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Abstract

Background: In general, the definite determination of bacterial species is a tedious process and requires extensive manual
labour. Novel technologies for bacterial detection and analysis can therefore help microbiologists in minimising their efforts
in developing a number of microbiological applications.

Methodology: We present a robust, standardized procedure for automated bacterial analysis that is based on the detection
of patterns of protein masses by MALDI mass spectrometry. We particularly applied the approach for classifying and
identifying strains in species of the genus Erwinia. Many species of this genus are associated with disastrous plant diseases
such as fire blight. Using our experimental procedure, we created a general bacterial mass spectra database that currently
contains 2800 entries of bacteria of different genera. This database will be steadily expanded. To support users with a
feasible analytical method, we developed and tested comprehensive software tools that are demonstrated herein.
Furthermore, to gain additional analytical accuracy and reliability in the analysis we used genotyping of single nucleotide
polymorphisms by mass spectrometry to unambiguously determine closely related strains that are difficult to distinguish by
only relying on protein mass pattern detection.

Conclusions: With the method for bacterial analysis, we could identify fire blight pathogens from a variety of biological
sources. The method can be used for a number of additional bacterial genera. Moreover, the mass spectrometry approach
presented allows the integration of data from different biological levels such as the genome and the proteome.
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Introduction

In general, new technologies for accurate and rapid identifica-

tion of bacteria are essential to epidemiological surveillance, i.e.

the recognition of early outbreak, the analysis of cross-transmis-

sion, and the monitoring of treatment programs including

application of antagonistic bacteria. For classifying and identifying

bacterial species, cumbersome physiological, serological, biochem-

ical, chemotaxonomic, and more recently genomic methods have

been routinely applied in microbiology [1]. For example, genetic

approaches using digital genomic information for the detection of

16S rRNA genes provide specific tools for classification of bacteria.

The analysis of DNA sequence similarities of housekeeping genes

is also being used for multilocus sequence typing (MLST)

approaches [2], which can however be tedious in mass screening.

PCR-based methods to detect pathogens are available but cannot

be used for classification, especially in the case of unknown

bacterial samples. Moreover, the analysis of bacteria such as the

highly conserved fire blight pathogen E. amylovora requires special

efforts to differentiate strains by pulsed field gel electrophoresis

analysis or by sequencing of virulence genes [3].

Mass spectrometric approaches that use molecular biological

sample preparation have been shown recently in microbial typing

[4,5]. These methods comprise highly sophisticated instrumenta-

tion, and the associated costs from sample preparation make the

operation prohibitive for general use. Alternatively, MALDI time-

of-flight (TOF) mass spectrometry protein profiling of whole

bacterial cells can be applied for detection of bacteria [6].

However, most of these procedures have so far not exceeded

proof-of-principle level and were applied only to a limited number

of bacterial species [7,8]. Moreover, all these procedures do not

have proven maturity for easy and systematic application in

microbiology. Consequently, biologists have not consistently

utilized these approaches despite their great potential.

In the exemplary study of this article we focused on the mass

spectrometry analysis of bacteria of the genus Erwinia and related

(phytopathogenic) bacteria. The genus Erwinia comprises several

bacterial species, many of them connected to plant diseases [9].

The Erwinia species belong to the family of Enterobacteriaceae, which

also include Escherichia coli, Yersinia spp., Shigella spp., and Salmonella

spp. Erwinia amylovora causes the devastating fire blight disease of

rosaceous plants, such as apple and pear trees and some
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ornamentals. Since the last century, outbreaks of this disease have

caused economical crisis in agriculture [10].

Results

We describe a standardized sample preparation and analytical

procedure for easy bacterial classification and identification by

MALDI mass spectrometry detection of protein mass patterns

(Figure 1A). This method includes the use of advanced bioinfor-

matics analysis and a database resource containing a comprehen-

sive number of bacterial reference mass spectra. We enlarged the

potential of this approach by genotyping an informative single

nucleotide polymorphism (SNP) by mass spectrometry.

All Erwinia bacteria analyzed in this study were conventionally

cultured in liquid medium. To fulfill biological safety requirements

the potentially pathogenic Erwinia samples were inactivated

efficiently in ,73% ethanol. This treatment completely destroyed

the viability of the bacteria after an hour of fixation. Once the

samples were fixed, they were treated with formic acid for cell wall

disruption and acetonitrile for protein extraction (Materials and

Methods). Finally, a fraction of the protein samples was prepared

on a MALDI target plate and mass spectra accumulation was

performed automatically.

Applying the standardized experimental procedure including

culturing in liquid media (Materials and Methods), we generated a

reference mass spectra database containing main spectra libraries

(MSPs) of bacteria of the genus Erwinia and some other related

bacteria. Therefore, we accumulated twenty mass spectra to

achieve above average quality spectra. Protein mass patterns were

detected in the mass range of 2,000 to 20,000 Da. The building of

a general database of reference mass spectra, which are produced

by the standardized protocol applied in this study, is currently

underway. To date, this database comprises more than 2800

bacterial strains, including the genera Pantoea, Shigella, Listeria,

Salmonella, and Klebsiella (Materials and Methods). The database

has been implemented in our analysis software (Materials and

Methods) and was used for the identification experiments shown

below. To reproduce the results of this study and to test the

software for additional applications, the software package and the

reference mass spectra are freely available as a CD that can be

requested from the authors.

For phylogenetic analysis, we clustered hierarchically mass

spectra of type strains and others in dendrograms according to

their mass signals and intensities (Figure 1B). Each reference

spectrum of a dataset was compared with the other reference

spectra, thus resulting in a matrix of cross-wise identification

values. This matrix is used to calculate the distance values for each

pair. Based on these distance values the dendrogram was

generated using the according function of the statistical toolbox

of Matlab 7.1 (The MathWorks Inc., USA), which was integrated

in the analysis software (Materials and Methods). The clustering

approach applied was based on similarity scores implemented in

the analysis software. For comparison, a phylogenetic dendrogram

was generated from 16S rRNA sequences (Figure 2). Interestingly,

Figure 1. A: A general scheme of the procedure. Bacterial colonies are subjected to chemical treatment. Samples can be analyzed
within a few minutes by MALDI mass spectrometry and mass spectra are transferred to analysis and identification software. B:
Classification of bacteria. Based on the protein mass patterns, bacterial strains can be clustered hierarchically. A dendrogram generated by this
approach including a comprehensive set of Erwinia type strains was displayed. Species with distance levels over 500 had completely different mass
signal patterns. Comparison of spectra of these species for a distance measure was thus uninformative. Strains clustering with distance levels lower
than 500 could be classified up to the species and partially to subspecies level. The limit of resolution was set by the distances derived from
measurement variability.
doi:10.1371/journal.pone.0002843.g001
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the mass spectrometry and the sequence-based dendrograms

showed similar clustering within related species. As for the other

cell parameters, co-evolution of 16S rRNA sequences and

ribosomal proteins, which are mainly detected by mass spectrom-

etry from whole bacterial cells, could be assumed [11]. Thus, the

mass spectrometry-based dendrogram made significant sense from

a biological point of view. As for 16S rRNA, related species such as

E. amylovora and E. pyrifoliae from Korea and Japan or epiphytic

bacteria like E. persicina and E. rhapontici clustered closely together.

This observation was confirmed by data generated from

housekeeping genes, as well as microbiological and biochemical

studies [12]. E. tasmaniensis was linked to E. amylovora and to E.

pyrifoliae, whereas E. billingiae was placed on a different branch. The

two exemplary E. tasmaniensis strains from different isolation origins

clustered closely together and their distance based on comparison

of protein mass patterns were within the range of experimental

noise of the procedure (Figure 1B). The average reproducibility of

the procedure is exemplarily documented in Figure 3. In general,

we observed coefficient of variation (CV) values slightly above 0.3

in intra- and inter-run experiments.

With the entire reference spectra library, we could identify

unambiguously bacteria of the genus Erwinia. Therefore, we

analyzed a number of isolates from different locations of the world

and samples from necrotic wood of diseased pear trees from

Carinthia. In many cases, plant samples contained mixtures of

bacteria of the genus Erwinia or other genera. Conventional

culturing on agar and/or in liquid media prior to chemical

treatment was performed to produce sufficient amount and

homogeneity of bacterial samples for the analysis. The approach

became robust against growth times once the bacteria have

entered the stationary phase (data not shown). For initial species

identification of the different isolates listed in Table 1, we applied a

pattern-matching algorithm, which calculated calibrated m/z

values, average intensities, and frequency distributions of each

mass signal in different measurements. With our approach, an

identification score of 2.0 or higher indicated a reliable

identification of species. As summarized in Table 1, we identified

unambiguously pathogenic bacteria such as E. rhapontici, E.

persicina, E. amylovora, and Brenneria quercinia (syn. Erwinia quercinia)

from a variety of plant samples. Figure 4 shows a typical result of

an identification experiment performed in this study. Although the

bacteria were grown on different media, similar identification

scores were obtained due to their almost identical mass spectra

(Table 1). We could even detect the fire blight pathogen in washes

of plant tissue from in vitro propagated pears that were infected

with about 107 cells of E. amylovora. In a larger study, we

additionally analyzed over several months a comprehensive

number of isolates (Table 1). We screened successfully the mass

spectra of these isolates with the entire reference spectra database.

In all cases we correctly detected the respective samples with

similar identification scores. All mass spectrometry-based identi-

fication results presented in this paper were consistent with 16S

rRNA sequencing and microbiological and biochemical data

derived from intensively studied isolates that were stored in our

laboratory.

For accurate identification of closely related species such as the

plant pathogens E. amylovora and E. pyrifoliae, we used a weighted

pattern-matching algorithm. This algorithm uses selected charac-

teristic mass signals to which specific values can be assigned in the

analysis (Figure 5). As shown in Table 2, weighted pattern-

matching helped to neatly determine very closely related strains

that could not be distinguished by the initial pattern-matching

Figure 2. Phylogenetic analysis. For comparison to mass spectrometry based clustering a conventional 16S rRNA sequence-based dendrogram
generated with ClustalW and Mega 3.1 is shown. Phylogenetic distances were estimated by the method of Jukes and Cantor [15]. The tree topology
was inferred by neighbor-joining method with a bootstrap value of 1000. For the reconstruction of phylogeny, the neighbor-joining and maximum-
parsimony procedures produced similar results. The 16S rRNA sequences of E. coli strains were identical to the E. coli strains shown in the dendrogram
generated on the basis of mass spectra.
doi:10.1371/journal.pone.0002843.g002
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procedure. The settings used in this study are summarized in

Table 3.

The integration of data from different biological levels refines

the analysis, which has so far rarely been exploited in bioanalytics

[1]. As shown in Figure 6 and Table 4, MALDI mass spectrometry

can be used for integrating the analysis of data derived from

detection of protein mass patterns and genomic markers such as

SNPs [13]. We made use of a novel SNP that we discovered by re-

sequencing of the galE gene of several E. amylovora strains (Figure

S1). Genotyping of this informative SNP by mass spectrometry

[13] allows us to distinguish E. amylovora strains of North American

from European origin, which was impossible by merely analyzing

protein mass patterns.

Discussion

As compared to protein identification based mass spectrometry

methods [14], our procedure is robust against slight mass

deviations detected by the mass spectrometer. Moreover, in many

cases in microbiology - such as for many species of Erwinia -

complete genomic or protein sequence databases are not available,

which inhibits the use of identification-based mass spectrometry

approaches. In practice, such approaches could rarely generate

additional information for bacterial identification to the finger-

printing method shown here. Mainly ribosomal proteins as in the

case of E. coli and other Enterobacteriaceae would be identifed with

enormous cost and time commitment.

Other recently published mass spectrometry procedures for

microbial typing rely on the detection of fragments of nucleic acids

[4,5]. By using a template amplification procedure these

approaches are potentially very sensitive. However, the analyte

fragments were produced in a sequence of parallel molecular

biological reactions, which significantly contribute to the costs of

these procedures.

DNA sequencing is one of the gold standards for characteriza-

tion of bacteria, but this approach cannot be easily applied for fast

classification and identification. In general, DNA-based methods

such as PCR require optimization for setting up specific assays for

each bacterial strain. Once they are being set up, conventionally

applied procedures such as real-time PCR might be more specific

and faster for bacterial identification than our method. However,

our procedure can be readily applied and does not require

reference sequences. Moreover, culturing of bacteria on agar

plates and later on in liquid cultures reduces the sample

complexity and improves the control of environmental samples.

As it is shown for several Erwinia species, our method is largely

independent from culturing conditions. Even when minimal media

have to be used, however, potential culture-dependency of some

mass signals could be excluded from the software analysis.

The protein mass pattern detection approach presented in this

study is independent from DNA sequence information and

complementary to DNA sequencing or PCR-based approaches.

As we have shown here, digital information encoded in

informative regions of bacterial genomes, such as a single SNP,

can provide additional resolution in the mass spectrometry data

analysis [14]. Data integration from different biological levels as

demonstrated in this paper has so far rarely been applied in

bioanalytics. Particularly mass spectrometry allows integrating

biological information as this technique can be used to detect both,

nucleic acids and proteins. In general such an integrated approach

would certainly improve the accuracy and reliability in many

diagnostic life sciences applications.

Due to the specificity, speed of analysis and low costs for

consumables, our method for classifying and identifying bacterial

species can replace a number of conventionally applied but

cumbersome physiological, serological, biochemical, and chemo-

taxonomic procedures. The standardized bacterial detection

procedure presented herein is facile and reproducible. It fulfils

biological safety requirements and can be easily scaled up. At least

107 bacterial cells are required for our preparation procedure to

generate reliable results, which can be easily produced by cell

culturing. Excluding the time for bacterial culturing, our approach

takes 90 minutes from sample preparation to identification.

The method presented requires only a simple time-of-flight

(TOF) mass spectrometer. Due to the software support demon-

strated in this study, the method can be used for bacterial

identification in a variety of applications without (extensively)

analyzing mass spectra. The procedure can be easily applied by a

microbiologist with essential knowledge in mass spectrometry. To

provide the basis for large-scale longitudinal evaluation studies that

Figure 3. Determination of experimental variation of the procedure. E. amylovora sub-species 1/79 (German strain) was grown in LB-glucose
in quintuplicate and analyzed. E. pyrifoliae 16/96 was used as an outlier for clustering. Distance levels below ,30–50 could not be resolved any
further by our clustering approach due to experimental noise. The experimental variation was presumably caused mainly by slight changes in matrix-
protein co-crystallization such as room temperature, pressure, and humidity. In this exemplary experiment, the coefficient of variation (CV) for intra
run was 0.31 and for inter run 0.35. Similar CVs were observed for the identification experiments presented in the paper. As shown in Table 1, the
robust analysis algorithms applied can easily handle the experimental variation that is associated with our approach.
doi:10.1371/journal.pone.0002843.g003
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Table 1. Summary of the identification scores produced by the pattern-matching algorithm.

Isolates
Preparation
procedure Identified microorganism ID score Specific mass signals (m/z)

Carinthia (A) agar E.billingiae 661 2.5

Carinthia (A) LBglc E.billingiae 661 2.6

Carinthia (A) LBglc E.billingiae 661 2.7

Australia LBglc E.tasmaniensis 1/99 2.7

Australia LBglc E.tasmaniensis 1/99 2.5

South Africa LBglc E.tasmaniensis 1/99 2.8

South Africa LBglc E.tasmaniensis 1/99 2.8

Heidelberg (D) LBglc E.tasmaniensis 1/99 2.5

Carinthia (A) agar E.quercini 2.4

Austria LBglc E.persicina 2.3 9472, 9513

Carinthia (A) LBglc E.rhapontici 2.3 4392, 7680, 8241, 9457

Carinthia (A) LBglc E.rhapontici 2.3 4392, 7680, 8241, 9457, 9483

Canada LBglc E.amylovora MR-1 2.2 4092, 8186, 5561

Canada LBglc E.amylovora MR-1 2.1 4092, 8186, 5561

South Korea (DSM 12393) LBglc E.pyrifoliae 16/96 2.6 7696, 7235

South Korea (DSM 12394) LBglc E.pyrifoliae 16/96 2.5 7696, 7235

Korea LBglc E.pyrifoliae 16/96 2.6 7696, 7235

Japan LBglc E.pyrifoliae Ejp557 2.5 7696, 4722, 9445

Infected pear blossoms directly E.amylovora CFBP1232 2.4 8302, 8726, 8842, 9510

Infected pear blossoms directly E.amylovora CFBP1232 2.5 8302, 8726, 8842, 9510

Carinthia (A) agar E.amylovora CFBP1232 2.6 8302, 8726, 8842, 9510

Carinthia (A) agar E.amylovora CFBP1232 2.7 8302, 8726, 9510

Carinthia (A) LBglc E.amylovora CFBP1232 2.3 7594, 8725, 8842, 9510

England LBglc E.amylovora CFBP1232 2.6 8302, 8726, 8842, 9510

France LBglc E.amylovora CFBP1232 2.5 8302, 8726, 8842, 9510

Spain LBglc E.amylovora CFBP1232 2.6 8302, 8726, 8842, 9510

Hollande LBglc E.amylovora CFBP1232 2.5 8302, 8726, 9510

Germany LBglc E.amylovora CFBP1232 2.8 8302, 8726, 8842, 9510

Germany LBglc E.amylovora CFBP1232 2.6 8302, 8726, 8842, 9510

Stuttgart region (D) LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Stuttgart region (D) LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Bavaria (D) LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Switzerland LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Rogow (Pl) LBglc E.amylovora CFBP1232 2.6 8302, 8726, 8842, 9510

Mitilini (GR) LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Croatia LBglc E.amylovora CFBP1232 2.5 8302, 8726, 9510

Washington (USA) LBglc E.amylovora CFBP1232 2.5 8726, 9510

Ohio (U.S.A.) LBglc E.amylovora CFBP1232 2.4 8726, 8842, 9510

California (USA) LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Oregon (USA) LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Oregon (USA) LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Niagara region (CDN) LBglc E.amylovora CFBP1232 2.6 8302, 8726, 8842, 9510

Australia LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Australia LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Australia LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

New Zealand LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

New Zealand LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510
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Figure 4. Identification of E. amylovora from diseased pears. A typical mass spectrum of a bacterial sample taken from necrotic wood
compared with a matching spectrum from the reference library. (Top) Original mass spectra, (Middle) respective pseudo gel-view showing a bar-code
of masses and their intensities, (Bottom) identification by comparison of experimental and reference mass spectra using a pattern matching
algorithm. In this example, a highly reliable identification score of 2.7 was obtained from the identification of E. amylovora (CFBP1232).
doi:10.1371/journal.pone.0002843.g004

Isolates
Preparation
procedure Identified microorganism ID score Specific mass signals (m/z)

Israel LBglc E.amylovora CFBP1232 2.7 8302, 8726, 8842, 9510

Egypt LBglc E.amylovora CFBP1232 2.6 8302, 8726, 8842, 9510

Egypt LBglc E.amylovora CFBP1232 2.5 8302, 8726, 8842, 9510

We could identify a number of bacteria from different locations and deriving from different biological samples: bacteria directly taken from infected pears, isolated
bacteria grown on agar, or bacteria additionally grown in liquid medium (LB-glucose). Log scores over 2 were considered reliable for type strain identification using the
pattern-matching approach. These identification scores could be easily replicated with the same strains analyzed several times. Specific mass signals were used to
accurately identify sub-species by visual inspection of mass spectra or by software-supported weighted pattern matching as demonstrated in Figure 5 and in Tables 2
and 3.
doi:10.1371/journal.pone.0002843.t001

Table 1. cont.
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can undergo specific testing of a large variety of different bacteria,

we will steadily increase the numbers of bacterial type strain

reference spectra. Therefore, we will apply the procedure

presented in conjunction with the use of analysis software and

the mass spectra database to an effort with internationally

approved reference stocks.

Materials and Methods

Tubes and tips were purchased from Eppendorf. All chemicals

were of highest purity (HPLC-grade) and purchased from Sigma-

Aldrich.

The Erwinia strains came from various strain collections, others

(described in ref. 3) and the E. coli K12-strains 1100 and W3350

were obtained from the collection of the JKI Dossenheim. The

bacteria used for the reference database and the dendrogram were

the following: E. amylovora CFBP1232 (T), E. amylovora Ea1/79

DSM 17948, E. amylovora 273 ATCC 49946, E. amylovora IL6

(rubus) (Lab collection JKI Dossenheim, isolated in Illinois, USA),

E. amylovora MR1 (rubus) (Lab collection JKI Dossenheim, isolated

in Michigan, USA), E. pyrifoliae 16/96 (T) DSM 12163, E. pyrifoliae

1/96 DSM 12162, E. pyrifoliae Ejp557 (Japan) (Lab collection JKI

Dossenheim, isolated from Nashi pear, Hokkaido, Japan, 1994, A.

Tanii), E. tasmaniensis 1/99 (T) DSM 17950, E. tasmaniensis 2/99

DSM 17949, E. billingiae Eb 660 (T) NCPPB660 and Eb 661 (T)

NCPPB661, E. persicina CFBP3622 (T), E. rhapontici CFBP3618 (T),

E. psidii CFBP3627 (T), Pectobacterium cacticida CFBP3628 (T),

Brenneria quercini CFBP3617 (T), E. mallotivora CFBP2503 (T), E.

toletana CFBP6631 (T), E. papayae CFBP5189 (T), E. tracheiphila

CFBP2355 (T), E. coli 1100 (E. coli/ K-12, Lab collection JKI

Dossenheim), E. coli W3350 (E. coli/ K-12, Lab collection JKI

Dossenheim). Erwinia type strains are indicated (T); CFBP = Col-

lection Française des Bactéries Phytopathogènes; DSMZ = Ger-

man Collection of Microorganisms and Cell Cultures;

NCPPB = National Collection of Plant Pathogenic Bacteria

(UK); ATCC = American Type Culture Collection; JKI = Julius

Kuehn Institute.

Infection of in vitro pear plants (micro-propagated plants): Pear

leaves were wounded and inoculated with cells of the German E.

amylovora strain Ea1/79. After incubating for 5 days, the infected

pear plantlets displayed symptoms typical of fire blight infection,

such as water soaking and necrosis accompanied by the

production of bacterial ooze. We washed the bacteria from the

plant surface with 1.5 ml water, centrifuged the samples at 10006
g for a minute, and decanted the liquid. Afterwards we suspended

and inactivated the bacteria as is described below.

Isolation of Erwinia spp. from necrotic wood of pear trees (from

Carinthia): Fifty milligram of dark bark slices contaminated with

bacteria were immersed in 1 ml water. After soaking for

15 minutes, samples were diluted, and 200 ml of that were plated

on LB agar with cycloheximide (50 mg/ml). White colonies were

assayed on semi-selective agar for E. amylovora by using PCR and

DNA sequencing at the JKI Dossenheim. E. amylovora colonies

were processed as blind samples for MALDI analysis at the Max-

Planck-Institute for Molecular Genetics (Berlin).

Figure 5. Weighted pattern matching. Starting from a given pattern matching result, which cannot differentiate between closely related sub-
species, a limited number of mass signals are selected for accurate identification. The flow-chart shows the combination of selected specific mass
signals to differ important Erwinia sub-species. For example, an initial pattern matching analysis revealed two potential candidate strains, E.
amylovora and E. pyrifoliae. The mass signals at 7696 m/z and the mass peaks at 8186, 8244, 8287 m/z are specific for E. pyrifoliae and E. amylovora
rubus strains, respectively, which distinguish them from E. amylovora. The mass peak at 9554 m/z distinguished the North American type strain E.
amylovora 273 from the other E. amylovora strains of American and European origin, which instead have an additional peak at 9510 m/z. For the
automated weighted pattern analysis, specific values listed in Table 1 were assigned to these marker masses. This approach was applied to
distinguish closely related Erwinia strains as shown in Table 2.
doi:10.1371/journal.pone.0002843.g005

Table 2. Weighted pattern-matching.

MSP Analysis Weighted Analysis

Isolate Matching MO Score Matching MO Score

Infected pear Erwinia amylovora IL6 (rubus) 2.5 Erwinia amylovora CFBP1232 2.4

blossoms Erwinia amylovora CFBP1232 2.4 Erwinia amylovora IL6 (rubus) 1.7

(directly isolated) Erwinia amylovora 1/79 2.3 Erwinia pyrifoliae 16/96 1.6

Weighted pattern-matching contributes to an increased accuracy of automated bacterial identification. For example, in the case of pears infected with E. amylovora
(German strain Ea1/79), initial pattern matching analysis could not differentiate between different E. amylovora subspecies. Visual inspection of specific mass signals
listed in Table 1 helped to unambiguously identify the correct sub-species. Software-supported weighted pattern matching leads to an accurate analysis of the correct
subspecies, for example, the E. amylovora (type strain CFBP1232) was identified unambiguously. More information on the weighted pattern matching analysis is
depicted in Figure 5 and in Table 3.
doi:10.1371/journal.pone.0002843.t002
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Table 3. Settings for weighted-pattern matching algorithm.

Species E.a. 1232 E.a. 273 E.a. IL6 E.a. MR1 E.p. Ejp557 E.p. 16/96

Specific mass signal (m/z)

3750 1000

4361 1000 1000 1000

8725 1000 1000 1000

8842 1000 1000 1000

9510 5000 1000

9554 5000

7594 2500

8244 5000

8287 5000 2000

4092 5000

5561 5000

8186 5000

7696 5000 5000

4722 5000

9445 5000

7235 5000

To differentiate between the various E. amylovora (E.a.) and E. pyrifoliae (E.p.) sub-species, a weighted-pattern matching algorithm as described in the Methods section
was applied. For sub-species identification specific masses in the reference spectra that allow differentiation between sub-species are given an overemphasized value.
For E. amylovora unspecific mass signals were set to zero except for the mass signals listed in the table. E. pyrifoliae sub-species can be determined by changing the
weight values for the mass signals given in the Table. By summation of all these values each entry in the library acquires a specific number.
doi:10.1371/journal.pone.0002843.t003

Figure 6. SNP genoytyping. We genotyped a SNP in the galE gene by MALDI-MS to distinguish E. amylovora strains of North American origin (E.
amylovora 273) from that of European/Mediterranean origin such as E. amylovora 1/79 (DSM 17948) and CFBP1430. Masses detected in the spectra
correspond to an A-allele (theoretical mass: 1225 m/z) or a C-allele (theoretical mass: 1201 m/z).
doi:10.1371/journal.pone.0002843.g006
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Cell culturing on agar: For cell culturing on agar plates, all

dilutions were incubated for 2 days at 28uC. Bacteria were

suspended from cell lawns in 1 ml water to a density of

approximately 1 (light absorption at 600 nm) and centrifuged.

The pellets were washed with 1 ml water and then the liquid was

discarded. The presence of culture medium adhering to the

bacterial colonies cells from agar had no visible effect on the mass

signal patterns. The bacteria were inactivated as described below.

Culturing in liquid media: Bacteria grown on agar were

inoculated into LB liquid medium with 1% glucose for the

generation of reference spectra and in many cases for identification

of unknown samples. The medium was autoclaved and then

filtrated through a 0.2 mm nitrocellulose filter to remove particles.

Replacement of LB-glucose by LB-glycerol showed little effect in the

peak pattern distribution. Identification of bacteria grown on

different media was reliably achieved as shown in Table 1. Once the

bacteria have entered the stationary phase, the method is robust

against growth times. However, other (minimal) media might have a

stronger influence on the mass peak patterns. For the generation of

reference spectra, we used LB-glucose as standard medium because

most Erwinia bacteria grew well in this medium and resulted in very

good mass spectra in terms of sensitivity and resolution.

Inactivation of bacteria: The bacteria were suspended in 300 ml

water and inactivated by the addition of 800 ml ethanol at room

temperature. The samples could be stored at room temperature

for several days or at 4–8uC for several weeks. To assay for

viability, we applied dilutions to agar plates and found no surviving

E. amylovora cells already after an hour of storage in ethanol.

Protein extraction: This step was performed at room temper-

ature. The solution was centrifuged at 25,0006g for 2 minutes and

the supernatant was discarded. Again, centrifugation was per-

formed for 2 minutes at 25,0006g and residual supernatant was

discarded. Five to 20 ml of 70% formic acid were added to the

‘‘pellet’’ (1 to 5 mg, or less bacterial material), and mixed to re-

suspend the bacteria. Then 5–20 ml acetonitrile were added,

accordingly, and the sample was mixed carefully. The solution was

centrifuged at 25,0006g for 2 minutes. The supernatant (,5–

20 ml) was transferred to a new tube immediately.

MALDI preparation: This step was performed at room

temperature and at 20–80% air humidity. One microliter of the

supernatant was placed onto a stainless steel target plate and led

dry in air. Then, 1 ml of matrix (3 mg/ml solution of alpha-cyano-

4-hydroxycinnamic acid in 50% acetonitrile/2.5% trifluor acetic

acid) was overlaid onto the dried sample and led dry in air. This

simple preparation method provided homogenous samples to

enable automated measurements and sufficiently reproducible

mass spectra. To increase data reliability, we applied each

bacterial sample six times onto the target plate.

Mass spectrometry detection: Mass spectra were acquired using

an Ultraflex I MALDI-TOF mass spectrometer (Bruker Daltonics,

Bremen, Germany). Alternatively, a simpler MALDI-TOF

instrument such as the benchtop Microflex (Bruker Daltonics)

can be used without loosing data quality. We performed

measurements in linear positive ion detection mode, using a

Nd:YAG laser at maximum frequency of 66 Hz. Pulsed ion

extraction (PIE) was set to zero. Acceleration voltage (IS1) was set

to 20 kV. The mass range of spectra was from 2,000 to 20,000 m/

z. The final resolution in the mass range of 7,000–10,000 m/z was

optimized to be higher than 600 and absolute signal intensities

were about 103. Automated spectrum acquisition was performed

using the Auto Execute software with fuzzy control of laser

intensity. At least 107 bacterial cells were required for high quality

mass spectra. For reference spectra we measured six spots on the

MALDI target. On each spot, four spectra with 10 times 100 laser

shots were accumulated. Twenty spectra were stored for the

reference spectra library. For identification we generally acquired

spectra by accumulating 1000 laser shots in ten 100 shot portions.

Factors influencing the intensities of signal peaks comprise

concentration and location of proteins in the bacterial cell and

biophysical properties of proteins such as solubility, hydrophobic-

ity, basicity, and compatibility with MALDI. In general, most of

the proteins detected by MALDI protein bacterial profiling derive

from highly abundant, basic ribosomal proteins [11].

Data analysis: Mass spectra were analyzed with Flex Analysis

software 2.4 (Bruker Daltonics). Further bacterial data analysis was

performed by software developed and tested by us that we termed

BioTyper. The mass spectral input data can be listed in generic data

formats such as the extensible markup language (XML) to make

them independent from the hardware used. Spectra were pre-

processed using default parameters for reference spectra libraries

that we call main spectra libraries (MSPs). A maximum of 100 peaks

with a signal-to-noise (S/N) ratio of 3 were selected in the range of

3,000–15,000 Da. Afterwards the main spectra were generated as a

reference using all spectra given for a single microorganism. In

general, 75 peaks were picked automatically, which occurred in at

least 25% of the spectra and with a mass deviation of 200 ppm.

For the evaluation of mass spectra reproducibility, we loaded

the spectra into the ClinProTools 2.1 software (Bruker Daltonics).

Through this process mass spectra were firstly normalized before

we applied baseline subtraction, peak detection, realignment, and

peak-area calculation. The optimal settings resulted in an S/N

ratio of 5, a Top Hat baseline subtraction with 10% as the

minimal baseline width, and a 3-cycle Savitsky-Golay smoothing

with a 10 Da-peak width filter. For the example shown in Figure 3

the coefficient of variation (CV) of each of the individual peak

areas was determined; 100 peaks were taken for intra run

assessment detected in 18 measurements and 75 peaks for inter

run detected in 5 biological replicates. The mean CV for all of the

signals from the same replicate sample was calculated to provide a

measure of intra- and inter-run reproducibility.

Using the bacterial analysis software (Biotyper) and taking a list

of mass signals and their intensities into consideration, dendro-

grams were generated by similarity scoring of a set of mass spectra.

Dendrograms shown in this article had graphical distance values

between species constructed from their reference spectra. A

correlation function was used for calculating distance values. For

graphical correlations an average statistical algorithm was applied

Table 4. A short exemplary list of SNP genotypes of the galE
gene detected by MALDI mass spectrometry.

Microorganism
galE gene
SNP 175 Origin of isolates

E. amylovora 273 ATCC 49946 A USA

E. amylovora isolate A Washington, USA

E. amylovora isolate A California, USA

E. amylovora isolate A Niagara region (CDN)

E. amylovora 1/79 DSM 17948 C Germany

E. amylovora isolate C Stuttgart region (D)

E. amylovora CFBP1430 C North of France

E. amylovora isolate C Egypt

The SNP distinguishes E. amylovora strains of North American origin from the
European/Mediterranean origin. The reference sequences are deposited as
Figure S1.
doi:10.1371/journal.pone.0002843.t004
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as implemented in our software package. The maximal number of

top level nodes was set to 2. As mentioned in the Figure legend 1,

the arrangement of spectra on the left site of the dendrogram is

arbitrary. Species with distance levels under 500 are reliably

classified. DNA-based phylogenetic analysis (Figure 2) was done

using the Mega (Molecular Evolutionary Genetics Analysis)

program, version 3.1 (http://www.megasoftware.net/) [15].

The complete set of reference spectra compiled in the database

of our software package is linked to the NCBI taxonomy database

(http://www.ncbi.nlm.nih.gov/Taxonomy/).

For identity scoring, the algorithm implemented in the Biotyper

software counted mass signals in experimental spectra that

matched with reference spectra and vice versa. Furthermore, the

algorithm applied correlates signal intensities of matched signals.

Together, three scores obtained from such a procedure are

multiplied and normalized to a value of 1000 and then converted

in its common logarithm (3). Log scores over 2 indicated a reliable

identification of species; log scores over 1.7 generally meant a

reliable identification of bacterial genera. Log scores of 3 were

obtained when spectra matched with themselves. For the

identification of bacterial species, this pattern matching algorithm

was routinely applied. For the distinction of highly similar mass

spectra of closely related sub species, we used a weighted pattern

matching algorithm. In practice, we assigned additional values to

informative mass signals that were found in the reference spectra

of these sub species. For the application of weighted pattern

matching we used the masses and settings listed in Figure 5 and in

Table 3. For more details on the BioTyper software the reader is

referred to a handbook that is available from the authors as a

hardcopy or an electronic version (CD of the complete analysis

software package that is freely available for reproducing the results

of this study and for testing the procedure shown in this article for

additional bacterial genera).

SNP genotyping: Approximately 5 mg of bacterial pellet was re-

suspended in 1 ml 0.1% Tween-20 and heated up to 65uC for

15 min. One micoliter was used as template for subsequent PCR.

PCR was carried out in 10 ml volume. The PCR buffer consisted

of 20 mM (NH4)2SO4, 75 mM Tris-HCl (pH 9.0), 0.01% Tween-

20, 2.5 mM MgCl2, 0.5 M betaine solution, 0.3 mM dNTPs, 1 U

conventional Taq polymerase (produced in-house), 0.025 U

proofreading Taq polymerase (produced in-house), 0.3 mM

forward primer (59-CGATGACGTGGTGATACTGG-39),

0.3 mM reverse primer (59-TCGACTCCCCTACAGCCTTA-

39). After denaturating the PCR samples for 5 minutes at 95uC,

amplifications were carried out at 94uC for 30 seconds, 65uC for

30 seconds, and 72uC for 30 seconds for 35 cycles. Finally, the

samples were incubated at 72uC for 5 minutes. SNP genotypes

were detected by mass spectrometry with the standard GOOD

assay in negative ion mode [13,16] as described in full detail in ref.

13 by using 2 ml of the PCR products generated from 10 ml

reactions. The extension primer used for the GOOD assay was 59-

GCGACTTTCTTCGAAGGGG*AC-39 (* indicates a phosphor-

othioate linkage). The reference sequences of the galE gene of two

E. amylovora strains are shown in Figure S1.

Supporting Information

Figure S1 Reference sequences. A SNP in the gal-E gene was

used to differentiate E. amylovora strains of European/Mediter-

ranean (Ea1/79) from American origin (Ea273).

Found at: doi:10.1371/journal.pone.0002843.s001 (0.02 MB

DOC)
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