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Abstract
Global agriculture is heavily dependent on sustainable plant protection. Worldwide, the concept of integrated pest manage-
ment (IPM) is being followed. IPM utilizes a range of strategies, with chemical synthetic pesticides being employed only 
as a last resort. However, in agricultural practice, farmers continue to rely primarily on this option. To further reduce this 
dependence, new strategies are being sought to strengthen the use of biological control within the IPM approach including 
the identification of novel non-synthetic natural compounds. Here, we discuss and report on the state of the art in biological 
control research in areas such as biocontrol agents and application of ecological principles. These practices can help to estab-
lish sustainable plant protection systems, with the greatest impact achieved when they are used in appropriate combinations. 
We highlight the conditions that currently prevent or hinder the increased use of biocontrol measures. On the background of 
agroecological experiences, we discuss why additional advancements in plant protection practices are imperative to more 
effectively break the life cycles of pests, diseases and weeds. We emphasize the significance of a judicious application of 
chemical control technologies, adapted to local conditions. Additionally, we highlight the key role and expertise of operators 
in implementing these practices and their knowledge thereof.

Keywords Agroecology · Beneficial organisms · Biocontrol agents · Integrated pest management · Induced resistance · 
dsRNA · Nature-based substances · Priming · Sustainability

Introduction

The need for reduction of chemical synthetic 
pesticides in IPM

Given the projected increase in total food consumption by 
a growing world population and the crucial situation of our 
planet, agricultural production faces an increasing need for 
knowledge-based plant protection, characterized by a better, 
holistic understanding of pest and diseases (Deutsch et al. 
2018; Muller et al. 2017; van Dijk et al. 2021). Synthetic 
chemicals such as synthetic pesticides have a long success-
ful history as plant protection products (PPPs) in pest and 
disease control, as they have overall reduced the risk of 
yield losses over decades. Concerns about their potential 
negative side effects on human and animal health and the 
environment, as well as their gradual ineffectiveness due 
to emerging compound resistance of pests and pathogens, 
have spurred research and industry to seek new strategies 
in plant protection. The primary objective is to reduce the 
use of synthetic chemicals and replace them with biological 
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methods based on new scientific findings about the ecology, 
epidemiology and molecular mechanisms of plant diseases 
and a better understanding of the plant's immune system (He 
et al. 2021; Lamichhane et al. 2016).

In the European Union (EU), integrated pest management 
(IPM) is legally obligatory as described in the Directive 
2009/128/EC Annex III (European Parliament and Council 
2009) and is widely regarded as the standard broad-based 
approach for safeguarding crops from harmful organisms 
while reducing or minimizing PPP-related risks to human 
health and the environment (Deguine et al. 2021; Mailly 
et al. 2017). Although IPM prioritizes the use of ‘non-
chemical methods’ for pest management (see Annex III of 
Directive 2009/128/EC), thus regulatory preferring physical, 
mechanical or biological pest control methods (Fig. 1), farm-
ers and growers remain unconvinced that alternative IPM 
strategies can fully replace chemical synthetic pesticides 
for crop protection and effectively mitigate their production 
risk. Consequently, a recent analysis of the use of chemical 
synthetic PPPs in Europe from 2011 to 2021 revealed that 
the total sales in tons of pesticide active substances have 
remained relatively stable over the last decade, with annual 
sales fluctuating around ± 6% (Eurostat 2022). As a result, 
there is growing social and environmental pressure from side 
of consumers and policy makers to reduce synthetic chemi-
cals to an absolute minimum necessary amount, to prioritize 
residue-free products and to develop new strategies in plant 
protection based on a deeper understanding of the biological 
mechanisms involved.

Currently, there is an intense debate regarding a proposal 
by the EU Commission to replace the Sustainable Use of 

Pesticides Directive (Directive 2009/128/EC) with a regu-
lation, the so-called Sustainable Use Regulation or SUR 
(European Parliament and Council 2023). The new SUR, 
which has been rejected by the European Parliament in the 
first reading (European Parliament 2023), aimed to align 
with the EU Commission's objectives of the ‘Farm to Fork’ 
(European Commission 2020a) and ‘Biodiversity’ strategies 
(European Commission 2020b). This set of measures are 
all part of the European Green Deal (European Commis-
sion 2019), which has the ultimate goal of making the EU 
climate neutral by 2050. The SUR primarily aimed to (a) 
achieve a 50% reduction in the use and risk of plant protec-
tion products by 2030 (relative to the average of the years 
2015–2017), (b) strengthen the enforcement of IPM, (c) 
promote the use of non-chemical alternatives to chemical 
synthetic pesticides, (d) improve the availability of moni-
toring data, (e) enhance the application of regulations and 
the effectiveness of policy measures and (f) support new 
technologies such as precision agriculture. Whether the EU 
Commission will initiate a second reading remains uncertain 
at this point. Nevertheless, the implications of the process 
are becoming increasingly evident. The question of how bio-
control could be promoted as a game-changer in integrated 
pest management is becoming more pressing.

It is evident that forthcoming reduction objectives neces-
sitate significant innovation in the area of non-conventional 
PPPs for pest and disease control. Furthermore, it is impor-
tant to prioritize the application of non-synthetic chemi-
cal methods that are already available and to support their 
market expansion through relevant policy instruments. 
This encompasses not only biological PPPs based on plant 

Fig. 1  Concept of IPM fol-
lowing Annex III of Direc-
tive 2009/128/EC. Biological 
control measures are part of the 
‘intervention’ tool box of IPM
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compounds (‘botanicals’) and microorganisms, but also 
open-field applications of beneficial organisms. The addi-
tional use of biostimulants and the integration of plant–plant 
interactions will also become relevant (European Commis-
sion, Directorate-General for Health and Food Safety 2020). 
In this context, we explore in this article whether one of 
the key intervention components of IPM, the biological 
control of pests could become a game-changer in the IPM 
process resulting in the reduced need of chemical synthetic 
pesticides.

The scope of biological control

Today, there is a lack of a universally accepted terminology 
for biological control (biocontrol), often resulting in termi-
nology confusion and misuse among researchers, legislators 
and biocontrol industry. At the time of writing of this review, 
neither the USA nor the EU has a formal definition for 
‘biocontrol’ or ‘bioprotection.’ The Institute for European 
Environmental Policy (IEEP) defines them as ‘the protection 
of plant health through natural or nature identical means’ 
(Hulot and Hiller 2021). It should be noted that the view-
point of the IEEP may not necessarily coincide with that of 
the EU. However, the definition of the IEEP is in alignment 
with the definition provided by the International Biocontrol 
Manufacturers Association (IBMA 2018), which represents 
the biocontrol industry worldwide. To aid comprehension, 
we have compiled an extensive catalogue of biological con-
trol vocabulary and the corresponding definitions employed 
in official publications from the EU, USA, United Nations 
and affiliated institutions (Table 1).

In this review, we adopt the recommended definitions 
outlined in Stenberg et al. (2021), which build upon the 
definition of bioprotection (IBMA 2018) to differentiate 
between bioprotectants that utilize living biocontrol agents 
(BCAs) and non-living nature-based substances (NBSs). 
Here, BCAs include macroorganisms and microorganisms 
(including microbial plant biostimulants—see also Fig. 2), 
while botanicals, semiochemicals, basic substances, RNA 
and resistance-inducing compounds are included in the 
NBSs (see also Fig. 3).

We examine current examples of best practice options 
in BCAs and NBSs, particularly at EU level. We also dis-
cuss emerging and innovative approaches, such as resist-
ance-inducing priming agents and active cell components, 
as double-stranded RNA (dsRNA). We begin by gathering 
information oriented toward products and more specifi-
cally their active ingredients, because these represent the 
level of regulatory influence. From this data, we evaluate 
to what extent these techniques could be integrated to act 
as a game-changer toward the development of a sustainable 

IPM system, with the aim of minimizing chemical synthetic 
PPPs usage.

BCAs in biocontrol

BCAs are naturally occurring, widespread living organisms, 
including viruses, bacteria, fungi, insects, mites, nematodes, 
yeasts and protozoa, that can control pests as part of IPM 
strategies through different biological mechanisms (Stenberg 
et al. 2021). In November 2022, four new regulations were 
approved in the EU to simplify the process of approval and 
authorization of biological PPPs which contain microorgan-
isms (Regulation EU 2022/1438, 2022/1439, 2022/1440, 
2022/1441; (European Commission 2022a, 2022b, 2022c, 
2022d)). Currently, 71 microorganism strains are approved 
in the EU (see EU Pesticides Database revised in Novem-
ber 2023 (EU 2023)), and further 26 approvals are pend-
ing. At the most basic level, predators capture and consume 
their prey, whereas insect parasitoids lay their eggs on or 
in their hosts, which are then consumed by their immature 
offspring. Similarly, certain entomopathogenic organisms 
(mostly fungi) can penetrate the outer integument of insects 
and cause systemic infection, while bacteria and viruses 
infect and kill harmful organisms, mostly upon ingestion. 
Figure 2 shows some of the best examples of BCAs and their 
(in)direct target in nature.

Antagonistic viruses and phages

Viruses are excellent candidates for species-specific, nar-
row-spectrum applications to control arthropod and micro-
bial pests (Holtappels et al. 2021; Sabbahi et al. 2022; 
Stefani et al. 2021; Vikram et al. 2021; Wagemans et al. 
2022). Baculoviruses (family Baculoviridae), due to their 
incapability to replicate within mammal and plant cells 
and their high insect specificity, are considered a model 
BCA for insect management. Recognized as an alterna-
tive to synthetic insecticides already in 1977 (Arif 1977; 
Dulmage and Burgerjon 1977), today, Nucleopolyhedro-
viruses (NPV) and Granuloviruses (GV) are two genera of 
Baculoviridae mainly employed as BCAs for the control of 
Lepidoptera (butterflies and moths), Hymenoptera (wasp) 
and Diptera (flies). Cydia pomonella granulovirus (CpGV) 
and Phthorimaea operculella granulovirus (PhopGV) are 
insect-specific viruses that offer highly selective control 
of the codling moth Cydia pomonella (Mora Vargas 2022) 
and the leaf miner Tuta absoluta (Gonthier et al. 2023) 
in apple orchards and tomato farms, respectively. The 
commercial products, available in both Europe and North 
America, contain the virus in an aqueous suspension and 
are sprayed at egg hatch. To be effective the baculoviruses 
must be taken up by the insect larvae. Once ingested, they 
spread throughout the body via the midgut, killing their 
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host (Preininger et al. 2018). Importantly, the occurrence 
of pathogen resistance against CpGV has been observed in 
practice (Olivares et al. 2023). Similarly, agents based on 
highly concentrated NPVs are used for the control of the 
larvae of lepidopterans of the Helicoverpa family in veg-
etable and grain crops. Helicoverpa armigera nucleopoly-
hedrovirus (HearNPV) is utilized for controlling the cotton 
bollworm (Helicoverpa armigera) and the corn earworm 
(Helicoverpa zea) (Williams et al. 2022). Spodoptera lit-
toralis nucleopolyhedrovirus (SpliNPV) is used against the 
larvae of the African cotton leafworm Spodoptera littoralis 
(El Sayed et al. 2022) and the fall armyworm Spodoptera 
frugiperda (Zanella-Saenz et al. 2022). Interestingly, the 
potential for genetic modification, particularly to enhance 
the lethality of baculoviruses, has been already recognized 
in the past and could present new future prospects (Stewart 
et al. 1991). Today, baculoviruses are classified as low-
risk substances under EU regulation unless their adverse 
effects on nontarget insects are demonstrated (see point 

5.2.2. of Annex Regulation (EU) 2017/1432; European 
Commission 2017). Densovirinae (family Parvoviridae) 
is an additional subfamily of single-stranded DNA viruses 
that exhibit high potential for future biocontrol purposes. 
The prevalence and diversity of densoviruses across eco-
systems suggest their potential efficacy against various 
insect families such as Lepidoptera, Diptera, Orthoptera, 
Hemiptera, Blattoidea, Thysanoptera and more (Sabbahi 
et al. 2022; Wagemans et al. 2022).

Compared to the large number of virus-based BCAs 
against insects, only a limited number are available against 
fungi (mycoviruses) and bacteria (bacteriophages), espe-
cially in Europe. A few successful examples are the 
mycovirus Cryphonectria hypovirus 1 (CHV1) against its 
fungal host Cryphonectria parasitica, the causal agent of 
chestnut blight (Rigling and Prospero 2018) and Erwinia 
amylovora Siphoviridae phage (PhiEaH1 and PhiEaH2) 
against E. amylovora fire blight on apple and pear trees 
(Gayder et al. 2023; Kolozsváriné Nagy et al. 2015).

Fig. 2  Best practice examples of BCAs currently employed in IPM to 
control some major pests and diseases. Examples presented here uti-
lize multiple mechanisms, including nutrient competition, antibiosis 

and mycoparasitism. Plant-improving microbes, including microbial 
plant biostimulants, often improve plant health by inducing resistance 
to biotic or tolerance to abiotic stresses
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Antagonistic bacteria

Several recent reviews on the use of bacteria as BCAs are 
available (Bonaterra et al. 2022; Legein et al. 2020; Pfeiffer 
et al. 2021; Sood et al. 2020). Bacillus and Pseudomonas 
species are the most important biocontrol strains used in 
commercial products. The former because of their ability to 
produce resistant and long-lasting endospores, which facili-
tates formulation and shelf life, and the latter because they 
are often found in relatively high abundance in the phyllo-
sphere (the aboveground surface of plants) and several are 
known as antagonists of plant pathogens. Extensive infor-
mation on all pest antagonistic activities of Bacillus and 
Pseudomonas for plant protection can be also found in the 
reviews of Fira et al. (2018) and Dimkić et al. (2022).

The bacterium Bacillus thuringiensis (Bt) is often used 
as a biocontrol strategy, both outdoors and under glass, to 
control the larvae of harmful butterflies. Bt products are 
particularly important in vegetable and ornamental crops, 
where they can be very well combined with pest behavior 
manipulation strategy known as the push–pull–kill system, 
through the use of semiochemicals (see also Fig. 3B). Here, 
the (insect) pest is attracted by an encapsulated attractant 
and killed by a Bt product as toxic compound (Schünemann 
et al. 2014; Valtierra-de-Luis et al. 2020). Bt toxins, when 
ingested by the insect, damage the intestinal tissue, lead-
ing to intestinal paralysis and death by starvation. Bacil-
lus subtilis, Bacillus cereus, Bacillus atrophaeus, Bacillus 
velezensis, Bacillus mojavensis, Bacillus amyloliquefaciens 
and others have also been extensively studied as biocontrol 
agents for the control of both fungi and bacteria. Their effec-
tiveness has been demonstrated against various pathogens, 
including Fusarium graminearum (Wang et al. 2015), Bot-
rytis cinerea (Cheng et al. 2023), Botryosphaeria dothidea 
(Mu et al. 2020), Colletotrichum coccodes (Wei et al. 2023), 
Magnaporthe oryzae (Ma et al. 2020), Verticillium dahliae 
(Zheng et al. 2011), Xanthomonas campestris (Marin et al. 
2019), Pectobacterium carotovorum (Lim et al. 2013) and 
Ralstonia solanacearum (Seleim et al. 2023).

Additionally to these successes of the genus Bacillus, the 
evaluation of endophytic bacteria of grapevine showed the 

antagonistic potential of 27 bacterial strains belonging to 
13 genera of Agrobacterium, Arthrobacter, Bacillus, Chry-
seobacterium, Klebsiella, Kocuria, Pantoea, Pseudomonas, 
Rahnella, Rothia, Serratia, Staphylococcus and Variovorax 
against Fomitiporia mediterranea a causal agent of the 
ESCA disease (Vaghari Souran et al. 2023). These promis-
ing results demonstrate the huge potential of bacteria/patho-
gen interactions in biocontrol.

So far challenges for bacterial-based BCAs are the pro-
duction and stabilization of live bacteria formulations. Opti-
mizing the drying process is crucial to achieve a longer shelf 
life and minimize the loss of biocontrol activity (Teixidó 
et al. 2022).

Antagonistic higher fungi and yeasts

Freimoser et al. (2019), Moosavi and Zare (2020), Palm-
ieri et al. (2022), Peng et al. (2021) and Thambugala et al. 
(2020) provide a thorough analysis of the subject matter. 
Fungus-based BCAs demonstrate significant potential for 
pest management, particularly in controlling insect popula-
tions. Problematic insects such as hay bugs and locusts can 
be effectively addressed with fungi, such as Entomophaga 
and Beauveria sp., as well as the chitin-degrading Metarhi-
zium sp. (Bhadani et al. 2022; Clancy et al. 2018; Hajek 
et al. 2021). These fungi have been successfully used in 
Africa, the USA and Canada, as their spores can germinate 
and penetrate the exoskeleton of the insect to feed on the 
internal tissue. The use of fungi of the genus Trichoderma 
against microbial root pathogens has also been described 
and implemented in numerous products. The main Tricho-
derma species effective in the control of soilborne fungal 
pathogens are T. asperellum, T. atroviride, T. hamatum, T. 
harzianum and T. viride (Alfiky and Weisskopf 2021; Zin 
and Badaluddin 2020). Mechanisms in Trichoderma sp. that 
counteract plant pathogens include strong mycoparasitism, 
antibiosis, competition and induced resistance. Other recent 
examples of pathogenic fungi with potential as biological 
control agents include Orbiliales and Purpureocillium sp. 
for nematode control (Moosavi and Zare 2020), and Clon-
ostachys sp. for controlling crown and root rot diseases on 
major fruit, vegetable and ornamental crops (Lysøe et al. 
2017). Pythium oligandrum is an oomycete parasite of many 
fungi and other oomycetes, including Botrytis, Fusarium and 
Phytophthora sp. (Gerbore et al. 2014). However, there is 
currently a challenge in determining whether potentially 
beneficial strains could transform into plant pathogens, and 
this issue necessitates further investigation (Manjunatha 
et al. 2022; Pfordt et al. 2020; Sanna et al. 2022).

Regarding yeasts, several species have been registered 
for use as biocontrol agents (Freimoser et al. 2019). Yeasts 
are generally used to antagonize plant pathogenic fungi and 
bacteria due to their competition for nutrients and space. An 

Fig. 3  Best practice examples of NBSs currently employed or in the 
pipeline to control plant pathogens and pests and boost plant produc-
tion and resilience. While examples of substances are presented for 
botanicals, basic substances and mineral-based substances (A), semi-
ochemicals are categorized based on their various functions (B-top, 
for more information and examples, see also https:// phero base. com/ 
(El Sayed 2023)). Non-living disease resistance-inducing priming 
agents (IRPs) are given with their chemical structures (B-bottom). 
Examples shown here influence the growth, survival, development 
and reproduction of plants and other organisms. Certain chemical 
compounds, such as alkaloids and flavonoids, can fall into both the 
botanical and semiochemical categories when extracted from plants, 
due to their chemical composition rather than their mode of action

◂

https://pherobase.com/
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important application for yeast-based BCA formulations is 
the control of the post-harvest phase, where the shelf life of 
fruits and vegetables must be preserved. Here, the yeast-like 
fungus Aureobasidium pullulans seems to be a very good 
candidate for the control of various post-harvest diseases 
during storage conditions (Di Francesco et al. 2023). Cur-
rently, various yeast strains of Candida oleophila, A. pullu-
lans, Metschnikowia fructicola and Saccharomyces cerevi-
siae are approved in the EU as active substances for PPPs 
(EU 2023).

Macroorganisms as BCAs

The use of antagonists or beneficial macroorganisms, such as 
insects, predatory mites and entomopathogenic nematodes, 
is a viable and environmentally friendly pest control method 
that can be incorporated into an IPM strategy. The objective 
is to manage pests while minimizing harm to the environ-
ment. Macrobial BCAs are commonly used (a) to safeguard 
and enhance naturally occurring beneficial organisms, (b) 
to introduce beneficial organisms for classical biological 
pest control against immigrating or invasive pests to reduce 
pest pressure and (c) to manage pests by releasing mass-
bred beneficial insects for inundative application. Getanjaly 
et al. (2015) and (Baratange et al. 2023) presented a list 
of macroorganisms that can be used in agriculture for the 
control of insect and weeds. The European and Mediterra-
nean Plant Protection Organization (EPPO), an international 
organization responsible for cooperation and harmonization 
in plant protection within the European and Mediterranean 
region, also provides a list of macroorganisms used in the 
EPPO region with no or acceptable adverse effects. This 
list aims to facilitate decision-making on the import and 
release of macroorganisms within EPPO countries (EPPO 
2021). However, it is important to note that beneficial insects 
require specific ecological principles, such as hedgerows or 
flower stripes, for deployment and to ensure their survival, 
especially in open fields and seeded crops (Morandin et al. 
2014). Nonetheless, beneficial organisms have effectively 
implemented in the IPM strategy in numerous practical 
instances in a controlled environment for several years 
(Richter 2009). Beneficial insects for insect control can be 
divided into two groups: predators and parasitoids. Predators 
are typically larger, free-living and mobile insects that feed 
on other arthropods. In this group, assassin bugs, ladybirds 
and other beetles of the orders Coleoptera and Hemiptera 
are the main predators of aphids, mites and thrips. Preda-
tory mites (Phytoseiidae, Laelapidae and Macrochelidae) 
are commonly used in commercial biological control prod-
ucts to manage phytophagous mites, thrips and whiteflies in 
vegetable and ornamental cultivation systems in glasshouses 
(Knapp et al. 2018). Parasitoids, on the other hand, parasitize 
different life stages of their host, depending on the species. 

Entomopathogenic nematodes parasitize a variety of soil-
dwelling insects, including the larval forms of moths, but-
terflies, flies and beetles, as well as adult forms of beetles, 
grasshoppers and crickets (Shapiro-Ilan and Dolinski 2015). 
Many insects of the orders Hymenoptera and Diptera, such 
as parasitic wasps of the families Sphecidae and Ichneu-
monidae, are parasitoids of various pupae of Lepidoptera 
and Coleoptera. The vast majority lay their eggs directly 
into the body of their host, which the larvae consume after 
hatching. Recently, success in controlling the highly invasive 
Drosophila suzukii has been achieved in Switzerland and 
Italy through the use of parasitoid wasps in vineyards (Fellin 
et al. 2023; Knoll et al. 2017). More investigation is required 
in this area since the quantity of host/pathogen combina-
tions treated with insecticides today exceeds what can be 
addressed by beneficial organisms (Baratange et al. 2023). 
As a final environmentally friendly method of pest control, 
it is worth mentioning the sterile insect technique (SIT). SIT 
involves mass rearing, sterilizing male pest insects through 
irradiation and releasing them in a specific area (Dyck et al. 
2021).

BCAs for weed management

One of the greatest challenges in modern agriculture is weed 
control. Emerging superweeds are developing resistance to 
many common synthetic herbicides, leading to substantial 
yield losses and economic damage. However, contrary to 
expectations, the market for weed biocontrol products is not 
well developed and has the smallest market share compared 
to other biocontrol products against insects, bacteria and 
fungi (Cordeau et al. 2016; Marrone 2021; Razaq and Shah 
2021). While BCAs against insect, bacterial and fungal pests 
have the largest market share, research on BCAs for weed 
control since the 1980s has failed to demonstrate that there 
is a significant co-evolution of natural enemy with a host 
weed (Cordeau et al. 2016; Razaq and Shah 2021). Further-
more, intensive application arises questions about the risk of 
their transfer to main crops. Today there is no widely used 
commercial biological herbicide and most BCAs for weed 
management are sold in countries outside the EU (Bremmer 
Johan et al. 2021; Roberts et al. 2022). By 2010, uninten-
tional introductions of BCAs for weed control in the EU 
accounted for all available weed-related BCAs (Shaw et al. 
2018). Research and commercialization to date has focused 
primarily on mycoherbicides, such as strains of fungal 
genera Colletotrichum, Phoma Puccinia and Verticillium. 
While formulations containing isolates of Tobacco mild 
green mosaic virus (TMGMV) for the control of Solanum 
viarum and the bacterium Xanthomonas campestris for the 
control of Poa annua and P. attenuata are the only excep-
tions (Morin 2020; Roberts et al. 2022). Similarly, some 
insects feed on unwanted weeds and their seeds. Successful 
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examples here include Dactylopius opuntiae for the control 
of Opuntia humifusa and Opuntia stricta, cactus pests in the 
Mediterranean (Mazzeo et al. 2019), and P. pseudoinsulata 
for the control of the weed Chromolaena odorata in Africa 
(Aigbedion-Atalor et al. 2019).

Microbes with activity on plants 

In this category, we summarize microorganisms such as bac-
teria and higher fungi or their consortia (microbiomes) that 
have a direct positive (beneficial) effect on plant growth and 
development, and eventually on yield. The scientific focus 
is currently on the plant microbiome. The term microbiome 
refers to the totality of microorganisms (including bacte-
ria, fungi and viruses) in a given ecosystem, such as the 
soil, rhizosphere or aerial organs of a plant (Trivedi et al. 
2020). From the regulatory point of view, these microor-
ganisms are classified as microbial plant biostimulants (see 
Table 1). A plant biostimulant is any substance or microor-
ganism applied to plants with the aim to enhance nutrition 
efficiency, abiotic stress tolerance and/or crop quality traits, 
regardless of its nutrients content (European Parliament and 
Council 2019).

Microbial plant biostimulants are applied to plants in soil 
or substrate to enhance plant growth, health and resilience 
(Feldmann et al. 2022). All listed and recognized microbial 
biostimulants in EU are located under the component mate-
rial category 7 of Regulation (EU) 2019/1009 (European 
Parliament and Council 2019). At the moment, only four 
groups of microorganisms are listed: Azotobacter sp., myc-
orrhizal fungi, Rhizobium sp. and Azospirillum sp. Prelimi-
nary discussions have taken place in the Commission expert 
group on fertilizing products regarding the future procedure 
for assessing the safety of microorganisms (European Com-
mission 2023). This could lead to an increase in the number 
of microorganisms on the list in the near future. Although 
microbial biostimulants are not classified as direct plant 
protection products like pesticides, they can still make an 
indirect contribution to plant protection by enhancing the 
plant's stress resistance, overall health and vigor Du Jardin 
(2015). The efficacy of biostimulants can be influenced by 
various factors, including the type of biostimulant used, the 
crop species targeted, environmental conditions and applica-
tion methods employed. Therefore, cultivating sound knowl-
edge and selecting appropriate biostimulants are crucial for 
effective plant protection. Conducting research and gaining 
insight into the specific needs of crops are essential for the 
judicious use of biostimulants in plant protection strategies.

Indeed, an increasing number of reports show that ben-
eficial endophytic bacteria and fungi are characterized 
by their ability to protect plants from diseases and pests, 
primarily through their resistance-inducing activity. They 
also exhibit biostimulatory activity that enhance nutrient 

availability and uptake, as well as aid in the promotion 
and development of root and shoot growth. Examples of 
beneficial rhizosphere microorganisms include arbuscular 
mycorrhizal fungi (Begum et al. 2019; Etesami et al. 2021) 
and other fungal and bacterial endophytes (Collinge et al. 
2022; Morales-Cedeño et al. 2021; Sharma et al. 2023). A 
noteworthy example is the Serendipitaceae family (from the 
Basidiomycota division) with the canonical model fungus 
Serendipita (syn. Piriformospora) indica. These fungi form 
a mutualistic symbiosis with an unlimited number of land 
plant species. This confers strong disease and pest resistance 
to their host plants against a broad spectrum of viral, bacte-
rial, oomycotic and fungal pathogens and insect pests, while 
also positively affecting plant biomass and yield, suggesting 
that they bear a strong BCA component (Glaeser et al. 2016; 
Saeed et al. 2021; Silva et al. 2019). Rather speculative is 
the possibility to harness microbial symbionts of pests, or 
attempting to control pests by regulating their beneficial 
symbionts. Recent work provides insights into the dynam-
ics of microbial–invertebrate colonization and its importance 
in the development of the host (Dearing et al. 2022; Ganesan 
et al. 2022, 2023; Janke et al. 2022; Kanyile et al. 2022; 
Slowik et al. 2023).

Final remarks on BCAs

BCAs' growing popularity is primarily due to their near-
natural, eco-friendly approach, which can offer a long-term, 
sustainable pest control strategy. In addition to such obser-
vations, it can be deduced from the articles cited above that 
BCAs are sometimes very specific (for instance, viruses, 
Wagemans et  al. (2022), or parasitoids Thilagam et  al. 
2023)—a disadvantage against the broad spectrum of tar-
gets of chemical synthetic pesticides, but an advantage in 
terms of undesired side effects of active agents. Moreover, 
it has been established that plant pathogens exhibit varying 
levels of sensitivity toward BCAs, and BCAs may exhibit 
low efficacy in case of high pathogen pressure (Bardin et al. 
2015). Additionally, certain pathogens are capable of adapt-
ing quickly to BCAs, a phenomenon observed in chemical 
synthetic pesticides as well. The direct comparison of effi-
cacy of BCAs and chemical control results in lower efficacy 
of BCAs (Viteri et al. 2019), but also in comparable efficacy 
(Hassan et al. 2023) or variable efficacy depending on the 
strain targeted (Leonardi et al. 2023). To stabilize the effi-
cacy of living organisms several authors recommend to pay 
more attention to environmental issues and the landscape 
context (Abd-Elgawad and Askary 2020; Perez-Alvarez 
et al. 2019; Stiling and Cornelissen 2005).

From an industrial perspective, there is a need for 
research to broaden the product range through the identi-
fication of more effective microorganisms for the control 
of pests and pathogens. At present, the mode of action of 
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these individual organisms is sufficiently understood only in 
limited instances and is often based on direct antimicrobial 
or insecticidal action, whether hyperparasitism or antibiosis 
(Parratt and Laine 2016). Köhl et al. (2019) take it a step 
further by questioning whether BCA metabolites could lead 
to heightened risks. They conclude that only for macrobial 
BCAs which produce potential antimicrobial metabolites 
in vitro or during the mass production fermentation process 
and contain such metabolites in the formulated end prod-
uct at effective concentration, thorough risk assessment is 
indicated and the minimal effective concentration against 
the target and representative nontarget organisms can be 
established. However, in all other cases, such metabolites 
are discussed not to be relevant.

Another important but often overlooked aspect is the 
effectiveness and cost efficiency of combining BCAs with 
synthetic and non-synthetic chemicals in IPM strategies. 
This continues to pose a challenge in the adoption of agri-
cultural practices that involve BCAs (Böckmann et al. 2019).

Nature‑based substances

In the search for new and environmentally friendly methods 
to maintain agricultural production, attention is also shifting 
to bioactive plant extracts, compounds of plants, insects or 
other organisms, and of minerals. These non-living, nature-
based substances (NBSs) are used in plant protection and 
can be classified and utilized in various ways. Derived from 
natural sources, they can provide alternative methods for 
pest management in agriculture. NBSs are often viewed as 
environmentally friendly alternatives to chemical synthetic 
pesticides, promoting sustainable agriculture and reducing 
environmental impact. However, their efficacy may vary 
depending on factors such as application methods, timing, 
dosage and specific pest or disease being targeted. Biominer-
als and biofertilizers as mineral-based substances like rock 
powders, such as rock phosphate or limestone, can be used 
as soil amendments or biominerals to enhance soil fertility, 
which indirectly supports plant health and resilience against 
diseases. Figure 3 is a schematic representation of the most 
common NBSs and how they are classified.

Mineral‑based substances

Mineral-based substances (see Fig. 3A) are commonly used 
in plant protection as natural alternatives to synthetic pesti-
cides. These substances can have pesticidal properties or aid 
in enhancing soil health, resulting in indirect promotion of 
plant protection. Hereafter, we will discuss various methods 
for using mineral-based substances.

(a) Fungicides and bactericides: minerals like potassium 
hydrogen carbonate, sulfur and copper are used as 

fungicides and bactericides to control various fungal 
and bacterial diseases in plants. They function through 
unspecific toxicity, disrupting the growth and devel-
opment of pathogens or inhibiting their reproductive 
cycles (Bloem et al. 2005, 2014; Gomes et al. 2020; La 
Torre et al. 2018; Santos et al. 2011).

(b) Insecticides and repellents: diatomaceous earth and 
quartz sand are both white powders composed of fossil-
ized remains of diatoms with a very high  SiO2 content. 
They possess abrasive properties that harm the exoskel-
etons of insects, leading to their dehydration and sub-
sequent demise. These powders are typically applied 
to travel routes and hiding places of crawling insects 
and are commonly used as insecticides and physical 
barriers (Rojht et al. 2011; Shah and Khan 2014; Zeni 
et al. 2021).

(c) Soil amendment: rock powders such as rock phosphate 
and limestone are used to improve soil structure, pH 
balance and nutrient availability. Healthy soils contrib-
ute to better plant growth and disease resistance. On the 
other hand, they can be applied to leaves as biocontrol 
agents (Faraone et al. 2020; Ramos et al. 2022).

(d) Physical barrier: kaolin clay can be used as a protective 
film against pests and sunburn in fruit crops. It acts as a 
physical barrier, protecting plants from insect feeding 
damage and excessive heat (Bestete et al. 2018; Silva 
and Ramalho 2013).

Mineral-based substances are often favored in both 
organic farming and IPM strategies due to their lower envi-
ronmental impact compared to chemical synthetic pesticides. 
They can be utilized for both preventative and intervention 
measures. However, it is essential to consider factors such as 
appropriate application methods, dosage and potential envi-
ronmental effects when using mineral-based substances for 
plant protection. Additionally, adherence to regulations and 
guidelines regarding their use is crucial to ensure their safe 
and effective application in agriculture.

Botanicals

A botanical active substance ‘consists of one or more com-
ponents found in plants and obtained by subjecting plants or 
parts of plants of the same species to a process such as press-
ing, milling, crushing, distillation and/or extractions. The 
process may include further concentration, purification and/
or blending, provided that the chemical nature of the com-
ponents is not intentionally modified/altered by chemical 
and/or microbial processes’ (European Commission 2014; 
OECD 2017). In the EU, botanicals (see Fig. 3A) undergo 
the same approval process as chemical synthetic pesticides 
with some exceptions in the data requirements outlined in 
the cited guidance document (European Commission 2014).
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The potential of botanicals in plant protection for pest 
control has been highlighted in numerous scientific studies 
(Acheuk et al. 2022). However, the large variety of active 
ingredients present in plant extracts creates challenges for 
product registration. Currently, only a small number of 
botanical active substances have received EU approval, in 
contrast to the USA, Brazil or Australia (IBMA 2022). For 
instance, the triterpene azadirachtin the major constitu-
ents of neem oil, derived from the seed of the neem tree 
(Azadirachta indica), acts as an insecticide and repellent. 
It disrupts the growth and development of insects, repels 
insect pests and has antifeedant properties against certain 
insects (Campos et al. 2016; Semere 2023). Another exam-
ple, pyrethrum, extracted from dried flowers of certain 
chrysanthemum species (Chrysanthemum cinerariifolium 
or Tanacetum cinerariifolium), contains pyrethrins that 
have insecticidal properties and are effective against a 
wide range of insects, including undesired effects against 
bees (Souto et al. 2021). Various essential oils derived 
from plants, such as peppermint, thyme, clove or garlic oil, 
possess pesticidal properties and they can act as insecti-
cides, repellents or fungicides against pests and diseases 
(Assadpour et al. 2023), and can have a nematicidal effect 
(Catani et al. 2023).

Currently, botanical and phytotoxins, such as essential 
oils, appear to be the most efficient agents for the biocontrol 
of weeds (Acheuk et al. 2022). Roberts et al. (2022) discuss 
the topic in depth, including commercial products available 
on the market today. Marrone (2023) takes a more market-
oriented approach to the topic and provides future prospects 
for weed control. The efficacy of alternatives to herbicidal 
compounds is greatly affected by weather and temperature 
fluctuations, and other constraints including specific require-
ments for maintaining the activity and efficacy of the active 
ingredients, which necessitates the development of specific 
formulations. Nevertheless, their long-term and repeated 
use in agricultural and natural ecosystems requires further 
research. Some products available on the EU and US mar-
kets use as key ingredients organic compounds, such as ace-
tic, citric or pelargonic acids, essential oils derived from 
rapeseed, citrus plants, and clove and phytotoxin such as 
thaxtomin from the bacterium Streptomyces ascidoscabies 
(Pannacci et al. 2017).

However, it is important to note that botanicals can have 
undesired side effects. Rotenone, for example, obtained 
from the roots of various tropical plants (such as Derris 
and Tephrosia sp.), acts as an insecticide and piscicide 
(poisonous to fish) and is, therefore, toxic for the environ-
ment. It affects the nervous systems of insects and pest 
and is possibly supporting the development of Alzheimer 
diseases in humans (Bisbal and Sanchez 2019). Nicotine, 
derived from the tobacco plant (Nicotiana tabacum), was 
historically used as an insecticide (Jacobson 1989). Its use 

is now restricted due to its high toxicity to humans and 
nontarget organisms like bees.

This compilation illustrates the peculiar characteristics 
of botanicals and emphasizes the importance, in some 
cases, of an approval process followed by post-authoriza-
tion monitoring for botanical active substances and their 
applications. Botanical application conforms to the princi-
ples of IPM and organic cultivation. However, it is worth 
noting that although botanical pesticides originate from 
natural sources, their effectiveness, safety and appropriate 
application require careful deliberation and adherence to 
guidelines, to minimize hazards to the environment and 
nontarget organisms.

Basic substances

In the EU, basic substances are substances of no concern 
and cannot be placed on the market as PPPs (see Fig. 3A). 
In recent years, most requests for approval of basic sub-
stances for use in agriculture have been typically submit-
ted by organizations or institutions that are involved in 
organic farming (Marchand 2017).

Costantini and La Torre (2022) wrote an excellent work 
on the regulatory situation of basic substances and the 
current state of the art about their availability from plant 
origin (Equisetum arvense L., sucrose, vinegar, lecithins, 
Salix sp. cortex, fructose, sunflower oil, Urtica sp., beer, 
mustard seeds powder, onion oil, Allium cepa bulb extract 
and clayed charcoal), animal origin (L-cysteine, chitosan 
hydrochloride, whey and cow milk) and inorganic-based 
(calcium hydroxide, sodium hydrogen carbonate, diam-
monium phosphate, hydrogen peroxide, talc E553B and 
sodium chloride). According to the EU pesticides data-
base (EU 2023), Equisetum arvense, calcium hydroxide, 
vinegar, lecithins and Salix sp. cortex have been approved 
as fungicides. Extracts of Allium and Urtica sp. have also 
been permitted as insecticide and acaricide. Whey can be 
used as a virucide, sodium hydrogen carbonate and vinegar 
as herbicides and beer as a molluscicide. Chitosan hydro-
chloride may be applied as elicitor of pattern-triggered 
immunity (PTI). Diammonium phosphate as an attractant, 
clayed charcoal as a protectant, Talc E553B as an insecti-
fuge and fungifuge. Finally, onion oil can be employed as 
a repellent. Overall, Toffolatti et al. (2023) found, after a 
thorough review, that basic substances and potential basic 
substances can be effective means for managing diseases. 
In addition, Romanazzi et  al. (2022) assert that basic 
substances are a valuable tool which complements IPM 
options. The efficacy assessment of basic substances is not 
part of the approval process and no national risk assess-
ment of products takes place.
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Semiochemicals

The website https:// phero base. com/ (El-Sayed 2023) is an 
excellent tool to convey scientific data and knowledge from 
the literature into electronically searchable database entries, 
organized by compounds, species or application measures.

Semiochemicals encompass both pheromones and alle-
lochemicals and play a crucial role in safeguarding plants 
through affecting the behavior of pests, such as impeding 
their mating, or even driving them away (Fig. 3B). Semio-
chemicals can be used for:

(a) Trapping and monitoring: via nature-based pheromones 
in traps to monitor and control pest populations (Alam 
et al. 2023; Staton and Williams 2023). Pheromone-
baited traps attract male insects by mimicking female 
pheromones, helping to monitor pest levels and deter-
mine the best timing for control measures. Pheromones 
can be employed also in mass trapping strategies, where 
a large number of pests are lured into traps and killed, 
reducing their population density and minimizing dam-
age to crops (Alam et al. 2023; Dalbon et al. 2021).

(b) Mating disruption through saturation of an area with 
synthetic pheromones, which confuses the male insect 
and prevents him to locate the female for mating 
(Franco et al. 2022). When implemented and timed cor-
rectly, this method could aid in curbing the proliferation 
of pests, minimize crop-related harm and potentially 
supplant usage of alternative pesticides (Thiery et al. 
2023). The method can be implemented in areawide 
IPM strategies, especially aimed at managing pests that 
infest stored products (Morrison et al. 2021). Tailored 
semiochemicals for specific pests provide a precise and 
species-specific method of pest management.

(c) In the field, push–pull strategies use semiochemicals 
where repellent chemicals (push) are used to drive pests 
away from crops, whereas attractive chemicals (pull) 
lure pests toward traps or alternative host plants, result-
ing in decreased harm to the primary crop (Chatterjee 
and Kundu 2022).

The utilization of semiochemicals is in line with the IPM 
approach as it diminishes dependence on typical pesticides, 
therefore promoting more sustainable methods of pest con-
trol. When compared to the application of broad-spectrum 
chemical pesticides, the use of semiochemicals minimizes 
adverse impacts on nontarget organisms, beneficial insects 
and the environment.

Additionally, semiochemicals have the potential to 
enhance the efficacy of biological control agents by lur-
ing pest predators to the affected region, thereby facili-
tating natural pest management. However, the efficacy of 
semiochemical-based pest management techniques can be 

influenced by various factors such as pest species, crop type 
and environmental conditions. Therefore, it is imperative to 
exercise meticulous monitoring, employ appropriate appli-
cation methods and possess a comprehensive knowledge of 
the target pest's biology for the successful implementation 
of these techniques.

Bacterial rhamnolipids and lipopeptides

A small, often ignored class of molecules with high agri-
cultural efficacy and economic viability for industrial pro-
duction, capable of stimulating plant growth and resistance, 
are rhamnolipids and lipopeptides (Fig. 3B) (Monnier et al. 
2018; Raouani et al. 2022). A large number of studies have 
described their antimicrobial activities against plant patho-
gens (see review by Crouzet et al. 2020). Rhamnolipids are 
glycolipids produced by several bacterial species, includ-
ing some Pseudomonas and Burkholderia sp., while lipo-
peptides are mainly produced in cyclic form by Bacillus 
and Pseudomonas sp., compared to other molecules, their 
antimicrobial activity is well understood. The double-layer 
cell membrane is destabilized by the interaction with these 
molecules, resulting in cell lysis. As mentioned above, in 
addition to their antimicrobial properties, rhamnolipids and 
lipopeptides also induce local and systemic resistance to 
plant pathogens, although the mode of action here remains 
unclear. In short, these molecules have similar dual effects, 
protecting plants through antimicrobial properties and stimu-
lating plant immunity, which are perfect properties for a bio-
control substance. However, before they can be approved and 
deployed as active ingredients in biocontrol formulations, 
their mode of action needs to be fully understood, which 
could significantly delay their use in the field.

Double‑stranded and circular RNA

The use of RNA for plant disease and pest control is at 
a very early stage, and basic research is still required to 
unravel the full potential (Cai et al. 2018a; Hossain et al. 
2023; Nitnavare et al. 2021). At this stage, the potential 
of RNA, including long noncoding RNAs, short dsRNA 
duplexes and circular RNAs (see Fig. 3A), to control plant 
pests (insects, nematodes) and microbial pathogens (espe-
cially viruses) appears promising, although a direct proof 
of its practical importance in this field is still pending 
(Liu et al. 2020; Mezzetti et al. 2020; Qiao et al. 2021; 
Zotti et al. 2018). The molecular mechanism of action 
of dsRNA in target organisms is largely but probably not 
entirely (Huang et al. 2023; Niehl and Heinlein 2019) 
based on RNA interference (RNAi), a naturally occurring, 
conserved mechanism of gene regulation in eukaryotes 
(Baulcombe 2023). A strong argument in favor of the RNA 
technology in IPM is the finding that the exchange of RNA 

https://pherobase.com/
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is a natural mechanism during the colonization of hosts 
(plants and animals) by colonizing microorganisms and 
pests (Buck et al. 2014; LaMonte et al. 2012; Weiberg 
et al. 2013). In this natural process, microorganisms use 
small RNA duplexes (so-called RNA effectors) to weaken 
their host defense system (immune system) and thus sup-
port host colonization and disease. From an agronomic 
perspective, it is particularly interesting that plants also 
produce RNA effectors (mostly microRNAs, Šečić et al. 
2021) to weaken the virulence of pathogenic microorgan-
isms, which occurs through the targeted degradation of 
microbial mRNA by the plant RNA effector (Cai et al. 
2018b; Zhang et al. 2016). The use of dsRNA to protect 
crops by topical application (spray-induced gene silenc-
ing [SIGS] method; Koch et al. 2016) appears attractive 
because the method is very flexible in terms of technol-
ogy and regulatory aspects and can be rapidly adapted to 
different pests and diseases (Liu et al. 2020; Mann et al. 
2023; Rosa et al. 2022; Taning et al. 2021; Wang and Jin 
2017). Foliar application of dsRNA has been shown to 
protect potato plants from Colorado potato beetle lar-
vae, and Ledprona (the first SIGS-based dsRNA active 
ingredient targeting proteasome subunit beta 5) has been 
approved for registration as a biopesticide product by the 
US Environmental Protection Agency for a three-year 
period (Rodrigues et al. 2021). A list of HIGS- or SIGS-
based agricultural products that are currently available 
on the market or awaiting national approval is given in 
Table 2.

However, unlike in the USA where dsRNA is classified 
as biochemical pesticides, the registration process for non-
GMO dsRNA-based PPPs in Europe follows, at the time of 
this review, the same regulations as chemical PPPs. With 
SIGS-based PPPs under development, there is a need to 
address regulatory and biosafety concerns to establish a 
suitable framework and risk assessment process for these 
products (CAST 2024; Dietz-Pfeilstetter et al. 2021; De 
Schutter et al. 2022). Notably, first considerations have been 
presented by the Organization for Economic Co-operation 
and Development (OECD 2020, 2023). These publications 
provide a comprehensive set of recommendations dealing 
with the potential hazards of exogenously applied dsRNA-
based products for nontarget organisms, including humans. 
Currently, a high potential of dsRNA is seen in horticul-
tural cultures under glass, as the application can take place 
there under well-controlled climatic conditions. Here a key 
to application is the development of efficient drug formula-
tions that are suitable for improving the uptake of RNA by 
the target organisms (Mitter et al. 2017; Niño-Sánchez et al. 
2022; Qiao et al. 2023; Wytinck et al. 2020). In the state 
of the art, a large number of RNA formulations have been 
published in recent years, but their increased efficacy has 
hardly been demonstrated.

Priming is one important mode of action of NBS

A promising and sustainable strategy in IPM is the use of 
NBS with resistance-inducing activity (Induced Resistance 
Primers, IRPs) that trigger defense priming (Cooper and 
Ton 2022; Iriti and Vitalini 2021; Perazzolli et al. 2022). 
Priming agents can be compounds such as botanicals, basic 
substances and semiochemicals (Görlach et al. 1996; Kles-
sig et al. 2018; Kogel et al. 1994; Manosalva et al. 2015; 
Sauerborn et al. 2002; Schenk et al. 2014) (see Fig. 3A). An 
obvious agronomic advantage is often that individual IRPs 
are doubly effective, activating the plant immune system 
while improving plant growth (Waller et al. 2005).

Examples of successful natural priming compounds are 
the polysaccharides chitosan, a deacetylated chitin derivative 
that was first approved as an active ingredient in 1986 (Iriti 
and Faoro 2009) and tramesan from the fungus Trametes 
versicolor (Scala et al. 2020) (see Fig. 3B). Very promising 
for broad applications as IRPs are semiochemicals such as 
ascarosides isolated from nematodes (Kamboj et al. 2024; 
Manosalva et al. 2015) and N-acyl homoserine lactones 
(AHLs) isolated from a range of nonpathogenic bacteria 
(Shrestha and Schikora 2020) that modulate quorum sens-
ing in nematodes and bacteria, respectively. Interestingly, 
priming agents can also be applied directly to the seed (seed 
dressing or coating), which can be particularly useful in the 
early stages of plant growth when plants are at their most 
vulnerable stage of development (Paparella et al. 2015; Wal-
ters et al. 2013; Yang et al. 2022). Reviews summarizing the 
main aspects regarding screening, testing, production, pack-
aging and shelf life of priming-activating biocontrol agents 
are Raymaekers et al. (2020) and Teixidó et al. (2022).

In conclusion, although using IRPs overall seems to be 
very promising it is important to note that their mode of 
action remains to be elucidated, and recent research suggests 
the involvement of both genetic and epigenetic mechanisms 
(Mauch-Mani et al. 2017; Nguyen et al. 2020; Perazzolli 
et al. 2022), and while a significant proportion of univer-
sity-based phytopathology research in EU and the USA has 
focused on exploring IRP strategies for crop protection since 
the early 1990s, the range of effective PPPs based on these 
agents is still very small.

The future of biocontrol in IPM

Biocontrol as a predominant component of plant 
protection measure

Overall, it is clear that alternative measures to chemical syn-
thetic pesticides are necessary to prevent declining efficiency 
in agricultural production (Goulet et al. 2023). The details 
that determine the size of farms, the number of crops per 
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Table 2  List of HIGS- and SIGS-based commercial applications available on the market or awaiting national approval

a See end of the table for full gene name
b https:// www. isaaa. org/ gmapp roval datab ase/ event slist/ defau lt. asp
c https:// www. bayer. com/ en/ vt4pro
d https:// www. epa. gov/ pesti cides/ epa- regis ters- novel- pesti cide- techn ology- potato- crops
e https:// green light biosc iences. com/ wp- conte nt/ uploa ds/ 2022/ 08/ Green Light- inves tor- prese ntati on- August- 2022. pdf
f https:// www. renai ssanc ebios cience. com/ corpo rate/ renai ssance- biosc ience-s- novel- rnai- biope stici de- techn ology- recei ves- canad ian- regul atory- 
appro val- for- 2023- field- studi es
*Full gene names: Asn1: glutamine-dependent asparagine synthase 1; Plrv-orf1: putative replicase domain of PLRV; CCoAOMT: caffeoyl-CoA 
3-O-methyltransferase; Plrv-orf2: putative helicase domain of PLRV; Fad2-2: fatty acid desaturase 2 sub. 2; Ppo5: polyphenol oxidase 5; Fad2-
1A: fatty acid desaturase 2 sub. 1A; R1: alpha-glucan, water dikinase 1; FatB: fatty acyl-acyl carrier protein thioesterase B; Snf7: sucrose non-
fermenting 7; FatB-1A: fatty acyl-acyl carrier protein thioesterase sub. 1A; Vlnv: vacuolar acid invertase; Nib: nuclear inclusion b RNA-depend-
ent RNA polymerase; β-lyc: lycopene β cyclase; Pg: polygalacturonase; ε-lyc: lycopene ε cyclase; PhL: phosphorylase L
**Full gene names: Psmb5: Proteasome subunit beta 5

Product Developer RNAi target organism RNAi target  genea Availability for cultiva-
tion

References

HIGS-based commercial applications
Huanong No. 1 South China Agricultural 

University
Papaya Ringspot Virus 

(PRSV)
Nib China Li et al. (2007)

New Leaf Plus Russet 
Burbank

Monsanto (Bayer) Potato Leaf Roll Virus 
(PLRV)

Plrv-orf1 and plrv-orf2 CA and USA ISAAA—GM 
Approval  Databaseb

Innate Acclimate J.R. Simplot Co Potato (Solanum tubero-
sum)

Asn1, ppo5, PhL, R1 and 
Vlnv

CA and USA ‘’

Arctic Okanagan Specialty 
Fruits Inc

Apple (Malus domestica) Ppo5 CA and USA ‘’

Super High Oleic (SHO) Go Resources Pty Ltd and 
CSIRO

Safflower (Carthamus 
tinctorius)

FatB and fad2-2 AU Wood et al. (2018)

HarvXtra Monsanto (Bayer) and 
Forage Genetics Inter-
national

Alfalfa (Medicago sativa) CCoAOMT CA, JA and USA Barros et al. (2019)

FLAVR SAVR Monsanto (Bayer) Tomato (Lycopersicon 
esculentum)

Pg USA ISAAA—GM 
Approval  Databaseb

Vistive Gold Monsanto (Bayer) Soybean (Glycine max) Fatb1-A and fad2-1A CA, JA and USA
EU: all uses except 

agriculture

‘’

Treus Plenish Pioneer Hi-Bred Interna-
tional and DuPont

Soybean (Glycine max) fad2-1 CA, JA and USA
EU: all uses except 

agriculture

ISAAA—GM 
Approval  Databaseb

PinkGlow/Rosé Del Monte Fresh Produce 
Company

Pineapple (Ananas 
comosus)

β-lyc and ε-lyc Costa Rica
CA and USA: all uses 

except agriculture

‘’

SmartStax Pro Bayer Crop Science Western corn rootworm 
(Diabrotica virgifera 
virgifera)

Snf7 BR, CA, China, JA and 
USA

EU: all uses except 
agriculture

‘’
De Schutter et al. 

(2022)

VT4 Pro Bayer Crop Science Western corn rootworm 
(Diabrotica virgifera 
virgifera)

Snf7 USA: commercialization 
in 2024

Bayer Crop  Sciencec

Product Developer RNAi target organism RNAi target gene**/info Availability for cultivation Reference

SIGS-based commercial applications
BioClay Sustainable Crop Protec-

tion ARC HUB
Multiple, including fungal 

and virus pests
Formulation AU: field trials since 2017 Mitter et al. (2017)

Ledprona (Calantha) GreenLight Biosciences Colorado potato beetle 
(Leptinotarsa decem-
lineata)

PSMB5 USA: registration 
approved for 3 years

Rodrigues et al. 
(2021); EPA 
(2023)d

GS15 GreenLight Biosciences Varroa destructor - not disclosed - USA: EPA submission 
planned for 2023

GreenLight Biosci-
ence,  2022e

Yeast-based RNAi Renaissance BioScience 
Corp

Multiple, including Colo-
rado potato beetle

Platform CA: approval field testing 
in 2023

Renaissance 
 BioSciencef

https://www.isaaa.org/gmapprovaldatabase/eventslist/default.asp
https://www.bayer.com/en/vt4pro
https://www.epa.gov/pesticides/epa-registers-novel-pesticide-technology-potato-crops
https://greenlightbiosciences.com/wp-content/uploads/2022/08/GreenLight-investor-presentation-August-2022.pdf
https://www.renaissancebioscience.com/corporate/renaissance-bioscience-s-novel-rnai-biopesticide-technology-receives-canadian-regulatory-approval-for-2023-field-studies
https://www.renaissancebioscience.com/corporate/renaissance-bioscience-s-novel-rnai-biopesticide-technology-receives-canadian-regulatory-approval-for-2023-field-studies


281Journal of Plant Diseases and Protection (2024) 131:265–291 

farm and the cultivation strategies play a crucial role in this 
regard (Galluzzo 2023; Palmisano 2023).

Following the common classification of IPM, we have 
placed biocontrol within the realm of ‘interventions’ in IPM 
(Fig. 1). The first major issue in replacing chemical synthetic 
pesticides with biological measures is the need to increase 
the number of applications and targets for biologicals. Cur-
rently, there is a significant disparity between the approved 
uses of chemical synthetic pesticides and biological agents. 
In the EU member states, it is estimated that only about 
15% of all pairing of crop and pest have also a biocontrol 
agents approved (in Germany, approximately 2600 out of 
19,600 interactions or ‘uses’; BVL 2023). These values do 
not yet include ‘control gaps’—when a control method for a 
specific pest does not exist. Exact figures are only published 
by each member state in their own national language and can 
be challenging to research.

However, it is important to note that this comparison only 
considers botanicals, microorganisms and semiochemicals, 
as their authorisation is linked to an assessment of ‘sufficient 
efficacy.’ Other NBSs, such as basic substances, which are 
no plant protection products but possess some useful char-
acteristics in IPM, do not undergo efficacy assessments. The 
same applies to macroorganisms and biostimulants. There-
fore, to consider the possibility of being a game-changer 
in IPM, the qualitative aspect of all biocontrol measures 
should be investigated and included alongside the quantita-
tive evaluation.

Agricultural systems must be redesigned to favor 
biocontrol applications

The IPM approach combines a wide range of phytosanitary 
measures, primarily integrating direct intervention measures 
with preventive and monitoring measures (Fig. 1). While the 
monitoring measures support the decision-making process 
regarding the timing of intervention, the preventive meas-
ures, such as the choice of resistant varieties, are crucial to 
minimize the use of synthetic chemical products in the field. 
Similarly, field preparation, choice of cropping system based 
on specific environmental conditions and crop rotation can 
all help to avoid disease and pest pressure and thus reduce a 
pesticide use. At its best, if the above measures are applied, 
intervention with synthetic chemical products is only neces-
sary when factors such as pest pressure or weather change 
unexpectedly.

The biological control toolbox is very diverse (Figs. 2 
and 3), as we have shown in this brief overview, and most 
of the elements mentioned are already essential components 
of crop protection in organic farming (European Parliament 
and Council 2018). Organic farming has so far demonstrated 
that the IPM approach can work without synthetic chemical 
PPPs (Niggli et al. 2017). However, yields and production in 

organic farming are still strongly influenced by the weather 
and temperatures during the year (Muller et al. 2017), affect-
ing the amount and quality of products (Knapp and van der 
Heijden 2018; La Cruz et al. 2023; Meemken and Qaim 
2018; Ponisio et al. 2015; Ponti et al. 2012). Moreover, 
mineral-based substances (see Fig. 3A), especially copper, 
have so far proved to be irreplaceable while they have a det-
rimental impact on the biodiversity of cultivated areas, as 
evidenced, for example, by beetle populations in vineyards 
(Kaczmarek et al. 2023). In recent years, organic agriculture 
has been under significant political and social pressure to 
reduce costs and make its products more competitive on the 
market. In individual cases, production is already competi-
tive, as demonstrated by olive production in Turkey (Dal and 
Karaçetin 2023). Here, as it has been widely observed in 
other crops, the emergence of ‘mixed green covers’ (groves 
with mixed vegetation) fosters naturally occurring beneficial 
macroorganisms, reducing the need for their costly rearing 
and application (González-Ruiz et al. 2023). In other pro-
duction systems, both organic and conventional farming, the 
concept has been implemented for years through the use of 
flowering strips (Albrecht et al. 2020, 2021). When indige-
nous flora are utilized, it is referred to ‘conservation biologi-
cal control’ (Zaviezo and Muñoz 2023). These regenerative 
methods are applied to enhance soil quality and enabling 
effective symbiosis, for example, with biostimulants such 
as mycorrhizal fungi (Sun and Shahrajabian 2023). In the 
above-mentioned processes, the biocontrol method entails 
adjusting and adapting the cultivation system, with the ulti-
mate objective of establishing and maintaining living BCAs 
as sustainably as possible.

Agroecology and IPM share several principles and 
approaches that complement each other. Some aspects of 
agroecology in sensu Altieri (2000) and Altieri and Farrell 
(2018) are already integrated into IPM and include biodi-
versity enhancement, reduced chemical inputs, crop rota-
tion and polycultures, cultural control, considering the entire 
agroecosystem, and community engagement and knowledge 
sharing.

The redesign of production systems should follow the 
area wide management principles (Vreysen et al. 2007a; 
Vreysen et al. 2007b). Agroecological-oriented areawide 
pest management involves integrating ecological princi-
ples across larger landscapes to manage pests sustainably 
(Brewer and Elliott 2023). This approach can significantly 
contribute to redesigning conventional agriculture in sev-
eral ways, including connecting green infrastructure (Avi-
ron et al. 2018), inter-row vegetation (Blaise et al. 2021), 
seminatural habitats in the near of agricultural areas (Bartual 
et al. 2019), consideration of birds (Garfinkel et al. 2020) 
and other taxa in order to expand the range of biocontrol 
agents (Gurr 2018) and to realize a food web approach (Her-
rera et al. 2021).
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Overall, maintaining spatial, temporal and genetic diver-
sity is a classic but crucial measure to reduce pathogen pres-
sure in the soil, control weed populations and can also be 
beneficial for soil fertility and maintaining closed nutrient 
cycles. By integrating agroecological principles into IPM 
practices, agricultural systems can become more sustain-
able, resilient and environmentally friendly while effectively 
managing pests and maintaining crop productivity. From the 
view of plant protection, the aim is to strongly strengthen 
the knowledge of biological disease mechanisms, includ-
ing the function of soil and plant microbiomes, and foster 
the holistic agroecological understanding as a prerequisite 
to integrate and adapt various biocontrol methods into the 
cultivation system based on the application of BCAs and 
NBS (see Figs. 2 and 3). It is essential to gain a comprehen-
sive understanding of effectively integrating these innova-
tive technologies into current plant production practices to 
achieve desired outcomes for plant production, environmen-
tal sustainability and human health.

Biocontrol products require new and dedicated 
legislations

Legislative adaptations are vital in supporting and promot-
ing biocontrol methods in agriculture.

To achieve the EU's 2030/50 objectives, the regulatory 
framework for biocontrol must be explicitly supportive, with 
regulations that are specifically designed to streamline their 
registration and approval procedures. Currently, these frame-
works heavily focus on the registration and marketability of 
chemical synthetic pesticides, neglecting the distinct attrib-
utes of biocontrol agents.

Developing and integrating biocontrol agents into the 
agricultural system require the essential establishment of 
risk and hazard assessment methodologies to evaluate their 
safety and efficacy. However, it is imperative to distinguish 
between biocontrol agents and chemical synthetic pesticides 
and acknowledge their inherent distinctions in ecological 
impact, nontarget effects and compatibility with established 
ecosystems. This should qualify most biological PPPs to 
have a low risk profile.

Tailoring data requirements for registration to fit the 
nature of biocontrol products could expedite their approval 
and stimulate additional research within the biocontrol sec-
tor. This includes enabling alternative testing methodolo-
gies that align with the intrinsic biological and ecological 
characteristics of biocontrol agents rather than adhering to 
chemical pesticide standards. For example, the ‘precaution-
ary principle’—protect environment, human, animal and 
plant health (Commission communication COM (2000) 1 
final)—should be reflected by including also the probability 
of exposure to the agent under study (European Commission 
2000).

Evaluation of basic substances should also be reconsid-
ered. As discussed in previous chapters, basic substances 
are active substances that are not primarily used as crop 
protection products, but may be of value in crop protec-
tion. At the time of this review, basic substances are only 
authorized as active substance and not as products; thus, 
their efficacy is not evaluated. Today, legally binding Good 
Agricultural Practices (GAP) tables are published together 
with the authorization of basic substances. GAP-tables out-
line the procedures that must be implemented for the use of 
pesticides. They should include the officially recommended 
or nationally authorized uses of pesticides under the actual 
(zonal) conditions needed for reliable and effective pest con-
trol (FAO 2023). In case of basic substances, the basis for 
these explicit GAP-tables is not transparently included in 
the decision. We recommend to lay down only the critical or 
maximum GAP related to the risk assessment in decisions. 
Today, the decision leading to the exclusion of basic sub-
stances and the risk assessment are neither publicly available 
nor publicly searchable. This uncertainty about the quality of 
basic substances leads to their avoidance, not only in-home 
gardens but also in crop fields, and hinders the development 
of integrated processes including new basic and biological 
substances.

Adapting legislation to accommodate the unique char-
acteristics and requirements of biocontrol products will 
promote a supportive and self-sustaining environment for 
their development, registration and adoption, thus facilitat-
ing sustainable pest management practices in agriculture in 
the future.

The importance of education and training 
in biocontrol

Sustainable agriculture does not rely solely on a linear pro-
cess that merely involves scientific knowledge production 
and its subsequent application. Rather, it is an intricate out-
come of multifaceted interactions that occur between diverse 
entities and institutions during different stages of research, 
development and deployment, at varying sociological levels. 
Therefore, critical to the success of biocontrol is the involve-
ment, training and guidance of direct and indirect users (Cal-
liera and L’Astorina 2018). The education of specialists in 
various professional fields is at risk in several regions and 
requires adequate reinforcement. This includes training 
at vocational schools, as well as master's and technician's 
schools, universities and colleges. Although certification 
programs and comparable training sessions currently exist, 
they should be more heavily focused on biocontrol and its 
applications. At the same time, there is a need to optimize 
knowledge transfer to direct users and provide more indi-
vidualized advice programs. Producers who are transitioning 
to a sustainable-based crop protection system should not be 
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left unsupported but instead be provided with high-quality 
guidance that understands the complexity of the transition 
and provides practical instructions.

If we wish to utilize a production system that relies on 
biocontrol, avoiding the overuse of chemical synthetic pes-
ticides, then we must also take responsibility and support 
this approach to production. A practical example to follow 
in this respect could be the experience gained in the organic 
farming sector. Organic farming is governed by specific 
regulations and certification processes which are vital ‘suc-
cess factors.’ Moreover, it has its own team of advisors who 
play a significant role in the success and transformation of 
the farms.

Conclusion

Incorporating biocontrol agents into IPM strategies on farm 
allows for the use of multiple pest control tactics, such as 
cultural, biological and physical controls. This, in turn, 
lessens dependence on chemically synthesized inputs while 
maximizing overall effectiveness. This is particularly cru-
cial in the horticultural industry where numerous crops lack 
legally approved chemical synthetic PPPs. Additionally, 
the issue of residues on harvested produce hold great sig-
nificance due to the short interval between harvesting and 
consumption. Such conditions are pushing the expansion 
of alternative methods, although chemical synthetic PPPs 
remain more cost-effective than the new alternatives and 
the process of transforming the plant production system. At 
a large-scale field level, promoting field management with 
diverse habitats and ecosystems, biocontrol fosters biodiver-
sity, establishing conditions in which indigenous predators 
and helpful microorganisms flourish. This approach lessens 
pest pressure, without relying only on chemical synthetic 
pesticides, helps maintain a balance between pests and their 
natural enemies and in turn decreases the potential danger 
to both human and animal health. Biocontrol enables the 
achievement of quality standards in plant production, such as 
durability and freedom from secondary pests, that cannot be 
attained solely by relying on chemical synthetic pesticides.

While initial adoption costs may be higher, long-term 
benefits of biocontrol, such as reduction of chemical pesti-
cide purchases, preserving soil health and maintaining eco-
system services, will improve the economic sustainability of 
farming operations in the future.

Undoubtedly, biocontrol has the potential to be a game-
changer in IPM by significantly reducing reliance on chem-
ical pesticides, provided that we respect socioeconomic 
demands and scientific options.
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