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A B S T R A C T   

Detailed maps on the spatial and temporal distribution of crops are key for a better understanding of agricultural 
practices and for food security management. Multi-temporal remote sensing data and deep learning (DL) have 
been extensively studied for deriving accurate crop maps. However, strategies to solve the problem of trans
ferring crop classification models over time, e.g., training the model with data for a recent year and mapping 
back to the past, have not been fully explored. This is due to the lack of a generalized method for aggregating 
optical data with regard to the irregularity in annual clear sky observations and the scarcity of multi-annual crop 
reference data to support a more generalized DL model. In this study, we tackled these challenges by introducing 
a method namely Temporal Encoding (TE) to capture the irregular phenological information. Subsequently, we 
adapted and integrated two methods, i.e., Random Observations Selection (ROS) and Random Day Shifting (RDS) 
to simulate the variability of temporal sparsity as well as the shifts of crop phenology over different years. We 
tested this approach with a 1-dimensional Convolutional Neural Network (1D-CNN) and a Transformer Network 
models. Our results for both classifiers showed that models trained with crop reference data from 2018 and a 
dense time series of Landsat 7/8 and Sentinel-2 A/B data can be transferred with little decreases in accuracy to 
map 12 consecutive years from 2010 to 2021. The Transformer Network was slightly more accurate, while the 
1D-CNN was much three times faster. Furthermore, the proposed models could achieve similar performances in 
the same years with and without fully available satellite information. The TE with ROS and RDS appears well 
suited for improving temporal transferability to support long term historic crop mapping.   

1. Introduction 

The rapid growth of the global population has led to an increasing 
demand for agricultural products. Thus, monitoring agricultural land 
use has become a crucial task in aiding decision-makers to enforce and 
assess policies that ensure food security and biodiversity, for example, 
through annual crop type mapping (Karthikeyan et al., 2020). In this 
context, Earth observation (EO) data has been widely used (Weiss et al., 
2020). The intra-annual information from EO time series reveals the 
distinctive growing patterns or phenologies of different crops and, 
hence, shows great potential for distinguishing crop types (Zeng et al., 

2020). In recent years, openly available EO data at high (10 m) and 
medium (30 m) spatial resolutions have considerably increased in terms 
of temporal frequency because of the existence of Sentinel-2A/B images 
(revisit interval of 5 days) coupled with the already existing Landsat 
images (revisit interval of 16 days) (Li and Roy, 2017). As a response, 
recent studies used this dense temporal EO information, particularly 
harmonized time-series information derived from Landsat and Sentinel- 
2 observations, to map crop types from regional to national scales 
(Griffiths et al., 2019; Piedelobo et al., 2019; Liu et al., 2020; Pan et al., 
2021). 

One of the major challenges when using multi-temporal EO data for 
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mapping over multiple years and larger areas is the need for regular 
temporal features that align better with the requirement for data 
completeness of machine learning models. Due to different orbit con
stellations and the highly irregular occurrence of clouds in optical EO 
imagery, temporal aggregation methods are frequently employed to 
capture consistent time-series information from multi-temporal data 
(Gómez et al., 2016). In the context of crop mapping, numerous methods 
adopted in the literature aim to sample crop phenological information 
and transform it into equidistant features for classification workflows. 
These methods include, but are not limited to, best-pixel compositing 
(Griffiths et al., 2019), spectral temporal metrics (Asam et al., 2022), 
temporal smoothing (Blickensdörfer et al., 2022), phenology compos
iting (He et al., 2021), and temporal mosaicking (Vaudour et al., 2021). 
While the strength of each method has been demonstrated in previous 
studies, they all have specific data requirements such as a temporal 
resolution that fits the specific application (Qiu et al., 2023). Another 
data aggregation method that is commonly used to capture crops’ sea
sonal information is linear interpolation (Qiu et al., 2014; Inglada et al., 
2017; Sadeh et al., 2021; Yan et al., 2021). Linear interpolation does not 
require any parameterizations and has been shown to perform princi
pally well within a consistent temporal density range (Valero et al., 
2016). However, the performance of linear interpolation over multiple 
years with varying temporal data densities has not been tested. Hence, 
previous temporal aggregation methods often limit the application to 
similar annual data situations and hinder a model transfer, e.g., to pe
riods with different sensor constellations. 

In recent years, newly developed deep learning (DL) architectures 
have been proposed within the context of tackling the irregularity of 
temporal data. For example, Garnot et al. (2020) used positional 
encoding as a means of representing the date of acquisition for Sentinel- 
2 data from a single year, to be used with the self-attention mechanism 
of the Transformer Network (Vaswani et al., 2017) for crop classifica
tion. The positional encoding allowed the classification model to predict 
crop types using stacked Sentinel-2 data from varying numbers of ac
quisitions. However, the variation is considered at the image level, not at 
the pixel level. Therefore, cloud cover differences or orbit constellations 
required the authors to utilize predetermined input vector lengths, 
which had to be generated through linear interpolation (Garnot et al., 
2020). Providing consistent feature lengths at the pixel level is an 
important requirement for machine learning models to make use of 
batch processing for pixel-based mapping, especially when mapping 
over large areas. Rußwurm and Körner (2020), on the other hand, 
showed that DL models can map crop types using “raw” temporal in
formation by including the cloud observations in the stacked time-series 
data. This way, the stacked data leads to equal feature length in every 
pixel without the need for interpolation. However, the study solely 
examined data in one year (2018) with dense Sentinel-2 observations, 
where the clear observations exceeded the cloudy observations by far for 
most pixels. Additionally, the approach is limited when facing no-data 
problems in regions at the edge of the observation swaths when 
combining multiple satellite sensors. Still, this approach has not been 
tested in unknown years with fewer temporal images, more clouds, or 
when using multiple satellite sensors. Overall, while previous studies 
have examined some potentials of different DL architectures to handle 
irregular temporal data, it is still important to acquire input features of 
equidistant length for every pixel to enable parallelism of batch pro
cessing for large area mapping. Given the complexity of the choice of 
aggregation methods regarding temporal density, there is a need for 
more generalized and flexible feature vectors that can capture the highly 
irregular time-series to map crop types based on their distinct 
phenologies. 

Despite the high number of studies investigating the efficacy of 
different data sources or classification algorithms, another challenge 
that has so far gained rather little attention is the temporal transfer of 
classification models with multi-temporal remote sensing data, which 
are characterized by inter-annual differences in data density and 

distribution. Such a model transfer is needed to derive a consistent time 
series of crop type maps to enable the analyses of crop rotations over 
time. Commonly, crop classifications based on supervised machine- 
learning methods require crop reference information to train the clas
sifier (Kamilaris and Prenafeta-Boldú, 2018). However, crop reference 
information is scarce in many regions, especially for multiple years. To 
monitor annual crop rotations, a common approach is to use crop 
reference data from all available years as training data to obtain a 
generalized crop classification model to then limit the analysis to the 
years where reference information existed (Blickensdörfer et al., 2022; 
Liu and Zhang, 2023; Xuan et al., 2023). However, transferring super
vised models to different domains with limited or no training data 
through domain adaptation is often challenging (Tuia et al., 2016; 
Kellenberger et al., 2021; Capliez et al., 2023; Wang et al., 2023b). In 
recent studies, different data augmentation methods have been used to 
simulate the variations in temporal data for generalizing classification 
models. For hyperspectral data, some augmentation methods were 
proposed such as self-supervised (Liu et al., 2023), deep learning 
generative (Wang et al., 2019) or integrating vector transformation 
(Wang et al., 2023a). For multi-spectral data, Sainte Fare Garnot et al. 
(2022) introduced a temporal dropout method that randomly removed 
observations in time-series data during training. This method was 
applied to the fusion of Sentinel-2 and Sentinel-1 data in one year (2019) 
and showed some improvements in overall crop mapping accuracy in 
the same year. In another study, Nyborg et al. (2022) introduced a 
temporal shifting method, i.e., by modifying the acquisition date by 
certain days of the Sentinel-2 imagery during training. The authors 
showed that the method improved the spatial transferability of the crop 
model between two countries (Denmark and France) where similar crop 
types have different phenological growths. Overall, these augmentation 
methods were only tested in a single period, where both temporal 
density and crop phenology are consistent across space with fixed 
numbers of satellite data. Hence, the potential of such methods in terms 
of temporal transferability, particularly mapping over multiple years, 
has not been fully investigated. 

Against the background of these challenges, the overarching aim of 
our study was to develop a set of methods for improving the temporal 
transferability of crop classification models trained with single-year 
reference data. We addressed two major challenges: 1) creating a 
generalized method for aggregating optical data to capture irregular 
time-series information and 2) temporally transferring a classification 
model trained in a single year. To achieve this, we first introduced a data 
structure concept that encodes annual time-series information into 
equidistant features, which is applicable regardless of the temporal 
resolution and sensor constellation. Secondly, inspired by previous 
studies on utilizing augmentation techniques for training, we applied 
two data augmentation methods to the proposed data structure to 
simulate the temporal density and distribution information of crop data. 
Subsequently, we adopted a 1-dimensional Convolutional Neural 
Network (1D-CNN) and a Transformer Network to construct the crop 
classification models, where we trained the models based on the 
augmented dataset. We experimented with the proposed methods by 
mapping crop types for the entire state of Brandenburg (Germany) using 
all available Landsat (5 − TM, 7 − ETM+, 8 − OLI) and Sentinel − 2 (A, 
B) imagery. We selected the year 2018 with the highest temporal in
formation to train the model and applied the model to map crop types in 
12 consecutive years (2010 – 2021) where there were large variations 
between years in the density of the time series of satellite images. We 
demonstrated the effectiveness of the proposed method in terms of:  

– Temporal transferability when mapping annual crop types over 12 
years  

– Consistent mappings despite artificially omission of satellite data 
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2. Materials and methods 

2.1. Study area 

Our study area covers the German federal state of Brandenburg with 
a total area of 29,640 km2 (Fig. 1a). Nearly 45 % of its land cover is used 
for agricultural purposes (Schindler, 2004). In the area, grassland ac
counts for approximately 23 % of the total agricultural area, 77 % of the 
area for cropland (Troegel and Schulz, 2018). Due to low rainfall, there 
is only a small percentage of irrigated crop types (around 2 % of crop
land area), where major crop types such as maize, rye, wheat, barley, 
and fodder crop are dominant products. 

2.2. Earth observation data 

For the study area, we acquired all available Landsat images (5 −
TM, 7 − ETM+, 8 − OLI) with cloud cover < 75 % from 2010 to 2021 
provided by the United States Geological Survey (USGS) and all 
Sentinel-2 (A, B) images with cloud cover < 85 % from 2017 to 2021 
provided by the European Space Agency (ESA). 

Due to orbit constellations and cloud cover, the number of acquisi
tions differs between sensors and years (Fig. 1b). Landsat and Sentinel-2 
data were harmonized and pre-processed to Level-2 surface reflectance 
using the Framework for Operational Radiometric Correction for Envi
ronmental monitoring (FORCE, Frantz, 2019). To map crop types, we 
used the six reflectance bands available in both Landsat and Sentinel-2 
data (Red, Green, Blue, Near-Infrared, Shortwave-Infrared 1, 
Shortwave-Infrared 2). Three additional indices were included: 
Normalized Difference Vegetation Index (NDVI, Tucker, 1979); 
Normalized Difference Water Index (NDWI, McFeeters, 1996); and Soil- 
Adjusted Vegetation Index (SAVI, Huete, 1988). This combination of 

bands and indices has been shown to give the best result for crop clas
sification in recent studies (Oliphant et al., 2019; Blickensdörfer et al., 
2022). For Sentinel-2 data, the reflectance bands and indices were 
resampled to 30 m resolution using an approximated point spread 
function according to Frantz (2019) in order to match the Landsat data 
and allow consistent mapping from 2010 to 2021. We extracted all 
annual clear sky observations (CSO) from the study area using the cloud 
masking approach of Frantz et al. (2018). In our study area, there are 
large differences in annual CSO in terms of density (Fig. 1b) and dis
tribution (see Supplement 1), especially for periods of different sensor 
constellations, but also dependent on annual weather conditions and 
related cloud cover. 

The phenological profiles, as depicted by satellite time series, for the 
different agricultural land use types for a full calendar year are shown in 
Fig. 2. Agricultural land use in Germany is dominated by single cropping 
systems with one main crop that is harvested between June and 
November. However, a cover crop is often grown after harvest or during 
the winter period. Distinct phenological stages, such as growing, ripe
ness, and harvest, can be clearly recognized but also ambiguities espe
cially for crops from the same seasons, i.e., winter crops or spring crops. 
In our work, we focus only on the main crop. 

2.3. Crop reference data 

We acquired annual crop reference information for the entire study 
area from the Integrated Administration and Control System – IACS. The 
crop information was provided in the Land Parcel Information System 
(LPIS), with each agricultural parcel digitized into georeferenced poly
gons. LPIS data for Brandenburg was provided annually over 12 
consecutive years (2010 – 2021) based on reports by farmers and 
landowners (MLUK − Version 2.0; data can be accessed through https 

Fig. 1. A) the study area (brandenburg, germany) and examples of crop reference data in one year (2021); b) annual clear sky observations from all available 
observations from landsat (tm, etm+, oli) and sentinel-2 (a, b) from 2010 to 2021. 
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Fig. 2. Annual NDVI profiles (2018) of 14 crop types. Daily NDVI data (1000 reference data samples per crop type) was interpolated using a harmonic function (Zhu 
et al., 2015). Mean values (black line) and +/- standard deviation (filled color) are shown. 
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Fig. 3. A) principle ofTemporal Encoding (TE); b) Example of annual NDVI (2010, 2014, 2018) values encoded into TE features; c) Demonstration of applying TE in 
batch processing over large area with datacube structure. 
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://geobroker.geobasis-bb.de/ last access: 28/02/2024). Originally, the 
LPIS dataset consisted of more than 300 crop classes for the entire 
Germany, of which 30 major classes existed in Brandenburg state. 
Hence, to achieve sufficient class areas for the experiments we aggre
gated the original classes into 14 crop types (including grassland) for the 
study area (see Supplement 2 for crop aggregation details). We split the 
study area into two parts, one for training (northern part) and one for 
testing (southern part, Fig. 1a). This spatial separation was done to allow 
for an unbiased evaluation of our proposed method in terms of gener
alization. To demonstrate the temporal transferability of the proposed 
method when mapping years with sparser temporal information, we 
selected crop reference data in 2018 for the training process, i.e., the 
year that had the highest number of clear sky observations or highest 
temporal data density. As a baseline, we selected 4000 training samples 
per crop type in 2018 (56,000 samples in total for the 14 crop types). 
This selection was based on a pre-analysis between the amount of 
training data and mapping accuracy (see Supplement 4). The training 
pixels were randomly selected across the training area (northern Bran
denburg). For testing, since we have the reference for all crop parcels in 
the area for 12 years, we evaluated the classification model by 
comparing wall-to-wall annual mapping results to all available crop 
reference information from 2010 to 2021. Details of numbers of crop 
reference data are provided in Supplement 3. 

2.4. Temporal encoding for annual observations 

To capture the crops’ phenological information from highly irregular 
annual temporal information in the EO data, we developed a universally 
applicable method to stack images, which we refer to as Temporal 
Encoding (TE). TE represents all observations (clear and non-clear) 
relative to their acquisition dates in a standardized and equidistant 
structure (Fig. 3). The process follows:  

• First, for each location (pixel) and reflectance band (or index), we 
extracted reflectance values and the corresponding day-of-year 
(DOY) for all CSO on an annual basis.  

• Next, we encoded this time-series of observations into a fixed-length 
data feature consisting of 365 features corresponding to 365 days of 
the year. 

• Subsequently, we filled the cells in the data feature with their cor
responding reflectance values.  

• For the DOYs without observation (no-data observations) and non- 
clear observations (cloud, cloud shadow), 0 is assigned. 

The average reflectance value per band was used on days with more 
than one observation (observations from multiple sensors). In a year 
with 366 days, if there is a clear observation on day 366, the reflectance 
value will be encoded on day 365 (if there is no clear observation on day 
365), otherwise day 366 is ignored. With the annual TE, each band (or 
index) contains 365 features and when n bands (or indices) are used the 
encoded data is a 2D-matrix of the dimension 365 × n (in this study, 365 
× 9, since we used 6 bands and 3 indices). 

The EO data in our study area was tiled in a datacube structure using 
FORCE, which divided the area into 51 equally sized tiles of 30 × 30 km 
(1000 × 1000 pixels) (Fig. 3c). Thus, for TE in each tile, we created an 
image cube with a fixed size of 1000 × 1000 × 365 × 9. All pixels in the 
image cube were initialized with values of 0. Next, time-series images 
were inserted into the image cube where the position of each image 
corresponded to its acquisition date. Note that, within each image, pixels 
flagged with cloud and no-data were assigned with 0 values. Thus, all 
pixels are guaranteed with fixed feature lengths regardless of the total 
number of time-series images or the presence of cloud cover as well as 
images at the edge of the observation swaths. This way, pixel-based 
mapping can be performed in batches i.e., m × 365 × 9 where m is 
the number of pixels that can be mapped in one feed-forward. 

2.5. Applying data augmentation to TE data 

By using the TE data structure as input feature, we can flexibly 
modify the time series information to simulate, e.g., different densities 
and distributions. 

a) Simulating data sparsity with Random Observation Selection 
Adapted from the dropout observations techniques introduced in 

Sainte Fare Garnot et al. (2022), we used what we call Random Obser
vation Selection (ROS) with our proposed TE data structure. By using 
ROS, we simulated temporal data sparsity and enabled the machine 
learning model to learn how the same crop phenology is captured with 
varying data availability. We implemented ROS within TE by randomly 
selecting a fraction of all annual CSO and then removing unselected 
observations by changing their encoded value to 0. In our imple
mentation, the proportion of selected observations is fully random 
within the range of 5 % − 100 % of the original data (Fig. 4a). 

b) Random Day Shifting – Simulating meteorological effects on 
phenology. 

Inspired by the temporal shifting method introduced in Nyborg et al. 
(2022), we applied this approach to TE data, but shifted each observa
tion individually, which we refer to as Random Day Shifting (RDS). 
Based on the assumption of crop phenology changing between years, we 
applied RDS to modulate inter-annual phenological variations. For all 
annual CSO, we randomly shifted their DOY, i.e., its position in the first 
dimension of the 365x9 feature array, forward or backward (Fig. 6b). 
Here, we randomly specified the shifting range from − 16 to +16 days 
(including 0), i.e., the maximum date shifting was related to the 16-day 
revisit interval of the Landsat satellite (Fig. 4b). 

c) Implementation of ROS and RDS 
During training, we first extracted the annual CSO for each training 

data location and converted it into the proposed TE data structure. Then, 
we applied ROS and RDS sequentially to create augmented data 
(Fig. 4c). This way, we continuously generated new training data to train 
the model until it reached sufficient accuracy (Fig. 5). Additionally, ROS 
and RDS were also implemented individually to demonstrate the impact 
of each method in Section 3.2. 

2.6. Crop classification with deep learning models 

In this study, we tested two different deep learning classifiers. First, 
we used 1-dimensional Convolutional Neural Network (1D-CNN) ar
chitecture, which has been widely used for crop types and land cover 
classifications (Zhong et al., 2019; Debella-Gilo and Gjertsen, 2021; 
Zhang et al., 2023). 1D-CNN has been shown to be a lightweight ar
chitecture that is well capable of exploiting the time-series sequence 
data at high computational efficiency. Particularly, the TE data structure 
is highly beneficial from the 1D-CNN, by simply applying the 1D con
volutional filters along the temporal dimension to reduce the number of 
model’s parameters. Specifically, the pixel-based classification 1D-CNN 
model takes an input of i = 365 × 9 (Time step × Bands) and applies a 
1D kernel convolution with the kernel shape of 16 × 64 (filter size ×
filter numbers). A batch normalization was applied to the resulting 
feature maps (Ioffe and Szegedy, 2015), followed by a rectified linear 
unit activation (ReLU) 

ReLU(x) = max(0, x) =
{

x if x > 0
0 otherwise  

Subsequently, a 1D max pooling operator with window size of 2 was 
applied to reduce the temporal dimension of the data. The process of 1D 
convolution − > batch normalization − > ReLU − > max pooling was 
repeated two more times. At the end of the network, the feature maps 
were flattened and a fully connected layer with 14 units was applied to 
predict the crop type probabilities. 

To evaluate the effect of data augmentation in a more sophisticated 
network architecture, we ran an additional experiment with a state-of- 
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Fig. 4. a) Random Observation Selection (ROS) – randomly selecting a proportion of observations from the original time-series data; b) Random Day Shifting (RDS) – 
randomly shifting the date of every observation by +/- 16 days; c) An example of original time-series data encoded with Temporal Encoding (365 features) and its 
three corresponding augmented versions are applied with ROS (75 %, 50 % and 25 %) and RDS. 
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Fig. 5. Workflow of generating training data with ROS and RDS to train the deep learning models.  
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the-art Transformer network, which has been shown to outperform 
traditional CNN-based models (Xu et al., 2020; Rußwurm et al., 2023; 
Zhang et al., 2024). We used the Transformer model proposed by Zhang 
et al. (2024), which has an encoder only architecture and has been used 
for land cover classification based on satellite time-series data. We 
changed the dimension of input and output of the Transformer network 
to fit with our dataset, while the rest of the network architecture 
remained as proposed in the original study. 

2.7. Experiment setup and accuracy assessments 

We first tested for differences in performance between the two deep 
learning models (1D-CNN and Transformer). Due to the heavy pro
cessing of the Transformer network (see Section 3.1), in the second part, 
we only used the results from the 1D-CNN model for a detailed evalu
ation of the TE and data augmentation methods. 

To establish the baseline performance of our approach, we trained a 
model with the proposed TE combined with the two augmentation 
methods (ROS and RDS). We evaluated the temporal transferability by 
comparison with a linearly interpolated data structure, which is one of 
the most common temporal aggregation methods for crop mapping that 
has been widely used (Qiu et al., 2014; Inglada et al., 2017; Sadeh et al., 
2021; Yan et al., 2021). Hence, to compare with the proposed approach, 
we used linear interpolation to generate daily CSO, resulting in the same 
feature length as TE data (365 features for each band). Additionally, to 
analyze the impact of the two augmentation methods, we also trained 
three additional models with TE data structures but using only either 
ROS, RDS, or neither one. 

In summary, we evaluated the following models:  

– Baseline model (model trained with TE features, ROS and RDS are 
applied, 1D-CNN and Transformer classifiers)  

– TE-only model (model trained with TE features, no augmentation 
applied, 1D-CNN and Transformer classifiers)  

– TE-ROS model (model trained with TE features, only ROS is applied, 
1D-CNN classifier)  

– TE-RDS model (model trained with TE features, only RDS is applied, 
1D-CNN classifier)  

– LI model (model trained with linearly interpolated features, 1D-CNN 
classifier) 

All models were trained with crop reference data from 2018, with the 
same number of training pixels specified at 4,000 per crop type (a total 
of 56,000 training samples for 14 crop types). Performance analysis is 
based on comparing annual crop maps from 2010 to 2021 with reference 
information from the test area in the respective years. We measured the 
Overall Accuracy (OA) which refers to wall-to-wall comparisons be
tween annual crop maps produced by each model to the test reference. 

We additionally tested the transferability of the Baseline model 
regarding the intra-variations of satellite data. For every individual year, 
we intentionally reduced the annual data density using only one single 
satellite sensor (e.g., using only Landsat 7 data to map crop types in 
2019). We then evaluated the crop maps’ OA for different single or 
multi-modal sensor collections. 

3. Results 

3.1. Comparison of different deep learning models 

We compared the performances of the 1D-CNN and Transformer 
models for mapping transferability with and without augmentation 
methods (ROS and RDS) (Fig. 6). Without using the augmentations, the 
Transformer model outperformed the 1D-CNN when transferred to most 
years by roughly 10 % − 25 % in absolute OAs. After applying ROS and 
RDS, the two models showed similar performances with OAs higher than 
60 % in all years. Except for 2010 where the Transformer model had 
around 7 % higher OA, it only marginally outperformed the 1D-CNN by 
1–3 %. In 2012, the 1D-CNN model yielded about 4 % higher OA than 
the Transformer. 

To test mapping speed, we deployed the two models on higher- 
performance clusters. We assigned each model to 20 compute nodes; 
each node has 18 CPUs (2.9 GHz) and 60 Gb RAM. For each node, we 
used the pre-trained model to map crop type in one random tile (1000 ×
1000 pixels) from a random year. The results showed that the Trans
former model took 3 times longer (60 min on average) than the 1D-CNN 
model (18 min on average). Therefore, we focus on the results from the 
1D-CNN in the following. 

3.2. Temporal transferability of different input features 

We assessed the temporal transferability of the approach with the 
Baseline model (1D-CNN) in comparison to the linear interpolation 

Fig. 6. (Left) Overall Accuracy (%) for annual crop maps for 12 years (2010 – 2021) mapped with the 1D-CNN and Transformer models (with and without ROS +
RDS). (Right) Mapping time for one tile (1,000,000 pixels) for each model. 
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approach (LI model) using the annual OA of each model (Fig. 7) and 
class-wise performances (Supplement 6). 

In the training year of 2018, both models yielded similar results with 
OAs of around 90 %. However, when transferred to other years, the 
Baseline model outperformed the LI model by 2–10 % in 2019–2021 and 
4–12 % in 2015–2017. In 2010–2014, where temporal data was sparse, 
the gaps in accuracy were wider. The LI model achieved 30 % to 54 %, 

while the Baseline model produced results exceeding 60 % for the first 
four years. 

Visual assessment (Fig. 8) revealed comparable performances in 
2018 and 2020 of both models. For those years, all predicted maps 
showed accurate and clear distinctions of crop parcels when compared 
with the reference maps. In the examples for 2010 and 2012, the LI 
model showed high errors, with most crop types being misclassified as 

Fig. 8. Visual comparison of crop maps from Baseline model and LI model for four different years (2010, 2012, 2018, 2020) and for two sites within the test area.  

Fig. 7. OA (%) for annual crop maps from 12 years (2010 – 2021) for five models: 1) Baseline model 2) TE-ROS model, 3) TE-RDS model, 4) TE-only model and 5) 
LI model. 
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Fallow. In contrast, the maps based on the Baseline model produced es
timates closer to the reference data. Major crop types such as Maize, 
Winter wheat and Rapeseed were mapped correctly, while other minor 
classes observed some misclassifications. 

3.3. The impact of ROS and RDS 

Looking at the impact of augmentation methods (Fig. 7), specifically 
comparing the Baseline and the TE-only models, the positive impact of 
ROS and RDS on temporal transferability becomes apparent. The 
augmentation methods improve OA by around 20 % in four years (2016, 
2019, 2020, 2021) and nearly 30 % in 2017. The improvements were 
further emphasized in earlier years. Except for 2011, the augmentation 
methods resulted in nearly double OAs compared with the standard 

model from 2010 to 2015. In the training year (2018), however, ROS 
and RDS only improved the OA marginally, around 5 %. 

Comparing ROS and RDS individually, the results suggested that TE- 
ROS model outperformed TE-RDS model in most years. Most signifi
cantly, the OAs of TE-ROS model was 20 % higher than those of TE-RDS 
model in 2010, 2012, 2014 and 2015. In the remaining years, training 
with both ROS and RDS always improved the transferability compared 
with the TE-only model. 

3.4. Single and multiple satellite information mapping 

We evaluated the temporal transferability of the Baseline model for all 
years after changing the intra-annual temporal information by selecting 
only single satellite sensors (Fig. 9). 

Fig. 9. Annual overall accuracies (OAs) produced by Baseline model when using single and all available satellite data. (*) Sentinel-2B data in 2017 was reduced, 
because the nominal phase started late in the year. 
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In years with multiple sensors available, utilizing all satellite data for 
predictions resulted in higher OA than using data from a single satellite. 
Although Sentinel-2 A/B data offer a denser annual time-series (with a 
nominal 5-day revisit) compared to Landsat data (with a nominal 16-day 
revisit), the model’s performance was not significantly impacted by 
excluding observations from Sentinel-2 A/B. For example, in 2018, the 
model achieved 81.5 % and 89 % OAs, respectively for Landsat 7 and 
Landsat 8. Those two OAs were similar to results achieved from Sentinel- 
2 A/B and only 9 % and 2 % lower than using all available satellite data 
(91 %). When comparing Landsat 8 and Landsat 7 data, the model 
tended to produce higher OA with Landsat 8. Except for 2014 and 2020, 
where there were few CSO from Landsat 8 in the test area, which 
resulted in a lower performance of (60.9 % and 71.5 %) compared to the 
slightly higher OAs (76.3 % and 73.3 %) produced with Landsat 7. In the 
first two years of the study period (2010 and 2011), maps based on 
Landsat 7 data were comparable to the results using combined Landsat 5 
and 7 data. Mapping with Landsat 5 data only produced 42.2 % OA in 
2010 and 53.9 % OA in 2011. 

Visual assessment (Fig. 10) showed the consistency of mapping re
sults produced by the Baseline model regarding the different input data 
sources. Overall, the results were comparable to the reference data, with 
accurate mapping of major crop fields. Mapping with only Landsat 7 
data resulted in noisier maps. Compared with the reference data, the 
model based on only Landsat 7 data misclassified Potato as Maize and 
Fodder crops as Grassland. Mapping respectively with Landsat 8, 
Sentinel-2 A and B showed relatively similar results. Using all available 
satellite data resulted in the best result, yet the visual impression of 
classified maps was similar. 

4. Discussion 

In this study, we addressed two major challenges of mapping annual 
crop types with multi-temporal EO data over extended periods based on 
multiple sensor constellations: 1) creating a generalized method for 
aggregating optical data to capture irregular time-series information and 
2) temporally transferring a classification model trained in a single year. 
We introduced the Temporal Encoding (TE) method, which converts 
annual time-series data into equidistant features. This is achieved by 
positioning clear observations on their respective acquisition dates 
while encoding the no-data and non-clear observations as zeroes. The TE 
data structure is easily integrated with two augmentation techniques: 
Random Observation Selection (ROS) and Random Day Shifting (RDS). 
The combination of data encoding and data augmentations showed 
great potential for improving the model transfer. 

4.1. Temporal transferability improvements 

In our experiment, all models were trained with single-year reference 
data (2018). We showed that when training data and target (mapping) 
data come from the same year, the Baseline model produced accuracies 
that were in line with recent studies that mapped similar crop types in 
the same regions (Griffiths et al., 2019; Blickensdörfer et al., 2022; 
Orynbaikyzy et al., 2022) and similar to the LI- model. This suggests that 
when the training and mapping data share similar characteristics, e.g., 
temporal density and distribution as well as crop phenology, the choice 
of temporal aggregation methods becomes less relevant. 

When comparing the temporal transferability of the Baseline model 
and LI model, as expected, both models showed decreases in overall 
accuracies (OAs) when compared to the 2018 results. The level of 

Fig. 10. Visual assessment of the Baseline model when mapping an example area in 2019 using data from single satellites (Landsat 7/8 and Sentinel-2 A/B) and all 
available satellite data. 
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decrease was closely related to the number of annual CSOs. In the four 
transfer years where Sentinel-2 data were available (2017, 2019, 2020, 
2021), the Baseline model outperformed the LI model by around 3 % − 10 
% in absolute OAs. The earlier years’ improvements are highlighted 
when mapping with coarser annual CSO data (prior to 2017, when only 
Landsat data was available). In some years (e.g., 2010, 2012, 2013, 
2014) the Baseline model showed more than 20 % absolute improve
ments compared to the LI model. This could be because interpolation 
methods tend to suffer from long gaps between clear-sky observations 
(Roy and Yan, 2020). Thus, interpolating sparse temporal data with LI 
often results in a high number of unrealistic features. On the other hand, 
the data structure of TE captured the annual time-series information 
without compressing or extrapolating the original information. This was 
achieved by simply positioning the clear observation in the TE features 
and applying the values of 0 for non-existent or cloudy observations. 

A potential concern of TE may be raised due to its “bulky” data 
structure. In years with high numbers of CSO (e.g., on average, pixels have 
more than 80 CSO in 2018), the daily encoded pixels still contain more 
than 75 % features with no-data values (zero values). This might impact 
the CNN-based models as all input features are participating in the feed- 
forward processing. On the other hand, the Transformer network with its 
masking mechanisms can ignore the no-data values from the input fea
tures (Zhang et al., 2024). Hence, with the Transformer model, applying 
dropout and masking to the input data could be equivalent to using ROS 
with CNN-based models. We also showed that the Transformer model 
outperformed the 1D-CNN model (Fig. 6a), but only when no augmen
tations were applied. Using ROS and RDS benefited both deep learning 
models and 1D-CNN nearly matched the Transformer’s performance 
while being 3 time faster in mapping (Fig. 6a). Nevertheless, the potential 
of the Transformer network to handle irregular time-series data has been 
shown in recent studies (Rußwurm and Körner, 2020; Sainte Fare Garnot 
et al., 2022; Zhang et al., 2024). Hence, optimizing the network archi
tecture with our proposed methods could greatly improve both mapping 
accuracies and mapping speed. In addition, the 1D-CNN and Transformer 
networks in our study only focused on pixel-based mapping, while other 
2D and 3D CNN networks have been shown to benefit from the spatial 
context for improving the land cover classification (Cui et al., 2022; Hong 
et al., 2022; Ji et al., 2023). Nevertheless, such networks require more 
sophisticated training data (patches instead of pixels), which the impacts 
of TE data structure with augmentation methods ROS and RDS should be 
further explored. 

4.2. The impact of ROS and RDS 

We showed that TE is only better than LI in terms of transferability 
under the condition of utilizing augmentation methods (ROS and RDS). 
Hence, our proposed TE method is not as effective when training a 
model without the augmentations. In fact, the TE-only model is highly 
overfitted without the use of augmentation methods, i.e., only per
formed well in the training year and poorly in unseen years (Fig. 7). 
Here, the transferability of TE-only model’s performance without ROS 
and RDS was severely weakened in relation to the sparsity of annual 
CSO. However, the advantage of TE is that its data structure allows a 
very flexible modification of the original data, which enables the 
possible simulation of inter-annual temporal variations or differences in 
crop phenology. Hence, augmentation methods like ROS and RDS added 
useful variations during the classification model training. This way, 
overfitting was avoided, and the model generalized better. As a result, 
the Baseline model was highly tolerant to the changes in annual tem
poral density. 

When training and testing data are from the same year, imple
menting ROS, RDS, or both only yielded marginal OA improvements of 
around 5 % compared to TE-only model’s performances (Fig. 7). This 
degree of improvement was expected, as such differences also exist 
spatially, due to differences in orbits and clouds, and it was already 
demonstrated in the previous studies (Metzger et al., 2021; Nyborg 

et al., 2022; Sainte Fare Garnot et al., 2022). However, our study 
revealed that the augmentation methods were highly effective in terms 
of improving temporal transferability, when the time-series observa
tions of training and mapping data differed. We also showed that each 
individual augmentation method constantly improved accuracies during 
transfer, yet to varying extents (Fig. 7). Using only ROS for training is 
better than using only RDS in most years. The most striking difference 
can be observed in 2012, where the ROS model outperformed the RDS 
model greatly with nearly 30 % higher OA. Here, the simulation of in
formation sparsity in the training data allowed the ROS model to 
perform exceptionally well in 2012, probably by better simulating the 
uneven distribution between different months that was discussed 
earlier. In principle, the impact of low annual CSO counts being simu
lated by the ROS augmentation is higher than that of RDS simulating 
shifts in phenologies between years. 

This also raises another aspect of ROS, which is that it helps the 
model to learn from the dense temporal data to map in coarser temporal 
situations. However, in the reverse situation, i.e., when the model is 
trained with data from coarse years, we expect the impact of ROS on 
improving transferability to be less effective or maybe even negative. 
Thus, the dense CSO of the training year also plays an important role in 
utilizing the ROS augmentation. Nevertheless, for most studies covering 
long time series, both data density and reliability of reference infor
mation are better in very recent years and going back in time implies 
going back to lower densities. 

The performance of the RDS model in this study could also be partly 
limited due to the current parameters. We used RDS to simulate the crop 
phenology in training data by randomly shifting individual observation 
dates back and forth (within 16 days). Despite the consistently positive 
impact, however, shifting individual observation might potentially lead 
to illogical sequences and increase confusion or ambiguity. An alterna
tive is to randomly shift the entire set of observations within TE-encoded 
pixel values by a fixed number of days. This appears more meaningful 
regarding crop phenological growth. Hence, future sensitivity studies on 
the maximum number of days during RDS and on the shifting rule could 
be useful to further improve the impact of this augmentation method. 

4.3. Consistent mappings with missing satellite information 

The Baseline model mapped crop types at relatively consistent accu
racies despite the artificial degradations of intra-annual temporal den
sities, i.e., mapping with data from single satellites (Fig. 9, Fig. 10). For 
example, we showed that crop predictions based only on Landsat 8 data 
can be nearly as good as the combination of Landsat 7/8 and Sentinel-2 
A/B data (3 % − 10 % OA decrease compared to all available satellite 
data in 2017 – 2021). This finding demonstrates the possibility of using 
only one pre-trained classification model to map crop types in different 
periods or regions where the coverage of all available satellite infor
mation could not be met. 

For Landsat 7 data, crop mapping with solely this sensor often results 
in visual artifacts in the classification due to the failure of the Scan Line 
Corrector (SLC) (Tatsumi et al., 2015). Our approach of using TE with 
ROS and RDS reduced the line-wise artifacts of Landsat 7 maps almost 
entirely (Fig. 10, more examples in Supplement 7) and achieved OAs 
higher than 60 % for all years (Fig. 9). Moreover, the exclusion of 
Landsat 7 data might be considered in the future due to the drifting orbit 
of this satellite that has been observed in recent study (Qiu et al., 2021). 
In this regard, based on the ability of the readily trained model to 
effectively ingest Landsat-5 data, which was not existent for the training 
year, we expect the model to work with data from the newly launched 
Landsat 9 (Masek et al., 2020). 

Mapping the past accurately remains challenging, however. Maps 
based on Landsat 5 data- frequently revealed lower OA. Notably, in 2010 
and 2011, Landsat 5 was near the end of its mission and witnessing some 
failing components (Loveland and Dwyer, 2012) and orbit drifts (Roy 
et al., 2020). The combination of Landsat 5 observations with SLC- 
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affected Landsat will have caused poor performance of satellite data 
mapping in 2010 and 2011. Nevertheless, we expect reasonable results 
also for earlier years (2000 – 2009), which we excluded here due to the 
lack of reference data and hence quantitative assessments. The perfor
mances prior to the 2000s, however, are expected to be negatively 
affected by the absence of Landsat 7 data and low density of Landsat 4/5 
caused by the lack of a Long-Term Acquisition Plan (LTAP) (Kovalskyy 
and Roy, 2013). Still, our suggested TE-encoded data with ROS and RDS 
augmented training data appears to be the proper approach to explore 
the potential of satellite-based crop mapping until the mid-1980ies. 

5. Conclusion 

We introduced TE as a simple and universal method for obtaining 
time-series information that is independent of temporal densities, when 
annually mapping crop types with optical remote sensing data over 
longer periods. We demonstrated that incorporating TE with augmen
tation methods enhanced the temporal transferability especially of a 
standard DL model (1D-CNN) over time and led to consistently better 
results. The benefit of data augmentation is mostly compensated when 
using more complex network architectures. However, for large area 
mapping (e.g. nation-wide), more simple and robust workflows are 
preferred. Another aspect to be studied in the future is the utility of the 
TE with ROS and RDS when classifying more general land cover classes. 
Separating crop types is mostly related to temporal patterns and not so 
much about the differences between spectral bands at a single acquisi
tion date. When land cover, including temporally invariant, non- 
vegetated classes, is analyzed, the differences between spectral wave
length regions might have more relevance. Here the ROS and RDS 
cannot be expected to directly improve transferability between years. 
Nevertheless, as phenology is described, the separation of classes with 
and without phenology, as well as the separation between the different 
vegetation classes should improve. Our study supports future research 
aimed at transferring DL models trained with recent data further back in 
time, as these applications rely heavily on training data, which often is 
only available in recent years. 
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