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A wide variety of control and surveillance programmes that are designed 
and implemented based on country-specific conditions exists for infectious 
cattle diseases that are not regulated. This heterogeneity renders difficult 
the comparison of probabilities of freedom from infection estimated from 
collected surveillance data. The objectives of this review were to outline the 
methodological and epidemiological considerations for the estimation of 
probabilities of freedom from infection from surveillance information and 
review state-of-the-art methods estimating the probabilities of freedom from 
infection from heterogeneous surveillance data. Substantiating freedom from 
infection consists in quantifying the evidence of absence from the absence of 
evidence. The quantification usually consists in estimating the probability of 
observing no positive test result, in a given sample, assuming that the infection 
is present at a chosen (low) prevalence, called the design prevalence. The usual 
surveillance outputs are the sensitivity of surveillance and the probability of 
freedom from infection. A variety of factors influencing the choice of a method 
are presented; disease prevalence context, performance of the tests used, risk 
factors of infection, structure of the surveillance programme and frequency of 
testing. The existing methods for estimating the probability of freedom from 
infection are scenario trees, Bayesian belief networks, simulation methods, 
Bayesian prevalence estimation methods and the STOC free model. Scenario 
trees analysis is the current reference method for proving freedom from 
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infection and is widely used in countries that claim freedom. Bayesian belief 
networks and simulation methods are considered extensions of scenario trees. 
They can be  applied to more complex surveillance schemes and represent 
complex infection dynamics. Bayesian prevalence estimation methods and 
the STOC free model allow freedom from infection estimation at the herd-
level from longitudinal surveillance data, considering risk factor information 
and the structure of the population. Comparison of surveillance outputs 
from heterogeneous surveillance programmes for estimating the probability 
of freedom from infection is a difficult task. This paper is a ‘guide towards 
substantiating freedom from infection’ that describes both all assumptions-
limitations and available methods that can be applied in different settings.

KEYWORDS

freedom-from-infection, prevalence, output-based, surveillance, infectious-diseases

1 Introduction

Many countries have regulations to control, eradicate, and 
sometimes prevent the introduction of infectious cattle diseases that 
are zoonotic or result in considerable economic losses, such as 
tuberculosis, bluetongue, foot and mouth disease, Salmonella Dublin 
(1–8). Furthermore, there are other cattle infections, such as bovine 
viral diarrhoea (BVD) or infectious bovine rhinotracheitis/infectious 
pustular vulvovaginitis (IBR/IPV), where there may be no regulatory 
requirement for eradication (9–12), that can cause substantial 
economic losses, due to suboptimal production and treatment costs, 
as well as decreased welfare in infected herds (13–19). Some countries 
claim to be free from BVD, whilst in others the infection is endemic 
(20, 21), hence the prevalence of major cattle diseases varies 
between countries.

In an effort to (i) limit the risk of introduction of infectious cattle 
diseases in infection-free areas and (ii) allow safe animal trading 
without restriction from countries that can prove freedom from 
infectious cattle diseases both World trade Organisation and EU have 
established rules based on the World Organisation for Animal Health 
guidelines (22) and regulations at EU level on the movements of live 
animals, respectively. EU regulations and/or legislations are often 
expressed as input-based standards. In detail, countries have to 
implement specific activities (i.e., inputs) such as surveillance 
strategies including pre-described design, sampling scheme, and type 
of tests to achieve an output, such as confidence in freedom from 
disease according to the regulation (23). For non-EU-regulated cattle 
diseases, member states and private organisations can implement 
control programmes based on country-specific conditions such as 
priority settings, availability of financial resources, epidemiological 
situations (e.g., prevalence of disease) and importance of export for 
the national economy. This results in a wide heterogeneity in the 
design and outcomes of control programmes. Consequently, 
prevalence levels or confidence in freedom from disease (when 
claimed) can be difficult to compare. This lack of comparability in the 
outcomes of heterogeneous control programmes can cause difficulties 
for intra-community trade, as livestock trade can lead to introduction 
of infectious agents into countries that are free from a specific 
disease (11).

To address this difficulty, it is possible to design surveillance 
programmes and analyse the surveillance data so that the outcomes 
are comparable, even though the surveillance modalities differ and are 
adapted to each context. This is referred as output-based surveillance. 
The basic principle of output-based standards is to define what has to 
be achieved in terms of confidence in freedom and not in terms of 
surveillance effort (24). To reach the same level of confidence in 
freedom from infection, it is not necessary to meet a detailed list of 
predefined requirements or to use the same methods for surveillance 
(23, 25).

When substantiating freedom from disease, the question is not to 
quantify the frequency of an event, but to estimate the likelihood of its 
absence, when there is no evidence of its presence. This is akin to 
problems addressed in other areas, such as demonstrating eradication 
of an invasive species (26–28) or confirming interruption in the 
transmission of human parasitic (29, 30) or infectious diseases (31, 
32). In veterinary epidemiology, initial work on this question focused 
on determining an appropriate sample size to ensure some predefined 
level of confidence in disease freedom assuming a homogeneous 
population and a perfect biological test (33). Subsequent work 
improved on these initial assumptions by accounting for test 
imperfections (34), the clustering of animals within farms (35), and 
complex surveillance systems (36, 37). More recently, epidemiological 
models accounting for population structure, infection dynamics, and 
test imperfection have been developed (38–40). Four decades after the 
initial work on this question and given the ongoing interest in output-
based surveillance for freedom from infection, an overview of output-
based methodological approaches is still needed.

Thus, the objectives of this article are twofold. First to outline the 
epidemiological and methodological considerations when designing 
a surveillance programme in an output-based framework. The second 
objective is to provide an overview of the state-of-the-art 
methodological approaches for substantiating freedom from disease, 
that are basically the most common methods that are used or have the 
potential to be used for the evaluation of output-based surveillance for 
freedom from disease. Cattle infectious diseases are the focus, however 
examples from other species are mentioned. When the word disease 
is used in this article, as is often the case in the literature on the 
subject, it should be  understood to mean infection by the agent 
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causing the disease, whereas often surveillance programmes based on 
serological testings.

Section 2 summarises the epidemiological and methodological 
considerations for substantiating freedom from infection. Section 3 
provides a review of existing output-based methodological approaches 
for substantiating freedom from infection, whilst sections 4—
Discussion and 5—Conclusion, discuss the main finding of the review 
and provide study’s main conclusions, respectively. 
Supplementary material illustrates the differences in surveillance 
modalities with examples on BVD and Mycobacterium avium 
subspecies paratuberculosis (MAP).

2 Epidemiological and methodological 
considerations for substantiating of 
freedom from infection

2.1 Case definition

Main concern when dealing with an infectious disease is ensuring 
that animals do not harbour infectious agents that could be introduced 
and subsequently spread in a region/country. According to 
Christensen et al. (41) without a clear case definition, it is difficult to 
become free of any disease. A precise case definition, where the 
presence and detection of it leads to the loss of the free status, is 
needed. Nonetheless, a broader definition of a case such as that a case 
is an animal infected in the time interval for which freedom from 
infection is claimed, allows countries a more flexible designing of 
surveillance programmes. Another option is to include in the case 
definition, the population of interest which may be restricted to a 
production type in a farmed animal species, or refer to truly 
serological positive results or, at the other extreme, include all 
susceptible species and the environment. When implementing output-
based surveillance, the objective is to assess the probability of freedom 
from infection of a country/region/herd, whereby surveillance results 
are from past activities and influence actions yet and in the future 
including choice of method for measurement of disease frequency 
(42). According to Vanderstichel et al. (43), the following four aspects 
have to be  predefined in order to clearly the objectives of the 
surveillance activities: (i) the case definition (i.e., the criteria which 
qualify a positive case), (ii) the reference population, (iii) the period, 
and (iv) the design prevalence.

2.2 Substantiating freedom from infection 
as a statistical problem

Proving that a population is free from a given infection (at a 
given time) with absolute certainty requires that all the individuals 
from this population are tested with a perfect test (no false positive 
and no false negative test results). If all the individuals test negative, 
the population can be  declared free from infection. However, 
neither a perfect diagnostic test exists nor testing the entire 
population at a given time is possible and thus an absolute proof of 
freedom is impossible to reach. Therefore, substantiating freedom 
from infection will be based on a sample from the population and 
for that reason there will always be some uncertainty, that must 
be quantified. For example, when determining presence or absence 

of disease the binomial distribution quantifies the probability of 
sampling any number of infected animals, assuming a certain 
disease prevalence in the population. The probability of having 
exactly k  infected individuals in a particular sample, if π  is the 
disease prevalence, n  the number of individuals sampled and X  the 
number of infected, is:

 p n Binomial n, ,� �� � � � �

The question that the methods for substantiating freedom from 
disease address is the probability of obtaining a false negative 
surveillance outcome, i.e., P X n� �� �0 0| ,� .

Therefore, estimating the level of confidence that a population is 
free from infection given a certain sampling scheme requires making 
the hypothesis that the true prevalence is greater than 0. This 
prevalence is chosen such that if the infection were present, the 
prevalence would be at least at this level. The chosen prevalence used 
as a reference is called the design prevalence, π t . According to this 
assumption, it becomes possible to construct a test of hypothesis that 
can be statistically evaluated. The population is considered free if the 
probability of not detecting the infection, if it were present at the 
design prevalence level, is smaller than a chosen level of confidence. 
Following Heisey et al. (44) we define null and alternative hypotheses 
as follows:

 HO t:� ��

 HA t:� ��

Posing these hypotheses permits the precise definition of the two 
possible types of error associated with wrongly rejecting or accepting 
the null hypothesis. Table 1 summarises the possible outcomes of 
surveillance given whether the true disease prevalence is below or 
above the design prevalence and the associated type I (1-Sensitivity) 
and type II (1-Specificity) errors.

As explained by Heisey et al. (44) posing disease presence as the 
null hypothesis allows to base sample size calculations on a chosen 
Type I error probability which is equivalent to basing sample size 
calculations on the sensitivity of surveillance. By looking at this 
problem in terms of hypothesis testing and probability of error, it is 
possible to define standards for output-based surveillance to 
substantiate disease freedom.

TABLE 1 Surveillance outcome as a function of disease status.

True disease status

Disease is 
present

Disease is absent

Surveillance outcome H0: π ≥ πt HA: π < πt

Disease is present
Sensitivity of 

surveillance
Type II error

Disease is absent Type I error
Specificity of 

surveillance
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2.3 Output-based surveillance standards

In an output-based framework, the amount of uncertainty 
regarding the true situation should be comparable across programmes. 
Cameron (45) described three generations of output-based standards: 
surveillance sensitivity/specificity, probability of freedom from 
infection and expected cost of error.

2.3.1 Surveillance sensitivity and specificity
Surveillance sensitivity (SSe) represents the probability of 

detecting the infection given that it is truly present: SSe = P(O+ | D+). 
O+ and O− are the surveillance outcome (respectively disease detected 
and not detected) and D+ and D− the true disease situation 
(respectively disease is present and absent). An increase in the 
sensitivity of surveillance is associated with a decrease in the 
probability of falsely concluding that the infection is absent when it is 
in fact present, i.e., false negative results.

Surveillance specificity (SSp) is the probability of not detecting the 
disease given that it is truly absent: SSp = P(O− | D−). SSp is most often 
assumed to be perfect (i.e., equal to 1) when substantiating freedom 
from infection. The reason is that when an infection is absent or rare, 
any positive test result will be investigated (diagnostic follow-up) until 
either proven to be  a false positive or confirmed positive. The 
assumption of perfect specificity might not be reasonable if the disease 
is endemic or if no confirmatory tests are done.

2.3.2 Probability of freedom from infection
Probability of freedom from infection (PFI) is the probability that 

an animal that comes from a herd or a country that claims to be free 
from infection is indeed free from infection, given the surveillance 
programme in place. It can also be  formulated as what is the 
probability of freedom from infection given that the output of the 
surveillance programme is negative (i.e., the infection was not 
detected). This measure is basically the Negative Predictive value of 
the surveillance programme (SNPV): SNPV = P(D− | O−). Table 2 
explains how these measures relate to the outcome of the surveillance 
system and the assumption of disease presence or absence.

2.3.3 Expected cost of error
The notion of expected cost of error could be  a tool to 

economically justify the level of performance desired for a surveillance 
program. The expected cost of error weighs the probabilities of false 
positive and false negative results by the costs of their expected 
consequences. In a surveillance programme in which the probability 
of a false positive is null (specificity is equal to 1), the expected cost of 
error corresponds to the consequences of maintaining an undiagnosed 
infection in a herd/region/country or introducing an infected animal 

in an infection-free population. In this case, the expected cost of error 
can be expressed as the probability of a false negative output multiplied 
by its economic consequences (Costerror). The total cost of the 
surveillance programme (TSC) is equal to the sum of the surveillance 
costs (Costsurv) and the expected cost of error (ECE). The economically 
optimal surveillance programme corresponds to a trade-off between 
a surveillance programme with a higher or lower SSe. Indeed, a higher 
SSe implies generally a higher Costsurv but a higher SNPV 
corresponding to a lower ECE. Conversely, a lower SSe implies 
generally a lower Costsurv but a higher ECE. This approach was used to 
compare two different pork meat inspection components (visual only 
and traditional) for the surveillance of bovine tuberculosis in pork in 
Denmark (46). Further, Rout et al. (28) suggested not only to consider 
in the declaration of a successful eradication, the associated probability 
that eradication has been successful but also the cost of the programme 
itself, shown in management of foxes.

2.4 Assessing infection-free status: utilising 
surveillance data

Estimating a probability of freedom from infection in a country 
that is actually free from infection has to be based on simulations from 
hypotheses. That is to say that the method used for the estimation 
must (i) represent the disease as being present at the design prevalence, 
with a prevalence that can be higher in some strata of the population 
and lower in others and (ii) include different sampling intensities in 
different surveillance components as well as tests with different 
sensitivities. But, because the surveillance data are expected to contain 
only true negatives or false positives, no epidemiological knowledge 
can be gained from these data, except perhaps on the specificity of the 
different tests. On the other hand, when the disease is present in parts 
of the population and the objective is to identify units that are free, the 
methods used can estimate quantities that are relevant for the 
identification of infected units such as strength of association with risk 
factors and test characteristics. Heisey et al. (44) and Madouasse et al. 
(47) describe Bayesian models that estimate the strengths of 
association between risk factors and probabilities of infection from 
historical data. These estimates are then incorporated in the prediction 
of freedom from infection.

2.5 Factors determining the performance 
of surveillance systems for substantiating 
freedom from infection

In a surveillance system for substantiating freedom from 
infection it is assumed that: (i) the diagnostic method used perfectly 
differentiates infected from healthy individuals, (ii) all individuals 
in the population have the same probability of being infected, and 
(iii) all individuals in the population had the same probability of 
being tested. However, these are three assumptions that are usually 
not valid. Departure from these assumptions can result in 
difficulties when analysing the results of surveillance but can also 
be  seen as an opportunity to improve the performance of 
surveillance, for example by preferentially testing the individuals 
with a higher probability of being diseased, known as risk-
based sampling.

TABLE 2 Joint probabilities of disease status and surveillance outcomes.

True disease status

Disease is 
present

Disease is absent

Surveillance outcome P(D+) = πt P(D−) = 1 − πt

Disease is present SSe * πt (1 − SSp) * (1 − πt)

Disease is absent (1 − Sse) * πt SSp * (1 − πt)
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2.5.1 Performance of the tests used for 
surveillance

Tests to detect a disease can sometimes be positive in uninfected 
individuals (false positives) or be  negative in infected individuals 
(false negatives). The performance of a given test for the detection of 
a given infection is measured by its Sensitivity (Se) and Specificity 
(Sp). Se (i.e., probability of a positive test result given that the infection 
is present) and Sp (i.e., probability of a negative test outcome given 
that the infection is absent) are conditional probabilities and quantify 
the probability of a test outcome given an infection status. The main 
challenge is that, although individual animals are tested, what is of 
interest is the probability that the herd or the entire territory is free 
from infection. For example, when the disease has never been detected 
in a herd, an antibody positive test is indicative of a more or less recent 
presence of the infection. But in herds where recent measures have 
been taken to remove infected animals, the detection of antibody-
positive individuals can reflect immunity to the pathogen without any 
infectious individual being present. In this case, test Sp for detecting 
infection at the herd level may be low. Low Sp at the herd level can lead 
to unnecessary and potentially costly measures, such as culling of 
animals, quarantine measures, or additional testing.

2.5.2 Design of the surveillance system: 
surveillance components

An important feature of livestock farming is the structure of the 
population into farms that are themselves structured into sub-groups 
(e.g., barns, age-groups). When the infection is present in the region/
country, the probability of infection is usually different between farms 
as well as between sub-groups within farms. On the other hand, when 
the region/country is infection free, there is a certain probability of 
introducing the infection which might differ between farms and/or 
between sub-groups within farms. When designing a risk-based 
surveillance system, maximising the sensitivity of detection, it is 
important to concentrate surveillance efforts on sub-groups where 
there is a higher probability of detecting the infection if it is present.

2.5.3 Design of the surveillance system: 
frequency of testing

The frequency at which testing is performed and probability of 
freedom evaluated can have an impact on the performance of the 
surveillance system. The lower the frequency, the longer between 
infection introduction and its detection. The frequency of testing also 
has an impact on the frequency with which the probability of disease 
freedom can be evaluated. Most of the models allow the accumulated 
information to be incorporated into this evaluation (47–49).

Regardless of the method used, infection freedom calculations 
usually require a considerable amount of data such as on test results, 
animal population, associated industry, risk factors for the 
introduction of infection, biosecurity measures, and existing 
surveillance programmes.

3 Existing methods with potential for 
output-based surveillance

This section provides a review of state-of-the-art methods that are 
used or have the potential to be used for the evaluation of output-
based surveillance for freedom from infection.

3.1 Scenario tree modelling

Scenario tree analysis, described by Martin et  al. (37) is the 
current reference quantitative method to estimate the probability of 
freedom from disease/infection in complex surveillance systems. A 
surveillance system consists of surveillance component(s) represented 
as a separate branch of the scenario tree. Scenario trees are represented 
by different type of nodes: (i) Category nodes represent factors 
dividing the surveillance system population into subsets with different 
probabilities of being infected. (ii) An infection node represents the 
infection status; the associated branch probabilities are derived from 
design prevalence. (iii) Detection nodes represent the detection of 
infection and are associated with test characteristics.

The two main outputs from the scenario tree model are (i) an 
estimate of the probability of detecting a positive unit (animal or 
herd) if the infection is present in the population above the design 
prevalence, the so-called surveillance sensitivity and (ii) the 
probability that the population is free from infection. Furthermore, 
accounting for the probability of introduction of infection, it is 
possible to estimate probability of freedom from infection in the 
next time steps. The main assumptions critical for the method’s 
applicability are (i) all final results from the surveillance system have 
to be consistent with country or zone freedom from infection and 
(ii) the overall specificity of the surveillance system is 100%. A final 
result is considered the test result after completion of any diagnostic 
follow-up, since usually any positive test result will be  further 
investigated until either proven to be a false positive or confirmed 
positive. In the latter case, confirmed positive outcome, the claim of 
freedom from infection is violated. This whole process of repeated 
testing (sequential testing) reduces the probability of a false-positive 
output in the surveillance system, resulting in a surveillance 
specificity equal to 1.

The overall surveillance sensitivity is an aggregation of the 
component surveillance sensitivities. The surveillance component 
sensitivity (SCSe) is given by the following formula:

 
SCSe p Seunit

n
� � � �� ��1 1

This equation answers to ‘what is the probability of the surveillance 
system detecting at least one case at the design prevalence’. The term 
p Seunit∗ ∗  is the probability that a single unit passing through the 
surveillance system, where infection is present at the design prevalence 
(p*) gets detected. The second output of the scenario tree is the 
probability of freedom from infection, that is basically the negative 
predictive value of the surveillance component (SPNV), SNPV = P(D− 
| O−). Scenario trees split the population into homogenous 
subpopulations (sub-groups) that have the same probability of being 
infected (same risk of infection), thus allowing incorporation of 
risk information.

The outputs of the scenario tree method in an ongoing surveillance 
system can be updated at the end of a time period, based on Bayes’ 
theorem, allowing use of historical surveillance data and incorporation 
of infection introduction in the population over time [see (36, 50)]. 
Since the method was established in 2007, there have been published 
studies from all continents and terrestrial and aquatic animals, 
production animals and wildlife (51–53). In cooperation with FAO, a 
guideline for using the method has been developed (54).
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3.2 Bayesian belief networks

Whilst scenario trees have been established as the reference 
method to substantiate freedom from infection, when it comes to 
complex surveillance schemes (e.g., multiple surveillance components) 
they become difficult to implement. Thus, Hood et al. (55) proposed 
an alternative method to calculate (i) the probability of freedom of 
infection and (ii) the overall surveillance sensitivity where the scenario 
tree is represented as a Bayesian Belief Network (BBN). A BBN is a 
probabilistic graphical model (directed acyclic graph), where the 
nodes in the graph represent random variables and the edges/arcs that 
connect the nodes represent the relationships between the random 
variables. Basically, BBNs provide a simple way of applying Bayes’ 
theorem to complex problems, defining the joint probability 
distribution for a set of variables. The structure of a surveillance 
programme can be represented by a BBN (simple scenario trees can 
be  easily ‘translated’ and represented in a BBN). Hood et  al. (55) 
‘converted’ and represented the scenario tree described by Martin et al. 
(36) as a BBN. The unit’s surveillance sensitivity simply is the 
probability of the network to acquire a positive result. BBNs allow to 
update the beliefs and tune the variables (e.g., switch to targeted 
sampling scheme). The component surveillance sensitivity is estimated 
using the ensemble of posterior probabilities derived from all 
processed units. BBNs are not widely known and have not been 
broadly implemented to substantiate freedom from infection, because 
they require a specific software that is not considered user-friendly. 
The STOC free model, that is described below (Section 3.5.), can 
be seen as a Bayesian network that represents the time dependence 
between longitudinal herd-level observations, but not the within-herd 
group structure.

3.3 Simulation models

Simulation models represent the presence or spread of diseases and 
their detection with a great flexibility in terms of the range and complexity 
of assumptions that can be included (1, 2). As scenario trees, these models 
rely on stochastic simulations (i.e., model is run for a certain number of 
iterations) to evaluate ‘as if ’ scenarios. They can generate the same outputs 
as scenario tree models such as statistical (posterior) distributions for 
sensitivity of surveillance and probability of disease freedom, as well as 
additional ones such as the cost of testing. Consequently, simulation 
models can be seen as extensions of the scenario tree methodology that 
allows a more complex representation of surveillance programmes. Such 
a simulation model was developed by Meyer et  al. (38) to evaluate 
different testing strategies for demonstrating freedom from infection by 
MAP in the Republic of Ireland. Rosendal et al. (40) also used a simulation 
model to evaluate surveillance strategies for monitoring the state of 
disease freedom of Sweden with respect to infections by MAP. Simulation 
models allow the comparison of different surveillance strategies under 
different scenarios of disease presence or disease emergence and spread.

3.4 Bayesian prevalence estimation 
methods accounting for population 
structure

Bayesian models have been described for quantifying the 
probabilities of pest-eradication in feral-pigs from Santa-Cruz island, 

California (27), fox eradication, as an invasive predator, on Phillip 
Island in Australia (28). Modelling the diversity of surveillance 
programmes in an output-based framework may result in 
overparameterization if the structure of the population is not taken 
into account. Cattle populations can be considered structured in the 
following four basic levels: country/region/herd/animal. Thus, the 
joint probability distribution can be modelled to reflect the structure 
dependence. For instance, Heisey et al. (44) developed a Bayesian 
approach, adjusting for available covariate information, using 
surveillance data to substantiate freedom from infection on chronic 
wasting disease in deer. Generally, approaches for prevalence 
estimation and substantiation of freedom from infection at the 
country level, assuming presence or absence of perfect test(s), involve 
a multiple-stage cluster-sampling (35). In this setting a random 
number of k herds are selected and then a random sample of n animals 
from each herd are tested with one or more diagnostic methods. 
Bayesian methods for prevalence estimation and designation of a 
country’s infectious status, assuming imperfect Se and Sp of the 
applied test(s) have been described soon after 1998 (56–59). The 
developed methodologies account for the full structure of the 
population and allow estimation of the probability of freedom from 
infection at each level and test characteristics. The individual 
infectious status is modelled as latent (i.e., unknown but through 
probabilistic estimates inference can be made for it) (60). That type of 
model can be adapted to both disease presence and absence contexts 
because information on the true infectious status for every individual 
in every level is made available. However, it is up to decision making, 
how many positive animals declare an infected herd or how many 
positive herds declare a region not free. Usually, the metric that is used 
is the probability that the infection does not exceed a pre-specified 
critical level of 5% (58). Bayesian hierarchical modelling, adjusting for 
the population structure, allows implementation of complicated 
multi-level probability specifications (58).

3.5 STOC free model

The aim of the STOC free model (surveillance tool for outcome-
based comparison of freedom from infection) is to predict herd-level 
probabilities of (freedom from) infection from longitudinal 
surveillance data (47, 48). It is a Bayesian Hidden Markov Model 
(HMM) in which true herd-level statuses regarding disease are 
modelled as latent binary variables with monthly dynamics. The latent 
statuses are inferred/predicted from successions of test results based 
on hypotheses regarding herd level test characteristics and infection 
dynamics. Risk factors of new infection can be included in the model 
when available. Estimation is performed in a Bayesian framework that 
allows the available knowledge of test characteristics, disease dynamics 
as well associations between risk factors and probability of new 
infection to be incorporated into the model as prior distributions. The 
prediction of the statuses of all herds in the data is performed for the 
last month of test results. Data available before this month are used as 
historical data for parameter estimation. The model is available as an 
R package that can be  installed from GitHub.1 The main model 
outputs are posterior distributions for the probability of being diseased 

1 https://github.com/AurMad/STOCfree

https://doi.org/10.3389/fvets.2024.1337661
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://github.com/AurMad/STOCfree


Meletis et al. 10.3389/fvets.2024.1337661

Frontiers in Veterinary Science 07 frontiersin.org

in each herd on the last month of surveillance. The model is suited to 
contexts where the infection is present, where all the participating 
herds are tested on a regular basis and when the objective is to identify 
infected from uninfected herds in the surveillance programme. It 
allows the inclusion of risk factors of new infections into the 
predictions. This model was used to estimate the probabilities of 
infection in herds considered as free from infection in four European 
countries (49).

One difficulty with the STOC free model is the need to obtain 
prior distributions for herd level test characteristics, i.e., probabilities 
of getting positive/negative test results given the true herd level status 
regarding infection. The methodological difficulties are not only 
restricted to the STOC free model.

4 Discussion

The most salient feature of estimating a probability of freedom 
from infection from surveillance data is that it generally involves 
quantifying the evidence of absence from the absence of evidence. In 
practical terms, this means that, in most cases, the infection that is 
sought to be proven absent has not been detected. The methodological 
difficulty is that the infection could be present but not detected for 
reasons related to imperfect test Se or sampling strategies.

Selecting a method for quantifying probability of freedom from 
infection relies on the assumed level of prevalence of infection. When 
infection is absent from an area, the objective is to prove that it has not 
been introduced to secure trade with partners outside the area. The 
level of interest is in this case the whole area. The scenario tree 
methodology and more recent simulation methods are well suited to 
this context (36, 37, 40). When the infection is still endemic, as in the 
initial phase of an eradication programme, the objective is to identify 
herds that are free from the infection within the programme to secure 
trade within and outside the area. In this case, historical data from the 
surveillance programme can be used to make inference and enhance 
the identification of infected herds. The STOC free model was 
designed to operate in this context (47).

A historical perspective on the methods developed for quantifying 
the probability of freedom from infection is of interest to understand 
the state-of-the-art. Early work focused on determining a sample size 
to prove that the infection prevalence was not greater than a chosen 
design prevalence with a certain level of confidence. This was initially 
done assuming homogeneous populations, in which all the animals 
had a similar probability of being infected, and a single perfect test was 
performed for detection of infection. These assumptions were later 
relaxed by considering the imperfect Se and Sp of the tests and the fact 
that animals are usually clustered within farms (57, 61). A later 
refinement was the inclusion of differences in the probability of 
infection between different animals or herds allowing for the 
estimation of probabilities of freedom from infection from surveillance 
systems that relied on risk-based sampling (54). Risk-based sampling 
permits to increase the effectiveness of surveillance by focusing 
surveillance efforts on areas where the infection is more likely to 
be  found. The scenario tree method was designed to estimate a 
probability of freedom from infection and surveillance sensitivity 
from complex surveillance data with differences in the probability of 
infection in different components of the surveillance system (risk-
based sampling) as well as imperfect sensitivity of the testing 

procedure (imperfect test sensitivity, sampling, hierarchical structure 
of the data with animals nested within farms). This, together with the 
fact that simulations could be run on spreadsheets led to this method 
being widely used for substantiating freedom from infection (62). 
More recent simulation models use the same principles as the scenario 
tree methodology.

The impact of imperfect Sp is not highlighted, because any positive 
test result will be  investigated (diagnostic follow-up) until either 
proven to be a false positive or confirmed positive. In this sense, the 
proportion of false positives is reduced to 0, yielding a perfect Sp.

When the infection is absent from the area under investigation, it 
must be (re-) introduced to be present. Typically, an emergence should 
be a rare event with people making efforts to prevent the introduction 
of the infection through the routes of emergence perceived as 
important. Incorporating a probability of introduction into a model 
of infection freedom is therefore a difficult task. It is almost impossible 
to estimate a probability of introduction from data, as there are no or 
not enough similar cases of disease introduction in similar contexts. 
In this case, probabilities can be conceived as beliefs, which may have 
a rational basis, about the probability of introduction. The first view 
represents a frequentist perspective on probabilities and the second a 
Bayesian perspective. This is important to reflect upon when designing 
models and communicating their outcome. More generally, when the 
infection is absent, the whole estimation process relies on simulating 
its presence or its introduction under different scenarios, and out of 
these, count the proportion of times this infection would be detected 
by the surveillance system. Therefore, all the methods considered can 
be seen as conceptualising the problem of substantiating freedom 
from infection as a Bayesian problem in which what is evaluated is the 
probability of the hypotheses, notably in the form of a design 
prevalence, given the surveillance data collected. This explains why in 
some studies, the probability of the infection being present before 
collecting the data is referred to as the prior and the estimated 
probability of infection freedom as the posterior (36).

When the infection is still endemic, data from infected herds can 
be used to estimate strengths of association between risk factors and 
the probability of infection, thereby improving the detection of 
infection in herds not yet detected. This is the approach followed in 
the Bayesian models proposed by Heisey et al. (44) and Madouasse 
et al. (55). By exploiting the correlation in longitudinal test results, the 
model by Madouasse et al. (55) also estimates the herd-level Se and Sp 
of the tests used in the surveillance programme as well as the monthly 
probabilities of getting and eliminating the infection. By making 
inference from surveillance data, these models are less reliant on 
hypotheses whose validity can be  hard to assess and provide 
predictions that are adapted to the context in which surveillance is 
performed. Such models can also produce knowledge that is 
transferable to other surveillance systems. However, when the 
infection is absent or rare, there is no added value to these Bayesian 
inference and prediction models since in those cases, they will 
perform simulations from the prior distributions used as input.

The definition of what is an infected herd can also be difficult 
to formulate. Returning to the example of infection by BVD, there 
are different types of infected animals that do not pose the same 
epidemiological risk and that do not react in the same way to the 
different tests. Persistently infected (PI) animals are the main source 
of infection for other animals. They shed massive amounts of virus 
but do not produce antibodies. Transiently infected animals shed 
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the virus for a few weeks and produce antibodies against the virus 
for many years. Unborn PI foetuses are epidemiologically 
important, but it is not currently possible to detect infection before 
birth. The definition of what makes an infected herd in a 
surveillance programme could include or exclude either of the latter 
two categories. Translating Se or Sp at the animal level into their 
equivalent at the herd level can therefore be a real challenge. The 
issue can be difficult to perceive when using latent class models. 
With these models, the latent class, that should correspond to the 
definition of what the epidemiologists mean by infected herds, will 
depend on the prior distributions used for the Se and the Sp of the 
different tests used. As these Ses and Sps can be  unknown and 
modelled using best guesses, the model may work with a latent class 
that is different from the intended definition of an infected herd. 
The same problem also exists with all simulation-based models that 
use sensitivities elicited from experts. However, it is impossible to 
detect because, in the worst case, the infection will emerge once and 
be  missed which can always be  considered compatible with a 
surveillance sensitivity that is lower than one. The definition of 
sensitivities and specificities at the herd level is therefore a research 
gap that needs to be  filled. A modelling framework needs to 
be developed to estimate these parameters from animal data and the 
required data need to be identified.

The objective of any method that quantifies a probability of 
freedom from infection from surveillance data is to assist 
stakeholders in making decisions about which countries or herds 
to trade with. The output of such methods should therefore 
be understandable and usable by stakeholders. Following Cameron 
(45), the most reported outputs are the sensitivity of surveillance 
as well as the probability of freedom from infection, which can 
be easily obtained using the scenario tree method. The STOC free 
model returns a posterior distribution for the probability of 
infection which can be  translated into a distribution for the 
probability of freedom from infection. However, translating 
statistical distributions into information that is usable by decision 
makers can be challenging. Further work on communicating the 
output of quantitative models to decision makers should address 
this question. In addition to the specific output from methods for 
assessment of disease freedom, there is also a need to put this 
result into context and to make the information that will support 
decision more complete by adding qualitative aspects. Guidelines 
for incorporating necessary information about surveillance 
attributes have been proposed, e.g., by RISKSUR (63) and 
AHSURED (64).

Outputs related to the failure costs of surveillance, especially the 
cost of declaring an infected country as free from infection, have been 
proposed. Although the cost of different surveillance programme 
designs can be estimated (38), the cost of the consequences of an 
undetected emerging infectious disease are harder to predict. A first 
step in this direction consists in estimating the time to detection and 
the size of the outbreak at detection using models incorporating 
population dynamics and disease spread as proposed by Rosendal 
et al. (40).

A final concern is the fact that when using any method, an 
assumption is that the available data accurately reflect what they are 
supposed to measure. This assumes an infrastructure that collects 
these data in a reliable way and that the modellers are aware of all the 
limitations of the data they have, and the outcomes of the model can 

relatively easily be  interpreted to the ‘users’ (e.g., farm managers, 
traders, veterinary officials).

Most of the concepts and methods reviewed could be applied to 
other animal and plant species. Although a few studies in fields not 
related to cattle farming were included in this work [e.g., (27, 50)], 
most of the concepts and methods reviewed here could be applied to 
other animal and plant species to quantify probabilities of absence of 
specific diseases in these species or even absence of these species. 
There are many scientific publications on the problem of evaluating 
the probability of absence of a species after an eradication programme. 
Sometimes, these species are problematic because they were 
introduced in a new environment in which they caused significant 
damage (27, 28). At other times, the focus is on estimating the 
probability that a human disease has been eradicated following a 
vaccination campaign. Although the problems may be different, the 
focus of these studies is on quantifying the evidence of absence from 
the absence of evidence and could therefore provide interesting ideas 
for such problems in cattle, and more broadly in livestock.

5 Conclusion

This review provides an overview of the epidemiological and 
methodological considerations for substantiating freedom from 
infection and existing output-based methodological approaches. It is 
evident that the process of substantiating freedom from infection 
based on surveillance data is an intricate task complicated by the 
potential failings of diagnostic tests and sampling methodologies.

Furthermore, this review aims to support researchers providing 
descriptions of the available output-based models and the described 
context in which the methods are most appropriate. Methods should 
be tailored in each case, for example in regions free of infection and 
regions where disease is still endemic. For areas claiming infection-
free status, is needed to facilitate secure trading relationships, and 
scenario tree and simulation methods are commended for their 
efficacy in these circumstances. In contrast, for regions where 
infection is known to be present, particularly in the initial phases of 
an eradication effort, the focus shifts to identifying uninfected herds 
to safeguard trade and health both within the area and externally. The 
STOC free model, and generally Bayesian prevalence estimation 
methods, are highlighted for their effectiveness in this precise context.

Output-based methodological approaches for substantiating 
freedom from infection are signalling a significant step forward in 
managing infectious diseases, with implications for public and one 
health, economics, and the global community. The alliance of 
epidemiological considerations and methodological approaches forms 
the strategy towards control and eventually eradication of 
infectious diseases.
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