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SUMMARY

Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex

plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS

results remains challenging because of large candidate regions due to linkage disequilibrium. High-

throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open

new avenues for integrative systems biological analyses and help to nominate systems information sup-

ported (prime) candidate genes. In the present study, we capitalise on a diverse canola population with 477

spring-type lines which was previously analysed by high-throughput phenotyping of growth-related traits

and by RNA sequencing and metabolite profiling for multi-omics-based hybrid performance prediction. We

deepened the phenotypic data analysis, now providing 123 time-resolved image-based traits, to gain insight

into the complex relations during early vegetative growth and reanalysed the transcriptome data based on

the latest Darmor-bzh v10 genome assembly. Genome-wide association testing revealed 61 298 robust

quantitative trait loci (QTL) including 187 metabolite QTL, 56814 expression QTL and 4297 phenotypic QTL,

many clustered in pronounced hotspots. Combining information about QTL colocalisation across omics

layers and correlations between omics features allowed us to discover prime candidate genes for metabolic

and vegetative growth variation. Prioritised candidate genes for early biomass accumulation include

A06p05760.1_BnaDAR (PIAL1), A10p16280.1_BnaDAR, C07p48260.1_BnaDAR (PRL1) and C07p48510.1_Bna-

DAR (CLPR4). Moreover, we observed unequal effects of the Brassica A and C subgenomes on early biomass

production.
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INTRODUCTION

In recent years, technological advances in high-throughput

phenotyping (HTP) platforms enabled high-throughput

non-invasive quantification of complex traits in model and

crop plants over time at population scale (Chen et al.,

2014; Flood et al., 2016; Junker et al., 2015; Langstroff

et al., 2022; Scharr et al., 2016; Watt et al., 2020). In

combination with ever-increasing genome sequencing

data, phenomics enabled efficient identification of genetic

determinants of multiple traits that define crop quality and

performance (Crossa et al., 2021; Mir et al., 2019; Yang

et al., 2020). However, despite the ever-increasing through-

put and depth of phenomic analyses, the molecular mech-

anisms leading to the phenotype emergence remain
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mostly unknown. Thus, one of the major goals of modern

systems genetics is identification of such mechanisms via

use of omics technologies and data science (Choi, 2019; Li

& Yan, 2020; Shaw et al., 2021; Shen et al., 2022). In our

recent study, we showed the power of HTP in Brassica

napus (Knoch et al., 2020). While we were able to identify

genetic loci associated with biomass and growth-related

B. napus phenotypes, the molecular mechanisms linking

that genetic variation with specific traits remained to be

characterised. Here, we re-analysed the previously gener-

ated multi-omics data and performed integrative analyses

across the multiple data layers to link observed genetic

associations with specific genes, metabolites and func-

tional ontology groups thus paving the way towards mech-

anistic explanation of genotype–phenotype associations.

Early growth and biomass formation are crucial traits

for plant productivity and yield. In winter-type (Basunanda

et al., 2010) and semi-winter rapeseed (Zhao, Wang, et al.,

2016) rapeseed, early biomass and biomass heterosis corre-

late with seed yield. Vigorous early seedling growth pro-

vides efficient ground coverage and avoids competition

with weeds in the field. Quantitative traits like seed yield,

biomass production or plant height are under complex

genetic control and are strongly influenced by the environ-

ment (Shi et al., 2009; Zhao, Wang, et al., 2016). Dissecting

the genetic basis of such traits is of high relevance to funda-

mental research and to crop improvement strategies. The

ultimate goal for breeders is to identify favourable lines in

breeding populations according to their genotypes and,

ideally, to stack multiple beneficial alleles for different

genes to generate lines with superior performance. Previ-

ous studies applied linkage QTL mapping and genome-

wide association analyses to identify QTL for plant mineral

nutrients and trace elements (Bus et al., 2014), biomass-

related traits (Knoch et al., 2020; Körber et al., 2015; Yong

et al., 2015), seed yield (Luo et al., 2017; Radoev et al., 2008)

and yield-related traits (Cai et al., 2016; Chen et al.,

2007; Dong et al., 2018; Yang et al., 2012) in B. napus. In

some cases, genes underlying these QTL were identified

(Zeng et al., 2011; Liu et al., 2015; Li, Jeong, et al., 2018);

however, such examples remain the minority. Most previ-

ous GWAS studies in rapeseed focused on a limited num-

ber of phenotypic traits and/or only a single omics level.

Some recent studies integrated at least two omics levels,

such as Li et al. (2023) who studied the seed oil content in

rapeseed using a marker metabolite-based multi-omics

analysis, Li, Yao, et al. (2018) who integrated QTL and eQTL

mapping to study fatty acid content, flowering time and

growth-related traits, Yu et al. (2018) who coupled QTL and

eQTL mapping focusing on the apetalous characteristic or

Zhang et al. (2022) who dissected the genetic architecture

of seed coat content in B. napus using a multi-omics analy-

sis. Schaefer et al. (2018) demonstrated in maize that inte-

grating co-expression networks with GWAS can be a

powerful approach to prioritise candidate genes. Only very

few studies such as Szymański et al. (2020) or Zhao

et al. (2022) analysed larger populations and made use of

the potential of the interconnected multiple omics layers.

Here, we investigated a genetically diverse population

of 477 spring-type canola lines. We re-analysed and inte-

grated previously generated multi-omics data sets (Knoch

et al., 2020, 2021), including image-derived traits (i-traits)

based on daily high-throughput phenotyping, gene expres-

sion and metabolite profiles from an early vegetative

growth stage and used them to perform extensive

genome-wide association studies. We identified genomic

regions associated with phenotypic variation at the early

phase of vegetative plant growth and related traits, studied

links between the different omics strata by correlation and

colocalisation analyses, selected genetic modules underly-

ing early biomass by a weighted gene correlation network

analysis and nominated prime candidate genes for the

traits of interest after combining the results of the afore-

mentioned approaches.

RESULTS

High-throughput phenotyping and generation of

omics data

High-throughput imaging data from 6 to 27 days after sow-

ing (DAS) were obtained from Knoch et al. (2020). All raw

images were subjected to a deepened image analysis and a

core set of 123 i-traits, complementary to the four traits ana-

lysed in Knoch et al. (2020), was selected for subsequent ana-

lyses (Figure 1). Three general i-trait heritability patterns over

time could be distinguished (Figure S3a). First, traits display-

ing overall high heritability like ‘projected leaf area’, ‘esti-

mated biovolume’ and ‘compactness’, second, traits

displaying high heritability at early stages and low heritabil-

ity at later stages, for example ‘hull fill grade’ or ‘brown to

green ratio’ and third, traits with the inverse pattern, for

example ‘branch point count’ and ‘leaf width’. At 14 DAS,

when most plants had observable epicotyls, shoot material

was sampled for molecular/biochemical analyses. Metabolite

profiles were obtained from Knoch et al. (2021), where shoot

material was analysed by gas chromatography–mass spec-

trometry and 154 metabolites, 64 of known and 90 of

unknown chemical structure, were quantified. The estimated

genomic heritabilities for metabolites were rather low, rang-

ing between 0 and 0.43 (Figure S3b). RNA sequencing reads

were also obtained by Knoch et al. (2021). Sequencing was

performed using aliquots of the same material as for metab-

olite profiling. Overall, 83% of the reads could be aligned to

the Darmor-bzh v10 reference genome, 63% of them

uniquely. In total, 89.172 genes (82% of the 108 190 anno-

tated genes) were detected as expressed (>0 counts in at

least one sample). Low-expressed genes were removed and

transcripts of 41 380 genes (38%) were used for subsequent
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analyses. The estimated genomic heritabilities for transcripts

ranged from 0 to 0.76 (Figure S3c). Predictability of pheno-

typic traits by transcript levels was assessed using random

forest (Data S2). The best average predictive performance of

0.39 was observed for the pigmentation-related i-trait ‘top.in-

tensity.vis.hsv.s.histogram.v_avg.bin.05.051_063’ at 13 DAS.

Fresh and dry weight yielded R2 values of 0.36 and 0.33,

respectively.

Correlations between omics features

Pairwise correlations were calculated between all omics

features (Data S3). In total, 1385 significant correlations (P-

values FDR ≤0.05, |r| ≥ 0.4) were observed between tran-

scripts and phenotypic traits, 479 between metabolites and

transcripts and 22 between metabolites and phenotypic

traits (Figure S4). Overall, transcripts and metabolites

showed very similar numbers of positive and negative cor-

relations. More negative than positive correlations were

found between metabolites and phenotypic traits, while

transcripts and phenotypic traits displayed more positive

than negative correlations. Focusing on early plant biomass

(fresh and dry weight), only weak correlations (|r| � 0.3) with

metabolites were detected, whereas correlations between

other phenotypic traits and metabolites were moderate.

The highest correlation (r � 0.44) was found between

indole-3-acetonitrile and plant stature (compactness).

Fifteen transcripts showed correlation coefficients |r| >
0.4 with fresh weight (Table 1). Among the highest were

C06p39650.1_BnaDAR (r = 0.46), annotated as ‘HAD-

superfamily hydrolase’ and C06p42580.1_BnaDAR (r = 0.45),

annotated as ‘SRP72 RNA-binding domain-containing pro-

tein’. In a complementary approach we identified 480 tran-

scripts with relations to fresh weight using the Boruta

algorithm (Data S4). Random forest regression on the top

50 transcripts with the highest mean importance values

achieved a mean prediction accuracy of 0.49 for fresh

weight (0.53 using all 480 transcripts). Notably, 14 of the 15

highest correlated transcripts were among these top 50.

We grouped a subset of i-traits into four categories

combining related traits from different image modalities

and days: ‘plant height related’, ‘plant volume-related’,

‘projected leaf area-related’ and ‘compactness-related’

(Table S1). Phenotypic traits showed substantially

higher correlations (|r|) with transcripts than with metabo-

lites. A03p39940.1_BnaDAR, annotated as ‘Ethylene-

responsive transcription factor’, was correlated with

Figure 1. Experimental workflow to generate the phenotyping and omics data.

High-throughput phenotyping was performed daily in the IPK phenotyping platform for large plants. Images between 6 to 27 days after sowing (DAS) were obtained

from three different camera systems (VIS, FLUO and NIR) from top and side views with different angles and analysed using IAP Version 2.0.7 (Klukas et al., 2014) and

a customised pipeline. A core set of 123 robust image-derived traits (i-traits) was selected by filtering for heritability (H2 ≥ 0.7) and multicollinearity using variance

inflation factors (VIF ≤10). At 14 DAS four of the nine plants grown within each pot were sampled and deep frozen in liquid nitrogen for metabolite profiling and RNA

sequencing analyses. At the end of each experiment at 28 DAS, the remaining five plants per pot were sampled for biomass analysis.
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‘top.intensity.vis.hsv.s.histogram.v_avg.bin.05.051_063’ at

13DAS (r = 0.50), ‘early biovolume’ at 9DAS (r = 0.43) and

other biomass-related i-traits. Plant height at multiple days

was correlated (r ≥ 0.4) with the expression of several

genes annotated as ‘xyloglucan endotransglucosylase/

hydrolase’, ‘peroxidase’ or ‘Laccase’ (Table S1).

The highest correlations between transcripts and

metabolites of known chemical structure were detected

between C01p00680.1_BnaDAR encoding an ‘alanine:glyox-

ylate aminotransferase 2’ homolog and beta-alanine

(r = �0.57), C07p60730.1_BnaDAR encoding an arginine

decarboxylase and putrescine (r = 0.53), C08p22140.1_Bna-

DAR, a putative trehalose-6-phosphate synthase and

sucrose (r = �0.5), A05p41690.1_BnaDAR, annotated as

‘dehydroquinate dehydratase, putative / shikimate dehydro-

genase’ and quinic acid (r = 0.47), and C01p48140.1_Bna-

DAR, annotated as ‘Malonate—CoA ligase’ and malonic

acid (r = �0.31). Another interesting candidate is

C03p47770.1_BnaDAR, which is substantially negatively

correlated with sucrose (Figure S5a; r = �0.57). The gene

encodes a protein of unknown function with homology to

the Arabidopsis AT3G15630 gene and was annotated with

the GO terms ‘response to sucrose stimulus’ and ‘response

to fructose stimulus’. Notably, nine lines share a large dele-

tion including of C03p47770.1_BnaDAR on chromosome

C03 (Figure S5b). These lines display particularly low of

C03p47770.1_BnaDAR expression levels and significantly

higher values of glucose, sucrose and fructose than the

population average (Figure S5c-e).

Genome-wide association studies and identification of

QTL hotspots

The extensive omics data sets provided the opportunity to

study the genetic basis of trait variation at different omics

levels. 2496 phenotypic traits (123 i-traits at 21 days,

growth rates and biomass), 154 metabolites and expres-

sion data of 41 380 genes were subjected to GWAS and

the output filtered using three criteria: (1) P-value

FDR ≤0.05, (2) PVE% ≥ 2% and (3) stability of associations

using different numbers of PCs as cofactors. In total,

61 298 robust QTL matched these criteria (Table 2;

Data S5), 4297 QTL for phenotypic traits, 187 mQTL

detected for metabolites and 56 814 eQTL for gene tran-

script levels. For 1912 (77%) of the phenotypic traits,

29 027 (70%) of the transcripts and 89 (58%) of the metabo-

lites, at least one association was detected.

Table 1 Highest correlations between transcripts and early plant biomass

Phenotypic trait Transcripts (r ≥ |0.4|)
Pearson’s
r Borutamean Imp. Annotationa

Biomass (fresh

weight)

A02p29820.1_BnaDAR 0.4181 11.62 3-oxoacyl-[acyl-carrier-protein]
synthase

A02p33440.1_BnaDAR 0.4465 12.00 Ubiquitin carboxyl-terminal
hydrolase 4/hypothetical
proteinb

A04p10830.1_BnaDAR 0.4028 14.02 Membrane-anchored ubiquitin-

fold protein

A05p28550.1_BnaDAR �0.4152 16.64 Ubiquitin carboxyl-terminal

hydrolase 12/TRAF-like family

proteinb

A06p19110.1_BnaDAR 0.4105 9.54 ATP-dependent DNA helicase
BNapus_Darmor_BZH_scaffold_38p02360.1_BnaDAR �0.4106 7.58 Elongation factor 1-beta 1
C02p03750.1_BnaDAR �0.4098 12.32 NAC domain protein
C02p06120.1_BnaDAR �0.4147 10.74 Peptidylprolyl isomerase
C03p78480.1_BnaDAR 0.4433 12.34 Protein DETOXIFICATION
C04p59470.1_BnaDAR 0.434 9.74 Nucleolin 1

C05p43970.1_BnaDAR �0.4049 13.55 Ubiquitin carboxyl-terminal
hydrolase 12/TRAF-like family
proteinb

C06p29830.1_BnaDAR 0.4291 15.12 Phosphoglycerate kinase
C06p32710.1_BnaDAR 0.4107 16.57 DNA-3-methyladenine

glycosylase, putative
C06p39650.1_BnaDAR 0.4622 17.05 T-complex protein 1 subunit

alpha/HAD-superfamily

hydrolaseb

C06p42580.1_BnaDAR 0.4529 15.50 Signal recognition particle
subunit SRP72

Underlined and bold text indicates transcripts correlated with multiple biomass-related traits, (n ≥ 2 and ≥3, respectively; see Table S1).
aFunctional annotation according to Vollrath et al. (2021).
bDescription obtained by BLASTX to A. thaliana – Brassicaceae Database (BRAD; Chen et al., 2022; http://brassicadb.cn/#/Annotations/).
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Trans-eQTL (n = 282 932; nfiltered = 40 117) were much

more frequent than cis-eQTL (n = 19 294; nfiltered = 16 697),

but cis-eQTL explained on average a higher proportion of

PVE (Figure 2). The highest number of eQTL was detected

on chromosome C03 (n = 5949), the lowest number on

chromosome A08 (n = 1757). For transcripts with multiple

eQTL, the most significant one often corresponds to the

gene locus itself, as illustrated by C06p42580.1_BnaDAR

(Figure 2c). Binning eQTL in overlapping intervals (�500 kb)

showed an unequal distribution across the 19 chromo-

somes. Some regions were depleted of eQTL while others

showed accumulations (Figure 3; Figure S6a). In total, 96

hotspots with more than 200 eQTL were detected. Signifi-

cant GO term enrichments were observed for 49 hotspots

(Data S6). The biggest eQTL hotspot was detected on chro-

mosome A05 (33–34 Mb; Figure 3). This hotspot mainly

comprised trans-eQTL, suggesting pleiotropic effects on the

expression of multiple genes rather than a clustering

caused by high gene density. The significant GO term

enrichment related to RNA methylation, ribosome and

mitochondrial respiratory chain provides support for a

major (transcriptional) regulator. Besides multiple ribosomal

protein genes, the region contains A05p31230.1_BnaDAR,

annotated as elongation factor.

Hotspots were also detected for metabolite QTL and

phenotypic QTL, but positions differed. For phenotypic

traits, a hotspot of 190 QTL was observed on chromosome

C02 (Figure S6b), while mQTL hotspots were observed on

chromosomes A01, C06 and C08 (Figure S6c).

QTL colocalisation across the omics layers

Under the hypothesis that functionally related features of

different omics layers should be affected by common

loci, QTL colocalisation was investigated. Using a stringent

approach, 24 associations with identical markers were

detected across all three omics layers, substantially more

than expected by chance (n = 8; Table 2; Figure S7). In a

second interval-based approach, we identified a total of

110 regions with eQTL-mQTL co-localisations. Twenty-two

of these regions harboured features with Pearson correla-

tions (r ≥ |0.3|) and 16 of them involved metabolites of

known chemical structure (Data S7).

For transcripts and phenotypic traits, 366 colocalisa-

tion regions were detected, 114 of them with correlated

features (Data S7). Notably, 15 regions overlap with eQTL

hotspots and contain correlated features (r ≥ |0.4|). Focus-
ing on vegetative biomass production as the main trait of

interest, colocalised regions were further prioritised.

QTL were filtered for phenotypic traits significantly corre-

lated with biomass (|r| ≥ 0.3), eQTL were restricted to cis-

eQTL only and filtered by transcript-phenotype correlations

(|r| ≥ 0.4) to detect the most promising candidates. In total,

11 regions passed these filters (Table S2).

For metabolites and phenotypic traits, 42 co-

localisations were detected, which all also colocalised with

at least one eQTL (Data S7). However, no promising links

between metabolites and phenotypic traits were identified.

Some co-localisations are associated with deletions and sev-

eral dozens of eQTL, for example candidate region ‘coloc_-

n3_eQTL_mQTL_QTL_17’ on chromosome A09 with 82

eQTL, candidate region ‘coloc_n3_eQTL_mQTL_QTL_27’ on

chromosome C03 with 97 eQTL or candidate region ‘coloc_-

n3_eQTL_mQTL_QTL_36’ on chromosome C05 with 129

eQTL. The latter region colocalises with an mQTL for quinic

acid, a quinic acid derivative and twelve phenotypic QTL.

While there are no substantial correlations with phenotypic

traits, the expression of two genes, A05p41690.1_BnaDAR

(r = 0.47) and its homeologue, C05p60900.1_BnaDAR

(r = 0.46), was correlated with quinic acid. Both genes are

annotated as ‘dehydroquinate dehydratase, putative / shiki-

mate dehydrogenase’. For A05p41690.1_BnaDAR, a

trans-eQTL was detected on C05 (marker: Bn-scaff_23186_1-

Table 2 QTL and co-localisations between omics layers

Data set Number of traits MTAs filtered for P-value FDR ≤ 0.05
MTAs filtered for P-value FDR ≤ 0.05,
≥ 2 PVE%d and robustnesse

Metabolites (M) n = 154 n = 544 n = 187
Transcripts (T)a n = 41 380 n = 302 226 n = 56 814
Phenotypic traits (P)b n = 2496 n = 28 758 n = 4297

Number of co-localisations Same genetic marker associated

Co-localisations (T, M) n = 110 n = 131
Co-localisations (T, P) n = 366 n = 1484
Co-localisations (M, P) n = 42 n = 28
Co-localisations (T, M, P) n = 42 n = 24
Permutation thresholdc n = 8

aLow-expressed genes were filtered (see Material and Methods).
bIncluding image-derived traits for 21 time points (6–27 DAS), biomass and relative growth / absolute change rates.
cEstimated number of random co-localisations obtained by 10 000 permutations.
dEstimated percentage of phenotypic variance explained by the genetic marker.
eGWAS was repeated with different PC covariates and associations found in just one model were omitted.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2024), 117, 713–728

Integrated multi-omics analyses and GWAS in canola 717

 1365313x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.16524 by B

undesanstalt fuer Z
uech an, W

iley O
nline L

ibrary on [14/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



p121500; at 54.3 Mb) as part of candidate region

‘coloc_n3_eQTL_mQTL_QTL_36’ (Figure 4). The cis-eQTL

of C05p60900.1_BnaDAR (marker: Bn-scaff_20270_1-

p1323200_del; at 54.7 Mb) was not considered colocalised

because the associated markers were not in LD.

Subgenome-specific expression and biomass

accumulation

A PCA evaluated the transcriptome contributions to biomass

on the population level. A clustering of lines in the PC3 and

PC9 corresponds to breeding pools (Figure 5a). Two partially

overlapping clusters, with higher or lower biomass were sep-

arated by PC3 (Figure 5b). To further explore this observa-

tion, the 5% quantile of top positive (direction of higher

biomass; n = 2069) and negative (direction of lower bio-

mass; n = 2069) ranked loadings of PC3 were separately sub-

jected to GO term enrichment (Data S6). ‘chloroplast stroma’

(GO:0009570) in CC, and ‘DNA helicase activity’

(GO:0003678) in MF were the most significant terms for the

positive loadings. For the negative loadings, cytosolic large

ribosomal subunit’ (GO:0022625) in CC, ‘structural constitu-

ent of ribosome’ (GO:0003735) in MF and ‘RNA methylation’

(GO:0001510) and ‘SRP-dependent cotranslational protein

targeting to membrane’ (GO:0006614) in BP were the most

significantly enriched terms. Furthermore, subgenome con-

tributions differed between the top negative and positive

loadings. For negative loadings, 814 transcripts were contrib-

uted from the A subgenome, 1206 transcripts from the C sub-

genome and 49 from unplaced scaffolds, respectively. In

contrast, the top positive loadings contained 1084 transcripts

from the A subgenome, 937 transcripts from the C subge-

nome and 48 from unplaced scaffolds, respectively. For both

negative and positive loadings, these numbers differ signifi-

cantly from the expected ratio of the quantified transcripts

(A subgenome: C subgenome = 0.48: 0.52; Fisher’s exact test

P-value = 5.14e-12 and 1.48e-06, respectively).

Figure 2. Number and explained phenotypic variance of cis- and trans-eQTL.

Panel (a) shows an overview of detected expression QTL (eQTL) and explained phenotypic variance (PVE%). The leftmost bar shows the distribution of PVE%

for all eQTL with a P-value FDR ≤0.05. The blue colour code refers to eQTL grouped by: > 10%, 5–10%, 1–5% and <1% PVE. The two other bars group the eQTL

in cis- and trans-eQTL, defined by a � 500 kb interval around the transcription start site of the respective gene. QTL without explainable PVE% were omitted for

this representation.

Panel (b) shows the number and proportion of eQTL classified as cis-eQTL and trans-eQTL. Initially, 19 294 cis-eQTL and 282 932 trans-eQTL were identified, of

which 16 697 cis-eQTL and 40 117 trans-eQTL with PVE% ≥ 2 were considered for further analyses.

Panel (c) shows exemplarily the Manhattan plot of C06p42580.1_BnaDAR annotated as ‘Signal recognition particle subunit SRP72’. Ten significant marker-trait

associations (MTAs) on chromosomes A01, A02, A07, C01, C03, C06 and C08 are indicated by red dots (P-value FDR ≤0.05).

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2024), 117, 713–728

718 Dominic Knoch et al.

 1365313x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.16524 by B

undesanstalt fuer Z
uech an, W

iley O
nline L

ibrary on [14/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In a complementary approach, a weighted gene co-

expression network analysis (WGCNA) detected 92 mod-

ules and pinpointed potential regulatory genes associated

with early biomass. The ‘red module’ (Figure S8a),

comprising 621 genes, was significantly correlated

(r = 0.50) to fresh weight. An overwhelming majority of

89.5% (n = 574) genes were shared with the top PC3 load-

ings. A GO term enrichment indicated CC: ‘proton-

Figure 4. QTL co-localisations across multiple omics layers.

Shown is ‘candidate region 36’ as an example for QTL colocalisation across multiple omics layers, including the transcriptome, metabolome and phenome. The

region on chromosome C05 spans approx. 800 kb and contains 4 mQTL, for quinic acid, 5-caffeoyl-trans-quinic acid and a metabolite of unknown chemical

structure, 129 eQTL and 12 phenotypic QTL. Manhattan plots for the transcript of A05p41690.1_BnaDAR annotated as putative shikimate dehydrogenase (top),

the metabolite quinic acid (middle) and the i-trait projected leaf area (fluo) at 9 DAS (bottom) are shown. A05p41690.1_BnaDAR and quinic acid were found to

be associated with the same genetic marker (Bn-scaff_23186_1-p121500; at 54.3 Mb). Notably, a Pearson correlation of r = 0.47 was detected between the two

traits. The i-trait was associated with the deletion marker Bn-scaff_20219_1-p188503_del (at 53.7 Mb; LD >0.8 between the two markers).

Figure 3. eQTL hotspots detected on the Brassica napus chromosome A05.

Expression QTL (eQTL) distribution on the B. napus chromosomes A05. The eQTL were binned into overlapping 1 Mb intervals (light blue and dark blue colour,

for example 0–1 Mb and 0.5–1.5 Mb, respectively) for representation. The number of QTL per bin is indicated on the vertical axis, the chromosomal position in

Mb is shown on the horizontal axis. The bottom section shows the marker distribution, SNPs (n = 911) and CNVs (n = 273), across the chromosome: markers

were binned in 1 Mb intervals and marker density is indicated by the colour (green to red). Grey colour indicates regions without genetic markers. Four eQTL

hotspots with more than 200 eQTL (surpassing the dashed red line) were detected on A05. Only for one of them (33–34 Mb / 33.5–34.5 Mb, respectively) the

genes affected by the eQTL significantly enriched GO terms (BP: biological process, MF: molecular function, CC: cellular component).

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2024), 117, 713–728
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transporting V-type ATPase, V0 domain’ (GO:0033179), MF:

‘DNA helicase activity’ (GO:0003678) and BP: ‘telomere

maintenance’ (GO:0000723) as the most significantly

enriched terms (Data S6). Several of these genes, including

C06p39650.1_

BnaDAR, C06p42580.1_BnaDAR, A02p33440.1_BnaDAR,

C03p78480.1_BnaDAR and C04p59470.1_BnaDAR were also

found among the transcripts with the highest correlations

to biomass and related i-traits. Some of the highest ranked

genes of the ‘red module’ display a breeding pool specific

expression pattern (Figure S8b). In contrast, the ‘grey mod-

ule’, containing 10 376 genes which have not been clus-

tered in any module by the WGCNA analysis, was

negatively correlated to fresh weight (r = �0.49). For this

module, many GO terms were found to be significantly

enriched (Data S6), among the highest: CC: ‘integral com-

ponent of membrane’ (GO:0016021), MF: ‘ubiquitin-protein

transferase activity’ (GO:0004842), BP: ‘respiratory burst

involved in defense response’ (GO:0002679) and ‘protein

ubiquitination’ (GO:0016567).

Comparison of high biomass and low biomass lines

While genotypes in the main RNA-Seq experiment were

analysed as pools, four genotypes with differing biomass

were additionally sequenced with three biological repli-

cates (Figure S9). In total, 1672 genes (1.55%) were higher

expressed in the high biomass line ‘Pol 419’, 907 derived

from the A subgenome (0.84%), 730 from the C subge-

nome (0.67%) and 35 genes (0.03%) from unplaced scaf-

folds, respectively (Data S8). In the low biomass line ‘Pol

229’, 1925 genes were higher expressed with 831 attributed

to the A subgenome (0.77%), 1032 to the C subgenome

(0.95%) and 62 (0.06%) genes from unplaced scaffolds,

respectively. Thus, ‘Pol 229’ displayed an approximately

even distribution between the subgenomes, more similar

to the overall ratio of transcripts encoded by the A and C

subgenomes, while ‘Pol 419’, the high biomass line, had

substantially more genes from the A than the C subge-

nome significantly higher expressed.

GO term enrichment was assessed for the 3597 DEGs

between the contrasting lines. Both lines shared GO terms,

for example BP: ‘translation’ (GO:0006412), ‘rRNA processing’

(GO:0006364), ‘glucose catabolic process’ (GO:0006007), ‘-

pentose-phosphate shunt’ (GO:0006098), CC: ‘chloroplast

stroma’ (GO:0009570), ‘chloroplast envelope’ (GO:0009941),

‘cell wall’ (GO:0005618), ‘chloroplast thylakoid membrane’

(GO:0009535) and ‘cytosolic ribosome’ (GO:0022626), but

also displayed enrichment for separate terms. For Pol 229

the GO terms MF: ‘structural constituent of ribosome’

(GO:0003735), BP: ‘RNA methylation’ (GO:0001510), ‘cell wall

modification’ (GO:0042545), CC: ‘nucleolus’ (GO:0005730),

‘cytosolic large ribosomal subunit’ (GO:0022625) and ‘cyto-

solic small ribosomal subunit’ (GO:0022627) were most sig-

nificantly enriched. For Pol 419: MF: ‘pullulanase activity’

(GO:0051060), BP: ‘starch biosynthetic process’ (GO:0019252)

and CC: ‘apoplast’ (GO:0048046) were identified as most sig-

nificantly enriched (Data S6).

DISCUSSION

A diverse breeding population of 477 canola lines was ana-

lysed by high-throughput phenotyping and by measuring

transcript and metabolite profiles. The central goal was to

gain insight into the genetic factors controlling early bio-

mass accumulation, a crucial trait for plant productivity

Figure 5. Transcript profiles separate lines according to biomass and breeding pools.

Principal component analysis was performed on filtered transcript (tpm) data for all 477 rapeseed lines after removing low-expressed features. Transcript data

were centred and scaled (z-scores). The PCA calculation was done by singular value decomposition (svd) of the data matrix. The first four PCs explained 13.59%,

9.30%, 3.10% and 2.70% of variance, respectively.

(a) Scatter plot of PC1 and PC3 with samples coloured according to their affiliation to one of the breeding pools. (b) The same PCA plot with genotypes coloured

according to their biomass (fresh weight BLUEs) using a gradual scale (colour gradient blue, low biomass to yellow, high biomass).

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2024), 117, 713–728
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(Basunanda et al., 2010; Zhao, Jiang, et al., 2016) and to

use multi-omics analyses to discover prime candidate

genes for metabolic and vegetative growth variation. The

determined i-traits displayed varying patterns of heritabil-

ity over time as also observed by Chen et al. (2014) and

Flood et al. (2016). Temporal fluctuations of heritability

may be a consequence of changes in the magnitude of G

and E effects (Visscher et al., 2008) or result from technical

and/or environmental bias or difficulties to correctly esti-

mate certain parameters, for instance leaf number at very

early stages.

Our workflow of data integration has been sum-

marised in the flowchart (Data S9). As a first step, we cal-

culated pairwise correlations between molecular features

and i-traits. The majority of metabolites showed little

correlation with biomass and growth-related traits, but

indole-3-acetonitrile (IAN), an inactive precursor of the phy-

tohormone auxin (IAA) (Korasick et al., 2013), was highly

correlated with compactness-related i-traits. Production of

IAA from IAN by nitrilases (Shaw et al., 2022) might affect

leaf expansion growth and thus compactness.

C04p59470.1_BnaDAR, annotated as ‘Nucleolin 1’ involved

in pre-rRNA processing and ribosome assembly (Kojima

et al., 2007; Petricka & Nelson, 2007), BNapus_Dar-

mor_BZH_scaffold_38p02360.1_BnaDAR annotated as

‘Elongation factor 1-beta 1’ and C06p42580.1_BnaDAR

annotated as ‘Signal recognition particle subunit SRP72’,

involved in translation and targeting of proteins to the

endoplasmic reticulum, showed substantial correlations

with fresh weight, indicating a potential contribution to dif-

ferential growth. Several ubiquitin carboxyl-terminal

hydrolases were correlated with biomass. These enzymes

hydrolyse the peptide bond at the C-terminal Gly of ubiqui-

tin and are involved in protein deubiquitylation (Hayama

et al., 2019). Two of the genes, A05p28550.1_BnaDAR and

C05p43970.1_BnaDAR show homology to TRAF-like family

proteins (Qi et al., 2022; Teaster et al., 2012). The Arabidop-

sis homologue AT3G20370 is a potential floral repressor

(Schmid et al., 2003), which might affect biomass by delay-

ing flowering. Correlations with plant height identified

A01p07850.1_BnaDAR, A03p59730.1_BnaDAR, C01p0876

0.1_BnaDAR and C07p57790.1_BnaDAR, all annotated as

putative ‘xyloglucan endotransglucosylase/hydrolase’.

Overexpression of the Arabidopsis homologue ATXTH20

affects growth and cell wall mechanics (Miedes

et al., 2013). Also, C07p07020.1_BnaDAR, a ‘peroxidase’,

C09p71310.1_BnaDAR, a ‘Laccase’ and C03p28650.1_Bna-

DAR, a homologue of the Arabidopsis EXTENSIN 21, are

promising candidates affecting cell differentiation, cell wall

assembly, growth and lignification (Barros et al., 2015; Yi

Chou et al., 2018).

In a second step, the extensive omics data were used

for GWAS and colocalisation analyses across omics layers.

96 eQTL hotspots were detected of which 49 show Go term

enrichments. A hotspot on chromosome A04 was associ-

ated with systemic acquired resistance and salicylic

acid mediated signalling. Within this confidence region,

A04p31530.1_BnaDAR, annotated as NPR (NON EXPRESSER

OF PATHOGENESIS RELATED) regulatory protein, involved

in salicylic acid perception (Wang et al., 2020), was identi-

fied as promising candidate with cis-eQTL. Another hot-

spot on chromosome C03 (20–21 Mb), was linked to

defence responses. This region harbours the cis-eQTL of

C03p35430.1_BnaDAR, annotated with function in disease

resistance signalling (Walsh et al., 2006). As in our canola

population confidence intervals contain dozens to hun-

dreds of genes due to large blocks of conserved linkage

disequilibrium, we utilised correlations between features

to prioritise particularly promising candidates for metabolic

and vegetative growth variation. Although this approach

may fail in cases where causal transcripts are expressed at

very low levels, display non-linear relationships or if contrast-

ing effects mask QTL, it was successful, for both mQTL and

phenotypic QTL. Correlated candidate genes were identified

for 22 of the 110 co-localisations between mQTL and eQTL,

and for 114 of the 366 co-localisations between phenotypic

QTL and eQTL. We filtered for genetic linkage between asso-

ciated markers to reduce the number of potential false posi-

tive results. However, this may have led to some false

negative results, for example the markers Bn-A01-p4188629

and Bn-A01-p4164843, positioned 25.5 kb apart on chromo-

some A01, were associated with tyramine abundance and

expression levels of a putative tyrosine decarboxylase

(A01p09260.1_BnaDAR), respectively. A01p09260.1_BnaDAR

emerged as candidate from our correlation analysis

(r = 0.31), but the genetic associations were not considered

colocalised due to low LD between markers. Similarly, we

nominated C03p47770.1_BnaDAR, encoding an uncharac-

terised protein as a promising candidate gene for sucrose

abundance (r = �0.57). However, no cis-eQTL or colocalised

mQTL was detected. Nevertheless, we could link a deletion

on chromosome C03 shared by a subset of nine closely

related lines to severely reduced C03p47770.1_BnaDAR tran-

script levels as well as significantly higher sucrose, glucose

and fructose levels compared to the population average.

The eQTL-mQTL colocalisation and transcript-

metabolite correlations also reveal gene functions in pri-

mary metabolism causing metabolic variation. For

instance, marker Bn-A01-p23602361 links an mQTL for

malonic acid to an eQTL for C01p48140.1_BnaDAR, anno-

tated as malonyl-CoA synthetase. Similarly, Bn-A06-

p9119114 links an mQTL for putrescine to an eQTL for

C07p60730.1_BnaDAR, encoding a putative arginine decar-

boxylase. Notably, C01p48140.1_BnaDAR was significantly

negatively correlated with malonic acid. Other co-

localisations were detected for Bn-A02-p2817281 associ-

ated with sucrose and C03p39680.1_BnaDAR annotated as

‘hypersensitive-induced response protein 1’ or for the

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2024), 117, 713–728
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marker Bn-scaff_19244_1-p313887, corresponding to an

eQTL hotspot on chromosome C01. The confidence region

includes an mQTL for β-Alanine and 18 eQTL. The highest

correlated transcript was C01p00680.1_BnaDAR

(r = �0.574), annotated as alanine-glyoxylate

aminotransferase.

In the third step, focusing on biomass and related

traits, candidate genes were prioritised in eleven colocali-

sation regions (Table S2). These genes include

A02p00340.1_BnaDAR, a homolog of the Arabidopsis flow-

ering locus C (FLC). Transgenic tobacco lines expressing

the Arabidopsis FLC show increased biomass and delayed

flowering (Salehi et al., 2005). A05p06910.1_BnaDAR,

another candidate, shows homology to the Arabidopsis

photosynthetic NDH subunit of lumenal location 1 (PNSL1),

which is part of the photosystem II oxygen evolving com-

plex and has recently been identified as non-additive pro-

tein in a maize heterosis study (Wang et al., 2021).

C07p48260.1_BnaDAR shows homology to the Arabidopsis

‘pleiotropic regulatory locus1’ (PRL1). prl1 mutations result

in transcriptional de-repression of many sucrose-regulated

genes, arrests root elongation, alters leaf development and

inhibits cell elongation (Farrás et al., 2001). PRL1 also

appears to coordinate isoprenoid metabolism with sugar,

hormone and stress responses (Flores-Pérez et al., 2010).

A06p05760.1_BnaDAR (PIAL1) encodes an E3 SUMO-

protein ligase. In Arabidopsis, Atpial1 and Atpial2 mutants

displayed better growth compared to wild type under

salinity and osmotic stress and exhibited altered sulphur

metabolism (Tomanov et al., 2014). C07p48510.1_BnaDAR

(CLPR4) is a component of the ClpPR protease complex.

Shortage of CLPR4 causes decreases in PSI and PSII core

proteins (Kim et al., 2009). Null alleles for CLPR4 caused

delayed embryogenesis and albino embryos, with seedling

development arrested in the cotyledon stage, demonstrat-

ing a central role in chloroplast biogenesis and protein

homeostasis (Kim et al., 2009). C08p38440.1_BnaDAR,

annotated as polyketide cyclase/dehydrase and lipid trans-

port superfamily protein gene, was nominated as candi-

date for leaf lamina shape in poplar (Drost et al., 2015).

C02p16750.1_BnaDAR, a homolog of the Arabidopsis

IAA Leucine Resistant (ILR3) gene encodes a basic helix–
loop–helix (bHLH) transcription factor, which regulates

iron homeostasis, modulates auxin-conjugates hydrolysis

(Selote et al., 2014; Zhang et al., 2015) and affects various

stress responses (Rasheed et al., 2016; Samira et al.,

2018) and photoprotection (Akmakjian et al., 2021).

C06p47020.1_BnaDAR encoding casein kinase 1-like protein

2 (CKL2) regulates actin filament stability and stomatal clo-

sure in Arabidopsis, which is crucial for plant photosynthe-

sis and transpiration (S. Zhao, Jiang, et al., 2016). Another

candidate, C03p62930.1_BnaDAR, shows similarity to the

Arabidopsis gamma-type carbonic anhydrase-like 1 (CAL1),

which is part of the mitochondrial NADH dehydrogenase

complex I and is of particular importance for the respira-

tory chain in mitochondria and for ATP generation (Fromm

et al., 2016; Klodmann et al., 2010). Complex I is essential

for development and plays a central role in photomorpho-

genesis and cellular energy metabolism (Wang

et al., 2012). BNapus_Darmor_BZH_scaffold_38p02360.1_B-

naDAR, annotated as ‘Elongation factor 1-beta 1’, while not

located within the eleven regions, is another very promis-

ing candidate. Expression levels are significantly nega-

tively correlated with biomass and projected leaf area.

Moreover, the eQTL on chromosome C02 is colocalised

with multiple QTL for biomass and biomass-related i-traits.

The associated marker Bn-scaff_16804_1-p178142 was pre-

viously identified by Knoch et al. (2020) as dynamic QTL

for projected leaf area and as one of five candidate regions

with effects on multiple biomass-related traits.

To gain evidence for biomass and growth-related

candidate genes even beyond the multi-omics QTL co-

localisations and feature correlations, we investigated dif-

ferences in biomass using three further complementary

approaches: (1) by transcriptome PCA, (2) by analysis of

differentially expressed genes between contrasting lines

and (3) by weighted gene co-expression network analysis.

In the PCA, a partial separation of lines with high/low bio-

mass was observed for PC3. This pattern overlaps with the

breeding pools of our population: lines of pools 2 and 3

display on average higher biomass compared to lines of

pool 1 and the population mean. GO term enrichment ana-

lyses for the transcripts with the highest positive and nega-

tive loadings of PC3 revealed for low biomass lines a

reduction in transcript abundance of genes related to ribo-

some, RNA methylation and cotranslational protein target-

ing, indicating a potential reduction in protein biosynthesis

in these lines. In contrast, high biomass lines displayed an

enrichment of genes related to chloroplast functions. Previ-

ous studies in Arabidopsis indicated that growth is associ-

ated with the ribosome number and polysome loading

(Czedik-Eysenberg et al., 2016; Pal et al., 2013; Piques

et al., 2009) and found growth rates negatively correlated

with protein turnover (Ishihara et al., 2017). Interestingly,

we observed differences in the subgenome-origin, with

more transcripts from the A subgenome contributing to

positive loadings, while negative loadings contain more

transcripts from the C subgenome. The analysis of DEGs

between ‘Pol 229’ (low biomass) and ‘Pol 419’ (high bio-

mass) supported the subgenome-specificity, and the GO

term enrichment analysis yielded enriched terms as

for PC3.

In a final step, we used WGCNA to identify modules

related to biomass. In particular the ‘red module’ displayed

substantial correlation to both, biomass and growth-

related traits. Notably, four genes, A06p05760.1_BnaDAR

(PIAL1), A10p16280.1_BnaDAR (uncharacterised), C07p48260.1_

BnaDAR (PRL1) and C07p48510.1_BnaDAR (CLPR4) were

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2024), 117, 713–728
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detected by all four analyses: They are positioned within

the eleven colocalisation regions, found among the top

100 positive PC3 loadings, differentially expressed between

‘Pol 229’ and ‘Pol 419’ and are part of the ‘red module’.

These genes thus represent prime candidates for further

functional investigations. Validation might be performed

by overexpression or gene silencing, targeted gene knock-

out using CRISPR/Cas9 or characterisation in a heterolo-

gous system, such as Arabidopsis. Transient assays,

for example virus-induced gene silencing (VIGS) or RNAi

might be used to validate mQTL candidate genes.

Sequence variation information of the identified and priori-

tised genes will be useful for prediction and improvement

of juvenile vigour in spring-type B. napus. Fertiliser,

growth regulator and pesticide input depends on juvenile

biomass and are critical for resource-efficient production.

Also, juvenile vigour alters the competitive advantage over

weeds and escape mechanisms for pest management. Effi-

cient establishment of the canola crop thus contributes

directly to economic success. Plants need to be strength-

ened in this phase, as they are increasingly threatened by

climate change and restricted pesticide use.

Data resources generated and analyses performed in

this study comprehensively addressed the major issue

in QTL studies of gene candidate prioritisation and func-

tional annotation of polymorphism effects. While several

previous studies showed the value of such multi-omic

approaches across different plant species [Arabidopsis:

Brotman et al., 2011; Szymanski et al., 2014; Luzarowska

et al., 2023, maize: De Abreu E Lima et al., 2018, tomato:

Tieman et al., 2017; Szymański et al., 2020; Zhu et al.,

2018], all these cases related to characterisation of molecu-

lar mechanisms responsible for emergence of relatively

simple, monogenic phenotypes. In contrast, in this study

we quantified functional relations of multiple omics layers

to complex multigenic phenotypes related to growth and

plant architecture. Our data enable us to link the pheno-

typic effects of genetic variation to molecular features that

are either directly or indirectly associated with them. This

link significantly eases the interpretation of QTL for com-

plex phenotypes by providing ways of gene prioritisation

and thus enabling to generate a plausible hypothesis about

molecular elements responsible for emergence of reported

phenotypes.

Such multi-omic approaches fill the knowledge gap

originating from incomplete genomic information. While

detection of structural variation by long read-based

genome sequencing identified mechanistic links between

change of a gene sequence and its downstream pheno-

typic effect (Alonge et al., 2020), the SNP data used for

GWAS analysis rarely provide insights into the molecular

effects of each polymorphism. Expression and metabolic

QTL data provide such insights in an unbiased way and is

more likely to point out new genes and gene functions in a

QTL than a knowledge-based prioritisation of, for example

transcription factors and enzymes (Brotman et al., 2011). In

a longer perspective, we believe our data will contribute to

development of gene-function based models for plant-

performance prediction (Weckwerth et al., 2020) and to the

efficient utilisation of the vast increases in (genome)

sequence information that are expected to emerge from

the ever-increasing throughput and depth of sequencing

technologies (Belser et al., 2018).

EXPERIMENTAL PROCEDURES

Population and genotyping

As a basis for genome-wide association studies we re-analysed
previously acquired genotype data of 477 spring-type Brassica
napus (canola) lines from a hybrid breeding programme (Jan
et al., 2016; Knoch et al., 2020, 2021) generated using the Brassica
Infinium™ 60 k genotyping array (Clarke et al., 2016; Mason
et al., 2017). Starting from the raw data (*.idat files), we called sin-
gle nucleotide polymorphism (SNP) and copy-number variation
(CNV) markers using the ‘gsrc’ R pipeline (Grandke et al., 2017).
Positions were derived by anchoring the 50 bp oligonucleotide
probes on the Darmor-bzh v10 reference genome (Rousseau-
Gueutin et al., 2020) using BLASTN (parameters: -perc_identity 90
-evalue 10 -word_size 11). Alignments were filtered for 49–51 bp
length, percent identity ≥98, allowing only one gap or mismatch.
‘Best unique hits’, the alignment with the highest bitscore and
only one hit in the genome with the selected criteria, were
retained. SNP calls were filtered <10% missing data, <25% hetero-
zygous calls and a minor allele frequency (MAF) ≥ 0.01 to include
‘low frequency’ but exclude ‘rare’ variants. CNVs were filtered to
be present in at least 5 lines. Filtering resulted in 25 000 SNPs and
6098 CNVs (6039 deletions and 59 duplications). Missing SNP calls
were imputed using the BEAGLE v.4.1 implementation in the ‘syn-
breed’ R package (Wimmer et al., 2012).

Plant cultivation and high-throughput phenotyping

Plant cultivation and phenotyping (image acquisition) was per-
formed in a previous study described in Knoch et al. (2020).
Briefly, plants were cultivated and phenotyped in the IPK pheno-
typing facility for large plants (Junker et al., 2015, Figure S1) under
controlled spring-like environmental conditions in an incomplete
randomised block design with three replicates. Each replicate con-
sisted of a pot with nine plants. Plants were imaged daily using
visible light (VIS), static fluorescence (FLUO) and near-infrared
(NIR) camera systems for the period between 6 and 27 days after
sowing (DAS), acquiring top and sideview images. Shoot material
of four inner plants was sampled at 14 DAS to generate transcrip-
tome and metabolome profiles. Shoot fresh and dry weights of
the remaining five plants were determined at 28 DAS.

Image analysis and extraction of i-traits

Phenotypic traits (i-traits) were derived from high-throughput
image analyses performed on approximately 420 000 images
using IAP v2.1.0 (Klukas et al., 2014). The raw image data,
obtained from a previous study (Knoch et al., 2020) that focused
on four growth-related phenotypic traits, were subjected to a
deepened image analysis. We customised a pipeline with several
pre-processing, segmentation and feature extraction steps
(Data S1). 1194 i-traits were obtained, including 128 (10.7%)

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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geometric traits giving insights into plant morphology, 930
(77.9%) traits related to plant pigmentation, 104 (8.7%) traits
related to static chlorophyll fluorescence and 32 (2.7%) traits
related to water content and water dynamics. To cope with envi-
ronmental differences between experiments and potential G x E
interactions, best linear unbiased estimators (BLUEs) and broad-
sense heritabilities (H2) were calculated across experiments
(Knoch et al., 2020). To define a core set, after outlier correction, i-
traits were filtered for H2 > 0.7 on at least one day and stepwise
variable selection using variance inflation factors (VIF ≤10) was
applied to minimise multicollinearity (Chen et al., 2014). 123 i-
traits, including a subset of 32 manually selected biomass-related
traits, were retained for subsequent analyses. Relative growth
rates for ‘estimated biovolume’, ‘projected leaf area’ and ‘early
plant height’, and final biomass values were obtained from Knoch
et al. (2020).

Metabolite profiling

The second data set used for the analyses performed here con-
sisted of relative abundancies of 154 metabolites, 64 of known
and 90 of unknown chemical structure. The generation of this data
set by GC-MC-based metabolite profiling, quality controls and
data normalisation are described in Knoch et al. (2021). Samples
were extracted in MeOH/CHCl3/H2O (15.0 � 1.5 mg FW), dried and
in-line derivatised (MPS2 autosampler, Gerstel, Mülheim an der
Ruhr, Germany) prior to GC–MS analysis (Agilent, Waldbronn,
Germany/Leco, Mönchengladbach, Germany) as described by
Riewe et al. (2012, 2016). Polar metabolites were identified using
ChromaTOF software (LECO) and the Golm Metabolome Database
mass spectra library (GMD; http://gmd.mpimp-golm.mpg.de/
download/). Peak intensities were determined using the R package
‘TargetSearch’ (Cuadros-Inostroza et al., 2009), normalised for
fresh weight and detector response variation, outlier-corrected
and Box-Cox power transformed.

Transcriptome analysis

As a third data layer, RNA-Seq reads were obtained from Knoch
et al. (2021). Sequencing was performed using 100 bp single end
(SE) reads on a HiSeq 2500 platform (Illumina, Berlin, Germany),
using aliquots of the same material as for metabolite profiling. Lines
were covered on average with 9.5 million reads. Reads were
trimmed using Trimmomatic v0.36 (Bolger et al., 2014) with the fol-
lowing options: SE, HEADCROP:6, LEADING:20, TRAILING:20, SLI-
DINGWINDOW:4:15 and MINLEN:50 and aligned to the Darmor-bzh
v10 reference using Hisat2 v2.0.4 (Kim et al., 2015). Features were
counted using HTSeq v0.6.1p1 (Anders et al., 2015) and normalised
for sequencing depths and transcript length using the ‘tpm’ proce-
dure (Wagner et al., 2012) in R (www.r-project.org). Low-expressed
features with less than 10 raw counts in more than 90% of the sam-
ples were removed as they tend to reflect noise. Data were centred
and scaled (z-scores) prior to principal component analysis (PCA)
using the ‘pcaMethods’ R package (Stacklies et al., 2007). Functional
proteins annotations using the ‘Automatic assignment of Human
Readable Descriptions’ (AHRD) package were obtained from Vollrath
et al. (2021). Arabidopsis thaliana homologs (best BLASTX hit) were
derived from the Brassicaceae Database (BRAD; Chen et al., 2022,
http://brassicadb.cn/#/Annotations/).

Estimation of genomic heritability

Genomic heritabilities of metabolite and transcript levels (SNP-
based heritabilities, Yang et al., 2017) were estimated with the
‘BGLR’ R package (Pérez & De Los Campos, 2014) in a five-fold
cross-validation with 20 cross-validation rounds. Masked values

were predicted using the BGLR (Bayesian Generalised Linear
Regression) function, with parameters set to nIter = 5000,
burnIn = 1000 and ETA = list (list (K = G, model = ‘RKHS’)),
whereby G is the genomic relationship matrix among individuals
calculated according to VanRaden (2008). Genomic heritabilities
were estimated as the squared Pearson correlation between pre-
dicted and observed values in the test set (Data S2).

Genome-wide association studies using multi-omics data

To be able to compare and connect genetic associations across all
three omics layers, GWAS was performed using the ‘FarmCPU’ R
package and filtered SNP and CNV markers. Fixed and random
model circulating probability unification (FarmCPU) is a multi-
locus GWAS method that divides the Multi-Locus Mixed Model
(MLMM) into two parts: the fixed effect model and the random-
effect model and uses them iteratively (Liu et al., 2016). To elimi-
nate the confounding between kinship in a mixed model (MLM)
and genes underlying a trait of interest, the kinship is substituted
with a restricted kinship matrix derived from the SUPER algorithm
(Wang et al., 2014). The set of associated markers are fitted as cov-
ariates (pseudo-QTNs) in the fixed effect model for testing
markers. To avoid model overfitting, the set of covariate markers
are optimised using restricted maximum likelihood (REML) in the
random-effect model. The method was shown to provide
increased computational efficiency and to control effectively for
false positives and false negatives (Kaler et al., 2019; Kumar
et al., 2022; Merrick et al., 2021; Miao et al., 2019; Tibbs Cortes
et al., 2021). PCA was performed on centred genotype data and
the ten first principal components (PCs) were calculated. As sug-
gested by the authors of the FarmCPU package (Liu et al., 2016),
the first four PCs were fitted as covariates in the GWAS model to
improve statistical power and to correct for population stratifica-
tion. The maxLoop parameter was increased from the default 10
to 100 and the two parameters p.threshold and QTN.threshold
were set to 0.00001 (estimated by the FarmCPU.P.Threshold func-
tion) and 0.01, respectively. After multiple testing correction, asso-
ciations with P-values (FDR) ≤ 0.05 were considered statistically
significant. To test whether systematic inflation occurred due to
population stratification, we calculated medians of P-values and
genomic inflation factors lambda (λGC) for each trait using the
respective vector of P-values and the inflation function of the
‘ARTP2’ R package (Figure S2). Explained phenotypic variances
(PVE%) of significant markers were estimated as described by
Knoch et al. (2020). As covariates can substantially influence
results, we additionally performed GWAS without and with an
increasing number of PCs and used these results as another filter.
Only ‘robust’ associations identified in at least one additional
GWAS run were retained. Expression QTL (eQTL) were classified
as cis-eQTL if associated markers were within �500 kb of the tran-
scription start site of respective genes.

Correlations and QTL co-localisations

Pearson and Spearman correlations between trait values were per-
formed to identify potential links between the omics layers. Corre-
lations were calculated using the cor.test function of the ‘stats’ R
package. For each omics layer, QTL were binned in overlapping
1 Mb intervals to detect hotspots. In a stringent approach, associa-
tions were regarded as colocalised if the same genetic marker was
detected. To estimate the frequency of random colocalisation, per-
mutations (n = 10 000) were performed, distributing associations
randomly, but keeping the number of associations per genetic
marker/omics layer constant, as suggested by Breitling et al.
(2008). The number of co-localisations across all three omics

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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layers per iteration was recorded and the 95% quantile of this dis-
tribution compared to the actual number of detected co-
localisations. In a less stringent approach, all associations within a
1 Mb window (� 500 kb around an associated marker) and in LD
≥0.6 were regarded as colocalised. Overlapping or adjacent inter-
vals were further collapsed into regions of interest.

Feature selection using the Boruta algorithm

To select relevant transcripts with effects on early plant biomass,
we used the Boruta algorithm implemented in R (Kursa & Rud-
nicki, 2010) with the following parameters: P-Value = 0.01,
maxRuns = 1000, ntree = 10 001. Confirmed features were used
to train a random forest regression model using the ‘randomFor-
est’ R package (Liaw & Wiener, 2002), implementing a five-fold
cross-validation procedure with 100 cross-validation rounds and a
test to training set split of 0.2–0.8. Parameters were adjusted to
ntree = 1001 and mtry = [p/3]. Mean prediction accuracies were
obtained from squared Pearson correlations of predicted and
observed values in the test sets of each round.

Prediction of phenotypic traits using random forest

To evaluate the predictability of phenotypic traits by transcript
levels, traits were predicted using random forest (RF) models
implemented in the scikit-learn package in python. RF
models were implemented with n_estimators = 1000. We used a
shuffled cross-validation scheme in which for every round 20% of
the data was randomly set aside for testing and 80% for fitting the
models. Prediction performance for each run was estimated on
the left out test set using the R2 metric.

Analysis of differentially expressed genes

Because the transcriptome data of the entire population of 477
lines were generated without replication (one data set per line),
we selected four contrasting lines, ‘Pol 229’ (low biomass), ‘Pol
396’ (medium biomass), ‘Pol 467’ (medium biomass) and ‘Pol 419’
(high biomass) for RNA-Seq analyses with three biological repli-
cates each. Always four plants from one pot/phenotyping experi-
ment were pooled to constitute one biological replicate.
Differentially expressed genes (DEGs) were determined using the
‘edgeR’ R package (Robinson et al., 2010). All expressed genes
(counts >0) were used as input. Fold-changes were calculated in
pairwise comparisons and P-values corrected using Bonferroni
multiple testing correction. The significance of DEGs was deter-
mined based on an alpha threshold ≤0.05 and |log2FC| ≥ 1.

Weighted gene co-expression network analysis

To detect co-expression modules and potential key regulatory genes
associated with traits of interest, we generated a co-expression net-
work using the ‘WGCNA’ R package (Langfelder & Horvath, 2008).
log2 transformed counts per million (CMP) were calculated using
the cpm function of the ‘edgeR’ R package (Robinson et al., 2010).
The soft thresholding power (β = 6) was determined using the pick-
SoftThreshold function to satisfy the scale-free topology assump-
tion. Automatic, one-step network construction and module
detection was performed using the blockwiseModules function
(power = 6; TOM-type = ‘unsigned’; miniModuleSize = 20;
mergeCutHeight = 0.25; maxBlockSize = 45 000).

Gene ontology (GO) term enrichment

Gene Ontology (GO) term enrichment analyses were conducted
for eQTL hotspots, the top positive and negative loadings of PC3
(separating lines according to biomass), the ‘red module’ obtained

from WGCNA and differentially expressed genes. Gene ontology
terms were obtained by GOMAP-singularity v1.3.8 using the
Darmor-bzh v10 protein sequences. Enrichment analyses were
performed using the ‘topGO’ R package (Alexa & Rahnenfuhrer,
2023). ‘topGOdata’ objects were built with the annFUN.gene2GO
function and nodeSize = 5. Ontology levels, ‘biological processes’
(BP), ‘molecular function’ (MF) and ‘cellular component’ (CC),
were analysed separately, using the ‘weight01’ algorithm and
Fisher’s exact tests. P-values were corrected for multiple testing
using the P adjust function of the ‘stats’ R package with the false
discovery rate (FDR) procedure (Benjamini & Hochberg, 1995).
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was uploaded to the e!DAL repository in ISA-Tab format

(https://doi.org/10.5447/ipk/2023/19) according to the

MIAPPE standard. Genetic marker data used for the GWAS

were initially provided by the Lab of Rod Snowdon. SNPs

and CNVs were newly called using the ‘gsrc’ pipeline and

the latest Darmor-bzh v10 reference genome assembly.

Raw data files are available at ArrayExpress (E-MTAB-
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13142) and marker calls have been uploaded alongside the

R code used for the analyses (Data S10). RNA sequencing

and metabolite profiling data were obtained from Knoch

et al. (2021), whereby the RNA-Seq data was re-analyzed

using the Darmor-bzh v10 reference genome assembly.

Transcriptome data are available at ENA (PRJEB63226) and

metabolite data were uploaded to MetaboLights

(MTBLS8056).
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Additional Supporting Information may be found in the online ver-
sion of this article.

Figure S1. Overview of the IPK’s Phenotyping facility for large
plants.

Figure S2. Genomic control for confounding effects of population
stratification.

Figure S3. Heritabilities of i-traits and genomic heritability of
molecular features.
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Figure S5. Differences in sugar content in lines with deletion on
chromosome C03.
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Figure S7. Multi-omics co-localisations and permutation analyses.

Figure S8. Weighted gene co-expression network analysis
(WGCNA).

Figure S9. Comparison of representative high-, medium- and low
biomass lines.

Table S1. Highest correlations between transcripts and biomass-
related traits.

Table S2. Candidate regions associated with biomass and bio-
mass-related traits.

Data S1. Customised IAP image analysis pipeline.

Data S2. Predictability of i-traits using random forest and genomic
heritabilities.

Data S3. Pearson correlations between the omics data sets.

Data S4. Selected features for early biomass by Boruta.

Data S5. Detected marker-trait associations.
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a-Cortés, H. et al. (2009) TargetSearch - a Bioconductor package for the

efficient preprocessing of GC-MS metabolite profiling data. BMC Bioin-

formatics, 10, 428.

Czedik-Eysenberg, A., Arrivault, S., Lohse, M.A., Feil, R., Krohn, N., Encke, B.

et al. (2016) The interplay between carbon availability and growth in dif-

ferent zones of the growing maize leaf. Plant Physiology, 172, 943–967.
De Abreu E Lima, F., Li, K., Wen, W., Yan, J., Nikoloski, Z., Willmitzer, L.

et al. (2018) Unraveling lipid metabolism in maize with time-resolved

multi-omics data. The Plant Journal, 93, 1102–1115.
Dong, H., Tan, C., Li, Y., He, Y., Wei, S., Cui, Y. et al. (2018) Genome-wide

association study reveals both overlapping and independent genetic loci

to control seed weight and silique length in Brassica napus. Frontiers in

Plant Science, 9, 921.

Drost, D.R., Puranik, S., Novaes, E., Novaes, C.R.D.B., Dervinis, C., Gailing,

O. et al. (2015) Genetical genomics of Populus leaf shape variation. BMC

Plant Biology, 15, 166.

Farrás, R., Ferrando, A., Jásik, J., Kleinow, T., Okrész, L., Tiburcio, A. et al.

(2001) SKP1-SnRK protein kinase interactions mediate proteasomal bind-

ing of a plant SCF ubiquitin ligase. The EMBO Journal, 20, 2742–2756.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2024), 117, 713–728

726 Dominic Knoch et al.

 1365313x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.16524 by B

undesanstalt fuer Z
uech an, W

iley O
nline L

ibrary on [14/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13142?query=E-MTAB-13142
https://www.ebi.ac.uk/ena/browser/view/PRJEB63226
https://www.ebi.ac.uk/metabolights/index
https://bioconductor.org/packages/topGO


Flood, P.J., Kruijer, W., Schnabel, S.K., Van Der Schoor, R., Jalink, H., Snel,

J.F.H. et al. (2016) Phenomics for photosynthesis, growth and reflectance

in Arabidopsis thaliana reveals circadian and long-term fluctuations in

heritability. Plant Methods, 12, 14.
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Thirumalaikumar, V.P. et al. (2023) Hello darkness, my old friend: 3-KETOA-

CYL-COENZYME A SYNTHASE4 is a branch point in the regulation of triacyl-

glycerol synthesis in Arabidopsis thaliana. Plant Cell, 35, 1984–2005.
Mason, A.S., Higgins, E.E., Snowdon, R.J., Batley, J., Stein, A., Werner, C.

et al. (2017) A user guide to the brassica 60K Illumina Infinium™ SNP

genotyping array. Theoretical and Applied Genetics, 130, 621–633.
Merrick, L.F., Burke, A.B., Zhang, Z. & Carter, A.H. (2021) Comparison of single-

trait and multi-trait genome-wide association models and inclusion of corre-

lated traits in the dissection of the genetic architecture of a complex trait in a

breeding program. Frontiers in Plant Science, 12, 772907.

Miao, C., Yang, J. & Schnable, J.C. (2019) Optimising the identification of

causal variants across varying genetic architectures in crops. Plant Bio-

technology Journal, 17, 893–905.
Miedes, E., Suslov, D., Vandenbussche, F., Kenobi, K., Ivakov, A., van der

Straeten, D. et al. (2013) Xyloglucan endotransglucosylase/hydrolase

(XTH) overexpression affects growth and cell wall mechanics in etiolated

Arabidopsis hypocotyls. Journal of Experimental Botany, 64, 2481–2497.
Mir, R.R., Reynolds, M., Pinto, F., Khan, M.A. & Bhat, M.A. (2019) High-

throughput phenotyping for crop improvement in the genomics era.

Plant Science, 282, 60–72.
Pal, S.K., Liput, M., Piques, M., Ishihara, H., Obata, T., Martins, M.C.M. et al.

(2013) Diurnal changes of polysome loading track sucrose content in the

rosette of wild-type arabidopsis and the starchless pgm mutant. Plant

Physiology, 162, 1246–1265.
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