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Abstract
Predictive breeding approaches, like phenomic or genomic selection, have the potential to increase the selection gain for 
potato breeding programs which are characterized by very large numbers of entries in early stages and the availability of very 
few tubers per entry in these stages. The objectives of this study were to (i) explore the capabilities of phenomic prediction 
based on drone-derived multispectral reflectance data in potato breeding by testing different prediction scenarios on a 
diverse panel of tetraploid potato material from all market segments and considering a broad range of traits, (ii) compare 
the performance of phenomic and genomic predictions, and (iii) assess the predictive power of mixed relationship matrices 
utilizing weighted SNP array and multispectral reflectance data. Predictive abilities of phenomic prediction scenarios varied 
greatly within a range of − 0.15 and 0.88 and were strongly dependent on the environment, predicted trait, and considered 
prediction scenario. We observed high predictive abilities with phenomic prediction for yield (0.45), maturity (0.88), foliage 
development (0.73), and emergence (0.73), while all other traits achieved higher predictive ability with genomic compared 
to phenomic prediction. When a mixed relationship matrix was used for prediction, higher predictive abilities were observed 
for 20 out of 22 traits, showcasing that phenomic and genomic data contained complementary information. We see the main 
application of phenomic selection in potato breeding programs to allow for the use of the principle of predictive breeding 
in the pot seedling or single hill stage where genotyping is not recommended due to high costs.

Introduction

To reach the sustainable developmental goal of “zero 
hunger” as declared by the United Nations (United Nations 
General Assembly 2015), humanity has to solve complex 
challenges related to the production and distribution of food 
(United Nations General Assembly 2015). As one of the top 

five crops of the world in terms of production quantity and a 
major source of carbohydrates (FAOSTAT database 2022), 
potato (Solanum tuberosum L.) plays a critical role for food 
security, especially since its production and consumption 
constantly increases in developing countries (Devaux 
et al. 2021; FAOSTAT database 2022). Unfortunately, the 
genetic gain in potato is not as high as for other species 
and potato breeders face multiple challenges in developing 
new varieties, including (i) the tetraploidy and high 
heterozygosity of the plant (Jansky et al. 2016), (ii) multiple 
different market segments demanding a high number of traits 
to be balanced out simultaneously (Tiemens-Hulscher et al. 
2013, p.13), and (iii) the fact that important traits can only be 
assessed very late in the breeding program (Bradshaw 2017).

For most of potato breeding history, plant breeders 
relied on recurrent phenotypic selection to choose good 
candidates for growing in the next seasons (Jansky and 
Spooner 2018). While this approach can be sufficient for 
simple traits, selection for complex traits, where a myriad 
of genes and their interactions can have varying influences 
on the phenotype, poses as a significantly harder challenge. 
New approaches to identify important genes and their 
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contribution to traits of interest emerged after genetic 
markers in the form of single nucleotide polymorphisms 
(SNP) became more and more available (Uitdewilligen 
et al. 2013; D’hoop et al. 2014). Marker-assisted selection 
(MAS) in particular has been reported to have the potential 
to reduce the time of a typical potato breeding program 
from ten to four years (Slater et al. 2014). However, the 
accuracy of MAS for complex traits is limited, since it only 
considers the variance from a limited number of significant 
quantitative trait loci (QTLs) which in turn usually explain 
a low proportion of trait variance each (Slater et al. 2016). 
This problem is overcome by genomic selection (GS), which 
has been proposed by Meuwissen et al. (2001). In contrast 
to MAS, GS considers all markers jointly without prior 
significance testing and, thus, assumes that all markers are 
potentially linked to the genes affecting the trait of interest. 
Originally developed in the context of animal breeding, GS 
found its way into plant breeding quickly and is becoming a 
state-of-the-art method for selection (for review see Jannink 
et al. 2010; Crossa et al. 2017; Voss-Fels et al. 2019). The 
efficacy of GS to predict phenotypic performance has been 
investigated for potato with promising results (e.g., Slater 
et al. 2016; Stich and Van Inghelandt 2018). However, the 
integration of GS in the first stages of typical potato breeding 
programs is hindered by the high costs for genotyping due 
to the very high numbers of clones available in these stages 
(Stich and Van Inghelandt 2018; Wu et al. 2023).

Phenomic selection (PS) was recently proposed as a high-
throughput and less expensive alternative to GS (Rincent 
et  al. 2018). The underlying assumption of PS is that 
phenomic instead of raw genetic information can be used 
to infer genetic similarities between genotypes. For this, 
Rincent et al. (2018) built a relationship matrix derived 
from measured absorbance spectra of different tissues of 
wheat and poplar via near-infrared spectroscopy (NIRS), and 
used it in prediction models. The comparative performance 
of phenomic and genomic prediction in terms of their 
predictive ability (PA) was dependent on the tissue, the trait, 
the treatment, and the species considered. In some cases, 
phenomic prediction outperformed genomic prediction 
even if the NIRS data used to build the relationship matrix 
were from a different environment than the calibration 
set used to train the model (Rincent et al. 2018). Robert 
et al. (2022a) described phenomic prediction as a “black-
box” method since the underlying biological connection 
between genetics and the reflectance of a given wavelength 
is complex and harder to interpret biologically than for other 
endophenotypes. Nevertheless, several studies have emerged 
using spectral data as a proxy for genetic relatedness since 
its proof of concept. Some of these capitalized on recent 
technological advancements and used an unmanned aerial 
vehicle (UAV) equipped with a hyperspectral camera instead 
of NIRS to collect reflectance measures for phenomic 

predictions and also reported high PAs (Krause et al. 2019; 
Galán et al. 2020). Utilizing a drone to gather reflectance 
data significantly reduces work effort and time and is thus 
of interest to breeders. Krause et al. (2019) and Galán et al. 
(2020) considered a smaller range of wavelengths derived 
from hyperspectral imaging in contrast to phenomic 
prediction studies utilizing NIRS. However, it has not been 
tested yet to what extent a sparse spectrum yields accurate 
predictions, in addition to a narrow range spectrum. 
Moreover, phenomic predictions have predominantly been 
tested with cereal species, raising the question of how the 
concept of phenomic prediction extends to other crops 
crucial for food production.

The objectives of this study were to (i) explore the 
capabilities of phenomic prediction based on drone-
derived multispectral reflectance data in potato breeding 
by testing five different prediction scenarios on a diverse 
panel of tetraploid potato material from all market segments 
and considering a broad range of traits, (ii) compare the 
performances of phenomic and genomic predictions, and 
(iii) assess the predictive power of relationship matrices 
utilizing weighted SNP array and multispectral reflectance 
data simultaneously.

Materials and methods

Plant material and experimental design

Our study was based on 466 tetraploid Solanum tuberosum 
L. clones provided and grown by SaKa Pflanzenzucht GmbH 
& Co. KG (Windeby, Germany). The material consisted 
of 458 clones of the A clone level (Table 1) which is the 
first stage in a typical potato breeding program in which 
more than one tuber can be tested but where the number 
of tubers per clone is not high enough to test the material 
in multiple environment trials (METs) (Table 1). The A 

Table 1  Standard potato breeding scheme and dimensioning (Stich 
and Van Inghelandt 2018)

Year Stage/activity No. of clones No. of tubers per 
clone in trials and 
multiplication

1 Cross
2 Pot seedling 140 000 1
3 Single Hill 90 000 1
4 A clone 5 000 10
5 B clone 600 60
6 C clone 100 300
7 D clone 30 1 200
8 Official trials 1 8 6 000
9 Official trials 2 4 20 000
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clones were randomly chosen from SaKa’s breeding program 
representing multiple market-purpose groups. Eight clones 
of the set were elite potato cultivars used as comparative 
checks. These were selected to represent different maturity 
groups and were also selected from a broad range of market-
purpose groups. In total, the chosen A clones belonged to 
107 families with an average of four clones per full-sib 
family. The largest family comprised 38 clones. All clones 
were grown in two different locations in Germany, namely 
Windeby (W, Schleswig-Holstein) and Gransebieth (G, 
Mecklenburg Western Pomerania), and in three different 
years: 2019 (W), 2020 (W & G), and 2021 (W & G) resulting 
in five different year and location combinations which were 
designated in the following as environments.

The clones were grown in augmented row-column designs 
with one replicate per clone per environment except for the 
eight checks that were replicated eight times each. Each 
check was present once per block, resulting in eight blocks 
per environment. The experiments at both environments 
in 2021 were separated into two trials representing two 
different maturity groups: extra early + early (with three 
blocks) and medium early + medium late (with five blocks). 
Plots consisted of one row with ten plants in 2019 and two 
rows with eight plants per row in 2020 and 2021. Plants 
were phenotyped by SaKa during the growing season (e.g., 
plant emergence, maturity, foliage development, etc.) and 
after harvesting (e.g., starch content, tuber length, tuber 
yield, etc.) for 22 traits (Table S2). The assessed traits 
included symptoms of disease (rhizoctonia symptoms, 
scab symptoms), developmental criteria (maturity, foilage 
development, emergence), measured traits (yield, starch 
content, PPO), as well as tuber specific quality traits (shape, 
eye depth, fractions of certain sizes, skin type, etc.). In detail, 
yield was measured as kg per single plant, calculated by the 
total yield of a plot in kg divided by the number of grown 
plants in it (Table S2). All experiments were conducted by 
SaKa using local agronomical management practices.

Multispectral data

Multispectral data were obtained for W20 and W21 by 
overflight with an UAV of model XR6 Hexacopter by Air6 
Systems. The drone was equipped with a Tetracam MicroMCA 
camera with six channels, two of which measured absorbance 
at near-infrared level, and took pictures at an altitude of 
approximately 100 ms above the field. Raw images were (i) 
calibrated and coregistered with PixelWrench (Tetracam Inc.), 
(ii) photogrammetrically evaluated with Metashape (Agisoft), 
and lastly (iii) the plot values were statistically assigned 
with MiniGIS 2.0 (geo-konzept GmbH). Absorbances 
were measured per plot where the outer sides of 20–30 cms 
width were not included to minimize edge and soil effects. 
For 2020 and 2021, different cameras of the same model 

but with different available channels were used, resulting in 
multispectral data with five overlapping and two different 
channels across both years (Table S1). Due to a malfunction, 
the 670nm channel was not assessed in 2021.

The UAV was used to take pictures on three flight dates 
in both years. The flight dates were chosen at specific 
phenological growth stages according to the BBCH scale 
(Meier et al. 1997), where the two medium-early maturing 
check varieties, Agria and Verdi, were chosen as reference. 
The first flight took place at approximately BBCH scale stage 
31 (main stem elongation stage with beginning crop cover), the 
second at approximately stage 65 (first inflorescence flowering 
stage), and the last flight was performed at approximately stage 
91 (beginning senescence) in both years. Multispectral data 
were gathered and preprocessed by geo-concept GmbH. We 
used the mean reflectances per plot for each channel and flight 
date combination for our analyses. Spectral data were scaled, 
centered, and evaluated for outliers via principal component 
analysis. We identified 2.8% and 2.6% outliers in the spectra 
of W20 and W21, respectively, and set them to missing value. 
Removed outliers were median imputed.

SNP array

Two Axiom arrays with 947,845 SNPs, described in detail 
by Baig et al. (unpublished), have been used to genotype 
the potato clones in our study. The calls were coded in the 
following way: AAAA = 0, AAAB = 1, AABB = 2, ABBB 
= 3, and BBBB = 4. The array analysis was performed 
with Affymetrix GeneTitan system according to the 
manufacturer’s user guide to get the intensity files (.CEL) 
which were processed with Axiom Genotyping Algorithm 
(v.1) (Ax226 iom GT1) in Axiom analysis suite workflow 
(Nicolazzi et al. 2014). Quality control was carried out 
following the same Axiom analysis suit workflow. Clones 
passing array quality score (DQC ≥ 0.82) and QC call rate 
≥ 0.87 were retained for analysis of the SNP genotyping 
data using R package fitPoly (Voorrips and Gort 2018) 
by setting the p threshold to 0.95, call threshold to 0.60, 
and peak threshold to 0.99. SNPs with a call rate of less 
than 80% were discarded based on cluster plots generated 
with the R package SNPolisher (Nicolazzi et al. 2014). 
Furthermore, markers with ≥ 20% missing data and 
minor allele frequencies below 5% were discarded and the 
remaining missing values were median imputed leaving 
595,321 markers for further analyses.

Statistical analysis

Phenotypic data

To determine the trial effect in the 2021 data, where the 
material was divided into extra early + early and medium 
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early + medium late maturing clones, we used mixed 
models using the standard check varieties present in each 
block similar to Frey et al. (2016) for each trait and each 
environment separately:

where Ycrbsm was the phenotypic observation in the mth trial 
of the sth check variety in the bth incomplete block, rth 
row and cth column, � the general mean, Mm the effect of 
the mth trial, Ss the effect of the sth check variety, Bb the 
effect of the bth incomplete block, Rr the effect of the rth 
row, Cc the effect of the cth column, and �crbsm the residual 
error term. All terms except for Mm were considered random. 
Phenotypic observations of the checks and entries were 
then adjusted for each trait by subtracting the trial effect 
for each clone in the corresponding trial and environment 
and were used for all following analyses. The trial effect 
was significant for 9 out of 22 traits but was subtracted for 
all traits.

Each of the 22 phenotypic traits (Table S2) as well as 
each of the 21 different flight day × channel reflectance 
combinations was analyzed using the following mixed linear 
model:

where Ygcrbe was the response variable (either trial-adjusted 
phenotypic observation or scaled and centered channel 
reflectance) of the gth clone in the bth incomplete block, 
rth row and cth column, nested in the eth environment, Gg 
was the fixed effect of the gth clone, Ee the random effect 
of the eth environment, EGge the random interaction effect 
between the gth clone and the eth environment, and Bbe , 
Rre and Cce the random effects of the bth incomplete block, 
the rth row and cth column, respectively, all nested in the 
eth environment. Outliers were removed based on visual 
inspections of quantile–quantile normal plots as well as 
residuals versus fitted values plots generated with model (2). 
The trait fraction of small tubers was square root transformed 
for further analyses.

Every block consisted of up to six columns. To decide if 
a random column effect in addition to a random block effect 
was needed, a likelihood-ratio test was used in all models 
and for all traits testing whether the variance of the random 
column effect �2

c
 is significant (Crainiceanu and Ruppert 

2004). If �2
c
 was significant, the random column effect 

was included in the model. All above-described data were 
preprocessed and analyzed in R version 4.0.2 using custom 
code (R Core Team 2020). All linear mixed effect models 
were built with the R package lme4 (Bates et al. 2015) and 
all likelihood-ratio tests were conducted with the exactRLRT 
function of the RLRsim R package (Scheipl et al. 2008).

(1)Ycrbsm = � +Mm + Ss + Bb + Rr + Cc + �crbsm,

(2)
Ygcrbe = � + Gg + Ee + EGge + Bbe

+ Rre + Cce + �gcrbe,

Adjusted entry means and broad‑sense heritability

Adjusted entry means (AEMs) per clone were calculated for 
the phenotypic and multispectral data with model (2).

The data collected in each individual environment were 
analyzed using a simplified version of model (2):

where the random environmental effect Ee and the random 
clone × environment interaction effect EGge were discarded 
from the model. AEMs were also estimated for each 
clone in each individual environment using model (3) in 
order to predict phenotypic performance in specific single 
environments.

Broad-sense heritability for the phenotypic traits was 
calculated as suggested by Piepho and Möhring (2007) as:

where �2
g
 was the genotypic variance and v̄ was the mean 

variance of difference between AEMs calculated with model 
(2). Channel reflectance heritabilities were computed in 
two ways: (i) for each channel and flight date combination 
with model (2) and (ii) for each channel by incorporating 
the flight date F and its interactions as random independent 
variables as a modification of (2):

For the latter case, heritabilities were also calculated on a 
plot basis. �2

g
 was determined by setting Gg of model (2) or 

(5) as random.
Since two channels were non-overlapping and one of 

the overlapping channels malfunctioned for one year, 
missing data were imputed in these three environment/year 
combinations via predictive mean matching, which is a semi-
parametric imputation approach that produces plausible 
values (Van Buuren 2018, p.68) with the R package mice 
(Van Buuren and Groothuis-Oudshoorn 2011).

Estimation of breeding values

Prediction model and calculation of relationship matrices

Phenotypic performance was predicted based on the 
genomic best linear unbiased prediction (GBLUP) model 
(VanRaden 2008):

(3)Ygcrb = � + Gg + Bb + Rr + Cc + �gcrb,

(4)H2 =
𝜎2
g

𝜎2
g
+ v̄∕2

,

(5)

Ygfcrbe = � + Gg + Ee + EGge + Bbe

+ Rre + Cce + Ff + GFgf

+ FEfe + GFEgfe + BFbf

+ RFrf + CFcf + �gcrbe.
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where Yu was the AEM and U the random genetic effect of 
the uth clone, respectively. U was independent of � with 
U ∼ N(0,G�2

U
) . Here, �2

U
 was the variance of the genetic 

effects and G was the additive genomic relationship matrix 
defined as G =

ZZ�

m
 , where Z′ was the transpose of Z which 

was the feature measurement matrix of dimensions n × m , 
where n was the number of clones and m was the number 
of molecular markers (m = 595,321). For the phenomic 
prediction scenarios, in which multispectral data were 
used for predictions (MBLUP), G was replaced by the 
multispectral relationship matrix M which was calculated 
similarly, except that ZZ′ was replaced by SS′ . S was the 
spectral feature matrix of n × ms where ms was the number 
of channel and flight date combinations ( ms = 21).

Additionally, we tested if GBLUP predictive abilities 
(PAs) could be improved by considering dominance 
and epistatic effects. For this case, the dominance (D) 
relationship matrix was calculated with the Sommer R 
package version 3.3 (Covarrubias-Pazaran 2018). We 
compared three different GBLUPs considering (i) only 
additive effects (G), (ii) additive and dominance effects 
( G + D ), and (iii) additive, dominance, and all three first-
degree epistatic interaction effects, namely additive × 
additive, additive × dominance, and dominance × dominance 
( G + D + E ). For this, random genetic effect terms and their 
corresponding variance–covariance matrix were added in 
model (6) where G + D included two and G + D + E five 
random terms and relationship matrices.

Predictions were made within a fivefold cross-validation 
framework with 25 replications. PA was reported as the 

(6)Yu = � + Uu + �u,
Pearson’s correlation between observed and predicted 
adjusted means of the validation set. Due to some 
unfortunate training and validation set combinations 
as well as missing data, especially in cases where single 
environments were predicted, the MBLUP and GBLUP 
model did not always converge. Therefore, we applied 
a quality filter to our results based on the ability to make 
reliable decisions in a real breeding program: prediction 
results were removed if they had (i) an absolute coefficient 
of variation > 150 or (ii) > 100 missing predictions from a 
total of 5 folds * 25 replicates = 125 predictions per trait and 
prediction scenario. All predictions were established using 
the R package Sommer (Covarrubias-Pazaran 2018).

Prediction scenarios

The scenarios to explore phenomic and genomic prediction 
in potato breeding were the following (Fig. 1):

Scenario 1 Predictions of phenotypic AEMs of single 
environments derived with model (3) were made using 
relationship matrices calculated with multispectral AEMs 
from model (3) from the same environment, namely W20 
and W21 (Fig. 1).

Scenario 2 This scenario differs from scenario 1 in that 
predictions were made based on multispectral data collected 
in single environments for which the phenotypic data have 
not been collected.

Scenario 3 AEMs of every trait per clone across all five 
environments were calculated with model (2) and then 
predicted with spectra from individual environments (W20 
or W21).

Fig. 1  Illustration of the seven prediction scenarios (S1–S7) explored. 
Each cell represents a prediction case. Each prediction case is a 
combination of different sources of phenotypic and multispectral/
SNP array data used for phenomic or genomic selection with 
multispectral best linear unbiased prediction (MBLUP) or genomic 
BLUP (GBLUP), respectively. Predictions were performed based on 
the adjusted entry mean (AEM) of a given clone in one or multiple 
environments. Phenotypic data of one of five single environments 
can be predicted where W and G represent the locations Windeby 

and Gransebieth, respectively, while 19, 20, and 21 give the year 
of the experiment. In S3, S5, and S7, phenotypes of clones were 
predicted based on the AEMs across all five available environments. 
Additionally, a sub-scenario of S3 (S3 b) was considered where the 
AEMs did not incorporate the environment from which the spectral 
data were collected. The relationship matrix used in S4 and S5 was 
either derived by first joining the spectra of both environments into 
one (cjM) or by calculating the AEMs of the channel reflectances per 
clone based on data of both environments (MAEM)
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Scenario 3 b Additionally, a sub-scenario of scenario 
3 was investigated in which the phenotypic AEMs did not 
include the environment from which the spectral data were 
collected.

Scenario 4 Multispectral data of both environments 
were considered for predictions of phenotypes of clones in 
every available single-environment. The multispectral data 
were summarized either by using the adjusted means of the 
channel absorbances per clone from model (2) (S4 MAEM) 
or simple column-joining of both multispectral data sets (S4 
cjM) before building the relationship matrix M (Rincent 
et al. 2018).

Scenario 5 In this scenario, the relationship matrices 
from scenario 4 were used to predict the phenotypic AEMs 
calculated across all environments.

Scenario 6 A classical genomic prediction approach 
was tested using SNP array information to calculate 
genomic estimated breeding values (GEBVs) for each 
clone and trait. Predictions were made for every available 
single-environment.

Scenario 7 GBLUP was used to predict the phenotypic 
performance of clones across all environments, i.e., the 
AEMs derived from model (2).

In addition to predicting phenotypic performance by 
utilizing M or G only, we also examined the predictive ability 
of the model if both relationship matrices were incorporated 
simultaneously. One possible approach for this purpose was 
reported by Robert et al. (2022b) who combined the NIR 
effect and the molecular marker effect with two separate 
respective relationship matrices in one model. Another 
solution that produces equivalent PA is a combination of 
relationship matrices (C) by assigning weights to M and G 
in a grid search similar to Schrag et al. (2018) and Wu et al. 
(2022). We investigated a combination of M and G in the 
following way:

where x varied from 0 to 1 in varying step sizes. We then 
used all variations of C as the relationship matrix in model 
(6).

Results

Trait and channel reflectance heritabilities

Trait heritabilities on an entry mean basis ranged from 
0.30 (shape short axis) to 0.93 (starch content) where 
heritabilities ≥ 0.7 were observed for 15 out of 22 traits 
(Table S3). The median proportion of variance accounted 
by error was 0.11, suggesting that model (2) was a good 
fit for most traits. In general, traits that were rated on a 

(7)C = M × x + G × (1 − x),

categorical scale like texture, taste, and general impression 
had higher error terms and, thus, lower heritabilities than 
traits that were measured like polyphenol oxidase activity, 
starch content, and yield.

Channel reflectance heritabilities across flight dates 
derived with model (5) were low with a median of 0.18 
(Table  S4). Considering each flight date and channel 
combination separately in model (2) resulted in significantly 
higher clone and clone × environment interaction ( G × E ) 
variances and in an increase of the median heritability to 
0.39 (Table S3). Model (5) yielded high flight date × clone 
and flight date × clone × environment effects (Table S4). This 
trend can also be observed from the variance components 
of model (2) where G × E variance varied highly across the 
flight dates (Table S3).

Predictive abilities of phenomic prediction 
scenarios

The median PAs of phenomic prediction scenarios varied 
greatly within a range of −0.15 and 0.88 and were strongly 
dependent on the environment, the predicted trait as well as 
the considered prediction scenario (Fig. 2). Most predicted 
traits of S1, where phenotypic performance was predicted 
based on spectral and phenotypic data from the same 
environment, showed median PAs below 0.3. However, 
high (0.55) to very high (0.86) PAs were observed for traits 
that characterize the development of the growing plant 
above ground and moderately high (0.45–0.55) PAs were 
achieved for yield (Fig. 2). For few traits like starch content, 
eye depth, and longitudinal shape, PA was significantly 
higher for one environment than the other. Comparing the 
mean PA across all traits showed that S1 W20 × W20, i.e., 
when phenotypes of Windeby 2020 were predicted using 
the relationship matrix derived from Windeby 2020 spectra, 
achieved, on average, higher PA (0.32) than S1 W21 × W21 
(0.26). PAs in S2, where spectral and phenotypic data used 
for predictions were collected from different environments, 
were higher for half of the phenotypic traits compared 
to S1 when considering the best-performing prediction 
cases from each scenario and trait combination (Fig. 2). 
However, it is important to note that the traits for which S2 
performed better than S1 were traits for which PAs ≤ 0.35 
were observed. S2 PAs also varied highly between the pairs 
of environments considered for each trait. In total, eight 
possible S2 prediction cases exist. The S2 prediction case 
with the highest PAs was G20 × W20 with an average of 
0.31 across all traits. Interestingly, G21 × W20 and W19 × 
W20 were the second and third best-performing prediction 
cases with a mean PA of 0.27 and 0.21, respectively, which 
means that predictions with M from W20 were in general 
more accurate than predictions with M from W21, if spectra 
of an independent environment were used.
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In the next step, we predicted the AEMs of phenotypic 
traits across all five environments (S3). For both spectral 
data sets, 52% of the traits had lower PA and 29% had higher 
PA in S3 than S1 (Fig. 2). The other traits could not be 

compared, due to missing median PAs of either one of the 
two prediction cases. The range of variation of the difference 
between S3 and S1 was large with an increase of PA of 0.24 
for scab symptoms in W21 and a reduction of PA of 0.18 for 

Fig. 2  Predictive abilities (PAs) for every potato trait in every 
prediction case. The median PA is depicted in each tile as a decimal 
number and is a result of a fivefold cross-validated prediction with 
25 repetitions either with multispectral best linear unbiased prediction 
(MBLUP) for scenarios one to five (S1–S5) or with genomic BLUP 
(GBLUP) for scenario six and seven (S6 & S7). Traits are ordered 
on the x-axis according to the mean PA of phenomic prediction 
scenarios (S1–S5) in descending order. The Y axis shows the 
prediction case. Each prediction case shows the general prediction 
scenario (S1–S7). The code before the x specifies which phenotypic 
data is predicted and the one after the x states from which data the 
relationship matrix was derived. G and W are the code for the 
locations Gransebieth and Windeby, respectively, while 19, 20, and 
21 represent the year. AEM before the x means that the phenotypic 
adjusted entry means (AEMs) derived from all five available 

environments were predicted while MAEM after the x specifies that 
the AEMs derived from both multispectral data sets, namely W20 and 
W21, were used for predictions. cjM stands for “column-joined” and 
means that the two aforementioned matrices of spectra were joined 
into one single matrix before computing the relationship matrix M 
for prediction. SNPs stands for the GBLUP model where data from 
a SNP array were used to build the relationship matrix. Missing tiles 
could either not be calculated due to missing trait data for a specific 
environment or because the predictions did not pass the quality 
control of an absolute coefficient of variation ≤ 150 or ≤ 100 missing 
PAs. Every prediction was carried out using respective relationship 
matrices only considering additive effects. The mean PA across all 
traits per prediction case is shown in the last column while the mean 
PA across each MBLUP (S1–S5) or GBLUP (S6–S7) scenario is 
shown per trait in the last two rows
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foliage development also in W21. All traits that performed 
well in S1 with PAs > 0.4 achieved lower PAs in S3. If 
the relationship matrix was derived from the spectra of an 
environment that was not included in the calculation of the 
AEMs to be predicted for S3 (i.e., S3 b), then a decrease in 
PA could be observed for 89% of the traits predicted with 
the relationship matrix from W20 and 53% of traits predicted 
with the spectra collected in W21 (Fig. S1). Analogous to 
S1, predictions with M from W20 achieved a higher mean 
PA across all traits (0.33) than predictions with M from W21 
(0.21).

We evaluated the effect of using spectra from two 
environments together to predict phenotypes from individual 
environments (S4). On average across all traits, we observed 
PAs similar to S1 for these S4 scenarios (Fig. 2). However, 
S4 performed better than S1 for those traits that showed 
significantly lower PAs in S1 W21 compared to W20. 
The S4 scenario comprised two methods to combine 
spectra from two environments. We observed a slightly 
higher mean PA across all traits for cjM (0.36) compared 
to MAEM (0.33) although individual traits deviated from 
that trend. In the next step, we evaluated the use of spectral 
data from both environments to predict AEMs across all 
five environments (S5). This scenario yielded higher PAs 
than the best-performing environment of S3 for 13 out of 
19 traits. In general, the PAs of S5 were on a similar level as 
the better-performing S1 and S4 prediction cases. Since S5 
utilizes every information available and yields high PA, we 
evaluated the influence of different flight dates on PA using 
S5. Date one (D1) and its combinations had the biggest 
positive effect on PA and the flight date combinations 
D1+D3 and D1+D2+D3 achieved the highest PAs with a 
median of 0.26 across all traits (Fig. S2). Including data 
of multiple flight dates in the relationship matrix used for 
prediction was always significantly favorable except in one 
case where spectral data from D1 performed similar to data 
from D2+D3 (Fig. S1).

Comparison of MBLUP and GBLUP

GBLUP predictions with the additive relationship matrix 
G were made for all five environments independently (S6) 
as well as for the AEMs across all environments (S7). For 
the former case, GBLUP performed better than MBLUP 
for 15 traits in S1, 19 traits in S2, and 16 traits in S4 
cjM measured by the aggregated median PA across all 
available environments per scenario (Fig. 2). In addition, 
the median absolute coefficient of variation across all 
single-environment predictions of S6 was lower (25.0) 
compared to S4 cjM (30.6). Using the SNP array data to 
predict the AEMs of clones across all five environments 
(S7) resulted in higher PAs than the median across all 
five single-environment predictions (S6) for all traits. A 

similar trend can also be observed in the same comparison 
between S5 and S4 cjM. However, the difference in this 
comparison was that the best-performing environment 
pair of S4 cjM exceeded S5 for 14 traits while the best-
performing GBLUP environment pair of S6 exceeded S7 
only for four traits.

In addition to the above-described additive GBLUP 
model (G), we tested two more genetic models with S7 
(Fig. S3). The additive and dominance ( G + D ) model 
achieved a median PA of 0.420 across all traits, similar 
to the PA of the G model (0.424). G + D had the highest 
PAs for five out of 22 traits, namely yield, emergence, 
shape short axis, tuber size, and starch content while all 
other traits achieved the highest PA when considering only 
additive effects (G). G + D + E had the lowest PAs with a 
median of 0.400 across all traits.

When taking a closer look at the relationship matrices 
used for GBLUP and MBLUP, we observed that the 
pedigree relatedness of our potato population was 
represented in G (Figs. 3A and S4A). Interestingly, this 
observation was not made for M (Figs. 3B and S4 B). In 
detail, the Pearson’s correlations between M from W20 or 
W21 and G were 0.13 and 0.08, respectively.

Predictions with weighted relationship matrices

Since the relationship matrices M and G displayed 
different similarity patterns among the clones (Figs. 3 and 
Fig. S4), we tested if a combination of both data sets can 
lead to an increase in PA (Fig. 4). Interestingly, only two 
traits, namely, discoloration after cooking and polyphenol 
oxidase activity, achieved the highest PA by training the 
prediction model with G alone. No trait achieved the 
highest PA by training the prediction model with M alone, 
and 20 traits scored a maximum PA with a relationship 
matrix calculated from M and G together. For four of those 
aforementioned 20 traits, the PAs were improved notably 
by ≥ 0.05 compared to the maximum of either M or G 
alone by combining both matrices for prediction (Fig. 4). 
The trait that benefitted the most from a combination of M 
and G was yield with an increase of 0.16 PA compared to 
M alone and an increase of 0.23 PA compared to G alone 
if M was weighted with a factor of 0.05. In general, most 
maximum PAs observed with mixed relationship matrices 
were achieved with a higher weight of G (x ≤ 0.25) with 
maturity being the sole exception (x = 0.7) (Fig. 4).
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Fig. 3  Heatmaps of relationship 
matrices built either with SNP 
array data (A) or multispectral 
channel reflectance data (B). 
Both heat maps are sorted 
according to the family structure 
of the potato germplasm

Fig. 4  Predictive abilities (PAs) of 22 phenotypic traits with different 
combinations of weighted relationship matrices. M was derived from 
the multispectral data and G was derived from the SNP array data. 
The y axis shows the weight of M (x). The weight of G was 1 − x . 
The median PA of a fivefold cross-validated prediction scheme 

with 25 repetitions represented with each tile is shown as a decimal 
number. The standard deviation of the respective PAs was shown with 
colors. For each trait, the highest median PA achieved was marked 
with a black box
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Discussion

Inferences on genetic relatedness based on UAV 
imaging data

The basic assumption of phenomic prediction is that reflec-
tance or absorbance measures like NIR spectra are capturing 
genetic similarities between genotypes (Rincent et al. 2018). 
Up to now, phenomic prediction has mainly been tested on 
cereal species (Rincent et al. 2018; Krause et al. 2019; Lane 
et al. 2020; Galán et al. 2020; Robert et al. 2022b). This is 
probably due to the routine use of NIRS to predict various 
features like water and protein content of grains (Pojić and 
Mastilović 2013), providing access to an already established 
pipeline for generating phenomic data. However, there is 
also potential that this approach can be used in potato.

To check in a first step how reliable multispectral 
channel reflectances are across multiple environments for 
potato clones, we calculated their variance components 
and heritabilities (Table S3). Broad-sense heritabilities 
indicated a low to moderate proportion of reflectance 
variance explained by genetic variance which means that 
the reflectances are partly clone-specific. The channel 
reflectance heritabilities observed for potato were lower than 
those reported in another study where hyperspectral imaging 
via UAV was used for phenomic prediction in hybrid rye 
(Galán et al. 2020). This finding can be explained by the 
fact that fewer environments were available to calculate 
heritabilities on an entry mean basis in our case compared 
to Galán et al. (2020). Other causes ranging foremost from 
a different species analyzed to a different UAV protocol 
for generating data as well as different data preprocessing 
methods can also provide possible explanations.

Channel reflectance heritabilities on a plot basis 
(Table S4) were higher for the lower wavelengths, meaning 
that these contributed the most to our predictions. We 
observed a high variation for genotype-related variance 
components and heritabilities not only between channels but 
also between flight dates within channels (Table S3). This 
means that the ability of multispectral data to capture genetic 
variance can drastically change with the developmental stage 
of the plant and for each channel differently. Analyses of the 
effects of individual flight dates and their combinations on 
PA revealed that spectra collected at flight date one (D1), i.e., 
at BBCH stage 31, had on average across all traits the best 
effect on PA, although individual traits could deviate from 
that trend (Fig. S2). However, PA was increased if multiple 
flight dates were combined. Although individual flight dates 
and their combinations exceeded the PA of D1+D2+D3 for 
some of the traits, D1+D2+D3 predictions proved to be most 
robust, i.e., PAs were always on the higher end compared to 
all other combinations (Fig. S2). Our finding is in agreement 

with results of Aguate et al. (2017) who also reported an 
increase in prediction accuracy for maize yield by combining 
hyperspectral data of multiple time points and considering 
the reflectance data as secondary traits. More recently, 
Adak et al. (2023a, b) showed that including drone data 
collected at multiple growth stages in temporal phenomic 
prediction models of maize hybrids resulted in increased 
PA. We, therefore, recommend collecting spectra from 
several different time points in future studies capitalizing 
on imaging via UAV. Furthermore, our results suggest 
that it might be interesting for future experiments to add 
additional UAV flights around the early potato development 
stage. More research is needed to decide if it is better for 
some individual traits, to consider only specific flight date 
and channel combinations especially, if costs are factored in.

Phenomic prediction scenarios

We started exploring the capabilities of the MBLUP model 
to predict phenotypic performance with the relationship 
matrix M that was derived from multispectral data from 
the same environment for which phenotypic assessments 
were made (S1). We observed median PAs of 0.44 (W20) 
and 0.55 (W21) for yield and median PAs between 0.86 
and 0.55 for traits that characterize foliage development, 
emergence, or maturity of the plant. The high PAs were 
surprising considering the low number of spectral channels 
available compared to other PS studies using either NIRS 
(Rincent et al. 2018; Lane et al. 2020; Robert et al. 2022b) or 
hyperspectral imaging based on UAVs (Krause et al. 2019; 
Galán et al. 2020). To exclude the possibility that the high 
PA for yield was due to high correlations with the latter 
mentioned traits such as maturity or foliage development, 
we evaluated their correlations. We found significant but 
low correlations between yield and maturity ( −0.26) as 
well as between yield and foliage development (0.33). 
Furthermore, we applied our S5 cross-validation scheme 
to a multiple linear regression model that predicts yield by 
these developmental traits (maturity, emergence, foliage 
development 1 & 2). Here, the PA was 0.27 as opposed to 
0.46 from S5. This illustrates that the reason for the high PA 
of yield in our phenomic prediction scenario is not only due 
to its correlation with the easily predicted developmental 
traits. These findings together strongly reinforce the 
hypothesis that the spectral data represented endophenotypic 
information of the potato plant relating to yield but also to 
many other traits that can be used for phenomic predictions 
in potato.

In the next step, we tested the performance of MBLUP 
in predicting the phenotypic performance of clones in 
one environment if multispectral data of matching clones 
were only available from a different environment (S2). 
This represents an interesting approach for breeders since 
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reflectance data could be measured once for a reference site 
and then used for selection in independent environments. 
The PAs for S2 were slightly to moderately lower than those 
observed for S1 (Fig. 2). The decrease of PA from S1 to S2 
for yield and emergence was in general more substantial 
than reported for wheat by Rincent et al. (2018) and Robert 
et al. (2022b). These observations suggest that predictions 
of independent environments are generally feasible but are 
also attached to a loss in PA for potato.

The proportion of variance explained by the clone on 
the different channel reflectances was very similar to what 
Rincent et al. (2018) reported for winter wheat leaves. 
However, the proportion of variance explained by the 
clone-environment interaction ( G × E ) effect was higher in 
our case. This disparity in G × E might be due to the potato 
population in our experiment which consisted mostly of 
clones on the A clone level while Rincent et al. (2018) 
considered exclusively elite winter wheat varieties which 
have been selected for broad adaptation.

In the next prediction scenario, we evaluated the effect 
on PA if spectra from more than one environment were 
used for prediction (S4 & S5). For S4, we observed 
similar PAs compared to the best S1 prediction cases 
(Fig. 2), where a total of 12 traits achieved even slightly 
higher PA in S4 compared to S1. However, the highest 
PAs besides S1 and S4 prediction cases were observed 
for S5 where AEMs across all five environments were 
predicted utilizing both multispectral data sets like in 
S4. S5 PAs were higher than both S3 prediction cases, 
where AEMs were predicted using reflectance data 
collected from only one environment, for 13 out of 19 
comparable traits. The results of S4 and S5 illustrate the 
value of collecting spectra at multiple environments, 
especially if the spectra have high G × E like in potato. 
These observations are in alignment with the results of 
previous studies, reporting that the utilization of multiple 
spectra has an overall positive effect on PA in phenomic 
predictions (Rincent et al. 2018; Robert et al. 2022b). Our 
conclusion was further supported by (i) the comparison 
between S4 and S2, where PAs were generally higher for 
the former prediction scenario if both spectra were used 
to predict phenotypes of an independent environment (S4 
G20, G21 & W19), and (ii) the fact that if S3 predictions 
were performed for adjusted clone means which were 
calculated without the phenotypic data of the environment 
where the multispectral reflectances were gathered from 
(S3 b), then the PAs were usually lower than in the original 
S3 (Fig. S1).

Two possibilities to combine spectral data from different 
sources (i.e., environments, tissues, flight dates) for 
phenomic prediction have been reported in the literature. 
The first method, which we refer to as column-joining (cjM), 
is the combination of different spectra into one (Rincent 

et al. 2018) which is equivalent to averaging the relationship 
matrices from different sources (Lane et al. 2020; Robert 
et al. 2022a). The second approach is the calculation of 
channel reflectance AEMs per channel (Galán et al. 2020), 
in our case, per flight date and across environments. We 
observed that combining spectra by simple column-joining 
was slightly favorable (Fig. 2) compared to calculating the 
reflectance AEMs per clone which could be explained by 
the fact that deriving AEMs is generally linked with a loss 
of specificity, while simple column-joining preserves every 
available measurement.

The most relevant scenarios for potato breeders were 
examined in S3 and S5: the prediction of AEMs across 
environments. S3 PAs were higher than individual S2 
cases and generally only slightly lower than S1 (Fig. 2). If 
AEMs across all five environments were predicted using the 
spectral profiles of both environments (S5), then PAs were 
higher for 13 out of 19 traits compared to S3 as well as 
for 10 out of 19 traits compared to S1. This means that S3 
and even more so S5 can be understood as robust prediction 
approaches. They can be used to show the general extent 
of PA for a set of environments without the danger of 
considering a particularly badly predicted environment for 
a given trait.

GBLUP vs MBLUP performance and PAs using mixed 
relationship matrices

Genomic prediction is becoming the state-of-the-art method 
of predictive breeding in many crops (Crossa et al. 2017; 
Voss-Fels et al. 2019). Therefore, we compared the results 
of phenomic prediction to those of genomic prediction. We 
observed that GBLUP performed better than MBLUP for 
traits characterizing the tuber itself like starch content, eye 
depth, or polyphenol oxidase activity, while traits that are 
observable with the eye on the growing plant had high PAs 
for MBLUP. Yield was an exception to this trend because 
PAs were higher with phenomic predictions. Zhu et  al. 
(2022) reported for triticale that polygenic traits were well 
predicted with MBLUP and mono- or oligogenic traits 
were better predicted with GBLUP. Some of our findings 
were in accordance with this trend, i.e., the complex trait 
yield had higher PAs from phenomic predictions while the 
oligogenic trait polyphenol oxidase activity had higher PAs 
using GBLUP for example. However, the oligogenic trait 
maturity (Danan et al. 2011) had higher PAs with phenomic 
predictions as compared to genomic predictions in our case; 
thus, this trend was not fully observed in our study.

We observed PAs that varied across environments in S6, 
where phenotypic performance of clones was predicted in 
each environment separately using GBLUP. However, the 
variation in PA across environments in S6 was smaller than 
that obtained with MBLUP in S4 cjM which is probably 
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due to the moderately high G × E variance proportion of 
our spectra (Table S3). Analogous to what we observed for 
S5, S7 PAs were usually among the highest for GBLUP 
prediction cases, meaning that the predictions of AEMs 
across environments were generally more robust than 
predicting AEMs of a specific environment.

As a highly heterozygous crop, potato allows for 
dominance as well as epistatic effects to contribute to 
phenotypic variation. However, our results showed that the 
GBLUP model that considered additive, dominance, and 
epistatic effects ( G + D + E ) achieved slightly lower PAs 
than models that considered additive and dominance ( G + D ) 
or only additive effects (G) (Fig. S3). PA for G and G + D 
were similar, where G + D performed better in predicting the 
phenotypic performance of yield, emergence, shape short 
axis, tuber size, and starch content. Thus, depending on the 
trait and its genetic complexity it can be advisable to model 
dominance effects with GBLUP when selecting clones for 
their phenotypic performance which is in accordance with 
Stich and Van Inghelandt (2018).

The PAs observed with MBLUP and GBLUP indicated 
that the inferences on relatedness seem to be largely 
different when derived from the spectral data compared 
to derived from genetic markers (Fig. 2). This is further 
supported by the observation of low correlations between 
the two relationship matrices M and G, and the fact that 
the family structure was reflected in the heat map of G but 
not M (Fig. 3). Since both approaches achieved high PAs 
but generally for different traits, we evaluated whether 
combined relationship matrices could improve PAs. For 
a total of 20 out of 22 traits, higher PAs were observed 
if relationship matrix C was used for prediction which 
combined multispectral and SNP array profiles, showcasing 
that both contain complementary information (Fig.  4). 
The potential for a combination of marker and spectral 
data was also demonstrated by Sandhu et al. (2021) and 
Robert et  al. (2022b) where it achieved higher PAs for 
yield in wheat than genomic or phenomic prediction alone. 
Similar observations were also made for combined omics 
data sets like metabolites or transcript levels that resulted 
in an improvement of the prediction accuracy compared to 
GS (Schrag et al. 2018; Wu et al. 2022). If the goal is to 
maximize PA then it seems favorable to include a carefully 
weighted mix of the aforementioned types of information 
in predictions. However, considering costs, time, and work 
effort this might be not practical in real breeding programs. 
The optimal allocation of resources with the utilization of 
NIR or other kinds of reflectance measures as a new player 
in predictive plant breeding, thus, requires further research.

Integration of PS in potato breeding programs

Current potato breeding programs are characterized by very 
large numbers of entries in early stages and the availability 
of very few tubers per entry in these stages (Table 1). Both 
aspects lead to the need to assess only traits of low genetic 
complexity that can be scored on individual plants as well as 
traits that can be measured non-destructively. Many of such 
traits are only weakly correlated with the traits determining 
market success (Thelen et al. (unpublished)). In this context, 
we envisage two possible applications for PS in potato 
breeding programs.

The first interesting possibility for the integration 
of PS in potato breeding programs is in the early stages, 
i.e., pot seedling and/or single hill stage (Table 1), where 
results from computer simulations suggested that the use 
of genomic predictions is not recommended due to the high 
costs for genotyping and the associated strong need to reduce 
the population size (Wu et al. 2023). Here, PS can be the 
low-cost alternative to GS to increase the selection accuracy 
by selecting based on the target trait instead of an auxiliary 
trait of pot seedlings or potatoes in the single hill stage. One 
could calibrate MBLUP with the phenotypic data, preferably 
AEMs, of clones that are at the A clone stage or later from 
other breeding cycles and use the spectral profiles of not only 
the corresponding clones but also completely unphenotyped 
clones in the pot seedling or single hill stage to establish a 
relationship matrix between all clones in this early stage. 
This approach is related to S3 b in this study, where the 
spectral profile of an independent environment is used to 
predict the phenotypic performance of clones on an AEM 
basis. An assumption of this approach is that a clone in the 
pot seedling or single hill stage has a similar spectral profile 
as in the later stages, i.e., when grown in plots with several 
plants per clone. Additional investigation is necessary 
to substantiate this assumption. A further limitation of 
the prediction from individual single potato plants is the 
environment specificity of the multispectral profiles as we 
observed varying PAs depending on the source of the spectra 
in our study. S4 cjM revealed that it is likely beneficial to 
combine spectra of multiple environments to buffer against 
the high G × E of the spectra in potato. As clones in the 
pot seedling or single hill stage can only be evaluated in 
one environment this will likely not be practicable at this 
stage. However, if predictions of sufficient predictive ability 
are still feasible in this way, then a considerable increase 
in selection accuracy can be realized by PS compared to 
phenotypic selection.

The second possibility to integrate PS in potato 
breeding programs is in later cycles (A to D in Table 1) 
when phenotypic information is available for each clone. 
In these stages, one could either select clones based on 
their per-se performance as commercial products or 
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parents of new crosses. In the former case, current potato 
breeding programs largely rely on phenotypic selection 
which means that the comparative performance between 
phenotypic selection and PS would depend on (i) the 
heritability of the target trait, (ii) the heritability of the 
channel reflectances, (iii) the PA achieved with phenomic 
predictions, and (iv) the cost of the assessment. Regarding 
the selection of parents for new crosses, it is advisable to 
not select based on the true genetic value of a clone since 
only a third of the digenic dominance is transmitted to 
the next generation in tetraploids (Gallais 2003; Endelman 
et al. 2018). However, phenomic predictions based on 
spectral profiles likely also include non-additive effects 
(Rincent et al. 2018). If this is the case, then one needs to 
be cautious in using PS in the selection of parents for new 
crosses. If spectral profiles can be separated in additive 
and non-additive effects, a weighting of both might be 
feasible to select for crossing candidates where the weight 
depends on the genetic architecture of the trait considered. 
Both possible implementations represent interesting 
possibilities for breeders and warrant further research.

Conclusions

This study establishes a proof of concept of phenomic 
predictions with potato. PAs of phenomic predictions were 
high for yield and traits that characterize the development 
of the plant above ground while genomic predictions 
achieved higher PAs for traits regarding the tuber itself 
except yield. High PAs were achieved despite a total of 
only seven wavelengths available as measured by an UAV. 
High variability was found in PAs between predicted 
environments, traits, and multispectral data sets. Our results 
indicate that combining spectra from different environments 
to predict phenotypes in the least stabilizes, if not increases 
PA and, thus, buffers against low-performing environments. 
Predictions of AEMs across multiple environments also 
proved robust. Therewith, PS presents a low-cost and high-
throughput alternative to GS but is also highly effective in 
combination as relationship matrices derived from SNP 
array data and spectral profiles together yielded even higher 
PAs for 20 out of 22 considered potato traits than either 
phenomic or genomic prediction alone. We see the main 
application of PS in potato breeding programs to allow 
for the use of the principle of predictive breeding in the 
pot seedling or single hill stage where genotyping is not 
recommended due to high costs.
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