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Abstract 
Background and aims Agroforestry, whereby trees 
are associated with crops and/or livestock, is expected 
to mitigate nitrogen (N) losses from agriculture. How-
ever, little is known about how nitrification potential, 
an important process that drives N losses, is affected 
by agroforestry systems. This study aimed to investi-
gate the effect of different silvopastoral agroforestry 
systems on soil nitrification potential.
Methods Nitrification potential was evaluated in 
two agroforestry systems (hedgerow and alley crop-
ping) associated with temporary grasslands in Brit-
tany, France. In each system, soil was sampled along 
a transect spanning from the center of the tree row 
into the grass alley. Soil nitrification potential was 
determined ex situ and was explained by univari-
ate and multivariate analysis of variables describing 

vegetation, physicochemical soil properties, and soil 
organisms.
Results Nitrification potential differed between the 
two agroforestry systems and among the positions 
in relation to the trees. In the alley cropping system, 
nitrification potential was on average 1.5 times higher 
in the tree row than at 1.5 and 10  m into the grass 
alley, while in the hedgerow system, nitrification 
potential at 1.5 m into the grass alley was on average 
40% lower than at 10 m into the grass alley. Nitrifi-
cation potential was strongly correlated with soil pH, 
whereas no correlation was observed between nitrifi-
cation potential and community size of soil nitrifiers.
Conclusion Our results point out the diverse effects 
of agroforestry systems on nitrification, a key soil 
process that is involved in the regulation of N losses.

Keywords Nitrogen cycle · Soil microorganisms · 
Hedgerow · Alley cropping agroforestry · 
Silvopastoral agroforestry · Temporary grassland

Introduction

Agroforestry, i.e. the spatial combination of trees and 
crops and/or livestock on the same field, has gained 
attention as a sustainable agricultural practice that can 
contribute to developing multifunctional and resilient 
agroecosystems that promote ecosystem services 
(IPCC 2022, Veldkamp et  al. 2023). Among these 
ecosystems services, the regulation of the nitrogen 
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(N) cycle in agroecosystems is critical (Rockström 
et al. 2009). N is a key element for agricultural pro-
duction in agroecosystems such as in agroforestry 
systems. Depending on the system, plants take up 
approximately half of the applied N (Lassaletta et al. 
2014), while the remaining N poses a risk of being 
lost from the system, which greatly disrupts the 
global biogeochemical N cycle (Rockström et  al. 
2009). Thus, N losses threaten the integrity of eco-
systems by negatively impacting soil, air and water 
quality, as well as contributing to climate change 
and the decline in biodiversity (e.g. Erisman et  al. 
2011; Galloway et al. 2003). In the context of climate 
change, N losses may increase due to the increasing 
frequency of extreme weather events (Bowles et  al. 
2018; Greaver et  al. 2016; Jeppesen et  al. 2011). 
Understanding the internal N cycle (i.e. the processes 
that drive the transformation and retention of N in the 
soil-plant-continuum) helps to identify the drivers 
that can mitigate such losses (Elrys et al. 2022).

Nitrification, which is the oxidation of ammonium 
 (NH4

+) to nitrate  (NO3
− ), is a key process that con-

trols the fate of N in soils, especially regarding the 
formation of  NO3

− and the regulation of the denitri-
fication pathway (Beeckman et al. 2018). Three types 
of nitrification pathways have been reported in agri-
cultural soils (Gao et  al. 2022; Norton 2008; Rob-
ertson and Groffman 2015): (i) autotrophic nitrifica-
tion, which is performed in two steps under aerobic 
conditions by ammonia-oxidizing bacteria (AOB), 
ammonia-oxidizing archaea (AOA) and nitrite oxi-
dizing bacteria (NOB); (ii) heterotrophic nitrifica-
tion, which is performed under aerobic conditions by 
certain groups of fungi and bacteria; and (iii) anam-
mox, an anaerobic oxidation of  NH4

+ to  N2 by nitrite-
dependent bacteria. In agricultural soils, the size, 
composition and activity of nitrifying communities 
(nitrifiers) are governed by several biotic and abiotic 
factors (Norton 2008; Prosser and Nicol 2012; Rob-
ertson and Groffman 2015). For example, soil physi-
cal and chemical properties (e.g.  NH4

+-N content, 
 NO3

−-N content, soil pH) were described as the main 
drivers of niche differentiation for multiple nitrifiers 
(Clark et al. 2020; Jia et al. 2020; Prosser and Nicol 
2012; Zhang et al. 2023). Soil structure, texture and 
water content also influence activity of nitrifiers since 
they drive soil oxygen availability (Clark et al. 2020; 
Robertson and Groffman 2015). Moreover, Abalos 
et  al. (2019) reported direct and indirect effects of 

plant traits on N-cycling processes, including activity 
of nitrifiers, such as the inhibition of nitrification by 
root exudates.

In areas of high livestock density, controlling nitri-
fication could help decrease losses of N (Di and Cam-
eron 2016). In grazed grasslands especially,  NH4

+-N 
inputs due to organic and inorganic N inputs such as 
fertilizers and animal waste, stimulate nitrification 
(Bei et al. 2021; Clark et al. 2020; Di and Cameron 
2016; Jia et  al. 2020). Moreover, grasslands often 
contain multiple plant species, including legumes, 
which increase nitrification rates (Le Roux et  al. 
2013). High nitrification activity in grassland soils 
has often been attributed to the size and activity of 
AOB populations (Di and Cameron 2018; Le Roux 
et  al. 2013); however, a recent meta-analysis high-
lighted that heterotrophic nitrification performed by 
bacteria and fungi represented a non-negligible part 
of nitrification in grasslands (Zhang et al. 2023).

In livestock production areas, agroforestry (i.e. 
trees combined with crops and/or livestock on 
the same field) is increasingly supported by local 
stakeholders and successfully adopted by farmers 
(den Herder et  al. 2017). Accordingly, a variety of 
silvapastoral agroforestry systems that associate trees 
with livestock production have been established in 
these areas. For example, in northwestern France, 
silvopastoral agroforestry is associated with 
hedgerows (i.e. trees and shrubs planted on field 
edges) and alley cropping agroforestry (i.e. multiple 
tree rows planted in a field). One objectives for 
establishing these agroforestry systems is to decrease 
N leaching and thus improve water quality (Viaud 
and Thomas 2019). In a review, Kim and Isaac (2022) 
highlighted the influence of trees and their associated 
understory vegetation on the spatial variability 
in biological processes involved in regulating 
the internal N cycle. Thus, soil communities 
in agroforestry systems have gained increasing 
attention. For example, a recent study suggested niche 
differentiation of nitrifier communities in an alley 
cropping system, in which AOB populations were 
larger in crop rows than in tree rows (Beule et  al. 
2019). This niche differentiation was attributed to 
environmental modifications induced by the presence 
of trees. For example, tree traits such as crown 
architecture, leaf and root characteristics influence 
the microclimate by modifying solar radiation, water 
uptake and wind speed (Benhamou 2012; Dufour 
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et al. 2012; Kanzler et al. 2019; van Ramshorst et al. 
2022). Furthermore, trees and understory vegetation 
can modify nitrification (Laughlin 2011; Schimel 
and Hättenschwiler 2007) by increasing above- 
and belowground litter inputs and decomposition 
(Battie-Laclau et  al. 2020; Cardinael et  al. 2019) and 
through competition for nutrients (Robertson and 
Groffman 2015; Abalos et  al. 2019). Moreover, trees 
and understory vegetation can improve soil structure 
(Mettauer et al. 2022; Rivest et al. 2013) and decrease 
soil pH (Litza 2022; Biffi et  al. 2022), both of which 
drive nitrification in the soil. Lastly, a recent meta-
analysis reported that hedgerows and alley cropping 
agroforestry influenced the carbon (C) cycle differently 
(Mayer et al. 2022); consequently, these two agroforestry 
systems may influence the internal N cycle differently.

Although temperate silvopastoral agroforestry 
systems are encouraged and adopted by local stake-
holders to mitigate N losses, little is known on the 
impact of hedgerows and alley-cropping systems on 
the internal N cycle (Kim and Isaac 2022). In the pre-
sent study, we explored for the first time the influence 
of hedgerow and alley cropping systems on potential 
soil nitrification, a process that can have implications 
for N losses from agricultural systems. Soil nitrifica-
tion potential was assessed at three positions in rela-
tion to the trees in two young agroforestry systems 
in Brittany, France: one with a hedgerow planted as 
a windbreak and one with an alley cropping design. 
To follow a holistic approach, nitrification potential 
was related to other physicochemical soil properties, 
soil microbiota properties and vegetation properties. 
According to previous findings on soil organic C 
(SOC) (Mayer et  al. 2022), we hypothesized (i) that 
nitrification potential would depend on the position 
in relation to the trees due to the latter’s influence on 
environmental factors that impact the size and activ-
ity of soil nitrifier community and (ii) that the hedge-
row would have a higher effect on soil nitrification 
potential compared to the tree row in the alley crop-
ping system.

Materials and methods

Study site

 The study was performed in April-May 2022 on a 
farm in southwestern Brittany, France (47°45’36.3” 

N 1°54’54.0” W) (Fig.  1a). The study site had a 
temperate oceanic climate, with a mean annual 
temperature of 12.1 °C and mean annual precipi-
tation of 721 mm (1991–2021, CLIMATE-DATA.
ORG 2022). The soil was a Luvisol with a silty-
loam texture, with a mean of 59% silt, 24% sand and 
18% clay. The soil had developed on schist parental 
material and had a mean depth of 30 cm. The soil had 
mean  pHKCl of 5.4 and mean cation exchange capac-
ity of 9.7  cmol+  kg−1 (NF X 31–130). The study site 
had north-south slope of 6–10%.

The study site contained two adjacent agrofor-
estry systems (Fig.  1b) that were managed by the 
same farmer. Both systems represent the main types 
of silvopastoral agroforestry in the Brittany region. In 
one system, a hedgerow had been planted in 2012 on 
the western edge of a 1.8 ha field. The other system, 
alley cropping, was established in 2014 by planting 
two tree rows on a 2.1 ha field. In both systems, trees 
were planted in north-south orientation. The hedge-
row consisted of trees planted 4 m apart. Between 
two adjacent trees, shrubs were planted at a distance 
of 1 m (Fig. 2). The hedgerow was planted with the 
following tree species: Viburnum opulus, Populus 
tremula, Fraxinus sp., Rhamnus frangula, Acer camp-
estre, Prunus avium, Crataegus sp., Malus sylvestris 
and Sorbus domestica. Tree rows of the alley crop-
ping system consisted of trees planted every 6 m and 
were separated by a 27 m wide grass alley (Fig.  2). 
The tree rows were planted with the following tree 
species: Juglans regia, Castanea crenata, Fraxinus 
sp., Tilia cordata, S. domestica, and P. avium. In both 
systems, trees were pruned once per year, in winter, 
except in 2021. The pruned branches were removed 
from the systems. The understory vegetation con-
sisted of spontaneous vegetation and was mowed 
once per year.

In both agroforestry systems, cultivated areas were 
managed identically. The crop rotation was defined 
as four years of temporary grassland with ryegrass 
(Lolium spp.) and red clover (Trifolium pratense), fol-
lowed by one year of rapeseed (Brassica napus) and 
one year of a cereal-legume intercrop. The grass was 
harvested in June and September and grazed by 45 
cows and 10 heifers once or twice per year. The grass 
was not fertilized, and intercrops were fertilized using 
organic cow manure at the rate of ca. 110 kg N  ha−1. 
Lime was applied every two years with 2 t  ha−1 shell 
sand. During the study period, both systems were in 
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the fourth year of grassland. Neither cattle grazing 
nor liming had been performed in the month before 
sampling.

Sampling design

In each agroforestry system, 30 trees were selected 
(Fig. 1b). In the hedgerow system, the following tree 
species were selected: Fraxinus sp. (n = 6), P. tremula 
(n = 5), V. opulus (n = 4), A. campestre (n = 4), P. avium 
(n = 3), Crataegus sp. (n = 3), R. frangula (n = 2), S. 
domestica (n = 2) and M. sylvestris (n = 1). In the 
alley cropping system, the following tree species 

were selected: Fraxinus sp. (n = 11), S. domestica 
(n = 10) and P. avium (n = 9). J. regia, C. crenata or 
T. cordata were not selected because they suffered 
from diseases and drought. See S.I.1 for the height 
and circumference of the selected trees. For each 
selected tree, the soil was sampled and the vegetation 
biomass was measured in an area of 1 m² at three 
positions in relation to the tree (Fig. 2): (i) in the tree 
row 1 m from the tree (position A); (ii) in the grass 
alley 1.5 m from the tree (position B) and (iii) in the 
grass alley 10 m from the tree (position C). Position A 
was always south of the tree, while positions B and C 
were always east of the tree.

Fig. 1  a Location of the study site in Brittany, France, with b the alley cropping (framed in orange) and hedgerow (framed in blue) 
agroforestry systems. The tree studied (n = 30 per system) indicate the locations of the transects along which measurements were performed
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Analysis of soil properties, earthworm abundance, 
vegetation biomass and soil microorganisms

The protocols used to measure soil properties, 
earthworm abundance, and vegetation biomass are 
presented in Table  1. All soil measurements were 
performed using soil samples collected from a depth 
of 0–30 cm. On the same sampling date, additional 
soil samples for the analysis of soil microorganisms 
by the means of real-time PCR were collected at 0–30 
cm soil depth from the soil blocks used for earthworm 
extraction (see Table 1). Soil samples were stored at -20 
°C until DNA extraction. Prior to DNA-extraction, soil 
samples were freeze-dried for 48 h and finely ground 
using a vortexer as described by previous study (Beule 
et al. 2019). Soil DNA was extracted from 50 mg finely 
ground soil following a cetyltrimethylammonium 
bromide (CTAB)-based protocol as described by 
Beule et  al. (2019). Briefly, soil was suspended in 1 
mL CTAB buffer containing 2 µL 2-mercaptoethanol 
and 1 µL Pronase E (30 mg/ml (w/v), followed 
by incubation at 42 °C (10 min) and subsequent 
incubation at 65 °C (10 min). After incubation, 800 
µL phenol was added and the mixture was shaken 

and centrifuged. The DNA in the supernatant was 
extracted twice by adding chloroform/isoamylalcohol 
(24:1 (v/v), followed by incubation on ice (10 min) and 
centrifugation. Following the second extraction, the 
supernatant was transferred to a fresh 1.5-mL tube and 
DNA was precipitated by adding 200 µL PEG 6000 
(30% (w/v) and 100 µL 5 M NaCl. Following 20 min of 
incubation at room temperature, DNA was pelleted by 
centrifugation, and washed twice with 500 µl 70% (v/v) 
EtOH to remove remaining salts. The obtained pellets 
were dried using vacuum centrifugation, resuspended in 
50 µL 1× Tris-EDTA) (TE) buffer (10 mM Tris, 1 mM 
ethylenediaminetetraacetic acid (EDTA), adjusted to pH 
8.0 with HCl) and incubated to allow the resuspension 
of the DNA (42 °C, 2 h). The quantity and quality of 
the extracted DNA were assessed by agarose gel 
electrophoresis using 1.0% (w/v) agarose gels stained 
with SYBR Green I (Thermo Fisher Scientific GmbH, 
Dreieich,Germany). Prior to real-time PCR, the DNA 
samples were diluted 1:50 (v/v) in double-distilled 
H2O to overcome PCR inhibition (Guerra et al. 2020). 
Soil Ascomycota, Basidiomycota, AOA and AOB 
community size were quantified based on the number 
of gene copies as described by Beule et  al. (2020). 

Fig. 2  Diagram of the design of the alley cropping and hedge-
row agroforestry systems. Soil and vegetation were measured 
at three positions in relation to a given tree: 1 m away within 

the tree row (position A), 1.5 m away in the grass alley (posi-
tion B) and 10 m away in the grass alley (position C)
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Briefly, amplification was performed in 4 µL reaction 
volume in a Peqstar 96Q (PEQLAB, Erlangen, 
Germany) real-time PCR thermocycler. The reaction 
volume was composed of 3 µL mastermix and 1 µL 
sample DNA or double-distilled  H2O for negative 
controls. The composition of the mastermix, the 
choice of primer, and the thermocycling conditions 
are listed in the Tables  S.I.2, S.I.3, and S.I.4, 
respectively.

Determination of nitrification potential

The potential nitrification rate (PNR) was determined 
in the laboratory according to ISO 15.685. First, soil 
samples were stored at ambient temperatures for 2 
months to air dry. Next, the samples were sieved at 
< 1 mm and gently rewetted for two weeks to slowly 
reach 60% of mean water holding capacity, which was 
determined from a composite soil sample (Richards 
and Fireman 1943). Once rewetted, the samples were 
kept at 20 °C for four weeks at 60% water holding 
capacity. Next, PNR was determined by adding 10 
mL  (NH4)2SO4 solution (1.5 mmol  L−1) containing 
sodium chlorate to 2.5 g of soil. Samples were then 

incubated at 20 °C for 6 h and shaken vertically at 
40 rpm to ensure aerobic conditions. Since sodium 
chlorate restricts oxidation of  NO2

− to  NO3
−, 

 NO2
−-N production was measured after 2 and 6 h of 

incubation by colorimetry using a microplate reader 
(TECAN Infinite® 200 PRO). PNR was expressed as 
ng  NO2-N g dry  soil−1  h−1.

Statistical analysis

To increase data quality, the data were pre-treated to 
exclude statistical outliers (i.e. > 3 times as large as 
the standard deviation for more than one variable). 
After removal of 18 outliers, the final dataset con-
tained 162 observations: 80 for the hedgerow system 
and 82 for the alley cropping system.

Linear models were used to analyze (i) effects of 
the agroforestry system (hedgerow vs. alley crop-
ping), (ii) the position in relation to the tree (A, B and 
C) and (iii) interactions between them. We performed 
analysis of variance (ANOVA) of each model when 
residual normality and homoscedasticity were met 
according the Shapiro-Wilk and Levene tests (car 
package; Fox and Weisberg 2018). If at least one of 

Table 1  The protocols used to measure soil properties and vegetation properties

Variable Method used Reference

Soil ammonium  (NH4
+ -N) Soil  NH4

+-N was determined in the laboratory using fresh and sieved  
(< 2 mm) soil samples.  NH4

+-N was extracted using a 1 M KCl solution 
and 1 h of shaking.  NH4

+-N was then measured using a discrete analyzer 
(Smartchem 200 analyzer).

ISO 1425-6

Soil organic carbon (SOC) Soil samples were air dried and then homogenized using a gravimetric 
grinder. SOC was determined by dry combustion (FlashEA® 1112 ana-
lyzer).

ISO 10.694

Soil C:N ratio The dry combustion (FlashEA® 1112 analyzer) used to determine SOC was 
also used to estimate total soil nitrogen content.

ISO 10.694

Soil pH Soil samples were air dried and then sieved at < 2 mm. Soil pH was deter-
mined using a 1 M KCl solution and 5 min of shaking.

ISO 10.390

Soil bulk density Soil samples were collected using a volumetric cylinder (8 cm in diameter; 
15 cm tall). They were then dried at 105 °C for 48 h and weighed. Bulk 
density was calculated as the dry mass divided by the original volume.

Blake and Hartge (1986)

Earthworm abundance Soil blocks of 25 × 25 × 30 cm (L x W x D) were manually broken up in the 
field to count the number of earthworms. Since the soil was shallow, no 
mustard solution was added to collect earthworms that lay below a depth of 
30 cm.

adapted ISO 23611-1

Root biomass Soil samples were collected using a volumetric cylinder (8 cm in diameter; 
15 cm tall) and stored frozen. They were then hand washed to collect the 
roots present, which were dried at 65 °C for at least 48 h and weighed.

Freschet et al. (2021)

Vegetation biomass Aboveground vegetation biomass was collected using a 25 × 25 cm frame and 
then dried at 65 °C for 48 h.
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these conditions was not met, a Kruskal-Wallis test 
with Bonferroni adjusted p-values was performed. 
Post-hoc analyses with Tukey’s honestly significant 
difference test or with Bonferroni adjustment were 
performed after the ANOVA and Kruskal-Wallis test, 
respectively. The contribution of each factor to the 
overall  R2 of each linear model was determined.

Redundancy analysis (RDA) was performed (rda() 
function; vegan package, Legendre and Legendre 
2012) to assess effects of soil and vegetation proper-
ties on the nitrification potential and microbial com-
munity size. Before the RDA, replicates with missing 
variables were removed, and data were Z-standard-
ized (n = 105). To identify soil and vegetation vari-
ables that significantly affected nitrification potential 
and microbial community size, we used the step() 
function (stats package), which added soil and vegeta-
tion variables individually to the RDA model. Varia-
bles were selected if they decreased the Akaike infor-
mation criterion (AIC) of the RDA model. Relations 
among nitrification potential, microbial community 
size and soil and vegetation properties, as well as the 
effect of the agroforestry system and the position in 
relation to the tree on these relations, were analyzed 
using the developed model. Additionally, Spearman’s 
rank correlation analysis (cor () function; stats pack-
age) was performed to complement the RDA analysis 
on the strength of the relations among all studied var-
iables. Statistical significance of the correlations was 
tested using the cor.mtest() function (corrplot pack-
age). We considered p-values ≤ 0.05 as statistically 
significant. All statistical analyses were performed 
using R statistical software v.4.2.0 (R Core Team 
2022).

Results

Influence of the agroforestry system and position 
in relation to the tree on nitrification potential and 
microbial community size

The agroforestry system, the position in relation to 
the tree and the interaction between these two factors 
significantly influenced PNR (Table 2). The position and 
the interaction between the position and the agroforestry 
system explained the most variability in PNR (46% and 
42%, respectively). Thus, the spatial patterns of PNR 
differed between the agroforestry systems (Fig.  3). In 

the alley cropping system, PNR was higher in the tree row 
(position A, 199.2 ± 56.7 ng NO2-N g dry soil−1 h−1) 
than in the grass alley in positions B (136.9 ± 32.8 ng 
NO2-N g dry soil−1 h−1) (p = 0.005) and in position C 
(127.2 ± 57.5 ng NO2-N g dry soil−1 h−1) (p = 0.001). 
In the hedgerow system, PNR was lower at position B 
(96.6 ± 72.2 ng NO2-N g dry soil−1 h−1) than at C 
(157.1 ± 77.1 ng NO2-N g dry soil−1 h−1) (p = 0.006).

AOA were not detected in the soil samples. The 
abundances of AOB and Basidiomycota were not 
influenced by the agroforestry system or the position in 
relation to the tree (Table 2, S.I. 5). Only the abundance of 
Ascomycota differed significantly between the agroforestry 
systems (Table  2, S.I. 5). Despite high variability, 
Ascomycota abundance was higher in the alley cropping 
system (25.5 ± 38.3 × 106 gene copies g dry soil−1) than in the 
hedgerow system (14.1 ± 39.5 × 106 gene copies g dry soil−1) 
(p = 0.044).

Influence of the agroforestry system and the 
position in relation to the tree on soil and vegetation 
properties

Among the soil variables, only  NH4
+-N and SOC were 

influenced by the agroforestry system: both were higher 
in the hedgerow (3.58 ± 1.36 mg NH4+-N kg dry soil−1 
and 2.88 ± 0.33%, respectively) than in the alley cropping 
system (2.67 ± 0.75 mg NH4+-N kg dry soil−1 and 
2.60 ± 0.28%, respectively) (Table 2, S.I. 6, p = 1 ×  10−5 for 
 NH4

+-N and p = 7 ×  10−9 for SOC). Six of the eight soil 
properties were influenced by the position in relation to 
the tree (p < 0.01): SOC, the C:N ratio, bulk density, root 
biomass, vegetation biomass and soil pH (Table 2, S.I. 6). 
SOC was significantly higher in the tree row (position A: 
2.87 ± 0.34%) than in the positions B (p = 0.015) and C 
(p = 0.006) (2.70 ± 0.32% and 2.67 ± 0.33%, respectively), 
as were the C:N ratio (10.78 ± 0.42 vs. 10.46 ± 0.45 and 
10.51 ± 0.40, respectively) (A vs. B: p = 5 ×  10−4; A vs. 
C: p = 0.002) and vegetation biomass (217.4 ± 83.0 vs. 
100.2 ± 35.8 and 112.3 ± 35.8 g.m−2, respectively) (A 
vs. B and A vs. C: p < 2 ×  10−16). Soil bulk density was 
higher in the grass alleys (positions B and C: 1.30 ± 0.10 
and 1.29 ± 0.10 g.cm−3, respectively) than in the tree row 
(position A: 1.16 ± 0.12 g.cm−3) (A vs. B: p = 7 ×  10−10; A 
vs. C: p = 8 ×  10−12). Root biomass was higher at positions 
A (3.05 ± 1.82 g.cm−3) and B (2.60 ± 1.27 g.cm−3) 
than at position C (1.97 ± 1.09 g.cm−3) (A vs. C: 
p = 3 ×  10−4; B vs. C: p = 0.037).
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Soil pH was the only property that was influenced 
by the interaction between the agroforestry sys-
tem and the position in relation to the tree (Table 2, 
S.I. 6). For the alley cropping system, soil pH was 
higher at position A (5.6 ± 0.2) than at position C 
(5.3 ± 0.2) (p = 0.009), and did not differ from the 
other two positions at position B (5.4 ± 0.2). In con-
trast, for the hedgerow system, soil pH was lower at 
position B (5.1 ± 0.3) than at positions A (5.7 ± 0.3) 
(p = 2 ×  10−5) and C (5.6 ± 0.3) (p = 2 ×  10−8). Earth-
worm abundance was not influenced by any of the 
factors studied (Table 2, S.I. 6).

Relations among nitrification potential, microbial 
community size and soil and vegetation properties

Four soil and vegetation variables were selected 
to explain the variability in PNR: soil pH, which 
decreased the AIC of the RDA the most (from 146.6 
to 127.2), followed by the C:N ratio, root biomass 
and soil  NH4

+-N (Table 3). The final AIC when con-
sidering all four variables equaled 123.7 (Table  3). 
These variables explained 22.5% of the variability 

in nitrification potential and microbial community 
size. The first and second dimensions of the RDA 
explained 76.8% and 16.2% of the constrained vari-
ability, respectively. On the first dimension, PNR 
and soil pH were strongly correlated and positively 
represented, followed by Ascomycota abundance 
(Fig. 4a). Complementary, the Spearman’s rank cor-
relation analysis revealed that only pH was signifi-
cantly correlated with nitrification potential (Fig.  5, 
S.I. 7). The second dimension was negatively related 
to Ascomycota abundance and root biomass, and 
positively related to C:N ratio,  NH4

+-N and AOB 
gene abundance. A significant negative correlation 
between Ascomycota gene abundance and  NH4

+-N 
was revealed by the correlation analysis (Fig. 5).

RDA results revealed that the position in rela-
tion to the tree significantly influenced the relations 
among PNR, microbial community size and soil prop-
erties (Fig.  4b). Observations at position A differed 
from those at position B (p = 0.039) in having higher 
PNR, pH and, to a lesser extent, Ascomycota commu-
nity size. In contrast, position B was associated with 
lower PNR, pH and Ascomycota community size. 

Fig. 3  Boxplots with jittered datapoints (n = 162) of nitrifica-
tion potential as a function of the agroforestry system and posi-
tion in relation to the tree: A (within the tree row 1 m from the 
tree), B (in the grassland 1.5 m from the tree) and C (in the 
grassland 10 m from the tree). Whiskers represent 1.5 times 
the interquartile range. Black dots represent outliers. Boxplots 

concerning nitrification potential in the alley cropping agrofor-
estry system are colored in orange. Boxplots concerning nitri-
fication potential in the hedgerow system are colored in blue. 
Boxplots with different letters above them are significantly dif-
ferent (p < 0.05) according to a linear model



660 Plant Soil (2024) 494:651–667

1 3
Vol:. (1234567890)

Observations at position C did not differ significantly 
from those at the two other positions. Lastly, the type 
of agroforestry system did not significantly influence 
the RDA results.

Discussion

Spatial patterns of nitrification potential in young 
agroforestry systems have little relation to the size of 
microbial communities

Despite the young age of the two agroforestry systems 
studied, the study revealed spatial differences in nitri-
fication potential between them and among positions 
in relation to the tree. These observations may have 
been exacerbated by the shallow soil at the study site. 
Thus, the study sheds light on the structural and func-
tional complexity of the N cycle in different agrofor-
estry systems. In the alley cropping system, nitrifica-
tion potential was on average 1.5 times as high in the 
tree rows as in the grass alleys, while in the hedgerow 
system, it was on average 40% lower in the grass alley 
next to the trees (position B) than at 10 m in the grass 
alley (position C). These results indicate that the 
agroforestry system drives not only C-cycle processes 

(Mayer et al. 2022) but also N-cycle processes, which 
has been studied little to date.

Neither the RDA analysis nor the correlation 
analysis revealed a relation between the community 
size of soil nitrifiers and the PNR, which disagrees 
with our first hypothesis. Autotrophic nitrification 
at the study site was driven by bacteria rather than 
archaea, since AOA were not detectable. This result 
differs from those of other studies, which observed 
higher abundance of AOA than AOB in acidic and 
organically fertilized grassland soils (Clark et  al. 
2020; Jia et al. 2020; Prosser and Nicol 2012). Inor-
ganic fertilization is known to favor AOB over AOA 
(Jia et al. 2020; Prosser et al. 2020), but the site in 
the present study had not received any inorganic 
fertilizer for the past 15 years. Thus, AOB may have 
dominated at the study site due to repeated ammo-
nia inputs from cow urine and manure, which has 
been shown to favor AOB in grazed grasslands (Di 
et  al. 2009). However, AOB community size was 
not influenced by the agroforestry system or the 
position in relation to the tree, which is consistent 
with results of Beule et al. (2019). Moreover, AOB 
community size was weakly correlated with the 
soil properties measured. Overall, AOB population 
size did not drive the spatial patterns of nitrification 

Table 3  Steps used to identify soil and vegetation variables 
that significantly explained the results for nitrification potential 
and gene copies of ammonia-oxidizing bacteria (AOB), Basidi-
omycota and Ascomycota (in matrix Y). The Akaike informa-

tion criterion (AIC)of each redundancy analysis was used to 
retain one variable at each step (highlighted in bold). The “x” 
is the variable  tested. Negative signs indicate that the model 
tested the removal of the given variable

Step 1: Y ~ x Step 2: Y ~ pH + x Step 3: Y ~ pH + C:N 
ratio + x

Step 4: Y ~ pH + C:N 
ratio + Root biomass + x

Step 5: Y ~ pH + C:N 
ratio + Root bio-
mass +  NH4

+-N + x

Tested variable x AIC Tested variable x AIC Tested variable x AIC Tested variable x AIC Tested variable x AIC

pH  127.2  C:N ratio 125.4 Root biomass 124.0 NH4
+-N 123.7 None 123.7

C:N ratio 145.7 Root biomass 126.3 NH4
+-N 125.3 None 124.0 Earthworm 

Abundance
124.0

Vegetation bio-
mass

146.0 Earthworm 
Abundance

127.1 None 125.4 Earthworm 
Abundance

124.2 -  NH4
+-N 124.2

NH4
+-N 146.1 NH4

+-N 127.2 Earthworm 
Abundance

125.5 Vegetation bio-
mass

124.2 Bulk density 124.2

SOC 146.2 None 127.2 Vegetation bio-
mass

125.5 Bulk density 124.3 Vegetation 
biomass

124.3

Root biomass 146.4 SOC 127.3 Bulk density 126.1 SOC 124.9 SOC 124.9
None 146.6 Bulk density 127.7 SOC 126.4 - Root biomass 125.4 - Root biomass 125.4
Earthworm abun-

dance
146.8 Vegetation bio-

mass
128.3 - C:N ratio 127.2 - C:N ratio 126.3 - C:N ratio 126.3

Bulk density 147.3 - pH 146.6 - pH 145.7 - pH 145.2 - pH 145.2
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potential in the two agroforestry systems studied, 
which is surprising since agricultural practices and 
the presence of cows drive AOB population size 
(Di and Cameron 2018; Verhamme et  al. 2011). 
Although previous studies revealed that AOA and 
AOB gene abundances are proxies for variations 
in nitrification in grasslands systems (Di and Cam-
eron 2018), we argue that further investigations are 
required in order to broaden our understanding of 
nitrification processes in agroforestry systems.

In contrast to the correlation analysis, the 
RDA highlighted a relation between Ascomycota 

abundance and nitrification potential. Recent litera-
ture revealed that both bacteria and fungi can perform 
heterotrophic nitrification (Martikainen 2022), espe-
cially in grassland soils (Zhang et  al. 2023). Prim-
ers that can detect ammonia monooxygenase genes 
of bacteria have not been developed yet due to lack 
of knowledge about the underlying processes (Li 
et  al. 2018). Thus, we may have underestimated the 
contribution of  NH4

+-oxidizing heterotrophic bac-
teria. However, we studied Ascomycota and Basidi-
omycota abundance and observed higher Ascomy-
cota gene abundance in the alley cropping system 

Fig. 4  Results of the 
redundancy analysis tested 
on the following model: 
(Nitrification potential 
(PNR) + ammonia-
oxidizing (AOB) gene 
copies + Basidiomycota 
gene copies + Asco-
mycota gene copies) ~ 
(pH + C:N ratio + Root 
biomass +  NH4

+-N). Biplot 
a shows the replicates (black 
dots) and the correlations 
between the variables (black 
arrows). Biplot b shows the 
replicates colored as a func-
tion of the position in relation 
to the tree: A in red (in the 
tree row 1 m from the tree), 
B in green (in the grassland 
1.5 m from the tree) and C in 
blue (in the grassland 10 m 
from the tree)
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than in the hedgerow system (p = 0.044). Since some 
Ascomycota can nitrify organic matter and  NH4

+ (Li 
et al. 2018), and in line with reviews of heterotrophic 
nitrification (Martikainen 2022; Song et  al. 2021), 
heterotrophic nitrification driven by fungi may have 
contributed greatly to nitrification in the agroforestry 
systems studied. Future in field and laboratory studies 
using NH4+-15N tracers (Gao et al. 2022) may help 
disentangle the relative contributions of autotrophic 
and heterotrophic nitrification in the soils of different 
agroforestry systems.

Soil properties explain nitrification potential the most 
in young agroforestry systems

Soil properties such as SOC,  NH4
+-N availabil-

ity, soil structure and pH are considered as drivers 
of autotrophic and heterotrophic nitrification (Gao 
et al. 2022). The RDA indicated no relation between 

nitrification potential and SOC,  NH4
+-N availability 

or soil bulk density, but it did highlight a strong cor-
relation with soil pH (Fig. 4, S.I. 7).

Soil pH was strongly influenced by the position in 
relation to the tree and its interaction with the agro-
forestry system. In particular, pH and nitrification 
potential decreased strongly at the interface between 
tree row and grass alley (position B) in the hedgerow 
system, while smaller variations were observed in the 
alley cropping system. Biffi et  al. (2022) and Litza 
and Diekmann (2017) reported similar decreases in 
soil pH near hedgerows in the United Kingdom and 
Germany that were associated mainly with grazed 
grasslands, while the comprehensive study of Par-
don et  al. (2017) reported no increased soil acidity 
in alley cropping systems. In line with these studies, 
our results underline that hedgerow systems might be 
associated with increased soil acidity. In our study, 
the increase of soil acidity may have been related to 

Fig. 5  Spearman’s rank 
correlation results among 
all studied variables. 
Statistical significance of 
the correlations is indicated 
by asterisk (*: p < 0.05; **: 
p < 0.01; ***: p < 0.001). 
PNR: nitrification potential; 
AOB: ammonia-oxidizing 
bacteria; SOC: soil organic 
C
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higher input of tree litter, since the hedgerow had 
33% higher tree density than the tree rows of the 
alley cropping system. An unbalanced proton budget 
due to litter input and plant uptake between proton-
generating processes (e.g. dissociation of carbonic 
and organic acids, nitrification, and cation uptake by 
plants) and proton-consuming processes (e.g. miner-
alization of soil organic matter) is known to drive soil 
acidification in forest ecosystems (Fujii et  al. 2022). 
Moreover, high cow density near the hedgerow dur-
ing grazing (the farmer’s observation, which agrees 
with the scientific literature, e.g. Giro et al. (2019) in 
the present study likely resulted in high input of ani-
mal waste at position B and thus may have stimulated 
proton-generating processes.

The correlation observed between nitrification 
potential and soil pH agrees with results of previous 
studies (Martikainen 2022; Prosser 1990). Soil pH is 
thus one factor that alters the resistance and resilience 
(i.e. insensitivity and rate of recovery of communi-
ties, respectively, when experiencing a disturbance 
(Shade et al. 2012) of soil-N-cycling microorganisms 
to stresses that will occur in the future due to a chang-
ing climate (Mod et al. 2021; Shu et al. 2023). In the 
long term, Litza and Diekmann (2017) observed a 
decrease in pH of 0.5 units over 50 years near hedge-
rows. This highlights that pH and thus soil nitrifica-
tion potential might be influenced even more by the 
presence of trees once the systems in the present 
study mature.

Although soil bulk density was not significantly 
influenced by the type of agroforestry system, both 
 NH4

+-N and SOC were altered by presence of trees in 
the grassland. Like Mayer et al. (2022), we observed 
higher SOC and soil  NH4

+-N in the hedgerow system 
than in the alley cropping system. Mayer et al. (2022) 
explained this result by higher root biomass and 
tree density, which increased litter input. In the pre-
sent study, however, the agroforestry system did not 
explain differences in root biomass. Like for soil pH, 
higher tree density and high cow density next to the 
hedgerow could explain the higher SOC and  NH4

+-N 
in the hedgerow system. Moreover, shrubs were 
planted between the trees, which may increase litter 
input next to the hedgerow. Because we did not study 
litter quality or quantity, we can hypothesize about 
their influence on the spatial patterns of SOC and 
 NH4

+-N observed only by referring to other studies 

(Cardinael et  al. 2017; Guillot et  al. 2021; Laughlin 
2011; Schimel and Hättenschwiler 2007).

We expected that understory vegetation biomass 
and earthworm abundance would influence the nitri-
fication potential (Le Roux et al. 2013; Patoine et al. 
2020), but we found no relations between them. 
Unfortunately, practical limitations caused by the 
large dataset (n = 180) prevented acquiring other rel-
evant proxies, such as specific root length (Cantarel 
et al. 2015; Freschet et al. 2021) or ecological catego-
ries of earthworms (Bottinelli et al. 2020; Xue et al. 
2022). Thus, we cannot draw any conclusions from 
our data about effects of understory vegetation or 
earthworms on nitrification potential in the two agro-
forestry systems.

Since the studied agroforestry systems were young, 
the observed trends will need to be confirmed in the 
future. In particular, the trends in soil pH call for 
spatially explicit estimates of proton budgets (Helyar 
and Porter 1989) in temperate agroforestry systems. 
Since soil pH is one of the main drivers of soil chemi-
cal reactions and processes (Hartemink and Barrow 
2023), this approach would help consider the spatial 
complexity of agroforestry systems, especially that of 
biological activities or the bioavailability of nutrients 
(Hinsinger 2001; Neina 2019), when managing them. 
In particular, lower soil pH can decrease ammonia 
volatilization and nitrate leaching in grazed pastures 
(Le Cadre et al. 2009) but increases phosphorus avail-
ability and leaching (Devau et  al. 2011), as well as 
aluminum toxicity.

Conclusion

We explored the influence of hedgerow and alley 
cropping agroforestry systems on soil nitrification in 
temperate pastures. Spatial patterns of nitrification 
potential at the study site differed between the two 
systems and were related mainly to spatial differences 
in soil pH. In contrast, the size of the nitrifier commu-
nity did not drive nitrification potential. By studying 
two young agroforestry systems, the study revealed 
early regulation of nitrification potential by agrofor-
estry systems. Nitrification potential was particularly 
stimulated in the tree row of the alley cropping sys-
tem and was lower near the hedgerow. These results 
suggest that the influence of the type of agroforestry 
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system on the N cycle should be considered, espe-
cially regarding the provision of ecosystem services.
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