6,2$<br>$4,3^{b} \pm 0.8$<br>$3,3^{a} \pm 1,1$                                           | $\begin{array}{c} 6,3\pm0,8\\ 0,8^{b}\pm0,1\\ 2,7\pm0,5\\ 3,3\pm0,5\\ 1,8^{a}\pm0,4\\ 0,7^{a}\pm0,2\\ 0,3\pm0,0\\ 2,5^{a}\pm0,2\\ 2,5^{a}\pm0,2\\ 2,5^{a}\pm0,3\\ 0,8^{a}\pm0,1\\ 3,1^{a}\pm0,3\\ 10,1\pm1,4\\ 4,5\pm0,7\\ 7,4^{a}\pm0,6\\ 4,6^{a}\pm0,3\\ \end{array}$                                                        | $\begin{array}{c} \text{VO} \\ 6.7 \pm 1.0 \\ 0.6^{\text{b}} \pm 0.1 \\ 2.7 \pm 0.3 \\ 3.6 \pm 0.6 \\ 2.0^{\text{a}} \pm 0.3 \\ 0.4^{\text{b}} \pm 0.1 \\ 0.2 \pm 0.0 \\ 2.3^{\text{a}} \pm 0.2 \\ 1.7^{\text{b}} \pm 0.2 \\ 1.7^{\text{b}} \pm 0.2 \\ 0.6^{\text{b}} \pm 0.1 \\ 2.2^{\text{b}} \pm 0.3 \\ 10.1 \pm 1.4 \\ 4.4 \pm 0.7 \\ 9.9^{\text{b}} \pm 0.9 \\ 5.2^{\text{b}} \pm 0.5 \\ 4.7^{\text{a}} \pm 0.4 \\ 1.1^{\text{c}} \pm 0.1 \end{array}$ | FO<br>7,1 $\pm$ 0,8<br>1,3 $^{3} \pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 $^{b} \pm$ 0,1<br>0,6 $^{a} \pm$ 0,1<br>0,4 $\pm$ 0,1<br>1,9 $^{b} \pm$ 0,3<br>0,3 $^{c} \pm$ 0,0<br>2,2 $^{b} \pm$ 0,5<br>10,5 $\pm$ 1,3<br>5,3 $\pm$ 0,4<br>7,0 $^{c} \pm$ 1,1<br>5,2 $^{b} \pm$ 0,9<br>1,8 $^{b} \pm$ 0,3<br>2,9 $^{a} \pm$ 0,2                            |
| 16:0<br>16:1n-7<br>18:0<br>18:1n-9<br>18:2n-6<br>18:3n-3<br>18:4n-3<br>20:4n-6<br>20:5n-3<br>20:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>22:5n-3<br>25AFA<br>ΣMUFA<br>ΣMUFA<br>ΣMUFA<br>ΣMUFA<br>Σn-6<br>n-3/n-6<br>EPA/ARA<br>DHA/EPA<br>DHA/ARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 8,0 \pm 1,1 \\ 1,1^{a} \pm 0,1 \\ 3,2^{a} \pm 0,4 \\ 4,0^{a} \pm 0,5 \\ 2,3^{a} \pm 0,6 \\ 0,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 2,9^{a} \pm 0,3 \\ 0,4^{a} \pm 0,1 \\ 3,6^{a} \pm 0,4 \\ 12,6^{a} \pm 1,3 \\ 5,5 \pm 0,6 \\ 14,5^{a} \pm 1,9 \\ 8,9^{a} \pm 1,0 \\ 5,6^{b} \pm 1,0 \\ 1,6^{b} \pm 0,1 \\ 1,1^{b} \pm 0,1 \end{array}$                    | $\begin{array}{c} & \text{VO} \\ & 7,3 \pm 0,8 \\ 0,7^{b} \pm 0,1 \\ 2,7^{b} \pm 0,1 \\ 3,8^{ab} \pm 0,5 \\ 2,3^{a} \pm 0,5 \\ 0,5^{b} \pm 0,1 \\ 0,2^{b} \pm 0,0 \\ 2,5^{a} \pm 0,3 \\ 1,9^{c} \pm 0,2 \\ 0,6^{b} \pm 0,1 \\ 2,8^{b} \pm 0,4 \\ 10,8^{b} \pm 1,1 \\ 4,8 \pm 0,6 \\ 11,3^{b} \pm 1,2 \\ 6,1^{b} \pm 0,5 \\ 5,2^{a} \pm 0,7 \\ 1,2^{c} \pm 0,1 \\ 0,8^{b} \pm 0,0 \end{array}$                                         | $\begin{array}{c} 6.8 \pm 0.7 \\ 1.1^{a} \pm 0.2 \\ 2.1^{c} \pm 0.2 \\ 3.2^{b} \pm 0.4 \\ 0.7^{b} \pm 0.1 \\ 0.4^{ab} \pm 0.1 \\ 0.2^{ab} \pm 0.0 \\ 0.8^{b} \pm 0.1 \\ 2.4^{b} \pm 0.2 \\ 0.5^{c} \pm 0.1 \\ 3.4^{ab} \pm 0.6 \\ 9.5^{b} \pm 0.8 \\ 5.2 \pm 0.6 \\ 8.7^{c} \pm 1.0 \\ 7.0^{b} \pm 0.8 \\ 1.7^{b} \pm 0.2 \\ 4.1^{a} \pm 0.3 \\ 3.2^{a} \pm 0.3 \end{array}$ | $\begin{array}{c} 10,2 \pm 1,8 \\ 1,3 \pm 0,4 \\ 4,9^{b} \pm 1,1 \\ 3,6^{b} \pm 0,7 \\ 1,9^{b} \pm 0,8 \\ 0,6^{a} \pm 0,3 \\ 0,5^{a} \pm 0,1 \\ 5,9^{a} \pm 1,3 \\ 2,5 \pm 0,6 \\ 1,0 \pm 0,3 \\ 4,2 \pm 1,2 \\ 17,7 \pm 3,8 \\ 5,4^{b} \pm 1,2 \\ 17,4^{ab} \pm 4,4 \\ 9,1 \pm 2,5 \\ 8,3^{b} \pm 1,9 \\ 1,1^{b} \pm 0,1 \\ 0,4^{b} \pm 0,1 \end{array}$ | $\begin{array}{c} \text{VO} \\ 13,5 \pm 1,9 \\ 1,3 \pm 0,2 \\ 7,3^{3} \pm 0,9 \\ 5,2^{3} \pm 0,7 \\ 3,3^{3} \pm 0,6 \\ 0,6^{3} \pm 0,1 \\ 0,5^{3} \pm 0,1 \\ 7,5^{3} \pm 0,7 \\ 2,8 \pm 0,2 \\ 1,0 \pm 0,2 \\ 4,2 \pm 0,9 \\ 22,8 \pm 2,8 \\ 7,1^{5} \pm 0,9 \\ 22,8 \pm 2,8 \\ 7,1^{5} \pm 0,9 \\ 20,7^{3} \pm 2,2 \\ 9,1 \pm 1,2 \\ 11,7^{3} \pm 1,3 \\ 0,8^{6} \pm 0,1 \\ 0,4^{5} \pm 0,0 \\ \end{array}$ | $\begin{array}{c} 14,2\pm 3,3\\ 1,7\pm 0,4\\ 4,6^{b}\pm 1,0\\ 4,7^{ab}\pm 0,7\\ 0,8^{c}\pm 0,1\\ 0,3^{b}\pm 0,1\\ 0,3^{b}\pm 0,0\\ 1,8^{b}\pm 0,6\\ 2,9\pm 0,7\\ 0,7\pm 0,2\\ 5,8\pm 1,3\\ 20,2\pm 4,5\\ 7,8^{a}\pm 1,1\\ 13,0^{b}\pm 2,8\\ 10,0\pm 2,1\\ 3,1^{c}\pm 0,7\\ 3,3^{a}\pm 0,3\\ 1,6^{a}\pm 0,3\\ \end{array}$ | $\begin{array}{c} 14,4^{b}\pm 1,0\\ 1,3\pm 0,4\\ 5,4\pm 1,2\\ 5,1\pm 0,3\\ 2,3^{b}\pm 0,8\\ 0,4\pm 0,1\\ 0,4^{b}\pm 0,1\\ 7,3^{b}\pm 0,9\\ 2,5\pm 0,7\\ 1,0\pm 0,2\\ 4,1^{b}\pm 0,3\\ 22,0\pm 1,3\\ 7,1\pm 0,6\\ 18,8\pm 2,8\\ 8,6\pm 1,2\\ 10,2^{b}\pm 0,1\\ 0,3^{b}\pm 0,1\\ 0,3^{b}\pm 0,1\\ \end{array}$ | $\begin{array}{c} \hline VO \\ 13,3^{5}\pm2,1 \\ 1,2\pm0,1 \\ 4,8\pm0,3 \\ 4,5\pm0,7 \\ 1,6^{20}\pm0,3 \\ 0,2\pm0,0 \\ 0,3^{20}\pm0,0 \\ 0,3^{20}\pm0,0 \\ 6,3^{3}\pm0,1 \\ 1,3\pm0,1 \\ 3,0^{5}\pm0,8 \\ 19,6\pm2,5 \\ 6,1\pm0,8 \\ 19,6\pm2,5 \\ 6,1\pm0,8 \\ 14,0\pm0,8 \\ 15,6\pm0,6 \\ 8,4^{3}\pm0,2 \\ 0,7^{5}\pm0,1 \\ 0,2^{5}\pm0,0 \end{array}$ | FO<br>$19,6^{a} \pm 3,6$<br>$1,7 \pm 0,5$<br>$6,6 \pm 2,0$<br>$5,4 \pm 0,9$<br>$0,9^{b} \pm 0,2$<br>$0,2^{b} \pm 0,2$<br>$0,2^{b} \pm 0,0$<br>$3,0^{b} \pm 0,6$<br>$5,4 \pm 3,5$<br>$0,8 \pm 0,2$<br>$7,9^{a} \pm 2,4$<br>$27,5 \pm 5,3$<br>$8,4 \pm 1,4$<br>$18,9 \pm 6,8$<br>$14,6 \pm 6,2$<br>$4,3^{b} \pm 0,8$<br>$3,3^{a} \pm 1,1$<br>$1,8^{a} \pm 1,1$ | $\begin{array}{c} 6,3\pm0,8\\ 0,8^{b}\pm0,1\\ 2,7\pm0,5\\ 3,3\pm0,5\\ 1,8^{a}\pm0,4\\ 0,7^{a}\pm0,2\\ 0,3\pm0,0\\ 2,5^{a}\pm0,2\\ 2,5^{a}\pm0,2\\ 2,5^{a}\pm0,3\\ 10,1^{a}\pm0,3\\ 10,1^{a}\pm0,3\\ 10,1^{a}\pm1,4\\ 4,5\pm0,7\\ 11,9^{a}\pm0,7\\ 7,4^{a}\pm0,6\\ 4,6^{a}\pm0,3\\ 1,6^{b}\pm0,2\\ 1,0^{b}\pm0,1\\ \end{array}$ | $\begin{array}{c} \hline VO \\ \hline 6.7 \pm 1.0 \\ 0.6^{b} \pm 0.1 \\ 2.7 \pm 0.3 \\ 3.6 \pm 0.6 \\ 2.0^{a} \pm 0.3 \\ 0.4^{b} \pm 0.1 \\ 0.2 \pm 0.0 \\ 2.3^{a} \pm 0.2 \\ 1.7^{b} \pm 0.2 \\ 0.6^{b} \pm 0.1 \\ 2.2^{b} \pm 0.3 \\ 10.1 \pm 1.4 \\ 4.4 \pm 0.7 \\ 9.9^{b} \pm 0.9 \\ 5.2^{b} \pm 0.5 \\ 4.7^{a} \pm 0.4 \\ 1.1^{c} \pm 0.1 \\ 0.7^{c} \pm 0.0 \end{array}$                                                                              | FO<br>7,1 $\pm$ 0,8<br>1,3 $^{3} \pm$ 0,1<br>2,8 $\pm$ 0,5<br>3,2 $\pm$ 0,2<br>0,8 $^{b} \pm$ 0,1<br>0,6 $^{a} \pm$ 0,1<br>0,6 $^{b} \pm$ 0,1<br>1,9 $^{b} \pm$ 0,3<br>0,3 $^{c} \pm$ 0,0<br>2,2 $^{b} \pm$ 0,5<br>10,5 $\pm$ 1,3<br>5,3 $\pm$ 0,4<br>7,0 $^{c} \pm$ 1,1<br>5,2 $^{b} \pm$ 0,3<br>2,9 $^{a} \pm$ 0,2<br>3,5 $^{a} \pm$ 0,2<br>3,5 $^{a} \pm$ 0,2 |

| Ta | b | le | S5 |
|----|---|----|----|
|    |   |    |    |

|                    |                | Intestine      |                |                | Eye            |                | Kidney         |                |                | Liver           |                 |                |
|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|
|                    | N              | VO             | FO             | N              | VO             | FO             | N              | VO             | FO             | N               | VO              | FO             |
| 16:0               | $16,3 \pm 0,9$ | $22,7 \pm 1,6$ | $25,6 \pm 1,8$ | $15,0 \pm 1,3$ | $23,3 \pm 1,6$ | $24,8 \pm 1,0$ | $17,8 \pm 1,4$ | $21,4 \pm 2,1$ | $25,3 \pm 1,3$ | 26,7 ± 9,2      | $32,3 \pm 6,6$  | $24,9 \pm 0,8$ |
| 16:1n-7            | $7,4 \pm 1,1$  | $5,5 \pm 0,9$  | $9,9 \pm 0,6$  | $7,6 \pm 0,9$  | $7,0 \pm 1,1$  | $10,3 \pm 0,8$ | $6,8 \pm 1,3$  | $5,4 \pm 1,1$  | $11,0 \pm 1,0$ | 6,3 ± 3,8       | 4,4 ± 4,7       | $11,0 \pm 0,9$ |
| 18:0               | $5,3 \pm 1,0$  | $7,4 \pm 1,0$  | $3,3 \pm 0,1$  | $3,7 \pm 0,8$  | $4,8 \pm 0,6$  | $2,9 \pm 0,2$  | $6,0 \pm 1,3$  | 7,7 ± 3,2      | $3,5 \pm 0,4$  | $14,3 \pm 10,6$ | $18,1 \pm 10,3$ | $3,3 \pm 0,2$  |
| 18:1n-9            | $17,8 \pm 3,4$ | $25,9 \pm 5,0$ | $19,8 \pm 0,6$ | $17,4 \pm 1,7$ | 29,4 ± 3,4     | $20,5 \pm 1,2$ | $17,3 \pm 3,3$ | $27,4 \pm 5,3$ | $21,8 \pm 1,6$ | $17,4 \pm 2,4$  | 24,3 ± 5,9      | 21,5 ± 1,2     |
| 18:2n-6            | $17,8 \pm 3,4$ | $21,9 \pm 1,1$ | $6,7 \pm 1,0$  | $15,5 \pm 4,4$ | $19,1 \pm 3,1$ | $7,1 \pm 1,8$  | $17,2 \pm 4,0$ | $21,0 \pm 2,5$ | $6,5 \pm 1,0$  | $15,8 \pm 5,2$  | $15,3 \pm 4,6$  | 6,6 ± 0,7      |
| 18:3n-3            | $10,3 \pm 1,3$ | $3,4 \pm 1,1$  | $3,7 \pm 0,9$  | 8,9 ± 2,1      | $3,3 \pm 0,8$  | $4,9 \pm 0,7$  | $9,6 \pm 1,9$  | $2,5 \pm 1,7$  | $3,7 \pm 0,6$  | 8,5 ± 2,6       | $4,0 \pm 0,9$   | 3,7 ± 0,6      |
| 18:4n-3            | $1,4 \pm 0,2$  | $0,3 \pm 0,3$  | $1,7 \pm 0,3$  | $1,8 \pm 0,6$  | $0,9 \pm 0,1$  | $1,9 \pm 0,2$  | $1,4 \pm 0,4$  | $0,4 \pm 0,4$  | $1,5 \pm 0,3$  | 1,2 ± 0,2       | $0,9 \pm 0,0$   | $2,5 \pm 0,6$  |
| 20:4n-6            | $2,6 \pm 0,9$  | 2,8 ± 2,5      | $0,5 \pm 0,0$  | $2,2 \pm 0,4$  | $1,0 \pm 0,2$  | 0,5 ± 0,0      | $2,4 \pm 0,7$  | 3,0 ± 4,3      | 0,4 ± 0,0      | 1,6 ± 0,1       | $1,0 \pm 0,0$   | 0,4 ± 0,0      |
| 20:5n-3            | $5,3 \pm 1,6$  | $2,4 \pm 1,9$  | $5,0 \pm 0,4$  | $5,0 \pm 1,1$  | $1,3 \pm 0,3$  | $5,4 \pm 0,3$  | $5,3 \pm 1,6$  | $2,0 \pm 2,4$  | $4,5 \pm 0,4$  | 4,7 ± 1,0       | $1,5 \pm 0,0$   | 4,6 ± 0,3      |
| 22:5n-3            | $0,5 \pm 0,2$  | 0,0 ± 0,0      | $0,5 \pm 0,1$  | $1,1 \pm 0,2$  | $0,3 \pm 0,1$  | $0,7 \pm 0,0$  | $0,9 \pm 0,4$  | $0,0 \pm 0,1$  | $0,7 \pm 0,1$  | 0 ± 0,0         | $0,7 \pm 0,0$   | $1,0 \pm 0,1$  |
| 22:6n-3            | $1,5 \pm 1,1$  | 0,7 ± 0,9      | $3,5 \pm 0,6$  | 9,0 ± 3,9      | $1,7 \pm 0,8$  | 3,7 ± 0,1      | $1,6 \pm 0,8$  | 0,8 ± 1,6      | $3,1 \pm 0,2$  | $1,4 \pm 0,9$   | $0,6 \pm 0,0$   | 3,1 ± 0,2      |
| ΣSAFA              | 29,0 ± 2,9     | 34,8 ± 2,5     | 37,8 ± 1,2     | 25,5 ± 2,5     | 32,6 ± 1,3     | 36,2 ± 1,2     | 30,3 ± 4,0     | 32,0 ± 3,4     | 36,8 ± 0,9     | 47,0 ± 18,7     | 51,7 ±15,1      | 36,7 ± 0,9     |
| ΣMUFA              | $28,0 \pm 3,1$ | 32,7 ± 4,9     | 37,7 ± 1,1     | $27,4 \pm 1,4$ | 38,4 ± 3,4     | 36,6 ± 1,5     | 28,3 ± 4,3     | 37,6 ± 7,3     | $40,1 \pm 1,9$ | 24,2 ± 5,3      | 29,2 ±10,3      | 39,4 ± 1,8     |
| ΣPUFA              | 43,0 ± 3,0     | 32,6 ± 4,9     | $24,5 \pm 2,0$ | 47,1 ± 3,1     | 29,0 ± 4,6     | 27,2 ± 2,2     | 41,3 ± 3,6     | $30,4 \pm 4,1$ | 23,0 ± 2,5     | 28,8 ± 14,9     | $19,1 \pm 5,1$  | 23,9 ± 1,7     |
| Σn-3               | $20,7 \pm 2,0$ | 6,7 ± 3,0      | 15,3 ± 1,2     | 27,2 ± 3,2     | 7,9 ± 1,7      | $17,4 \pm 1,2$ | $20,1 \pm 1,4$ | 5,8 ± 2,7      | $14,3 \pm 1,5$ | $13,7 \pm 6,0$  | 5,7 ± 3,4       | 15,9 ± 1,4     |
| Σn-6               | 22,3 ± 2,5     | 25,8 ± 1,9     | 9,1 ± 1,5      | 20,0 ± 4,2     | 21,1 ± 3,3     | 9,8 ± 2,0      | 21,3 ± 3,0     | 24,6 ± 2,0     | 8,8 ± 1,2      | 17,8 ± 7,0      | 15,7 ± 4,2      | 8,0 ± 0,7      |
| n-3/n-6            | $0,9 \pm 0,2$  | $0,3 \pm 0,1$  | $1,7 \pm 0,2$  | $1,4 \pm 0,4$  | $0,4 \pm 0,1$  | $1,8 \pm 0,3$  | $1,0 \pm 0,2$  | $0,2 \pm 0,1$  | $1,6 \pm 0,1$  | $0,7 \pm 0,1$   | $0,4 \pm 0,3$   | $2,0 \pm 0,2$  |
| EPA/ARA            | $2,1 \pm 0,7$  | $0,9 \pm 0,1$  | $11,1 \pm 1,3$ | $2,3 \pm 0,6$  | $1,3 \pm 0,1$  | $12,0 \pm 0,2$ | $2,4 \pm 0,7$  | 0,8 ± 0,2      | $11,2 \pm 0,5$ | 2,7 ± 0,4       | $1,6 \pm 0,0$   | 11,7 ± 0,6     |
| DHA/EPA            | $0,3 \pm 0,2$  | $0,2 \pm 0,2$  | 0,7 ± 0,2      | $1,9 \pm 1,2$  | $1,3 \pm 0,4$  | 0,7 ± 0,0      | $0,3 \pm 0,1$  | 0,2 ± 0,3      | $0,7 \pm 0,1$  | $0,3 \pm 0,1$   | $0,4 \pm 0,0$   | $0,7 \pm 0,1$  |
| DHA/ARA            | $0,7 \pm 0,5$  | $0,2 \pm 0,2$  | 7,7 ± 1,2      | $4,1 \pm 1,6$  | $1,7 \pm 0,5$  | 8,1 ± 0,4      | $0,7 \pm 0,5$  | $0,2 \pm 0,2$  | $7,7 \pm 0,6$  | $0,9 \pm 0,5$   | $0,6 \pm 0,0$   | 7,8 ± 1,1      |
|                    |                | Dorsal muscle  |                |                | Heart          |                |                | Ad pose tissu  |                | 0.0             | Ventral muscle  |                |
|                    | N              | VO             | FO             | N              | VO             | FO             | N              | VO             | FO             | N               | VO              | FO             |
| 16:0               | 17,5 ± 1,2     | $23,4 \pm 1,0$ | 25,4 ± 1,1     | 19,3 ± 4,7     | $22,3 \pm 1,6$ | $25,5 \pm 0,4$ | 21,2 ± 5,2     | 24,6 ± 5,6     | 24,4 ± 1,8     | 17,3 ± 2,6      | 22,9 ±1,2       | 23,9 ± 1,1     |
| 16:1n-7            | $7,1 \pm 0,6$  | 5,3 ± 1,3      | $10,9 \pm 0,9$ | 7,9 ± 0,8      | $6,1 \pm 1,0$  | $11,1 \pm 0,7$ | $6,7 \pm 1,8$  | 6,3 ± 1,8      | $11,0 \pm 1,1$ | 7,0 ± 1,1       | 5,4 ± 1,3       | $10,5 \pm 0,9$ |
| 18:0               | $5,7 \pm 1,4$  | 6,8 ± 1,0      | $3,3 \pm 0,2$  | 6,8 ± 3,5      | $6,1 \pm 1,2$  | $3,3 \pm 0,4$  | 8,1 ± 3,7      | 9,1 ± 2,7      | $3,2 \pm 0,2$  | 6,3 ± 2,7       | 7,5 ± 2,4       | $3,1 \pm 0,1$  |
| 18:1n-9            | $19,6 \pm 2,5$ | $31,2 \pm 4,3$ | $21,7 \pm 1,9$ | $16,8 \pm 2,1$ | 29,0 ± 3,2     | $21,7 \pm 1,6$ | $18,1 \pm 2,2$ | $29,1 \pm 5,8$ | 20,8 ± 1,9     | 20,6 ± 3,7      | $29,1 \pm 5,5$  | $21,5 \pm 1,6$ |
| 18:2n-6            | $17,8 \pm 3,2$ | $22,1 \pm 2,0$ | $6,7 \pm 0,9$  | $16,2 \pm 5,9$ | $22,4 \pm 2,5$ | $5,1 \pm 2,7$  | 17,6 ± 3,2     | $19,4 \pm 4,3$ | $6,3 \pm 0,6$  | $15,7 \pm 9,1$  | $19,6 \pm 1,8$  | 6,6 ± 1,1      |
| 18:3n-3            | $8,6 \pm 1,6$  | $2,9 \pm 0,9$  | $4,2 \pm 0,9$  | 8,6 ± 2,5      | $3,4 \pm 1,2$  | $4,4 \pm 0,7$  | 8,6 ± 2,1      | $4,0 \pm 2,1$  | $4,0 \pm 0,7$  | $9,9 \pm 1,8$   | $3,2 \pm 1,1$   | 4,2 ± 0,8      |
| 18:4n-3            | $1,5 \pm 0,1$  | $0,4 \pm 0,4$  | $1,8 \pm 0,4$  | $0,7 \pm 0,5$  | $0,7 \pm 0,1$  | $1,7 \pm 0,3$  | $1,0 \pm 1,0$  | $0,3 \pm 0,4$  | $1,6 \pm 0,3$  | $1,3 \pm 0,8$   | $0,6 \pm 0,4$   | $1,8 \pm 0,3$  |
| 20:4n-6            | $2,2 \pm 0,5$  | $0,9 \pm 0,3$  | $0,4 \pm 0,0$  | $2,7 \pm 0,9$  | $1,0 \pm 0,4$  | $0,4 \pm 0,0$  | $2,9 \pm 3,0$  | $1,9 \pm 2,0$  | $0,4 \pm 0,1$  | 2,6 ± 0,9       | $0,9 \pm 0,4$   | $0,4 \pm 0,0$  |
| 20:5n-3            | $4,1 \pm 1,0$  | $0,8 \pm 0,6$  | $5,0 \pm 0,4$  | $5,3 \pm 1,6$  | $1,2 \pm 0,5$  | $5,0 \pm 0,4$  | $5,8 \pm 1,8$  | $1,7 \pm 1,5$  | $5,0 \pm 0,3$  | $5,3 \pm 1,5$   | $1,0 \pm 0,4$   | $5,4 \pm 0,3$  |
| 22:5n-3            | $0,7 \pm 0,1$  | $0,0 \pm 0,0$  | $0,7 \pm 0,0$  | $0,8 \pm 0,6$  | $0,1 \pm 0,1$  | 0,7 ± 0,1      | $1,1 \pm 1,4$  | $0,0 \pm 0,0$  | $0,8 \pm 0,2$  | $0,7 \pm 0,6$   | $1,3 \pm 2,0$   | $0,8 \pm 0,1$  |
| 22:6n-3            | $1,2 \pm 0,5$  | $0,0 \pm 0,0$  | $0,8 \pm 0,0$  | $1,8 \pm 0,5$  | $0,1 \pm 0,1$  | $3,3 \pm 0,2$  | $2,3 \pm 2,9$  | 0,0 ± 0,0      | $4,5 \pm 1,8$  | $1,7 \pm 0,8$   | $0,2 \pm 0,1$   | $3,7 \pm 0,2$  |
| ΣSAFA              | 30,7 ± 3,3     | 33,6 ± 1,3     | $37,6 \pm 0,9$ | 32,8 ± 7,0     | 32,6 ± 2,3     | $36,9 \pm 0,6$ | $33,1 \pm 6,1$ | $35,8 \pm 5,4$ | $35,7 \pm 1,8$ | $30,1 \pm 7,0$  | 34,8 ± 4,1      | $34,6 \pm 0,8$ |
| ΣMUFA              | $30,5 \pm 2,5$ | 38,5 ± 3,6     | 40,0 ± 2,9     | 27,3 ± 2,2     | 37,2 ± 2,7     | $39,4 \pm 2,4$ | 25,3 ± 2,7     | 36,6 ± 5,8     | 38,6 ± 2,7     | 29,6 ± 3,2      | 37,4 ± 4,9      | 39,5 ± 1,9     |
| ΣPUFA              | $38,8 \pm 4,6$ | $27,8 \pm 3,1$ | 22,4 ± 2,8     | 39,9 ± 8,8     | $30,2 \pm 4,5$ | 23,7 ± 2,7     | 41,6 ± 7,8     | $27,5 \pm 0,4$ | $25,7 \pm 4,1$ | 40,3 ± 9,7      | 27,8 ±1,8       | 25,9 ± 2,5     |
| Σn-3               | $17,3 \pm 2,1$ | $4,1 \pm 1,5$  | 13,3 ± 1,7     | 18,5 ± 4,7     | 5,7 ± 1,8      | $15,9 \pm 1,6$ | $19,5 \pm 2,8$ | 5,9 ± 3,2      | 16,6 ± 3,2     | $20,4 \pm 1,4$  | 6,3 ± 2,3       | 16,7 ± 1,3     |
| Σn-6               | $21,5 \pm 2,8$ | 23,7 ± 2,5     | $9,1 \pm 1,4$  | $21,5 \pm 5,1$ | 24,4 ± 3,2     | 7,8 ± 2,8      | $22,1 \pm 5,4$ | 21,6 ± 2,8     | $9,1 \pm 0,9$  | 19,9 ± 8,7      | $21,5 \pm 1,3$  | 9,2 ± 1,3      |
| n-3/n-6            | $0,8 \pm 0,1$  | $0,2 \pm 0,1$  | $1,5 \pm 0,1$  | $0,9 \pm 0,2$  | $0,2 \pm 0,1$  | 2,6 ± 2,0      | 0,9 ± 0,2      | 0,3 ± 0,2      | $1,8 \pm 0,2$  | 1,5 ± 1,3       | $0,3 \pm 0,1$   | 1,8 ± 0,2      |
|                    | $1,9 \pm 0,6$  | 0,9 ± 0,5      | $11,7 \pm 0,3$ | $2,1 \pm 0,5$  | $1,1 \pm 0,1$  | 11,2 ± 0,5     | 2,0 ± 1,0      | 1,0 ± 0,2      | 11,5 ± 1,2     | $2,1 \pm 0,6$   | $1,1 \pm 0,2$   | $12,9 \pm 0,4$ |
| EPA/ARA            |                | 0.00           | $0,2 \pm 0,0$  | $0,4 \pm 0,2$  | $0,1 \pm 0,1$  | $0,7 \pm 0,1$  | $0,5 \pm 0,7$  | 0,0 ± 0,0      | $0,9 \pm 0,3$  | $0,3 \pm 0,1$   | $0,3 \pm 0,2$   | $0,7 \pm 0,1$  |
| EPA/ARA<br>DHA/EPA | $0,3 \pm 0,1$  | $0 \pm 0,0$    | $0,2 \pm 0,0$  | 0,4 - 0,2      | 0,1 = 0,1      |                |                |                |                |                 |                 | 0,1 = 0,1      |

| Ta | ble | è S | 6 |
|----|-----|-----|---|
|    |     |     |   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | Intestine                                      |                                        |                                                 | Eye                                 |                                    |                                     | Kidney                                                         |                                         |                                       | Liver                                                          |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------|-------------------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------------------------------|----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                              | VO                                             | FO                                     | N                                               | VÓ                                  | FO                                 | N                                   | VO                                                             | FO                                      | N                                     | VO                                                             | FO                                     |
| 16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,3 <sup>b</sup> ± 1,4                         | 2,7 <sup>b</sup> ± 2,4                         | $14,5^{a} \pm 6,9$                     | 12,7° ± 3,7                                     | 51,6 <sup>b</sup> ± 16,8            | 164,3° ± 23,6                      | 2,1 <sup>b</sup> ± 1,3              | $2,9^{b} \pm 3,0$                                              | 48,5 <sup>a</sup> ± 27,0                | $0,4^{b} \pm 0,3$                     | 0,5 <sup>b</sup> ± 0,7                                         | $11,3^{a} \pm 10,1$                    |
| 16:1n-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1,5^{b} \pm 0,7$                              | $0,7^{b} \pm 0,6$                              | 5,8° ± 2,9                             | $6,6^{b} \pm 2,6$                               | 15,6 <sup>b</sup> ± 6,3             | $68,7^{a} \pm 10,7$                | $0,9^{b} \pm 0,7$                   | $0,9^{b} \pm 1,1$                                              | 21,4° ± 12,6                            | $0,1^{b} \pm 0,1$                     | $0,2^{b} \pm 0,3$                                              | $5,0^{a} \pm 4,4$                      |
| 18:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1,1 \pm 0,5$                                  | 0,9 ± 0,8                                      | $1,9 \pm 1,0$                          | $3,1^{c} \pm 1,0$                               | $10.5^{b} \pm 3.1$                  | $19.0^{a} \pm 1.7$                 | $0,7^{b} \pm 0,4$                   | $0.8^{b} \pm 0.6$                                              | $6,3^{a} \pm 3,0$                       | $0,1^{b} \pm 0,1$                     | 0,1 <sup>b</sup> ± 0,2                                         | $1.5^{a} \pm 1.3$                      |
| 18:1n-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3,6^{b} \pm 1,6$                              | $3,6^{b} \pm 4,1$                              | $11,5^{a} \pm 6.1$                     | $14.6^{\circ} \pm 3.9$                          | 65,0 <sup>b</sup> ± 21,8            | 135,4 <sup>a</sup> ± 12,0          | $2,1^{b} \pm 1.3$                   | $3,9^{b} \pm 3,7$                                              | 41,7 <sup>a</sup> ± 23,2                | $0,3^{b} \pm 0.3$                     | $0,4^{b} \pm 0.7$                                              | $9,7^{a} \pm 8.5$                      |
| 18:2n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3,5 \pm 0,9$                                  | 2,8 ± 2,7                                      | $4,1 \pm 2,5$                          | 14,1 <sup>b</sup> ± 8,2                         | $40.3^{a} \pm 6.8$                  | $46.5^{a} \pm 8.2$                 | $2.2^{b} \pm 1.6$                   | $3.0^{b} \pm 3.0$                                              | 11,8° ± 5,5                             | $0.3^{b} \pm 0.4$                     | $0.2^{b} \pm 0.3$                                              | $2.8^{a} \pm 2.3$                      |
| 18:3n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2.1^{a} \pm 0.7$                              | $0.4^{b} \pm 0.3$                              | 2,3° ± 1,3                             | $7.9^{b} \pm 4.0$                               | 7.3 b ± 2,7                         | $32.4^{a} \pm 6.1$                 | $1.2^{b} \pm 1.0$                   | $0.5^{b} \pm 0.8$                                              | $6.5^{a} \pm 3.1$                       | $0.2^{b} \pm 0.2$                     | $0.1^{b} \pm 0.1$                                              | $1.7^{a} \pm 1.5$                      |
| 18:4n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.5^{b} \pm 0.2$                              | $0.1^{b} \pm 0.1$                              | $2,0^{a} \pm 1,2$                      | $2.5^{b} \pm 1.0$                               | $2.8^{b} \pm 0.9$                   | $22.2^{\circ} \pm 4.0$             | $0.3^{b} \pm 0.3$                   | $0.2^{b} \pm 0.2$                                              | 4,8° ± 2,4                              | $0.0^{b} \pm 0.0$                     | $0.0^{b} \pm 0.0$                                              | 1,3° ± 1,1                             |
| 20:4n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,6 ± 0,4                                      | $0,2 \pm 0,1$                                  | 0,3 ±0,1                               | $1,9^{b} \pm 0,6$                               | 2,1 <sup>ab</sup> ± 0,7             | $3.0^{a} \pm 0.4$                  | 0,3 <sup>b</sup> ± 0,2              | $0.2^{b} \pm 0.1$                                              | $0.7^{a} \pm 0.4$                       | 0,0 <sup>ab</sup> ± 0,0               | $0,0^{b} \pm 0,0$                                              | $0,2^{a} \pm 0,2$                      |
| 20:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.1^{b} \pm 0.7$                              | 0.2 <sup>b</sup> ± 0,1                         | $2.9^{a} \pm 1.5$                      | 4.3 <sup>b</sup> ± 1,7                          | $2.7^{b} \pm 0.9$                   | 36.1 <sup>a</sup> ± 5,2            | $0.6^{b} \pm 0.3$                   | $0.1^{b} \pm 0.2$                                              | 8.4 ª ± 4,4                             | $0.1^{b} \pm 0.1$                     | $0.0^{b} \pm 0.0$                                              | $2.1^{a} \pm 1.8$                      |
| 22:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,1 <sup>b</sup> ± 0,0                         | 0,0 <sup>b</sup> ± 0,0                         | $0,3^{a} \pm 0,1$                      | 0,9 <sup>b</sup> ± 0,2                          | 0,6 <sup>b</sup> ± 0,2              | 4,8° ± 0,6                         | 0,1 <sup>b</sup> ± 0,0              | 0,0 <sup>b</sup> ± 0,0                                         | 1,2 ª ± 0,5                             | $0,0^{b} \pm 0,0$                     | 0,0 <sup>b</sup> ± 0,0                                         | $0,4^{a} \pm 0,3$                      |
| 22:6n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.3^{b} \pm 0.2$                              | $0.0^{b} \pm 0.0$                              | $1.9^{a} \pm 0.8$                      | 6,9 <sup>b</sup> ± 1,2                          | 3.5 <sup>b</sup> ± 1,0              | 24,2° ± 3,2                        | $0.2^{b} \pm 0.1$                   | $0,0^{b} \pm 0,0$                                              | 5,9 <sup>a</sup> ± 3,1                  | $0.0^{b} \pm 0.0$                     | $0.0^{b} \pm 0.0$                                              | $1,4^{a} \pm 1,2$                      |
| ΣSAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.9 <sup>b</sup> ± 2,6                         | $4.2^{b} \pm 3.7$                              | 21,7° ± 10,7                           | 21.9° ± 7,7                                     | 71.6 <sup>b</sup> ± 21,7            | 240,5° ± 33,5                      | 3.5 <sup>b</sup> ± 2,1              | $4.3^{b} \pm 4.3$                                              | 70,0 <sup>a</sup> ± 38,2                | 0,6 <sup>b</sup> ± 0,5                | $0.7^{b} \pm 0.9$                                              | $16.6^{\circ} \pm 14.6$                |
| ΣMUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,7 <sup>b</sup> ± 2,4                         | 4,5 <sup>b</sup> ± 4,8                         | 21,7° ± 11,0                           | 23,3° ± 7,0                                     | 84,9 <sup>b</sup> ± 28,4            | $242,0^{a} \pm 26,9$               | $3,4^{b} \pm 2,1$                   | 5,8 <sup>b</sup> ± 6,3                                         | $76.4^{a} \pm 42.0$                     | 0,5 <sup>b</sup> ± 0,5                | $0,6^{b} \pm 1,0$                                              | $17,7^{a} \pm 15,3$                    |
| ΣPUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.6 <sup>ab</sup> ± 2,8                        | $3.8^{b} \pm 3.1$                              | $14,5^{a} \pm 8,0$                     | 40,7 <sup>b</sup> ± 15,1                        | 61.8 <sup>b</sup> ± 12,9            | $179.5^{\circ} \pm 20.0$           | 5,1 <sup>b</sup> ± 3,5              | $4.2^{b} \pm 4.5$                                              | 42.0° ± 20,5                            | $0.7^{b} \pm 0.8$                     | $0.4^{b} \pm 0.5$                                              | $10,5^{a} \pm 8,9$                     |
| Σn-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4,2^{b} \pm 1,6$                              | $0.7^{b} \pm 0.4$                              | $9,0^{a} \pm 4,6$                      | 22,7 <sup>b</sup> ± 5,8                         | $16.9^{b} \pm 5.0$                  | 115,2° ± 17,1                      | 2,4 <sup>b</sup> ± 1,6              | $0.8^{b} \pm 1.2$                                              | 26,0° ± 12,9                            | $0,3^{b} \pm 0,4$                     | $0,1^{b} \pm 0,3$                                              | $7,0^{a} \pm 6,0$                      |
| Σn-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,2 ± 1,3                                      | 3,1 ± 2,8                                      | 5,6 ± 3,5                              | 17,9° ± 9,4                                     | 44.8 <sup>b</sup> ± 8,2             | $64,3^{\circ} \pm 9,4$             | 2,4 ± 1,0<br>2,7 <sup>b</sup> ± 1,9 | $3,3^{b} \pm 3,3$                                              | 16,0° ± 7,6                             | $0,3 \pm 0,4$<br>$0,4^{b} \pm 0,4$    | $0,1^{\circ} \pm 0,3^{\circ}$<br>$0,2^{\circ} \pm 0,3^{\circ}$ | $3,5^{\circ} \pm 2,9$                  |
| n-3/n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9^{b} \pm 0.2$                              | $0.3^{\circ} \pm 0.1$                          | $1.7^{a} \pm 0.2$                      | $1.4^{a} \pm 0.4$                               | $0.4^{b} \pm 0.1$                   | $1.8^{\circ} \pm 0.3$              | $1.0^{b} \pm 0.2$                   | $0.2^{b} \pm 0.1$                                              | $1.6^{\circ} \pm 0.1$                   | $0.5^{b} \pm 0.3$                     | $0,2^{b} \pm 0,3^{b}$                                          | $2,0^{a} \pm 0,2$                      |
| EPA/ARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.9^{b} \pm 0.7$                              | $0.9^{b} \pm 0.1$                              | $1,7 \pm 0,2$<br>$11,4^{a} \pm 1,3$    | $2,3^{b} \pm 0,6$                               | $1,3^{\circ} \pm 0,1$               | $12.0^{a} \pm 0.2$                 | $2.1^{b} \pm 0.7$                   | $0,2^{\circ} \pm 0,1^{\circ}$                                  | $1,6 \pm 0,1$<br>$11,3^{a} \pm 0,5$     | $3.0^{b} \pm 0.4$                     | $1.6^{b} \pm 0.0$                                              | $11.8^{3} \pm 0.6$                     |
| DHA/EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1,9 \pm 0,7$<br>$0,3^{b} \pm 0,2$             | $0,9^{b} \pm 0,1^{c}$<br>$0,2^{b} \pm 0,2^{c}$ | $11,4 \pm 1,3$<br>$0,6^{3} \pm 0,2$    | $1,6 \pm 1,2$                                   | $1,3 \pm 0,1$<br>$1,3 \pm 0,4$      | $12,0 \pm 0,2$<br>0,7 ± 0,0        | $2,1 \pm 0,7$<br>$0,3^{b} \pm 0,1$  | $0.9^{\circ} \pm 0.2^{\circ}$<br>$0.2^{\circ} \pm 0.3^{\circ}$ | $11,3 \pm 0,3$<br>$0,7^{a} \pm 0,1$     | $3,0 \pm 0,4$<br>$0,3^{b} \pm 0,2$    | $1,6 \pm 0,0$<br>$0,4^{ab} \pm 0,0$                            | $0,7^{a} \pm 0,1$                      |
| and the second se |                                                |                                                |                                        |                                                 |                                     |                                    |                                     |                                                                |                                         |                                       |                                                                |                                        |
| DHA/ARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0,5^{b} \pm 0,5$                              | $0,2^{b} \pm 0,2$                              | 7,4 <sup>a</sup> ± 1,2                 | 3,7 <sup>b</sup> ± 1,6                          | 1,7°±0,5                            | $8,1^{a} \pm 0.4$                  | 0,6 <sup>b</sup> ± 0,5              | $0,2^{b} \pm 0,2$                                              | 7,9 <sup>a</sup> ± 0,6                  | $0,8^{b} \pm 0,5$                     | $0,6^{b} \pm 0,0$                                              | $8,0^{3} \pm 1,1$                      |
| total FAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18,3 ± 7,7                                     | 31,5 ± 11,7<br>Dorsal muscle                   | 78,3 ± 29,7                            | 61,0 ± 29,3                                     | 192,6 ± 61,1<br>Heart               | 728,1 ± 74,1                       | 11,2 ± 7,5                          | 12,5 ± 15,1<br>Adipose tissu                                   | 208,6 ± 100,1                           | 2,6 ± 1,7                             | 1,4 ± 2,5<br>Ventral muscl                                     | 109,6 ± 38,7                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                              | VO                                             | FO                                     | N                                               | VO                                  | FO                                 | N                                   | VO                                                             | FO                                      | N                                     | VO                                                             | FO                                     |
| 16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0,7^{b} \pm 0,3$                              | $1,0^{b} \pm 0,6$                              | 46,3 <sup>a</sup> ± 22,6               | $1,2^{b} \pm 1,0$                               | $6.2^{b} \pm 4.7$                   | 53,0 <sup>a</sup> ± 36,7           | $0.5^{b} \pm 0.4$                   | $1,3^{b} \pm 1,4$                                              | 27,4° ± 2,9                             | $1.2^{b} \pm 0.6$                     | $1.7^{b} \pm 1.1$                                              | 93,3 <sup>a</sup> ± 7,1                |
| 16:1n-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.3^{b} \pm 0.1$                              | $0.2^{b} \pm 0.2$                              | $19,5^{a} \pm 9,3$                     | $0.5^{b} \pm 0.4$                               | $1.7^{b} \pm 1.4$                   | 23.5 <sup>a</sup> ± 16,7           | $0.2^{b} \pm 0.2$                   | $0.3^{b} \pm 0.3$                                              | $12.1^{a} \pm 1.6$                      | $0.5^{b} \pm 0.3$                     | $0.4^{b} \pm 0.2$                                              | 41,1 <sup>a</sup> ± 2,1                |
| 18:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.2^{b} \pm 0.1$                              | $0.3^{b} \pm 0.1$                              | $6.0^{a} \pm 2.8$                      | $0.4^{b} \pm 0.4$                               | $1.6^{b} \pm 1.1$                   | $6.4^{a} \pm 3.9$                  | 0,2 <sup>b</sup> ± 0,1              | 0.5 <sup>2b</sup> ± 0,5                                        | 3.5°±0,3                                | 0.4 <sup>b</sup> ± 0,2                | 0.5 <sup>b</sup> ± 0,4                                         | 12.2 <sup>a</sup> ± 1,1                |
| 18:1n-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.8^{b} \pm 0.3$                              | 1.3 <sup>b</sup> ± 0,7                         | 38,4 <sup>a</sup> ± 17,1               | 1,1 <sup>b</sup> ± 0,9                          | 8,2 <sup>b</sup> ± 6,7              | 44,0 <sup>a</sup> ± 29,3           | $0.5^{b} \pm 0.4$                   | 1.9 <sup>2b</sup> ± 2,4                                        | 23,5° ± 3,1                             | $1,4^{b} \pm 0,7$                     | 2.5 <sup>b</sup> ± 1,9                                         | 84,2 <sup>a</sup> ± 6,6                |
| 18:2n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,7 <sup>b</sup> ± 0,2                         | 0.9 <sup>b</sup> ± 0,5                         | 12,0° ± 5,5                            | $1,0 \pm 0,6$                                   | 6,4 ± 4,9                           | 12,6 ± 9,7                         | $0.5^{b} \pm 0.4$                   | 1,3 <sup>10</sup> ± 1,6                                        | 6,4 <sup>a</sup> ± 0,6                  | 1,4 <sup>b</sup> ± 1,0                | 1.6 <sup>b</sup> ± 1,1                                         | 26.2 <sup>a</sup> ± 6,3                |
| 18:3n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.4^{b} \pm 0.1$                              | 0.1 <sup>b</sup> ± 0,1                         | 8,0° ± 4,6                             | $0.6^{b} \pm 0.4$                               | 1,1 <sup>b</sup> ± 1,0              | 8.7 <sup>a</sup> ± 5,9             | 0.2 b ± 0,2                         | 0.2 <sup>b</sup> ± 0,2                                         | 4,1 <sup>a</sup> ± 0,2                  | 0,8 <sup>b</sup> ± 0,5                | 0.2 <sup>b</sup> ± 0,1                                         | 16,7 <sup>a</sup> ± 4,0                |
| 18:4n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0,1^{b} \pm 0,0$                              | 0,0 <sup>b</sup> ± 0,0                         | 5,7° ± 3,2                             | $0.2^{b} \pm 0.1$                               | $0,3^{b} \pm 0,3$                   | $6.5^{a} \pm 4.7$                  | $0,1^{b} \pm 0,1$                   | $0,1^{b} \pm 0,1$                                              | $3,0^{a} \pm 0,2$                       | 0,2 <sup>b</sup> ± 0,1                | 0,1 <sup>b</sup> ± 0,1                                         | 12,6 <sup>a</sup> ± 3,0                |
| 20:4n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.1^{b} \pm 0.1$                              | $0.0^{b} \pm 0.0$                              | $0.8^{a} \pm 0.4$                      | 0,2 ± 0,2                                       | 0,3 ± 0,2                           | 0,9 ± 0,6                          | $0,1 \pm 0,1$                       | 0,0 ± 0,0                                                      | $0,4 \pm 0,0$                           | $0.2^{b} \pm 0.1$                     | 0,1 <sup>b</sup> ± 0,0                                         | $1.6^{a} \pm 0.2$                      |
| 20:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.2^{b} \pm 0.0$                              | $0.0^{b} \pm 0.0$                              | $9,1^{a} \pm 4,5$                      | $0.4^{b} \pm 0.5$                               | $0.3^{b} \pm 0.2$                   | $10.3^{a} \pm 7.1$                 | $0.1^{b} \pm 0.1$                   | $0.0^{b} \pm 0.0$                                              | $5.2^{a} \pm 0.4$                       | 0,3 <sup>b</sup> ± 0,2                | $0,1^{b} \pm 0,0^{c}$                                          | 21,1 <sup>a</sup> ± 2,5                |
| 22:5n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.0^{b} \pm 0.0$                              | $0.0^{b} \pm 0.0$                              | $1.3^{a} \pm 0.6$                      | $0.1^{b} \pm 0.1$                               | $0.0^{b} \pm 0.0$                   | $1.3^{a} \pm 0.8$                  | $0.0^{b} \pm 0.0$                   | $0.0^{b} \pm 0.0^{b}$                                          | $0.7^{a} \pm 0.1$                       | $0.1^{b} \pm 0.1$                     | $0.0^{b} \pm 0.0$                                              | $3.1^{a} \pm 0.5$                      |
| 22:6n-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0,0^{b} \pm 0,0^{b}$                          | $0,0^{b} \pm 0,0^{b}$                          | $1,4^{a} \pm 0,6$                      | $0.1^{b} \pm 0.1^{b}$                           | $0.0^{b} \pm 0.0$                   | $6.8^{a} \pm 4.6$                  | $0,0^{b} \pm 0,0^{b}$               | $0,0^{b} \pm 0,0^{b}$                                          | $3.9^{a} \pm 0.5$                       | $0.1^{b} \pm 0.1$                     | $0.0^{b} \pm 0.0^{b}$                                          | 14,4 <sup>a</sup> ± 1,7                |
| ΣSAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.3^{b} \pm 0.4$                              | $1.4^{b} \pm 0.8$                              | 68.2 <sup>a</sup> ± 32,7               | $2.1^{b} \pm 1.9$                               | $9.0^{b} \pm 6.8$                   | 76.7 <sup>a</sup> ± 53,3           | $0,1^{b} \pm 0,6^{b}$               | $2.0^{b} \pm 2.2$                                              | 39.4° ± 4,1                             | $2.0^{b} \pm 1.0$                     | $2.6^{b} \pm 1.7$                                              | 135.6 <sup>a</sup> ± 11,0              |
| ΣMUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.3^{b} \pm 0.5$                              | $1,4^{b} \pm 0,9$                              | 70,9 <sup>a</sup> ± 31,5               | $1.8^{b} \pm 1.6$                               | $10.6^{b} \pm 8.5$                  | 80,8 <sup>a</sup> ± 55,0           | $0,6^{b} \pm 0,5$                   | $2.4^{b} \pm 2.9$                                              | $42.6^{\circ} \pm 5.4$                  | $2,1^{b} \pm 1,1$                     | $3,1^{b} \pm 2,3$                                              | 154,3 <sup>a</sup> ± 9,5               |
| ΣPUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.6^{b} \pm 0.4$                              | $1,0^{b} \pm 0,3^{b}$<br>$1,2^{b} \pm 0,7^{c}$ | $41,1^{a} \pm 20,8$                    | 2,7 <sup>b</sup> ± 2,2                          | 8.8 <sup>b</sup> ± 6,8              | $50.1^{\circ} \pm 35.1$            | $1.1^{b} \pm 0.9$                   | $1,6^{b} \pm 1,9$                                              | 25,5 <sup>°</sup> ± 2,0                 | $3.2^{b} \pm 2.1$                     | $2,1^{b} \pm 1,3$                                              | 101,8 <sup>a</sup> ± 17,1              |
| Σn-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1,6 \pm 0,4$<br>$0.7^{b} \pm 0,2$             | $1,2 \pm 0,7$<br>$0.2^{b} \pm 0,2$             | $24.7^{3} \pm 13.1$                    | $1.3^{b} \pm 1.3$                               | $1.7^{b} \pm 1.5$                   | $31.8^{\circ} \pm 21.4$            | $0.5^{b} \pm 0.5$                   | $1,6 \pm 1,9$<br>$0,2^{b} \pm 0,2$                             | $16.3^{\circ} \pm 1.2$                  | $1.5^{b} \pm 0.9$                     | $2,1 \pm 1,3$<br>$0,4^{b} \pm 0,2$                             | $65.5^{\circ} \pm 9.6$                 |
| Σn-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0,7 \pm 0,2$<br>$0,9^{b} \pm 0,2$             | $0,2 \pm 0,2$<br>$1,0^{b} \pm 0,5$             |                                        | $1,3 \pm 1,3$<br>$1,3^{b} \pm 1,0$              | $1,7 \pm 1,5$<br>$7,1^{ab} \pm 5,4$ | /- ,                               | $0,5 \pm 0,5$<br>$0,6^{b} \pm 0,5$  | $0,2^{+} \pm 0,2^{-}$<br>1,4 <sup>3b</sup> ± 1,7               |                                         | $1,5 \pm 0,9$<br>$1,7^{b} \pm 1,2$    | $0,4 \pm 0,2$<br>1.7 <sup>b</sup> ± 1,2                        |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.9^{\circ} \pm 0.2$<br>$0.8^{\circ} \pm 0.1$ |                                                | $16,4^{a} \pm 7,7$                     | $1,3^{a} \pm 1,0^{a}$<br>$0,9^{ab} \pm 0,2^{a}$ |                                     | $18,2^{a} \pm 13,8$                |                                     |                                                                | $9,2^{a} \pm 0,8$                       | $1,7 = \pm 1,2$<br>$1.5^{ab} \pm 1,3$ | $1,7 = \pm 1,2$<br>$0.3 = \pm 0,1$                             | 36,3 <sup>a</sup> ± 7,9                |
| n-3/n-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | $0,2^{c} \pm 0,1$                              | $1,5^{a} \pm 0,1$                      |                                                 | $0,2^{b} \pm 0,1$                   | $2,6^{a} \pm 2,0$                  | $0,9^{b} \pm 0,2$                   | $0,3^{\circ} \pm 0,2$                                          | 1,8° ± 0,2                              |                                       |                                                                | 1,8 <sup>a</sup> ± 0,2                 |
| EPA/ARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1,7^{b} \pm 0,6$                              | $1,0^{\circ} \pm 0,5$                          | $11,7^{a} \pm 0,3$                     | $2,0^{b} \pm 0,5$                               | $1,1^{c} \pm 0,1$                   | $11,4^{a} \pm 0.5$                 | 2,0 <sup>b</sup> ± 1,0              | $1,0^{b} \pm 0,2$                                              | 11,9 <sup>a</sup> ± 1,2                 | $2,0^{b} \pm 0,6$                     | $1,1^{c} \pm 0,2$                                              | 13,0 <sup>a</sup> ± 0,4                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.3^{a} \pm 0.1$                              | $0.0^{\circ} \pm 0.0$                          | $0,2^{b} \pm 0,0$                      | $0,3^{b} \pm 0,2$                               | $0,1^{c} \pm 0,1$                   | $0,7^{a} \pm 0,1$                  | $0,4 \pm 0,7$                       | $0,0 \pm 0,0$                                                  | $0,7 \pm 0,3$                           | $0,3^{b} \pm 0,1$                     | 0,3 <sup>b</sup> ± 0,2                                         | $0,7^{a} \pm 0,1$                      |
| DHA/EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                                                |                                        | h                                               | h                                   |                                    | h                                   | . h                                                            |                                         | h                                     | h                                                              |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0,5^{b} \pm 0,3$<br>$3,6 \pm 1,3$             | $0,0^{c} \pm 0,0$<br>$4,7 \pm 2,4$             | 1,8 <sup>a</sup> ± 0,2<br>199,5 ± 84,3 | $0,6^{b} \pm 0,1$<br>$6,5 \pm 5,7$              | $0,2^{b} \pm 0,1$<br>28,4 ± 21,9    | $7,5^{a} \pm 0.8$<br>207,5 ± 142,7 | $0,8^{b} \pm 0,5$<br>3,0 ± 2,1      | $0,0^{b} \pm 0,0$<br>11,0 ± 7,0                                | 8,9 <sup>a</sup> ± 2,4<br>406,4 ± 167,4 | $0,6^{b} \pm 0,4$<br>$4,8 \pm 4,2$    | 0,3 <sup>b</sup> ± 0,2<br>15,0 ± 5,3                           | 8,9 <sup>a</sup> ± 0,8<br>411,8 ± 34,0 |