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Abstract 17 

The current highly pathogenic avian influenza H5N1 panzootic has substantial impacts 18 

on wild birds and marine mammals. Although major outbreaks occurred in South 19 

America, incursion to Antarctica emerged late in the breeding season of 2023/2024 and 20 

was confined the wider region of the Antarctic Peninsula. To infer potential underlying 21 

processes, we compiled H5N1 surveillance from Antarctica and Sub-Antarctic Islands 22 

prior to the first confirmed cases.   23 

Main text 24 

The increasing intensity of highly pathogenic avian influenza virus (HPAIV) H5N1 25 

clade 2.3.4.4b outbreaks have had a substantial impact on poultry and wildlife 1. Wild 26 

bird movements have underpinned the rapid spread of this virus that swept across most 27 

continents, except for Australia and Antarctica, within two years 2. Compared to previous 28 

HPAIV subtypes and clades, H5N1 2.3.4.4b has significantly improved replication in wild 29 

birds 3, and increased fitness through continuous reassortments 4 which has likely 30 

contributed to a shift in infection dynamics leading to the infection of a broader range of 31 

avian species 1. In addition to their role as viral spreaders, wild birds are suffering huge 32 

losses following mass mortality events, and the scale of mortality amongst wild birds is 33 

likely in the millions rather than tens of thousands reported 5. Thus, the recent panzootic 34 

is a serious conservation concern for a large range of wild bird species. 35 

Due to the absence of waterfowl species that migrate to the Antarctic and sub-36 

Antarctic islands, the incursion risk of HPAIV in these southernmost regions had been 37 

considered low prior to 2021. However, waterfowl are present in northern fringes of the 38 

Southern Ocean, and millions of known migration and post-breeding dispersal routes 39 

establish links and thereby substantial global connectivity, including with regions of 40 

recent HPAI H5N1 outbreaks involving seabirds and marine mammals 2. Despite the 41 

perceived remoteness, low pathogenicity avian influenza viruses and antibodies against 42 

these viruses have previously been detected in various seabird species nesting at sites 43 

along the Antarctic Peninsula and South Shetland Islands, with viral genomes illustrating 44 

phylogenetic connectivity to viruses circulating on other continents 6,7. As a result, the 45 

Scientific Committee on Antarctic Research (SCAR) Antarctic Wildlife Health Network 46 

(AWHN) had considered the risk of incursion of the recent panzootic HPAIV H5 into the 47 

Antarctic region in 2022/23 summer season to be high 8, and considerably higher in 48 

2023/24 following virus spread to the southernmost regions of South America 9, infecting 49 
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seabirds including Magellanic penguins (Spheniscus magellanicus) and Humbold 50 

penguins (Spheniscus humboldti), and several species of marine mammals (9).  51 

To identify possible incursions of H5N1 into the Antarctic region during the 52 

summer season 2022/23 and the early season 2023/24, we sampled migratory seabirds 53 

at different locations across Antarctica and in sub-Antarctic areas (Figure 1), and 54 

collated a range of observation data. Here, we define Antarctica as the region south of 55 

the Antarctic Convergence and sub-Antarctic areas include adjacent Islands within the 56 

Southern Ocean. In particular, we aimed to collect information pertaining to suspicious 57 

signs of unusual mortality and known clinical signs of HPAIV infection including loss of 58 

coordination and balance, trembling head and body, lethargy, respiratory distress, and 59 

conjunctivitis 8. Across all locations, sample collection was done in accordance with 60 

institutional animal ethics approval and sample testing was performed with national 61 

frameworks, with details available in the technical annex.  62 

 63 

 64 
Figure 1: Sampling locations for qPCR analysis and the detection of H5N1 2.3.4.4b, as well as 65 
locations with intensive observational efforts to identify signs of HPAI infections within breeding bird 66 
communities for the breeding season 2022/23 (left) and 2023/24 (right). In addition, locations of 67 
confirmed cases of infection in 2023/24 (left) are included. Numbers refer to the following references, 68 
(a) technical annex, (b) 10, (c, e) 11, (d, f) 12. Maps created with Natural Earth. 69 

 70 

Overall, sampling and observational efforts were conducted from early November 71 

2022 to late March 2023, and from October 2023 onwards until the end of February in 72 

2024. Surveillance efforts included a large range of species (i.e., penguins, gulls, skuas, 73 

and petrels; see technical annex for more information) and locations. In 2022/23, 74 

samples for HPAIV testing were collected from apparently healthy birds from 20 75 

locations in the sub-Antarctic and Antarctic Region. There were several suspicious 76 

observations of dead wild birds on the Falkland Islands (Gentoo penguin Pygoscelis 77 
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papua, Cattle egret Bubulcus ibis), and South Georgia (Wandering albatrosses 78 

Diomedea exulans). However, all swab samples collected from these animals, in 79 

addition to apparently healthy wild birds in other locations were negative for HPAI (see 80 

technical annex for details on location and species). Together, this strongly suggests 81 

that HPAIV H5N1 clade 2.3.4.4b did not enter the Antarctic region during the austral 82 

summer 2022/23, and that the lack of detection was unlikely due to lack of surveillance, 83 

testing or disease investigations. This is in contrast to the seabird breeding season 84 

2023/24. In October 2023 the first confirmed H5N1 cases were detected on the Falkland 85 

(Malvinas) Islands, and in November on South Georgia Island in the sub-Antarctic 10,12 86 

(Figure 1). Given the overlap of species breeding and migrating via the Falkland Island 87 

and South Georgia towards the Antarctic Peninsula and its offshore Islands (e.g., the 88 

South Shetland Islands), researchers in the region and the tourist industry have been 89 

very diligent in identifying unusual bird behaviour and mortality events. Despite active 90 

cases in the Falkland Islands and South Georgia Island, sample collection and 91 

observations from 16 locations between November 2023 – early February 2024 in the 92 

Antarctic Peninsula and related island were negative for HPAIV. Data from the SCAR 93 

monitoring project did, however, report suspected cases in the Antarctic region starting 94 

in December 2023 12. These include Brown Skuas on the South Orkney Islands in 95 

December 2023 (no samples collected), a mortality in Brown Skuas on Heronia Island in 96 

December 2023 (samples collected, HPAIV negative). Since mid-February several 97 

positive cases were reported from the Antarctic Peninsula (see Figure 1). This suggests 98 

that H5N1 was spread among colonies in the later breeding season, however, so far 99 

there is no evidence for large outbreaks on the Antarctic Peninsula. Further, based on 100 

observation data, the strain did not appear to have reached the Indian Ocean sub-101 

Antarctic islands as of February 2024 (see technical annex). 102 

Obviously, incursion risk, and successful establishment of HPAIV is contingent on 103 

a combination of factors. Most importantly, that (i) host species get in contact with 104 

HPAIV before travelling into the Antarctic regions, (ii) can migrate with an infection, and 105 

(iii) have contact and transmit the virus to susceptible species which could be the 106 

starting point of a new epizootic. Most species occupying the Antarctic region are 107 

pelagic seabirds with little to no contact with terrestrial birds such as waterfowl, 108 

significantly reducing their exposure to outbreaks on land (e.g. South America). 109 

However, some species like the Brown skua (Stercorarius antarcticus) and the giant 110 

petrel species (Macronectes sp.) are known scavengers (Figure 2), leading to high risks 111 

of exposure to HPAIV via the consumption of infected carcasses. It is thus no surprise 112 
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that Brown skuas where often among the first confirmed cases both on South Georgia 113 

and the Antarctic Peninsula 10. This species, which can be observed at shorelines of 114 

South America, the Falkland Islands and South Georgia 13, is likely to be an important 115 

player in spreading the virus. Yet, it seems that the connectivity established by the 116 

animals’ movements from South America and South Georgia over the Drake Passage to 117 

Antarctica is rather limited during the breeding season but might increase again towards 118 

the end when the breeding activities terminate, and the movement range of both adults 119 

and first juveniles are becoming larger again. Together with the increasing number of 120 

naïve juveniles and concomitant changes in densities, this may explain the delay 121 

between initial outbreaks in the Falklands/South Georgia and the first confirmed cases 122 

on the Antarctic peninsula. 123 

 124 

  125 
 126 

Figure 2: Northern giant petrels and Brown skuas scavenging on an Antarctic fur seal carcass, 127 
showing inter-species interactions with the potential for HPAI virus transmission (photo taken on 128 
South Georgia by Paulo Catry). 129 

 130 
Still, the consequences of viral incursion(s) into Southern Ocean wildlife are 131 

unclear but based on observations from other regions, will likely have devastating 132 

effects. Critically, densities of seabird colonies are very high, facilitating the 133 

transmissions between individuals 14. Further prospecting movements of potential 134 

recruits, predator-prey interactions between bird species (e.g., skuas, penguins, and 135 

sheathbills), as well as species scavenging on dead seabirds and mammals, may 136 

promote rapid spread of the virus between colonies 15. Once the virus has been 137 

established in the region, interaction between seabirds and marine mammals may also 138 

result in further transmissions and facilitate the adaptation of the virus in mammalian 139 
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species 14. Finally, most animals of the Southern Ocean are endemic to the region, such 140 

that mass mortality events in Antarctica due to HPAIV H5 will cause a very real 141 

conservation concern for many species. 142 

Detecting H5N1 incursion(s) and describing the infection dynamics into and 143 

within the sub-Antarctic and Antarctic regions is highly relevant and standardized 144 

surveys for mortality and sampling should therefore be prioritized. These activities 145 

should be undertaken with consideration of the potentially zoonotic risks of (emerging) 146 

HPAIV H5 8 and require strict hygiene measures to prevent the spread of the virus 147 

through human activities. Sampling and detailed analysis of lineages and virus 148 

phenotype will provide crucial information needed to assess risks and respond to future 149 

wild bird outbreaks. 150 

 151 
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