Geophysical Research Abstracts Vol. 15, EGU2013-8864, 2013 EGU General Assembly 2013 © Author(s) 2013. CC Attribution 3.0 License. ## Isotope fractionation factors of N_2O production and reduction by denitrification: b. Modeling data from soil incubation under N_2 -free atmosphere Dominika Lewicka-Szczebak (1,2), Mehmet Senbayram (3), Jan Reent Köster (4), and Reinhard Well (1) - (1) Thünen-Institute for Agricultural Climate Research, Braunschweig, Germany (dominika.lewicka-szczebak@ti.bund.de), - (2) University of Wroclaw, Poland, (3) Institute of Applied Plant Nutrition, University of Goettingen, Germany, (4) Kiel University, Germany Quantifying denitrification in arable soils is crucial in predicting the microbial consumption of nitrogen fertilizers as well as N_2O emissions. Stable isotopologue analyses of denitrification substrates ($\delta^{15}N_{NO3}, \delta^{18}O_{NO3}$) and products ($\delta^{15}N_{N2O}, \delta^{18}O_{N2O}$ and SP_{N2O} = Site Preference, i.e. difference in $\delta^{15}N$ between the central and peripheral N positions of the asymmetric N_2O molecule) can help to distinguish production pathways and to identify N_2O reduction to N_2 . However, such interpretations are often ambiguous due to insufficient knowledge on isotopic fractionation mechanisms and wide differences in isotope fractionation factors determined by various studies for N_2O production and reduction. Here we present an original approach to determine fractionation factors associated with denitrification. This determination is based on simultaneous modeling of both reaction steps (N_2O production and reduction) and comparison of the results with experimental data from a laboratory incubation experiment carried out under N_2 -free atmosphere. During the incubations N_2O and N_2 concentrations were measured continuously, hence the reduced fraction ($N_2/(N_2+N_2O)$) was calculated directly from measured gas fluxes. Various modeling approaches have been applied to estimate the ranges of isotopic fractionation factors controlling the isotopic signatures of soil-emitted N_2O . Initially, assumed isotope fractionation factors and the Rayleigh equations describing isotopic fractionation were used to calculate the theoretical $\delta^{15}N$, $\delta^{18}O$ and SP values for emitted N_2O . Afterwards, the best fit fractionation factors for N_2O production and reduction were determined by comparing modeled and measured values. For two analyzed arable soils (clay and sandy loam), the isotopic fractionation factors were very consistent. For N2O production mean net isotope effects of $\eta^{15} N_{N2O-NO3} \sim$ -41%, $\eta SP_{N2O-NO3} \sim 2\%$ and $\eta^{18} O_{N2O-H2O} \sim$ +40% have been found. For N2O reduction mean net isotope effects of $\eta^{15} N_{N2-N2O} \sim$ +1%, $\eta SP_{N2-N2O} \sim$ -7% and $\eta^{18} O_{N2-N2O} \sim$ -5% have been found. When compared to previous reports these results show significantly lower fractionation for $\delta^{15} N$ and $\delta^{18} O$ values during N2O reduction, which is most likely due to enhanced experimental approach that largely eliminates laboratory artifacts.