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ABSTRACT

X-ray Phase Contrast Tomography (XPCT) based on wavefield propagation has been established as a high resolution three-

dimensional (3D) imaging modality, suitable to reconstruct the intricate structure of soft tissues, and the corresponding

pathological alterations. However, for biomedical research, more is needed than 3D visualisation and rendering of the

cytoarchitecture in a few selected cases. First, the throughput needs to be increased to cover a statistically relevant number

of samples. Second, the cytoarchitecture has to be quantified in terms of morphometric parameters, independent of visual

impression. Third, dimensionality reduction and classification are required for identification of effects and interpretation of

results. To address these challenges, we here design and implement a novel integrated and high throughput XPCT imaging

and analysis workflow for 3D histology, pathohistology and drug testing. Our approach uses semi-automated data acquisition,

reconstruction and statistical quantification. We demonstrate its capability for the example of lung pathohistology in Covid-19.

Using a small animal model, different Covid-19 drug candidates are administered after infection and tested in view of restoration

of the physiological cytoarchitecture, specifically the alveolar morphology. To this end, we then use morphometric parameter

determination followed by a dimensionality reduction and classification based on optimal transport. This approach allows

efficient discrimination between physiological and pathological lung structure, thereby providing quantitative insights into the

pathological progression and partial recovery due to drug treatment. Finally, we stress that the XPCT image chain implemented

here only used synchrotron radiation for validation, while the data used for analysis was recorded with laboratory 𝜇CT radiation,

more easily accessible for pre-clinical research.

1 Introduction

Tremendous efforts are undertaken to fight infectious diseases such as Covid-19, and to this end constant improvements in

scientific methodology are required. One particular recent development of interest is three-dimensional (3D) histophathology

based on X-ray phase contrast computed tomography (XPCT) [1–3]. XPCT yields 3D reconstructions of the cyto-architecture

with micron-sized or even sub-micron voxel sizes, is compatible with standard tissue preparations such as formalin-fixation and

paraffin embedding (FFPE), and effectively adds a third dimension to conventional histology. As computed tomography is

intrinsically digital, it comes without any extra step of digitalisation. In fact, it is often even impossible to visually inspect each

slice in a stack of several thousands of slices, in particular when it comes to pre-clinical or clinical trials with larger sample

size 𝑁 . Digital pathology is no longer an option but becomes a must. To this end, efficient high throughput workflows of

automated morphometric analysis and classification are in need. At the same time, data acquisition in XPCT is currently still

slow, most investigations remain anecdotic concerning the sample size 𝑁 , and translation from high brilliance synchrotron

radiation sources to more accessible laboratory sources is in its infancy.

In the realm of biomedical research, however, the importance of a sufficiently large sample size 𝑁 cannot be overstated, as

many confounders may affect the outcome and obscure correlative or causal relationships. At the same time 𝑁 cannot be scaled

arbitrarily, in view of animal well-being, ethical requirements, or cost. This can pose challenges, in particular in vaccine or



drug development when several compounds have to be tested, and calls for sophisticated and advanced statistical methods.

While this generally holds true also for conventional histopathology, the challenges escalate significantly for 3D imaging by

XPCT. This is primarily due to the considerable time and human resources required for current image acquisition and data

analysis. Workflows are needed which harness the power of automated sample exchange or multi-sample holders, scipts for

acquisition, reconstruction and image processing, as well as extraction of quantitative morphometric information.

3D imaging of lung by XPCT is a case in point. The applicability of XPCT has been demonstrated across a spectrum of

scales, ranging from the macroscopic to the microscopic [4–13], and even including in-vivo lung imaging. With its intricate 3D

networks of airways and vasculature, alveolar ducts, spaces and septae, 3D imaging is desirable and at the same time facilitated

by strong contrast based on the density contrast of tissue and empty space filled by air or the embedding medium. XPCT has

also been used to image unstained FFPE lung tissue from patients who succumbed to COVID-19, offering 3D insights into

diffuse alveolar damage (DAD), hyaline membrane formation, lymphocyte infiltration, vascular damage, and intussusceptive

angiogenesis [14].

With the 3D reconstructions at hand, morphometric analysis of the tissue can be carried out. Parameters such as tissue density,

surface areas and curvature, sphericity of objects, as well as compactness can be determined, see for example [15]. For lung

tissue, sizes of alveoli and thickness of septae are of particular interest [16]. More generally, extracting quantitative image

information has become a major effort in view of diagnostic and prognostic capabilities, and in clinical context is often referred

to as "radiomics" [17, 18].

Once morphometric features have been extracted, statistical evaluation and classification can be performed. Here, the challenge

lies in the high dimensionality. In each sample image (patient, animal), there are typically many instances of the sought-after

features. This holds especially true for bulky 3d images. Therefore not individual features, but instead whole collections

of features must be compared between samples. These can be interpreted as being drawn from an underlying ground-truth

probability distribution function (PDF) that captures the specific properties of each sample. Fortunately, machine learning and

in particular optimal transport (OT) has recently evolved as a major tool for quantitative comparison of PDFs. OT provides

a mathematical framework of re-arranging ‘mass’ from one location in a PDF to another, while minimizing the global (or

average) cost of transport. Since its mathematical formalization by Kantorovich, OT has evolved into a well-known, versatile

tool. Due to the availability of increasingly efficient numerical methods [19], several important applications in machine learning

and image analysis have emerged, such as image registration [20, 21], segmentation [22–24], pattern recognition [25] and data

fusion [26].

In this work, we investigate the effectiveness of several (blinded) drug compounds for treatment of Covid-19 in a small animal

model, based on 3D histopathology of lung as the predominantly afflicted organ. Owing to the difficulties in SARS-CoV-2

infection in mice, we turn to the well established hamster model, as introduced in [27, 28]. The scope of the work is primarily

in method development, and demonstrating the potential of high throughput laboratory XPCT in combination with automated

image processing and statistical analysis based on OT. After exploring different imaging configurations both at synchrotron and

in-house X-ray sources, we scanned FFPE tissues of more than 50 hamsters with the same compact 𝜇CT configuration and

use the so-called chord length distribution as a distinct morphometric measure for the alveolar spaces in hamster lungs. Apart

from positive and negative controls, five different drug candidates for Covid-19 treatment are included in the study, and are

discriminated based on OT analysis. Interestingly, promising candidates are identified, notwithstanding the still very small 𝑁

and the confounders intrinsic in such a trial.

The manuscript is organized as follows: following this introduction, methods of sample preparation and image acquisition

are detailed, as well as the analysis workflow including the concept of chord lengths distribution (CLD), the rudimentary

principles of optimal transport, and data processing methods. Subsequently, the results are presented for XPCT image quality,

morphometric measures, and OT-analysis. The classification is then applied to test samples of infected SARS-CoV-2 hamster

lungs treated with five different drug candidates. The last section combines discussion, brief conclusions, and outlook.

2 Methods

Animals Male Golden Syrian hamsters (Mesocricetus auratus; RjHan:AURA; 80–100 g) were obtained from Janvier Labs

(Saint Berthevin, France) and were housed in standard rodent IVCs Type III in groups of 3 to 4 animals under standardized

conditions (22°C; 12/12h light cycle). As diet, rodent pellets and water ad libitum were fed. For acclimatization, rodents were

housed under these conditions for one week prior to inoculation. The experiments were conducted in a BSL-3 animal facility.

Animals were infected orotracheally with 1×105 TCID50 SARS-CoV-2 Germany/BavPat1/2020 (BavPat1) [29] (GISAID

accession EPI_ISL_406862) in a volume of 100 µL. The animals’ well-being and body weight were checked daily. Animals

were clinically observed for 7 days with a daily sampling for virological analysis. After 7 days, animals were euthanized
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Figure 1. a Seven days after infection of Golden Syrian hamsters by SARS-CoV-2, the animals were sacrificed, lung

autopsies were extracted and paraffin embedding was performed. In total, 57 hamsters, divided in nine groups, were examined

in this study, including uninfected controls (×3), positive controls (×8), PEG (×3) and PBS controls (×3) as well as five

different drug candidates (×8, each). In further analysis, uninfected, PEG and PBS controls are referred to as NEG-CTRL,

while positive controls are referred to as POS-CTRL. b Schematic depiction of the in-house experimental setup. The cone

beam geometry allows for an adjustable magnification and thus effective voxel size depending on the distances x01 and x12. A

scintillator-based CCD-detector is recording the incoming photons, followed by a phase- and tomographic reconstruction from

the acquired projections. c Photo of the experimental setup with the source (left), the sample stage (center, green) and the

detector (right, blue). X-rays are created at the anode (orange spot) and propagate through the object, reaching the scintillator

where X-rays are converted to visible light and subsequently to an electrical signal. d,e,f From top to bottom, in color: three

synthetic sample distributions 𝜇, 𝜈 and 𝜌; the corresponding inverse cumulative distribution functions used in (2); the

corresponding PCA embedding, obtained by projecting onto the two first principal components. From bottom to top, in gray:

Some selected points around 𝜌 in the 2d-embedding, along the first principal component; approximately corresponding to

vertical translation in the inverse CDF space; approximately corresponding to a translation on 𝜌 (with a slight change in

standard deviation), thus making this direction in the embedding interpretable.
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by inhalation of an isoflurane overdose followed by intracardial exsanguination and decapitation. Virological analysis of the

collected samples was performed as described in [28].

Sample Preparation In total, 57 hamster lungs divided into nine groups were examined in this study, including three groups

of negative, one group of positive controls (𝑃𝑂𝑆−𝐶𝑇𝑅𝐿), as well as five groups of drug treated cases, i.e. hamsters infected

and subsequently treated by five different drugs. These are referred to as the five drug groups (drug groups #1− 5). The

three negative control (𝑁𝐸𝐺 −𝐶𝑇𝑅𝐿) groups consist of untreated and uninfected control (𝑈𝑁𝐼 −𝐶𝑇𝑅𝐿), and uninfected

control groups subjected to treatment with a drug vehicle but no drug loaded. Corresponding to the solution injected, these are

referred to as polyethylene glycol control (𝑃𝐸𝐺 −𝐶𝑇𝑅𝐿), and phosphate-buffered saline (𝑃𝐵𝑆−𝐶𝑇𝑅𝐿). The positive control

group was infected with 1× 105 tissue culture infectious doses 50 (TCID50) SARS-CoV-2, but not treated. Both positive and

negative controls are used as training data. For clarity, the control samples were further tabulated in Tab.1 and the preparation

procedure is elucidated in Figure 1a. The five different drug candidates are tested with respect to the metric space spanned

by the morphometric features of the negative and positive control groups. The five drug groups are referred to as test data.

Additionally, a ‘lung affection score’ (LAS) ranging from zero (healthy) to one (sick), was assigned to every dissected lung by

visual inspection.

All hamsters were dissected 7 days after infection at the Friedrich-Loeffler Institute (FLI). After lung extraction, the samples

were placed in a 10% formaldehyde solution. In a subsequent step, embedding of the tissue had to be performed to ensure

stabilization and preservation of the tissue. FFPE is the most common embedding and preservation procedure in clinical

pathology, and has already been successfully used for 3D virtual histology of lung with synchrotron and laboratory radiation

[14,30]. For FFPE, the tissue is first dehydrated by immersion in a series of ascending ethanol solutions. Xylene is then used as

an intermediate solvent to allow for subsequent wax infiltration, which is not solvable in ethanol. While being placed on a

cassette, the tissue is then infiltrated with paraffin.

After solidification, 3 mm biopsy punches are extracted from the identified regions of interest, guided by parallel histological

sections. The paraffin embedded tissue biopsies were then mounted on a brass pin for tomographic recording. The tissue

fixation, embedding and mounting of samples followed well established protocols described in [1].

Hamster Group LAS [%]

52 UNI-CTRL 0

53 UNI-CTRL 0

55 POS-CTRL 20

56 POS-CTRL 30

57 POS-CTRL 100

58 POS-CTRL 70

59 POS-CTRL 100

60 POS-CTRL 80

62 POS-CTRL 90

63 PEG-CTRL 0

64 PEG-CTRL 0

82 PBS-CTRL 5

83 PBS-CTRL 0

84 PBS-CTRL 0

Table 1. List of all hamsters in the groups forming the negative and positive controls, serving as training data. Positive

controls are denoted as 𝑃𝑂𝑆−𝐶𝑇𝑅𝐿, the negative controls consist of three groups, the uninfected control (𝑈𝑁𝐼 −𝐶𝑇𝑅𝐿), the

polyethylene glycol control (𝑃𝐸𝐺 −𝐶𝑇𝑅𝐿), and and phosphate-buffered saline control group (𝑃𝐵𝑆−𝐶𝑇𝑅𝐿). The

macroscopically assessed lung affection score (LAS) is also given.

Experimental Setup Tomographic data was primarily acquired with a commercially available laboratory CT system (EasyTom,

RX Solutions, Chavanod), motivated by the fact that such instruments can easily be made available in a pre-clinical setting.

Further, they can be used over long times in rather simple and time-stationary conditions, ideal for biomedical studies with large

sample numbers 𝑁 . For the scans, the open transmission tube (Hamamatsu) of the EasyTom instrument was selected, equipped

with a LaB6 cathode and a tungsten (W) target, and operated at a tube voltage of 60 kV and a target power of 6.6 W. The spot

size was approximately 1.5 𝜇m. Projection images were acquired by a CCD detector of 9 𝜇m pixel size (2x2 binned) (Ximea,
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Münster) with a fibre-coupled Gadox scintillator. Experimental parameters (geometry, acquisition time, source settings) were

optimized by comparing the reconstruction quality for selected test samples, and then fixed for the entire series to the values

tabulated in Tab. 2. To reduce image noise, four images were recorded at each angle and averaged (median). A Fourier-filter

based scheme was used to account for phase contrast. Only in-house data recorded under identical settings was further used for

statistical classification (illustrated in Figure 1b,c).

Synchrotron data was recorded for selected samples, serving as a reference (ground truth). Specifically, we recorded XPCT

scans at two synchrotron instruments, the P10 beamline at DESY (PETRA III, Hamburg) for microscale XPCT with parallel

beam tomography, and the ID16a nano-imaging beamline (ESRF, Grenoble) for nanoscale XPCT (holo-tomography). At P10 a

photon energy 𝐸𝑝ℎ = 13.8keV was defined by a Si(111) channel-cut monochromator. A field-of-view (FOV) of approximately

1.5 mm was covered. 3000 projection angles were recorded over a 360◦ interval, with continuous rotation and a rotational speed

resulting in an illumination time 𝜏 = 0.035s per projection. The entire recording with additional empty beam references before

and after the tomographic scan took less than 2 minutes. The detector was positioned at a (defocus) distance of 𝑧12 = 29 mm

behind the sample to achieve phase contrast in the direct contrast regime. Images were recorded with a pco.edge 5.5 sCMOS

camera (PCO, Germany), equipped with a rolling shutter and a fast scan mode, and achieving a maximum frame rate of 100

Hz. This camera was coupled to a 50 mm-thick LuAG:Ce scintillation screen using a high-resolution optical detection system

(Optique Peter, France), equipped with a 10x magnification microscope objective. This configuration resulted in an effective

pixel dimension of 𝑝𝑥𝑒 𝑓 𝑓 = 0.65𝜇m. The detection and acquisition scheme are described in detail in [31]. Phase retrieval

was performed on the projections using the contrast-transfer-function (CTF) approach [32] (single distance), implemented

numerically in a Matlab phase retrieval package (HolotomoToolbox [33]).

Since the FOV and pixel size are of of the same order of magnitude, the P10 data can be regarded as a ground truth reference

for the study based on inhouse recording, showing the cytoarchitecture at the same scale, but with sharper and more contrasted

reconstructions, as well as tractable gray values owing to the monochromaticity and better justified phase retrieval filters. Finally,

as a comparison and high-resolution benchmark, nano-holography scans were recorded for two samples, one 𝑃𝑂𝑆−𝐶𝑇𝑅𝐿 and

one 𝑈𝑁𝐼 −𝐶𝑇𝑅𝐿 sample, using the nano-focusing optics at the ID16a beamline of the European synchrotron radiation facility

(ESRF, Grenoble). Taking into account the strongly holographic regime, four distances were recorded for phase retrieval,

implemented as a generalized Pagainin method with subsequent iterative refinement [34]). All relevant experimental parameters

are tabulated in Table 2.

For all instruments, the acquired projections were saved in either the .tiff or .h5 data format. Tomographic reconstruction

was then performed by filtered back projection (FBP) and the Feldkamp-Davis-Kress (FDK) algorithm, for the parallel beam

data (P10) and the cone beam recordings (ID16a,EasyTom), respectively. Automatic rotation axis and drift corrections, as

well as ring removal techniques were used, where appropriate. At EasyTom, the reconstruction software provided with the

instrument was used. P10 and ID16a data was reconstructed using the ASTRA-Toolbox [35] and PyHST [36], respectively.

Final reconstructions were stored in the .raw file format. Representative imaging results for all three instrumental settings are

shown in Fig.2 of the results section below.

Table 2. Data acquisition and detection parameters, including the source setting, the source-to-sample distance 𝑥01, the

sample-to-detector distance 𝑥12, the resulting effective pixel size 𝑝𝑥𝑒 𝑓 𝑓 and field-of-view 𝐹𝑂𝑉 (horizontal and vertical), the

number of projections per scan #𝑝𝑟𝑜 𝑗 𝑠, as well as the exposure time 𝜏 and total scan time.

Laboratory P10 ID16a

Tube voltage / energy 60 kV 13.8 keV 17.1 keV

𝑥01 9.3 mm 88 m 34.7 mm

𝑥12 93.1 mm 29 mm 1.17 m

𝑝𝑥𝑒 𝑓 𝑓 (𝜇𝑚) 1.63 0.65 0.09

FOV (h × v) (mm2) 3.3 × 2.2 1.6 × 1.4 0.29 × 0.29

# projs 1568 3000 2000

𝜏 (s) 1.2 0.035 0.2

Tot. scan time (min) 125 1.25 180

Chord Length Distribution In order to quantify changes of the peripheral lung structure associated with SARS-CoV-2

infection of the hamsters, we computed the so-called chord length distribution (CLD) as a characteristic measure [37]. The

CLD is well suited to quantify changes in size of the alveolar lumen and septae associated with different pathologies. To this

end, the reconstructed gray values representing electron density 𝜌𝑥,𝑦,𝑧 are binarized into two phases, 0 (lumen) and 1 (septae),

using Otsu’s thresholding [38]. For the binarized volume masks, chords are computed. A chord is defined as a segment of

5/15



a line which traverses the volume with random orientation and intercept. The line is then divided into several segments of

length 𝐿𝑐, defined by endpoints at the interfaces between the two phases. The procedure is visually explained in Figure 3.

For the numerical computation of the CLD, we used Bresenham’s line algorithm [39], implemented in [40]. Given proper

normalisation, the CLD represents the probability density of finding a chord with length 𝐿𝑐 for each of the two phases of the

binarized image. As a quantitative measure for two phase materials, the CLD is well established not only in material science

[41–43], but also for (binarized) lung morphology [44]. However, up to now, it was solely used for two-dimensional (2D)

histological tissue slices, while we here extend the method to 3D image analysis of lung tissue.

Optimal Transport (OT) For an approachable introduction to the topic of optimal transport with a focus on numerical methods

we refer to [19]. A more mathematical exposition can be found in [45]. Here we very briefly sketch the central concepts used in

this article.

Let 𝜇 and 𝜈 be two given probability distributions on R𝑑 (representing, for instance, two chord length distributions). For

transporting 𝜇 onto 𝜈, we introduce a probability distribution 𝜋 on R𝑑 ×R𝑑 , where intuitively 𝜋(𝑥, 𝑦) represents the mass

density that is taken from 𝜇 at 𝑥 to 𝜈 at 𝑦. For 𝜋 to describe a valid transport plan between the two measures, its first and second

marginals must be equal to 𝜇 and 𝜈 respectively. We denote the set of transport plans between 𝜇 and 𝜈 by Π(𝜇, 𝜈). Let now

𝑐 : R
𝑑 ×R𝑑 → R be a cost function, where 𝑐(𝑥, 𝑦) specifies the cost of taking one unit of mass from 𝑥 to 𝑦. Then the total cost

associated with a plan 𝜋 is given by
∫

R𝑑×R𝑑
𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦). The optimal transport problem then consists of finding the transport

plan with lowest cost, i.e.

𝐶 (𝜇, 𝜈) = min
𝜋∈Π (𝜇,𝜈)

∫

R𝑑×R𝑑
𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦). (1)

For the choice 𝑐(𝑥, 𝑦) = ∥𝑥 − 𝑦∥2, this defines the 2-Wasserstein distance 𝑊2 (𝜇, 𝜈) =
√︁

𝐶 (𝜇, 𝜈) on the set of probability

distributions. This distance is particularly relevant for data analysis, since it quantifies geometric discrepancies between data

distributions more meaningfully than other common tools, such as the L2-norm (also known as mean squared error) or the

Kullback–Leibler divergence (also known as relative entropy).

For one-dimensional distributions, 𝑑 = 1 (such as for chord length distributions), 𝑊2 can be written as L2-norm on the space of

inverse cumulative distribution functions (CDF), namely

𝑊2 (𝜇, 𝜈) =

√︄

∫

1

0

|𝐹−1
𝜈 (𝑥) −𝐹−1

𝜇 (𝑥) |2𝑑𝑥, (2)

where 𝐹𝜇 is the CDF of 𝜇 and 𝐹−1
𝜇 denotes the corresponding inverse CDF. This means that we isometrically embed the samples

into the Hilbert space L2 ( [0,1]). Note that computation of CDFs, their inversion, and evaluation of (2) are numerically simple.

For inversion we use one-dimensional interpolation [46]. Standard techniques of statistical analysis in Hilbert spaces can then

be applied to the inverse CDF 𝐹−1
𝜇 representing our data distributions. For instance, principal component analysis (PCA) can be

used for dimensionality reduction and to identify prototypical directions of variation in the set of samples. By projection a

sample onto the first few principal components, a low-dimensional embedding of the data can be generated. Conversely, any

point in the low-dimensional embedding corresponds to some hypothetical inverse CDF 𝐹−1

�̃�
for some hypothetical distribution

�̃�. �̃� can be obtained by transforming back from the inverse CDF to the original PDF. In this way it is possible to visualize the

dominant variations in the collection of samples and to evaluate whether they may be associated with pathological changes.

Figure 1d-f illustrates, for simple synthetic data, the embedding onto the two dominant principal components, as well as the

possibility to compute the inverse of the embedding in order to visualize the transformations that the principal components

encode on the PDFs. A thorough introduction to optimal transport in one dimension, including details such as how to handle

measures with atoms (i.e. mass concentrated on a single point), is given in [45, Section 2], a tutorial for applications in image

analysis can be found in [47]. For our numerical analysis we use the LinOT library for Python.1 An approximate generalization

of this framework to distributions in higher dimensions has been proposed in [48], see [14] for an application in digital histology.

3 Results

In the following we present the results with regard to the three major aims of this study, namely (a) to implement an efficient

XPCT imaging workflow for pre-clinical studies, (b) to quantify morphology of lung tissue, and (c) to use OT analysis to test

potential drugs in pre-clinical small animal studies of Covid-19.

1https://pypi.org/project/LinOT/
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Figure 2. Comparison of imaging setups for uninfected control sample (left) and positive control (right): a Selected slices

from in-house recorded tomograms. b Comparison of two slices recorded at the coherent imaging beamline at DESY (P10,

PETRA III) with an effective pixel size of 650 nm and a FOV of 1.3 mm. c Slices from an uninfected (left) and positive control

(right) hamster, recorded at the ID16a beamline (ESRF, Grenoble) with an effective pixel size of 90 nm and a FOV of 0.29 mm.
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XPCT: image quality and workflow Figure 2 demonstrates the image quality achieved at the laboratory setup in comparison

to the synchrotron data, at P10 and ID16a, respectively. As can be seen, the inhouse image quality is sufficient to resolve

the general tissue morphology in terms of alveolar spaces and lumen. A differentiation between infected and control tissue

seems plausible in terms of the expected thickening of septae. Importantly, the geometric distribution of lung tissue can be

captured, or more precisely the morphology in the two phase model, which accounts for air (paraffin) and tissue, respec-

tively. With the parallel beam synchrotron modality, more details of the septae become visible, such as the more strongly

contrasted cellular nuclei, while maintaining a comparably large FOV. Finally, high-resolution scans at the ID16a beamline

reveal much sharper tissue boundaries, different cell types based on different grey values, as well as sub-cellular structures.

This opens up a potential for quantification and classification of pathologies based on cellular and sub-cellular structural

parameters (features) [14, 49]. However, it is more challenging to achieve larger FOVs for a representative sub-volume,

and more importantly, the required number of animals to be tested. Contrarily, the inhouse configuration combines suffi-

cient data quality for the current purpose with long-time availability, and accessibility, and is hence selected for the current study.

To achieve semi-automatic data acquisition and processing, up to 10 samples were stacked on top of each other inside a Kapton

tube, and scanned as part of a single measurement run, controlled by a corresponding script. Subsequently, six different sample

holders, each with up to 15 samples, were scanned under identical settings. Fig. 1c shows a photograph of the multi-sample

holder in the beam, and Fig. 3a a sketch of the data recording scheme. After completion of the scans, the recorded volumes are

reconstructed and processed by cropping a cube shaped volume of interest, followed by segmentation of air-filled compartments

and tissue, as described next.

Segmentation of Tissue and Determination of the Chord Length Distribution Fig.3 demonstrates the successful imple-

mentation of image segmentation for later chord length analysis. Since the image contrast is sufficiently high with reduced

level of artefacts, a computationally inexpensive and straightforward segmentation based on thresholding the gray values can be

applied, i.e. Otsu’s thresholding method [38]. Note that an empirical offset was added to the threshold parameter, as controlled

by visual inspection. This offset was kept constant for all samples. In combination with the subsequent 3D morphological

operations (opening: 3 pixel diameter; closing: 1 pixel diameter sized spheres), a sufficiently accurate segmentation result is

obtained for further processing steps. Fig. 3b illustrates the procedure step-by-step. With the volume mask at hand, the chord

length distribution (CLD) can then be computed in a straightforward matter, as described in Sec. 2.

Figure 4 presents the CLD resulting from the image processing described above. Note that the normalized CLD represents

the probability density function (PDF) for finding a chord of length 𝐿𝑐 among all chords in the volume. In (a), this is shown

for all hamsters , as a waterfall plot, with color indicating the CDL value, both for alveolar septae (phase 0) and the lumen

(phase 1) In the lumen (phase 1), short chord lengths are significantly more prominent as expected with a peak at around 50

px, representing the mode of the distribution. Compared to the lumen, the CLD of the septae is significantly broader with a

pronounced tail towards high 𝐿𝑐. In (b) the PDFs are shown for hamsters of the (positive and negative) control groups only,

enabling a better visual inspection than in the waterfall plot. In the data, one notes a tendency in the positive controls (red

curves) to exhibit flatter and more extended distributions, compared to the negative controls (blue curves). The differences

reflect a generally larger propensity of septae with a moderate thickness and a broadened and flattened distribution in the

sick hamster lungs. Reciprocally, this may also imply a possible shrinkage or destruction of a larger fraction of alveolar

spaces in infected lungs. However, one hamster (H59, black curve) appears to be a clear outlier and visual inspection of the

dataset showed strong artifacts due to preparation, notably cracks in the paraffin. It was therefore discarded and excluded

from further processing. Further, two outliers (H56, positive) and (H52, negative) exhibits curves closer to the respective

opposite class. Note, that such outliers are not too surprising based on the biological variability as well as possible involuntary

infection or wanted but failed infection. In the next, towards further analysis, each PDF is re-weighted by 𝐿𝑐 to avoid that

small chords have too much impact in the subsequent LOT analysis. In other words, larger chords corresponding to the

right tails of the CLD are given more weight, facilitating the identification of characteristic differences between the differ-

ent hamster lungs. The reweighted PDFs are again normalized, and on these reweighted PDFs LOT will be applied further below.

Classification by Optimal Transport In the following, the OT analysis based on inverse CDFs is applied to the post-processed

hamster lung data, or more precisely to the re-weighted CLD of phase 0 (septae). We represent each sample by its inverse CDF

and then apply PCA for dimensionality reduction.

Control group We began by analyzing the positive and negative control groups (POS-CTRL & NEG-CTRL) that should

contain information on the changes in lung morphology associated with the pathological state, unaffected by drugs. The first

two PCA components capture 94.5% and 4.9% of the dataset variance, indicating a clear low-dimensional structure. In the
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X-rays

a

(iii)

b
(i)

i)

(ii)

(iv)

Figure 3. Demonstration of workflow for XPCT. a Illustration of data acquisition by using in-house XPCT.

Paraffin-embedded sample biopsies are stacked onto each other in a Kapton tube and inserted into a Huber pin. By vertical

translation all samples are scanned and the electron densities 𝜌𝑥,𝑦,𝑧 are automatically reconstructed (1). Thereafter, a region of

interest in the volume is selected (2). b (i) shows the selected region of interest, which is binned (ii) after finding a thresholding

value (Otsu’s method [38]) and further processed by applying morphological operations (iii), namely a combination of erosion

and dilation (opening/closing). Subsequently, chord lengths can be extracted by introducing a few thousand of randomly

oriented lines to every slice of a binned volume. A line can pass through alveolar septae (phase 0, black) or alveolar lumen

(phase 1, white) and is accordingly divided (iv). The length is determined by the distance between the intersection points (blue

dots).
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Figure 4. a Chord length distribution (CLD) for alveolar septae (left) and lumen (right), shown for all hamsters, including

control groups and drug treated animals. The normalized CLD corresponds to the (unweighted) probability distribution function

(PDFs) of finding a cord length,in the alveolar septae or lumen, respectively. b The PDFs for the septae data of the control

groups (negative in blue, positive in red). Outliers are shown in green (H52, negative), orange (H56, positive), and black (H59).

For the case of H59, inspection of the sample showed pronounced cracks in the paraffin, i.e. an artifact of sample preparation.

embedding Hamster H59 is separated by several standard deviations from the rest of the dataset, consistent with its very atypical

chord length distribution (see Fig. 2 (b)), and indeed upon visual inspection of the 3D image, one can see a crack in the paraffin

in the corresponding selected region in the scan. We therefore remove H59 as a clear outlier and continue the analysis without

this sample. PCA now yields 97.8% and 1.5% of variance captured by the first two components. Fig. 5 (a) shows the embedded

samples represented by their coordinates with respect to the two first PCA components. We observe that the coordinate along

the first PCA component (PCA1) serves almost as a perfect classifier for the labels of the samples. With the exception of

samples H52 and H56 all pathological samples have positive PCA1, all uninfected samples have a negative PCA1. As can be

observed on Fig. 4 (b), samples H52 and H56 indeed appear to be more similar to the CLDs of the opposite class.

A simple linear support vector machine (SVM) [50] applied to the embedding would likely be able to perfectly separate the

samples by a straight line. But the orientation of this hyperplane will depend strongly on the small number of samples near the

interface between the two classes and thus will be sensitive to noise. We will therefore use PCA1 as a more robust classifier for

further analysis.

As mentioned above, there exists an inverse map from the two-dimensional PCA embedding via inverse CDFs to PDFs and

therefore we can visualize hypothetical PDFs corresponding to a movement along the first PCA component by one standard

deviation in both directions. This is shown in Fig. 5 (b). We observe moving into the pathological direction corresponds to a

relative reduction of short chords. This is in line with the observation that SARS-CoV-2 infection is associated with thickening

of septae. In the following, we can embed the other samples into the same PCA basis and then use PCA1 as an indicator for the

strength of the pathological lung affection.

Drug trial data Now we examine the samples from the drug trial groups. First, we project them onto the first PCA component

obtained from the control samples, to obtain their PCA1 values. Figure 6 shows these values of all drug samples clustered by

groups, with means and standard deviations of each group. Drug groups 1 and 2 have consistently a relatively high PCA1 value

(corresponding to strong pathology), whereas groups 3, 4, and 5 have lower values. While the low number of samples per drug

candidate does of course not allow for a statistically definite estimation of the drugs efficiency, the relative consistency of the

values suggests that candidates 3 to 5 are more promising for further development and evaluation than 1 and 2.

4 Discussion

We first discuss the analysis of the control group. This allowed us to attribute labels such as ‘healthy’ (uninfected/negative) and

‘sick’ (infected/positive) to the observed changes in the chord length distribution (CLD). We find that positive hamsters have a

lower propensity for small chords (small alveolar spaces) and larger propensity for large chords, associated with larger empty

entities, such as the non-physiological appearing fused spaces observed in the lung of the positive hamster shown on the left of
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controls) hamsters are drawn in red while negative controls are in blue. Axes are scaled by the standard deviations 𝜎1 and 𝜎2 of

the samples along each PCA component. The two subgroups are almost perfectly separated by their coordinate along the first
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with mean and intervals of one standard deviation of each group indicated by lines. The dashed line indicates PCA1 = 0 for

emphasis.
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Fig. 2. Note that while ‘healthy’ (uninfected/negative) and ‘sick’ (infected/positive) are dichotomous (binary) labels, the OT

analysis and subsequent embedding equips us with a continuous score. We stress again that by comparing histograms with OT

takes into account their full information (instead of only considering a few features such as their mean, median, variance, and

similar) and is more geometrically robust than the L2-norm or the Kullback–Leibler divergence.

On this high-dimensional representation we then use PCA to extract a low-dimensional interpretable embedding. For the

control data, more than 97 percent of the variance is captured by the first principal component (PCA1 axis in Fig.5). In other

words, the hamsters of the control group are very well aligned along one direction in the high-dimensional space. In addition,

this direction accounts almost perfectly for the prescribed labels. This is also a strong result in terms of the veterinary and

imaging methodology. In fact, we would have expected more confounding variables due to the gitter in infection and recovery

times of the small animals, as well as in the later sample preparation, imaging, and processing workflow. However, since

the procedures were kept identical for all samples, it seems that the confounders were rather well controlled. For XPCS in

particular, consistent segmentation is only warranted when the resolution, contrast, level of artifacts (illumination, raw data

corrections, reconstruction errors) do not vary from sample to sample. While this can be difficult to achieve for high end

synchrotron studies of highest resolution, we have here used a rather robust setting with high reproducibility at a time-stationary

laboratory instrument.

Next, we discuss the drug candidates, i.e. the five drug groups which are classified with respect to the first PCA direction inferred

from the control groups. A negative score indicates successful treatment as the lung recovered from infection, evidenced by

the CLD regaining its physiological functional shape. A positive score means that the corresponding animals maintained the

pathological morphology at the time of sacrifice. Here, we can make the following observations: while hamsters treated by drug

group 1 and drug group 2 predominantly remain positive, hamsters treated by drug group 3, 4, and 5 have a negative (‘healthy’)

average score, and a majority of hamsters on the negative side. Note that the drug compound and pharmaceutical background

was not known to most co-authors, and in particular not to those co-authors involved in imaging and statistical testing. In fact,

due to proprietary research, the information on the drugs cannot yet be disclosed, while the result of the present work is of

course available to the companies involved. Note that for the methodological scope of this research it is not significant to know

which drugs is which, and this ignorance even presents an advantage in view of a blinded and outcome independent investigation.

As main conclusions, we can note down:

• XPCT-based histopathology is compatible with pre-clinical studies, in view of the required 𝑁 .

• XPCT in a laboratory setting and using a commercial instrument achieves sufficient image quality with reasonable loss

compared to high-end synchrotron endstations.

• The chord length distribution (CLD) is a suitable morphometric descriptor for 3D lung tissue.

• Optimal transport (OT) can be efficiently implemented and can identify and describe the observed changes in the data.

• The transition from ‘sick’ to ‘healthy’ can be continuously visualized with respect to the CLD.

• The automated OT/PCA workflow can replace the operator-dependent lung affection score (LAS).

Finally, how to view the present OT/PCA-based approach in the wider field of machine learning? Compared to convolutional

neural networks (CNN), the main advantage is that it is fully mathematically grounded, offers traceability, requires very few

parameters to be set (such as the number of principal components to retain), and hence is explainable. At the same time, more

work needs to be performed in view of quantitative statistical error margins. Owing to the one-dimensional distribution of the

present data, the inverse cumulative density function transformation can be used, which makes it particularly accessible. The

presented case is hence also ideally suited for the education of non-mathematicians. To this end, all relevant scripts, toolboxes

and data are made available, along with sample documentation.

In the future, the assessment by trained physicians, radiologists, pathologists or veterinarians can be complemented by the

automated workflow presented here. OT analysis in particular, but also the XPCT imaging workflow itself, could provide

pre-clinical research and clinical practice with an augmented capability. In addition to reducing the workload of research

or medical staff, automated assessment can improve the quality of research or diagnosis. For the case of drug development,

throughput, sample volume, and data dimensionality could be much further increased. For early pre-clinical trials in particular,

with low sample numbers the workflow could thus provide a valuable, robust analysis method with a very modest number of

parameters. With a scan time of presently a little more than two hours per sample, studies of large animal cohorts can then

also be accomplished in an acceptable amount of time. The subsequent data analysis can be implemented in the automatized

workflow, minimizing the need for human and computational resources.
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