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Abstract

Fast growing willow and poplar clones (Salix and Popu-
lus spp.) grown as short rotation coppice (SRC) on former 
arable soils lead to a long-term non-tillage management 
with increased litter amounts. Additionally, the litter com-
position is changed (e.g. increased C/N ratios and lignin 
contents) and thereby the litter decomposition can be 
retarded. An increased C sequestration in the topsoil of 
former ploughed arable soils can result from these effects. 
The leaf litter recycles a high portion of nutrients. In con-
trast to other crops, willows and poplar can be colonised 
by ectomycorrhizal fungi. This leads to the introduction of 
ectomycorrhizal fungi into arable soils and to changes in 
the soil microbial colonization and activity. The non-tillage 
management and the high litter supply can change the 
abundance and diversity of the soil fauna, e.g. increase 
the abundance of earthworms (Lumbricidae) and in spite 
of an increased diversity decrease the abundance of ca-
rabids (Carabidae). Willow and poplar clones are highly 
suitable for phytoremediation of contaminated soils (e.g. 
extraction of Cd, Zn and degradation of organic pollution) 
caused by their high biomass production in combination 
with high fine root density. Several soil ecological advan-
tages of short rotation coppice compared to former arable 
soils with annual crops can be stated, however, more re-
search-based knowledge is needed especially on the fun-
damentals of long-term effects and on the sustainability of 
effects after return to their former commercial arable use. 

Keywords: Soil, carbon sequestration, soil organisms, my-
corrhiza, phytoremediation, soil organic matter

Zusammenfassung

Einfluss von Kurzumtrieb mit Weiden und Pappeln 
auf die Bodenökologie

Kurzumtriebsplantagen (KUP) mit schnellwachsenden 
Weiden- und Pappelklonen (Salix und Populus spp.) füh-
ren auf vormals kommerziell genutzten Ackerböden zur 
Einstellung der Bodenbearbeitung in Verbindung mit er-
höhten Streumengen. Zusätzlich ist die Qualität der Streu 
verändert (z. B. das C/N-Verhältnis und der Ligningehalt 
erhöht) und hierdurch kann der Streuabbau verzögert 
sein. Diese Faktoren können im Oberboden zu erhöhter 
Kohlenstoffspeicherung führen. Der Verbleib der Blatt-
streu im Bestand führt zu einer hohen Nährstoffrückfüh-
rung. Im Gegensatz zu kommerziellen landwirtschaftlichen 
Nutzpflanzen können Weiden und Pappeln Ektomykorrhi-
zierung ausbilden. Das führt zu einer Einwanderung von 
Ektomykorrhizapilzen in landwirtschaftliche Böden und 
zu Veränderungen in der bodenmikrobiellen Aktivität und 
Besiedlung. Der Verzicht auf Bodenbearbeitung und die 
hohen Streumengen können weiterhin zu Veränderungen 
in der Abundanz und Diversität der Bodenfauna führen, z. 
B. zu erhöhten Abundanzen von Regenwürmern (Lumbri-
cidae) und trotz erhöhter Diversität zu reduzierten Abun-
danzen von Laufkäfern (Carabidae). Aufgrund ihrer hohen 
Biomasseproduktion und hohen Feinwurzeldichten eignen 
sich Weiden- und Pappelklone zur Phytoremediation von 
kontaminierten Böden (z. B. über die Aufnahme von Cd 
und Zn und den Abbau von Xenobiotica). Insgesamt kön-
nen KUP auf vormals mit annuellen Kulturen bestellten 
landwirtschaftlichen Flächen damit verschiedene bodenö-
kologische Verbesserungen bewirken. Informationsdefizi-
te bestehen insbesondere weiterhin zu Langzeitwirkungen 
und zur Nachhaltigkeit dieser Veränderungen nach Rück-
kehr zur vorherigen Ackernutzung. 

Schlüsselworte: Boden, Kohlenstoffsequestrierung, Bo-
denorganismen, Mykorrhiza, Phytoremediation, orga-
nische Bodensubstanz
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1  Introduction

Short rotation coppice (SRC) is defined here as a produc-
tion system in which fast growing recoppicing species of 
trees and bushes are intensively managed to yield large 
quantitiy of woody biomass in rotations of about 3 to 10 
years (Šlapokas and Granhall, 1991a). Fast growing spe-
cies of willows (Salix spp.) and poplar (Populus spp.) are 
used in SRC on former arable sites as a renewable source 
of energy and for the phytoremediation of contaminat-
ed soils and water (Volk et al., 2004; Mirck et al., 2005). 
These tree taxa can be highly effective in wood biomass 
production in SRC as a constituent of the agricultural pro-
duction in temperate conditions (Anderson et al., 1983; 
Stolarski et al., 2008).
Within the last thirty years soil ecological effects of SRC 

on former arable soils were investigated, e.g., to disclose 
effects on the C sequestration with possible consequenc-
es for the soil fertility or climate protection (Makeschin 
et al., 1989; Hansen, 1993; Grigal and Berguson, 1998; 
Post and Kwon, 2000; Hoosbeek et al., 2004; Weih and 
Bussel, 2006; Sanchez et al., 2007; Arevalo et al., 2009) 
and effects on the diversity, abundance and activity of 
soil organisms (Makeschin, 1991). Soil ecological effects 
of SRC on former arable soils were already reviewed by 
Makeschin (1994) and Mann and Tolbert (2000). Environ-
mental effects of SRC were summarised by Ranney and 
Mann (1994), Joslin and Schoenholtz (1997), Jug et al. 
(1999), especially for Austria by Trinkaus (1998) and espe-
cially for Sweden by Perttu (1998) and Börjesson (1999). 
In the review of Makeschin (1994) lack of information was 
emphasized especially on long-term effects of SRC. The 
majority of more recent investigations continued to focus 
on short-term effects of SRC on soil properties a few long-
term studies were published (e.g. Kahle et al., 2007). Be-
sides the long-term effects, any indication of sustainability 
concerning changes in soil properties would be especially 
valuable for the ecological assessment of SRC on arable 
soils. Mann and Tolbert (2000) concluded that soil eco-
logical benefits of SRC can be caused by the following 
mechanisms: i) the continuous plant cover intercepts rain-
fall and decreases erosion potential, (ii) the increased root 
development at greater depths stabilizes soil, improves 
nutrient uptake and reduces leaching losses, and increases 
organic matter input, (iii) litter and vegetation intercept 
surface runoff and enhance infiltration, and (iv) the cooler 
soil temperatures decrease the rate of decomposition. Ac-
cording to these authors, soil ecological benefits of SRC 
with fast growing tree species even on eroded sites were 
predicted to become detectable already in 3 to 5 years. 
Furthermore, beneficial applications of SRC for soil erosion 
control (Wilkinson, 1999) and phytoremediation of con-
taminated soils were reported (Keller et al., 2003). Selec-

tion of optimal conditions for beneficial environmental ef-
fects of SRC were summarised by Lamersdorf et al. (2008).
The present review describes the state of the art in the 

following aspects of soil ecology under SRC with willows 
and poplar on former arable sites: i) effects on C seques-
tration, ii) nutrient cycling from litter, iii) effects on soil 
organisms, and iv) applications for phytoremediation of 
contaminated soils. 

2  Carbon sequestration in the soil 

Potential options of C sequestration in arable soils via 
agroforestry, mainly focused on tropical tree species and 
management systems, were recently reviewed by Nair et 
al. (2009). It was estimated, that the area under agrofor-
estry is currently worldwide about 1,023 million ha and 
that the C sequestration in this use depends on a number 
of site-specific biological, climatic, soil and management 
factors (Nair et al., 2009). The total C sequestration under 
SRC is significantly higher than under arable soils with an-
nual crops, but still below the C sequestration in mature 
forests (Table 1, Boman and Turnbull, 1997). ����������  The C tur-
nover under SRC on former arable soils is more similar to 
that in forests than in arable soils (Svensson et al., 1994). 
However, it is likely that C sequestration varies significantly 
between the tree genotypes even within one genus (Weih 
and van Bussel, 2006). The C accumulation after conver-
sion of commercial arable sites to SRC was concentrated 
in the topsoil (Makeschin, 1994; Stetter and Makeschin, 
1997; Neergaard et al., 2002; Dowell et al., 2009). Esti-
mated rates of C accumulation in topsoil (0–40 cm) of ar-
able sites were 40–170 g C m−2 yr−1 during the first decade 
following plantation establishment (Garten, 2002).

Table	1:

Average	C	sequestration	in	arable	use,	short	rotation	coppices	and	forests	 in 	
t ha-1	(Boman	and	Turnbull,	1997)

Components Arable use Short rotation coppice Forest

Leaves 4.0 2.5 2.5

Trunks 0 21.0 70.0

Weed 0.5 1.0 2.0

Litter 0.5 5.0 15.0

Roots 2.0 5.5 10.0

Soil 25.0 35.0 45.0

Total 32.0 69.5 144.5

The increased C concentrations in soils under SRC can 
be explained by: i) the non-tillage management and high 
annual amounts of leaf litter of in average 1 to 5 t ha-1 (Ver-
wijst and Makeschin, 1996; Boman and Turnbull, 1997) 
and ii) the increased transfer of assimilates into external 
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mycelium of mycorrrhizal fungi (Ek, 1997). The external 
mycelium of mycorrhizal fungi was the dominant pathway 
(62 %) through which C entered the soil organic matter 
(SOM) pool, and this input exceeds the litter and fine root 
turnover under poplar in SRC (Godbold et al., 2006). How-
ever, the annual leaf litter fall is the main source of easily-
available C sources for the soil microorganisms as derived 
from hot water extracts (Huang and Schoenau, 1996). 
Gordan and Matthews (2006) predicted that the potential 
for C sequestration under SRC with willows is largest in 
soils whose C content has been depleted to relatively low 
levels due to aeration by annual deep ploughing in arable 
soil use. In summary, the publications agree in the general 
possibility of increased C sequestration by SRC on former 
arable soils, however, the initial soil properties govern the 
extent to which C is stored. Therefore, approaches for the 
selection of most promising sites for C sequestration by 
SRC must be developed. 
Generally, soil C can be sequestered by various process-

es: (i) stabilization by interaction with mineral surfaces (Fe-, 
Al-, Mn-oxides, phyllosilicates) and metal ions, (ii) spatial 
inaccessibility of SOM against decomposer organisms due 
to occlusion, intercalation, hydrophobicity and encapsula-
tion; and (iii) selective preservation due to recalcitrance of 
molecules from plant litter, rhizodeposits, microbial prod-
ucts, humic polymers, and charred SOM (Lützow et al., 
2006; Marschner et al., 2008). Various of these processes 
such spatial inaccessiblility and organo-mineral interac-
tions, e.g., in faeces of earthworms or recalcitrance of spe-
cific molecules in the litterfall or rhizosphere of SRC may 
be relevant for C sequestration under SRC but this has 
not been studied at the molecular level. Various chemical-
analytical methods are applied in routine and research to 
describe the molecular composition of SOM such as com-
pound specific wet-chemical extractions, nuclear mag-
netic resonance (NMR) spectroscopy (Kögel-Knabner et 
al., 2008) and analytical pyrolysis and mass spectrometry 
(Leinweber et al., 2009). However, none of these sophis-
ticated methods has been applied to look at alterations in 
the molecular composition of SOM under SRC. Therefore, 
it is almost completely unknown which chemical altera-
tions the SOM undergoes, if SRC are established and stand 
for long time at previous arable soils. Such a basic under-
standing, however, is urgently needed if predictions for 
the long-lasting C-sequestration under SRC shall be based 
on sound scientific evidence.

3  Nutrient cycling from litter

SRC on former arable soils affects the soil nutrient 
turnover	 i)	by	 its	biomass	and	rhizodeposits	and	 ii)	by	 its	
management.	The	litter	biomass	quality	and	quantity	is	in-
fluenced	 by	 soil	 properties	 (Rytter,	 2001)	 and	 species	 or	

genotypes (Ericsson, 1981; Weih and Nordh, 2002; Lukac 
at al., 2003; Cotrufo et al., 2005). For example the N con-
centration of abscised willow leaves, differed among gen-
otypes of the same tree species (Weih and Nordh, 2002), 
affect litter quality. The litter decomposition rate differed 
tree species-specific (Püttsepp et al., 2007) and effects 
of the tree species were superimposed upon other con-
trols of the litter decomposition under SRC (Šlapokas and 
Granhall, 1991b). Meiresonne et al. (2006) investigated 
the hydrological fluxes, atmospheric deposition, litterfall, 
and soil percolation of the most important nutrients in an 
18-year-old poplar plantation on a well-drained silt loam 
soil during 2 years. In this study around 80 % of total ni-
trogen input (6.6 kmol·ha-1 in years 1 and 6.5 kmol·ha-1 in 
year 2) originated from litterfall and after nitrification only 
a negligible amount of nitrate leached during the growing 
season. The yearly uptake of N by the poplar ecosystem 
in this study was equal to the input, of which more than 
50 % was accounted for by the leaves. This indicated very 
efficient N cycling. Total deposition of base cations origi-
nated from two processes, dry deposition (Mg2+ and Ca2+) 
and canopy leaching (K+ and Ca2+). Litter input of Ca2+ rep-
resented about 83 % of the total input (stand deposition + 
litterfall), Mg2+ about 61 %, and K+ less then 50 %. Perco-
lation of base cations at 1 m depth was very limited. Rather 
high Ca2+ and K+ contents of the woody biomass can lead 
to high exports at harvest. Meiresonne et al. (2006) con-
cluded, that the nutrient cycling in the poplar stand was 
very efficient, with no significant nutrient losses.
The ratio of aboveground biomass to fine root biomass 

production of lysimeter-grown willow varieties ranged 
from 0.4 to 1.2 (Rytter, 2001). Also the root-to-shoot ratio 
of willows varied between genotypes (Weih and Nordh, 
2005), which is likely to influence fine root biomass and 
turnover. The fine root characteristics of poplar varied 
clone-specific (Al Alfas et al., 2008) and were affected by 
the management, like irrigation and coppicing (Dickmann 
et al., 1996). The average daily fine root growth (m m–2 
day–1) of aspen (Populus tremula) was positively correlated 
with soil temperature at 10 cm depth (r2 = 0.83–0.93) 
(Steele et al., 1997). The fine root biomass under clones of 
the willows S. viminalis and S. dasyclados in a SRC on for-
mer arable soil in Estonia was vertically concentrated (39 
to 54 % of the total fine root biomass) in the uppermost 
10 cm of soil (Heinsoo et al., 2009). Thus it is not surpris-
ing that the fine-root turnover was mentioned as a sub-
stantial constituent of the nutrient cycling under willows 
(Rytter, 1999; 2001). Median fine root life span of poplar 
(Populus deltoides) varied from 307 to over 700 days and 
increased with depth, diameter and nutrient availability 
(Kern et al., 2004). 
In addition to plant-genotype effects, SRC can cause 

several changes in soil chemical properties (Kahle et al., 
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2005), which affect the soil nutrient turnover. Again, this 
depends on the initial soil properties at the sites. The C/N 
ratio in the topsoil under SRC on former arable soils slight-
ly increased (Stetter and Makeschin, 1997), and the soil pH 
decreased in the upper 0 to 10 cm of soil by about 0.5 to 
0.8 units while the cation exchange capacities decreased 
by about 15 % (Jug et al., 1999). During the planting and 
establishment of SRC on former arable soil initial high nu-
trient losses are possible (Granhall and Šlapokas, 1984; 
Makeschin, 1994; Jug et al., 1999) because tillage pro-
motes the mineralization and weed control reduces the or-
ganic matter input. However, in established SRC sites low 
nitrate losses were measured even in combination with an 
annual N fertilization of 150 kg N ha-1  and explained by 
the fast plant growth (Bergström and Johansson, 1992; 
Mortensen et al., 1998). The average annual nutrient up-
take and removal by wood biomass were 18 to 54 kg N 
ha-1, 10 to 70 kg Ca ha-1, 3 to 9 kg P ha-1, 6 to 36 kg K ha-1 
and 1 to 5 kg Mg ha-1 in rotation periods of five years (Jug 
et al., 1999). The annual nutrient uptake of two poplar 
clones in France reached 92 kg N ha-1, 15 kg P ha-1 and 87 
kg K ha-1. The total uptake of nutrients varied significantly 
in dependence on the soil texture (Rytter, 2001). About 
60 to 80 % of the nutrients taken up returned to the soil 
through litterfall which reached about 4 to 5 t ha-1 a-1 at 
an age of 7 to 8 years (Berthelot et al., 2000). At degraded 
arable sites the nutrient supply and growth of poplar was 
significantly promoted by application of grass mulch (Fang 
et al., 2008).

4  Effects of SRC on soil organisms

4.1  Soil microorganisms

Soil microbial communities are important regulators of 
processes such as nutrient cycling and decomposition, and 
can offer protection against pests and diseases. These mi-
croorganisms rely predominantly on organic matter pro-
vided by root exudates, secretions and other rhizodeposits, 
including root turnover. Therefore microorganism commu-
nities are greatly influenced by plant species and geno-
type. For example, the diversity of saprotrophic microfungi 
in the rhizosphere depended on the willow variety grown 
in SRC plantations (Šlapokas and Granhall, 1991a; Baum 
and Hrynkiewicz, 2006). The vertical distribution of soil 
microorganisms was changed under SRC on former arable 
sites caused by the non-tillage management. This means 
that the microbial biomass in the soil increased in the up-
per 5 cm of soil but decreased in subsoils compared to the 
arable soil under SRC (Makeschin, 1994). 
Mycorrhizal fungi are an important component of the 

soil microbial community, forming symbiotic associations 
with most land plants and mediating a range of crucial 

ecosystem processes including nutrient cycling, organic 
matter decomposition, C sequestration and soil aggrega-
tion (Zhu and Miller, 2003; Olsson and Johnson, 2005; 
Smith and Read, 2008; van der Heijden et al., 2008). For 
example, mycorrhizal fungi frequently are essential for 
plant nutrition, most notably in the provision of phospho-
rus and nitrogen to the host plant (Smith and Read, 2008). 
Furthermore, they form various symbiotic interactions with 
other soil organisms affecting soil ecology and biodiver-
sity (e.g. mycorrhiza helper bacteria and plant growth-
promoting rhizobacteria) (Zimmer et al., 2009). Two major 
types of mycorrhizal fungi, the arbuscular mycorrhizal fun-
gi and the ectomycorrhizal fungi form symbiotic associa-
tions with most land plants. Arbuscular mycorrhizal fungi 
are common in arable soils, since the majority of arable 
crops forms arbuscular mycorrhizae, whereas in SRC plan-
tations on former arable sites ectomycorrhizal fungi are 
usually introduced after long-term absence of host plants 
of ectomycorrhizal fungi. Although mycorrhizal coloniza-
tion often has been documented in poplars and willows 
grown on former arable land (Baum et al., 2002; Khasa 
et al., 2002; Püttsepp et al., 2004; Trowbridge and Jump-
ponen, 2004), little is known about their functional role 
in biomass plantations. Interestingly, poplar and willows 
can form associations with both arbuscular and ecto-
mycorrhizal fungi, known as ‘dual colonization’ (Lodge, 
1989). However, it is usually one type of mycorrhiza that 
dominates or exclusively colonises a given tree at a given 
time, and ectomycorrhizal colonization normally seems to 
exceed arbuscular mycorrhizal colonization in poplars and 
willows (Trowbridge and Jumpponen 2004, Kahle et al., 
2005). Ectomycorrhizal fungi will become introduced into 
arable soils with poplars and willows since the portion of 
ectomycorrhizal taxa on the total diversity of basidiomyce-
tes in arable soils is rather low and dominated by sapro-
trophic taxa (Lynch and Thorn, 2006). Examples of ecto-
mycorrhizal fungi of willow and poplar species are listed 
in Table 2. This overview documents fungal taxa that can 
be preferentially introduced into arable soil by SRC with 
poplar and willows. However, such potential changes in 
the soil microbial diversity with increased spreading and 
activity of ectomycorrhizal fungi in the soil are scarcely 
proven although they can have significant ecological ef-
fects. For instance, members of basidiomycetes are the 
main decomposers of recalcitrant components of plant lit-
ter because they can produce lignin-modifying enzymes 
(Rayner and Boddy, 1988). Therefore, changes in their 
diversity can have significant consequences for the litter 
decomposition.
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Table	2:

Ectomycorrhizal	fungi	on	Salix and Populus	spp.

Host plant Ectomycorrhizal fungi Reference

Salicaceae Cenococcum geophilum

Lactarius controversus

LoBuglio, 1999

Hesler and Smith, 1979

Moser, 1983, Bills 1986

Salix spp. Amanita silvicola

Cortinarius decipiens

C. tenebricus

Entoloma sinuatum

Hebeloma crustuliniforme

H. helodes

H. lutens

Hymenogaster rubyensis

Inocybe fuscomarginata

I. lacera

Lactarius aspideus

Russula fragilis

Tuber magnatum

Gardes and Dahlberg, 1996

Jumpponen et al., 2002

Agerer, 1997

Aanen et al., 2000

Fogel and States, 2001

Beeneken et al., 1996

Jumpponen et al., 2002

Arnolds, 1989; Watling, 1992

Jumpponen et al., 2002

Granetti, 1987

S. caprea Cenococcum geophilum

Cortinarius atrocoeruleus

Hebeloma helodes

Laccaria spp.

Lacatrius pubescens

Paxillus involutus

Phialophora finlandia

Tomentella spp.

Tricholoma cingulatum

Tuber raeodorum

Hrynkiewicz and Baum, 2003

S. viminalis Inocybe glabripes Baum et al., 2002

Populus spp. Paxillus involutus

Tuber albidum

Heslin and Douglas, 1986

Fontana and Palenzona, 1969

P. alba Scleroderma bovista Jakucs and Agerer, 1999a

Tomentella pilosa Jakucs and Agerer, 1999b

Tomentella subtestacea Jakucs and Agerer, 2001

P. nigra Inocybe fuscomarginata Beeneken et al., 1996

P. tremula Pisolithus spp.

Scleroderma areolatum

S. citrinum

Tricholoma populinum

Godbout and Fortin, 1985

Kreisel et al., 1990

P. tremula x 

tremuloides

Amanita muscaria

Cenococcum geophilum

Cortinarius uliginosus

Entoloma minutum

E. prunuloides

Hebeloma helodes

Inocybe geophylla

I. microspora

Laccaria laccata

Laccaria tortilis

Lactarius controversus

Leccinium aurantiaca

Paxillus involutus

Phialocephala fortinii

Tomentella spp.

Tuber spp.

Hampp et al., 1996

Kaldorf et al., 2004

Baum and Makeschin, 1999

Kaldorf et al., 2004

Host plant Ectomycorrhizal fungi Reference

P. tremuloides Amanita muscaria

A. pantherina

Cenococcum geophilum

Inocybe dulcamara

I. flavella

I. flocculosa

I. geophylla

I. giacomi

I. griseolilacina

I. lacera

I. longispora

I. mixtilis

I. nitidiuscula

I. phaeocomis

I. sindonia

I. squamata

I. whitei

Laccaria laccata

Lactarius controversus

Leccinium aurantiacum

Paxillus vernalis

Cripps and Miller, 1993, 

Cripps and Miller, 1995

Cripps, 1997

Cripps and Miller, 1993

Cripps and Miller, 1995

P. trichocarpa Amanita muscaria

Cortinarius croceocae-

ruleus

C. uliginosus

Inocybe geophylla

I. microspora

I. umbrina

Laccaria laccata

Laccaria tortilis

Lactarius controversus

Leccinium aurantiaca

Paxillus involutus

Rhizopogon spp.

Tuber borchii

Trappe, 1962a

Molina and Trappe, 1982

Baum and Makeschin, 1997

Mycorrhizal	colonization	of	Populus and Salix	spp.	var-
ies	greatly	between	species	and	genotypes	(Khasa	et	al.,	
2002;	 Püttsepp	 et	 al.,	 2004),	 and	 also	 depends	 on	 soil	
properties	 and	management	 effects	 (Loree	 et	 al.,	 1989;	
Baum	 and	Makeschin,	 2000;	 Baum	 et	 al.,	 2002).	 In	 in-
tensively	managed	biomass	plantations,	the	degree	of	my-
corrhizal	colonization	and	the	diversity	of	ectomycorrhizal	
fungi	 appear	 to	 be	 lower	 compared	 to	 adjacent	 natural	
stands	 (Toljander	 et	 al.,	 2006).	 Furthermore,	mycorrhizal	
colonization	affects	 the	 leaf	 chemistry	of	willows	 (Baum	
et	al.,	2009),	which,	 in	turn,	 is	 likely	to	 influence	willow	
leaf	resistance	to	pests	such	as	herbivory	insects.	The	ef-
fect	of	mycorrhiza	on	leaf	chemistry	varied	between	host	
plant	 genotypes	 (Baum	 et	 al.,	 2009).	 The	 interaction	 of	
plant	genotype	and	herbivory	can	affect	the	leaf	litter	de-
composition	and	alter	 the	nutrient	dynamics	 (Schweitzer	
et	al.,	2005).	This	example	shows	that	willow	genotype	di-
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rectly affects soil ecology in terms of mycorrhizal coloniza-
tion, which could indirectly influence the cropping safety 
of the plantations through an effect on pest resistance. 
Understanding of these complex multi-trophic interactions 
is crucial to our general understanding of soil ecosystem 
function and the regulation of fundamental ecosystem 
processes. Furthermore, understanding of multi-trophic in-
teractions could also support yield increases and cropping 
safety in willow and poplar biomass plantations in a most 
sustainable way, e.g. by the appropriate choice of willow 
varieties that favour pest resistance.

4.2  Soil fauna

The soil fauna is an important control of litter decompo-
sition and bioturbation and in consequence of the nutri-
ent cycling and plant growth. Since the soil macrofauna 
can be damaged by soil tillage a promotion during non-
tillage SRC seems most probably. In agreement with this, 
the abundance of earthworms (Lumbricidae) (Makeschin, 
1994), harvestmen (Opilionida) and woodlice (Isopoda) 
increased on experimental sites with poplars and willows 
on former arable soils after the conversion to SRC (Make-
schin, 1991). The abundance of carabids (Carabidae) and 
spiders (Araneida) decreased after this conversion. How-
ever, under fast growing trees a greater diversity of ca-
rabids (Carabidae) was detected. Centipedes (Chilopoda) 
and millipedes (Diplopoda) did not change after conver-
sion from arable to forest land use. Mineral fertilization 
had no significant effect on this faunal groups under SRC 
(Makeschin, 1991). The effects of poplars and willows on 
the soil fauna differed significantly. The supposed deter-
mining factor of the tree taxa-specific differences was a 
different water regime in soil resulting from a lower inter-
ception by the willows compared to poplar and differences 
in the leaf and root litter production (Makeschin, 1994). 
The abundance and diversity of soil mites (Oribatida and 
Gamasida) was negatively affected through soil cultivation 
for SRC during the first year after conversion arable land to 
SRC (Minor et al., 2004). In this experiment, the use or lack 
of tillage contributed to differences in the mite community 
structure and following initial disturbance. However, the 
abundance and diversity of soil mites increased in the long 
term under SRC (Minor et al., 2004). Diverse management 
effects (application of biosolids, chicken manure compost, 
urea fertilizer and black plastic mulch) on the soil mites 
(Acari) under willows in SRC were investigated by Minor 
and Norton (2004). They found, that urea fertilizer had no 
persistent effect on mite assemblages in SRC. Plastic mulch 
did not affect Mesostigmata, but had a lasting detrimental 
effect on oribatid mites. Mesostigmatid mites benefited 
from application of biosolids, while Oribatida were most 
adversely affected by this treatment. When plastic mulch 

and biosolids were used together, the effect of biosolids 
predominated. Composted chicken manure supported 
abundant and diverse populations of both groups (Minor 
and Norton, 2004).

5  Applications for phytoremediation of contaminat-
ed soils

Phytoremediation is defined as the use of trees and oth-
er plants such as grasses and aquatic plants, to remove, 
destroy or sequester hazardous substances from the en-
vironment (Glass, 1999). This chapter reviews the use of 
poplar and willows for cleaning/improving the soil. Poplars 
and willows can be used for several different types of phy-
toremediation for soil improvement, based on the func-
tion of the plants against hazardous compounds. These 
are “phytoextraction” (ability to accumulate large quanti-
ties in the above ground parts removed by harvest), “rhi-
zofiltration” (absorption onto plant roots removed from 
aqueous waste-streams), “phytotransformation” (degra-
dation or metabolization in the plant parts) or “phytovola-
tilization” (volatilization into the air from plant biomass), 
“phytostimulation” (degradation of pollutants in soil due 
to secreted plant enzymes or by plant stimulation of mi-
crobial biodegradative activity), “phytostabilization” (im-
mobilization in the soil supported by plant exudates), and 
“phytomining” (extraction of large amounts of metals by 
plants) (Glass, 1999). Beside the direct effects of the plants 
during phytoremediation of contaminated sites, indirect 
effects like metal immobilization by increased SOM se-
questration (see section 2) with increased concentrations 
of metal-chelating substances in the soil can be used. This 
can lead to a decreased bioavailability and thereby phyto-
toxicity of heavy metals and to a decrease the risk of metal 
leaching into the ground water. 
Willows and poplars are no hyperaccumulators of met-

als or other hazardous compounds but they were preferred 
in commercial phytoremediation projects due to their fast 
and high growth, and the fact that agronomic practices 
for SRC easy management and good growth performance 
already exist. Besides the relative high growth, willows 
and poplars have been reported to evapotranspire high 
amounts of water (Persson and Lindroth, 1994; Bungart 
and Hüttl, 2004) and to tolerate high heavy metal con-
centrations in soil (Hammer et al., 2003; Laureysens et al., 
2004). Furthermore, willows are tolerant to anoxic condi-
tions (Jackson and Attwood, 1996). All the above traits 
enable growth under “difficult” environments, but under 
the scope of this paper poplar and willow SRC are pri-
marily seen as a biomass production system. For this, pro-
ductive soils should be preferred to achieve high growth, 
preferably in large-scale plantations. In many cases how-
ever, only moderately contaminated soils are available for 



C. Baum, P. Leinweber, M. Weih, N. Lamersdorf, I. Dimitriou / Landbauforschung - vTI 
Agriculture and Forestry Research 3 2009 (59)183-196

189

SRC cultivation and other contaminants can already exist 
in agricultural soils. Therefore, we will mostly focus on im-
plications for large-scale willow and poplar SRC, although 
results obtained in the laboratory will be used to estimate 
soil ecological effects. 

5.1  Phytoextraction of heavy metals

Extensive research related to phytoextraction of heavy 
metals, e.g. the ability to accumulate large quantities in 
the above ground parts removed by harvest has been 
conducted with willow and poplar. Willows have been 
reported from early stages of their commercial bioen-
ergy use to take-up large amounts of Cd (Perttu, 1992; 
Riddell-Black, 1994). Initially most research was done on 
Cd uptake by willows but later the uptake of other met-
als together with Cd such as Cu, Pb, Zn, Cr, Ni, As was 
studied as well (Granel et al, 2002; Landberg and Greger, 
2002; Ali et al., 2003; Vyslouzilova et al., 2003; Kuzovkina 
et al, 2004; Fischerova et al, 2006; Dos Santos Utmazian 
et al., 2007; Meers et al, 2007; Wieshammer et al, 2007). 
Metal uptake by poplars was studied at later stages since 
poplar gained constantly interest as alternative species to 
willow for biomass production for energy (Robinson et al, 
2000; Sebastiani et al, 2004; Laureysens et al, 2004; Licht 
and Isebrands, 2005). The phytoremediation potential of 
willows and poplars, despite not being hyperaccumula-
tors (Table 3), has been reported to be high based on the 
combination of high accumulation of metals in the plant 
tissues together with the high biomass produced (Arons-
son and Perttu, 2001; Berndes et al., 2004; Rockwood et 
al., 2004; Licht and Isebrands, 2005; Puschenreiter and 
Wenzel, 2007). 

Substantial related research was conducted in controlled 
laboratory conditions where individual willow and poplar 
plants were grown in contaminated soils (Landberg and 
Greger, 2002; Rosselli et al, 2003; Vyslouzilova et al., 2003; 
Sebastiani et al, 2004; Vandecasteele et al, 2005; Fisch-
erova et al, 2006; Meers et al, 2007; Wieshammer et al, 
2007) or in hydroponic systems (Kuzovkina et al, 2004; Dos 
Santos Utmazian and Wenzel, 2007; Dos Santos Utmazian 
et al., 2007). Very promising results for uptake of certain 
metals in willow and poplar plant parts were reported from 
those experiments and speculations for great potential for 
cleaning contaminated soils with willow and poplar were 
expressed. Although results from pot-trials have been vali-
dated in some cases in the field (Robinson et al., 2000; 
Sebastiani et al, 2004), concerns due to the different con-
ditions between controlled small-scale experiments (often 
artificially mixed heavily contaminated soils and favorable 
plant growth) and large-scale field situation (often non-
uniform and moderate contamination and lower plant 
growth) have been raised (Dickinson and Pulford, 2005; 

Dickinson et al., 2009). We also believe that such extrapo-
lations from lab to field should be drawn cautiously, and 
although we will refer to results obtained in the laboratory, 
generalizations for implications in the field will be avoided. 

Table	3:

Concentrations	of	heavy	metals	in	the	biomass	of	Salix and Populus clones at 
contaminated soils

Plant species Plant 
consti-
tuent

Ele-
ment

Concen-
tration
(mg kg-1)

Reference

Salix acmophylla leaves Cu 2.4 -   126.3 Ali et al., 2003

Ni 2.9 -   139.1

Pb 1.9 -   180.4

stems Cu 4.0 -   203.7

Ni 3.5 -   264.3

Pb 2.5 -   284.0

roots Cu 6.8 -   624.4

Ni 4.3 -   746.3

Pb 3.1 - 1038.5

Salix caprea leaves Cd 177.0 Wieshammer et 
al., 2003

Pb 79.0

Zn 2034.0

Salix fragilis leaves Cd 326.0 Wieshammer et 
al., 2003

Pb 68.0

Zn 2413.0

Salix matsudana x 
S. alba

stems Cd 9.0 -   167.0 Robinson et al., 
2000

Salix viminalis stems Cd   3.3 -      3.4 Keller et al., 
2003

Cu 12.0 -    14.0

Zn 240.0 –  294.0

Populus deltoides 
x P. yunnanensis

leaves
stems

Cd 12.0 -     62.0
6.0 -     75.0

Robinson et al., 
2000

Many studies have also proposed the use of a range of 
chelating agents such as ethylendiamin-tetraacetat (EDTA), 
ethylenediamine-N,N’-disuccinic acid (EDDS), oxalic and 
citric acids, and others, to increase the positive metal up-
take rates by willow and poplar plants (Hooda et al., 1997; 
Robinson et al., 2000; Schmidt, 2003; Hammer and Keller, 
2002; Komarek et al., 2008). Despite the positive results 
for induced phytoextraction indicated in the previous pub-
lications, chelating agents have been reported to cause 
toxicity symptoms to the plants, leaching of metals and 
negative impact on soil biota have been reported, there-
fore questioning the potential future use of chelate-assist-
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ed phytoextraction (Evangelou et al., 2007; Dickinson et 
al., 2009). Another opportunity for the improvement of 
phytoextraction by willows and is the inoculation with 
mycorrhizal fungi and bacteria (Sell et al., 2005; Baum et 
al., 2006; Kuffner et al., 2008; Zimmer et al., 2009). The 
potential of this biologically based improvements of phy-
toextraction efficiency is by far not fully explored.
However, some critical points must be considered for 

successful phytoextraction with SRC. Great variations in 
metal uptake ability of willows and poplar have been re-
ported in different SRC fields. This might depend on dif-
ferent contamination levels within the fields, and/or dif-
ferences in the clone material used. Vandecasteele et al. 
(2002) suggested that Cd uptake in aboveground plant 
parts tends to increase with increasing Cd in soil. This 
was also reported in other studies with elevated metal 
concentrations where willows and poplars took up larger 
amounts of heavy metals in aboveground tissues (Ham-
mer et al., 2003; Rosselli et al., 2003; Unterbrunner et al., 
2007) than in less contaminated soils (Pulford et al., 2002; 
Klang-Westin and Eriksson, 2003; Dimitriou et al., 2006). 
Moreover, even spatial variability of contamination within 
one field might be responsible for great variations in metal 
uptake (Dickinson and Pulford, 2005). Differences in metal 
uptake by willow species and clones have been reported 
by Granel et al. ����������������������������������������(2002), Landberg and Greger (2002), Vys-
louzilova et al. (2003), Kuzovkina et al. (2004) and Meers 
et al. (2007). In analogy, Laureysens et al. (2004) reported 
great differences in the ability of poplar clones to take up 
metals. Therefore, to effectively use SRC to clean soils, 
much attention should be paid to the selection of the 
clone in relation to the contamination source and level at 
the site. However, Dickinson et al. (2009) suggested that 
predictable uptake patterns for all metals will be unlikely 
to be found for accumulation in aboveground biomass, 
and only genotypes that take up more mobile elements 
such as Cd and Zn can be selected for a specific site (Table 
3). This was based on reported differences in the metal 
uptake among different families, species, clones, but also 
within individual plants. The mobility and plant availability 
of metals in soil might be also responsible for the great dif-
ferences in uptake patterns. For example, Eriksson and Le-
din (1999) indicated that plant available Cd concentrations 
in soil were reduced in a willow SRC field, but higher up-
take of different metals in willow shoots were not found 
when plant available fractions differed due to pH changes 
in a field willow experiment (Dimitriou et al., 2006). In all, 
it seems that for cleaning soils a “site-specific” approach 
with pre-testing of several clones to identify the best per-
forming ones for further use in large-scale should be per-
formed in advance, although difficulties due to the hetero-
geneity of localization of the pollution are to be expected 
(Keller et al., 2003). 

The	 above	 raises	 the	 question	which	 soils	 can	be	 sat-
isfactory	 remediated	by	phytoextraction	of	heavy	metals	
with	willow	and	poplar	SRC,	and	what	strategies	should	
be followed for best remediation combined with best eco-
nomic	value	in	a	certain	time	frame.	For	instance,	despite	
willow	and	poplar	have	been	proved	of	equally	good	or	
better	phytoextraction	efficiency	than	other	species	(Ros-
selli	 et	al.,	2003;	 Fischerova	et	al.,	2006),	 recent	 studies	
suggested	 that	 short-term	 remediation	 is	 not	 to	 be	 ex-
pected	in	heavily	contaminated	soils	such	as	mine	spoils	or	
heavily	contaminated	industrial	sites	due	to	unrealistically	
long	 time	 scales	 needed	 (Dickinson	 and	 Pulford,	 2005).	
Furthermore,	such	sites	might	be	polluted	 in	deep	layers	
which	 cannot	be	 cleaned	with	poplars	 and	willows	 that	
are	appropriate	for	rather	shallow	contamination	(Keller	et	
al.,	2003)	since	most	of	their	active	roots	are	concentrated	
near	 the	 soil	 surface	 (Rytter	 and	Hansson,	 1996).	 How-
ever,	large-scale	SRC	cultivation	offers	a	great	potential	for	
cleaning	moderately	contaminated	soil	from	metals	as	Cd,	
Zn,	Cu,	Ni,	Se	 (Dickinson	et	al.,	2009).	Such	moderately	
contaminated	 soils	 can	be	 arable	 soils	with	 elevated	Cd	
concentrations from P fertilizer but also with undesired 
metal	 enrichments	 from	 continuous	 sludge	 applications.	
Berndes	et	al.	(2004)	calculated	that	100	times	more	Cd	
would	be	removed	by	willow	SRC	than	harvested	by	straw	
in Sweden if SRC will be grown in arable land with el-
evated	Cd	concentrations	from	phosphate	fertilizer.	These	
amounts	would	compensate	for	the	atmospheric	deposi-
tion	each	year	and	would	drastically	 reduce	 the	amount	
of	Cd	in	arable	soils	in	Sweden,	but	would	give	economic	
incentives	for	the	farmer	from	compensations	for	reducing	
Cd	in	the	soil	(ca.	10	%	of	total	revenue).	Similar	calcula-
tions	were	made	by	Lewandowski	et	al.	(2006),	suggesting	
that	phytoextraction	with	willows	cultivation	for	a	certain	
period	 can	allow	 the	 future	use	of	moderately	 contami-
nated	fields	for	more	profitable	food	production,	thus	in-
creasing farmers´ income.
Sewage	sludge	is	applied	to	SRC	in	certain	counties	such	

as	 Sweden,	Denmark	 and	U.K.	 (Nielsen	1994;	Aronsson	
and	Perttu,	2001).	Sludge	contains	P	and	N	that	are	used	
as	 fertilizer	 to	 SRC,	 but	 also	 contains	 heavy	metals	 that	
can	accumulate	in	the	soil	when	applied	for	many	years.	
Therefore, an increase in biomass of SRC combined with 
increased	metal	uptake	would	result	in	a	balance	between	
metal	input	with	sludge	application	and	metal	output	with	
SRC	harvest.	Based	on	field	results	Dimitriou	(2005)	calcu-
lated	that	the	amounts	of	metals	applied	with	sludge	and	
after	the	uptake	in	SRC	stems	was	within	legal	limits	for	
such	practices.	Furthermore,	if	Cd	in	soil	would	continue	
to	reduce	as	in	the	first	years	of	the	experiment,	a	26	%	
reduction	of	the	total	Cd		 in	the	upper	soil	 layer	was	to	
be	expected	in	25	years.	Significant	respective	reductions	
for Cu and Zn were also calculated. Similar results were 
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reported by Lazdina et al. (2007) who also found increased 
metal concentrations in willow shoots compared to con-
trol by 4 to 8 % after sewage sludge applications. This 
indicated the potential for SRC fields to receive sewage 
sludge in consecutive years without drastically affect soil 
quality. To test the effect of long-term sewage sludge ap-
plications, several willow clones were grown in historically 
sewage sludge-loaded fields (Pulford et al., 2002; Maxted 
et al., 2007). Results underlined the potential for using 
willow to reduce metal amounts, but indicated great dif-
ferences between clones in uptake of different metals at 
the same site. 
Moreover, different patterns of metal concentrations 

were mentioned such as in either bark or wood or in 
leaves versus the shoots. Cd and Zn concentrations were 
generally much higher in the leaves than in shoots (Dimi-
triou et al., 2006; Maxted et al., 2007). Based on similar 
results it has been suggested that leaf harvest would sig-
nificantly reduce the soil concentrations of these elements 
in SRC fields (Puschenreiter and Wenzel, 2007; Dickinson 
et al, 2009). Vandecasteele et al. (2005) suggested that 
Cd and Zn was accumulated in above-ground willow parts 
compared to the other metals accumulated in the roots. 
However, others suggest that most of the metals are con-
centrated in the roots and small amounts are accumulated 
in aboveground biomass (Landberg and Greger, 1996). 
Therefore, it has been suggested to remove both leaves 
and roots of SRC if a maximum soil cleaning effect is pro-
jected (Echevarria et al., 2006). However, harvest rotation 
is impossible if roots are removed so that this is not an 
option. Thus, species or clones that have highest biomass 
growth and potential ability to store more metals in the 
shoots at a certain site should be preferred for commercial 
SRC fields.

5.2  SRC and rhizodegradation of organic pollution

Besides the positive effects of SRC to reduce heavy metal 
concentrations in soil, willow and poplar SRC have been re-
ported to remediate soils from various organic compounds 
(Schnoor et al., 1997; Aitchison et al., 2000; McMillan and 
Schnoor, 2000; Corseuil and Moreno, 2001; Predieri et al., 
2001; Kelley et al., 2001; Ciucani et al., 2004; Ma et al., 
2004; Ucisik et al., 2007), such as chlorinated solvents, 
explosives, petroleum hydrocarbons, cyanides, pesticides, 
and others (see Table 4). Soils polluted with such com-
pounds are usually characterised as heavily polluted and 
are therefore not considered for production of agricultural 
crops. The plant roots degrade the different compounds in 
the soil and in most cases these are not absorbed in the 
harvested parts as it is the case with heavy metals. 

Table	4:

List	of	organic	compounds	which	were	degraded	by	Salix	and/or	Populus	spp.

Organic compound Reference

Chlorinated solvents

Trichloroethylene Gordon et al., 1997; Shang et al., 2001

Dichlorophenol Icisik et al., 2007; Shi Xiang et al., 2008

Perchloroethene Larsen et al., 2008

Pentachlorophenol Mills et al., 2008

Explosives

TNT Thompson et al., 1998; Brentner et al., 2008

RDX Van Aken et al., 2004; Tanaka et al., 2008

HMX Yoon et al., 2002

Petroleum hydrocar-
bons

Palmroth et al., 2002; Rentz et al., 2003; 
Zalesny et al., 2007

Ethanol-blended 
gasoline

Corseuil and Moreno, 2001

Cyanides Ebbs et al., 2003; Larsen et al., 2004; Yu et 
al., 2005

Dieldrin Skaates et al., 2005

Dioxane Schnoor et al., 1997; Aitchinson et al., 2000

Pesticides Burken and Schnoor, 1997; Predieri et al., 2001

Although the focus of this paper is on SRC systems 
producing biomass in productive soils (and therefore not 
heavily polluted with organic compounds), poplar and 
willow show ability to treat some compounds of interest 
in agriculture, such as pesticides, and their ability to re-
mediate soils from contamination with  such compounds 
should be examined more closely. 

6  Concluding remarks

Soil ecological effects of willows and poplars in SRC on 
former arable soils can be various and are controlled signif-
icantly (i) by natural (e.g. initial soil properties, climate) and 
(ii) anthropogenic factors (e.g. former and recent manage-
ment, selection of tree genotypes). In response to natural 
factors, the selection of suitable sites for SRC seems to be 
the only appropriate option. However, numerous investi-
gations indicated that anthropogenic factors have a great 
impact on the soil ecological effects of SRC. This means 
that the selection of clones for SRC and the management 
might be valuable tools to increase ecological benefits and 
to decrease potential disadvantages of SRC on former ar-
able soil. It was demonstrated that SRC can change the 
site-specific communities of soil organisms with positive 
(e.g. increased abundance of earthworms and introduc-
tion of ectomycorrhizal fungi) but also possibly negative 
(e.g. decreased abundance of carabids and of predomi-
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nantly arbuscular mycorrhizal host plants) effects. Lack of 
knowledge was indicated especially on the sustainability 
of soil ecological effects of SRC with willows and poplar 
after return to annual arable crops. Since SRC in the tem-
perate climate is at present usually a constituent in the 
commercial arable land use, the sustainability of positive 
and negative effects in the site management should be 
considered in future investigations.
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