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Abstract

BACKGROUND: Worldwide, pest rodents can cause extensive damage to agriculture, forestry, food storage, and infrastructure
and pose a risk to public health and livestock due to the spread of zoonotic pathogens. In Europe, themost commonpest rodent
species is the common vole (Microtus arvalis). Management during periodic outbreaks largely relies on rodenticidal bait with
zinc phosphide. Efficient baiting with rodenticides or possibly anti-fertility products in the future require baiting methods that
allow a sufficient proportion of the population to consume an effective dose of bait. We used a bait with the quantitativemarker
ethyl-iophenoxic acid (Et-IPA) to evaluate baiting strategies in enclosure experiments. This wheat-based bait with Et-IPA was
placed in bait boxes or directly into the tunnel system entrances in different seasons and common vole abundances. Voles were
live-trapped, individually marked and blood samples were collected to relate Et-IPA blood residues to bait uptake.

RESULTS: The percentage of animals consuming bait was not heavily affected by the baiting strategy but voles had higher Et-
IPA blood residues if tunnel baiting was used in autumn and if bait boxes were used in winter. Non-reproductive as well as ligh-
ter animals tended to have higher Et-IPA blood residues than reproductive individuals, whereas sex had no effect. Population
density had a negative effect on the probability of residues present as well as on Et-IPA blood concentration.

CONCLUSION: The results of this study might help to improve baiting techniques to manage overabundant rodent pest species
regardless of the compounds to be delivered.
© 2024 Julius Kühn-Institut. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical
Industry.
Supporting information may be found in the online version of this article.
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1 INTRODUCTION
Pest rodents have a significantly negative impact on economic
(damage) and environmental (invasive species) aspects and pose
health risk in developed as well as in developing countries. In
Europe, rodent damage is most pronounced in rural areas during
multi-annual outbreaks.1–6

One of the most common methods to manage overabundant
rodent pest species is the use of rodenticides, but orally delivered
contraceptives gain more and more interest.5–7 In the past
decades, ecologically based rodent management emphasized
the importance of a comprehensive understanding of the ecology
and population dynamics of pest species to effectively apply
rodenticides and other management methods.8,9 Combining
both lethal methods such as the use of rodenticides and non-
lethal methods like fertility control are considered to be most cost
effective.7,10–12

Contraceptive techniques that require individual capture
(e.g., sterilization or insertion of hormonal implants) are impracti-
cal for overabundant, small rodent species.13 All management
strategies that are based on delivering compounds rely on effec-
tive baiting methods to achieve effects at population level. This
is the case for rodenticide use and for oral delivery of anti-fertility

compounds for managing short-lived animals with clearly defined
breeding seasons.5 About two-thirds of housemice (Musmusculus
domesticus, Linnaeus, 1758) and ricefield rats (Rattus argentiventer,
Robinson & Kloss, 1916) need to be rendered infertile to reduce
the reproductive output within a breeding season.14–16 When
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rodenticides are registered, the percentage of reduction in rodent
numbers is usually required to be close to 100%.17

Compounds used for rodent management can pose exposure
risk to non-target animals. Therefore, regulation for application
are in place to minimize such risk including the use of bait boxes,
indoor use only or placing the bait directly into the tunnel system
of the target animals.18 In addition, bait bases and baiting strate-
gies need to be used that increase the probability of bait con-
sumption only by target species. However, it is necessary to find
a balance between the efficacy needed to reach a certain propor-
tion of the target species, workload and the aim to exclude non-
targets, which also might affect baiting success for targets.
Common voles (Microtus arvalis, Pallas, 1778) are one of themajor

rodent pest species in Europe.19 During outbreaks, they cause
severe damage to crops due to their rapid reproduction and high
food intake rates.19,20 We used the common vole as a model spe-
cies in a series of enclosure trials to test bait uptake for different
baiting strategies. Ethyl-iophenoxic acid (Et-IPA) was applied as a
bait marker to identify the effects of extrinsic factors (season) and
intrinsic factors (population size, sex) and baiting strategy (bait sta-
tions versus tunnel baiting) on bait uptake. In a prior laboratory trial,
wheat bait containing Et-IPA was developed and a dose-residue
relation established that allows estimating bait uptake quantita-
tively.21 In the enclosure trials, the proportion of common voles
ingesting bait and the amount of bait eaten were considered.
The results can be used to evaluate the efficacy of baiting strat-

egies for common voles and potentially other small rodent spe-
cies that are relevant for the protection of crops, infrastructure,
health and for conservation.

2 MATERIAL AND METHODS
2.1 Animals
Common voles were trapped in the field nearMünster (51°58029.60 0

N 7°34002.20 0 E), North Rhine Westphalia, Germany and held in the
animal holding facilities in Münster. Five females and three males
were released as founder population in each of the six semi-natural
enclosures in Remderoda, Jena (50°56019.400 N 11°31042.900 E), Thu-
ringia, Germany in July 2020 and in June 2021. Care was taken to
allow voles to acclimatize to enclosure conditions. The shortest
period from releasing voles to sampling (see later) was about
3 weeks. This period covered a reproductive cycle of common
voles,4 which seemed appropriate for acclimatization.
Each of the quadratic rodent proof enclosures measured 50 m

× 50 m, and were separated by a sheet metal fence buried
40 cm deep into the soil. Vegetation inside the enclosures con-
sisted of a grass mixture and was mown once a year in autumn.
Along the fence, a 2.5 m stripe was mown regularly to keep the
vegetation low. Plots were surrounded by a fence that excluded
terrestrial predators but voles were accessible for avian predators.
Before the first trial, there was a period of 4 months to allow accli-
matization of voles and reproduce to build up self-sustaining
enclosure populations. Population size was checked by live trap-
ping 1–3 weeks before the start of each trial and further animals
were released when necessary. In case of heavily biased densities
or population structure among the enclosures, differences were
balanced by transferring individuals.

2.2 Bait
The Et-IPA bait was developed and tested in a previous laboratory
study.21 It consisted of broken wheat that was coated with
1280 μg/g Et-IPA dissolved in sunflower oil. Dose-dependent

residues can be derived from blood samples enabling generation
of a quantitative estimate of consumption based on Et-IPA blood
residues.

2.3 Enclosure trials
In a series of five trials considering different seasons and popula-
tion densities, Et-IPA bait was either inserted directly into tunnel
entrances or placed in a bait box for mice (Tomcat RTU, Bell Lab-
oratories, Inc., Madison, WI, USA). Three enclosures were randomly
chosen for each baiting strategy. The assignment of baiting strat-
egy to the enclosures was switched after each trial to avoid habit-
uation. Per trial, 50 g Et-IPA bait in total was placed in each
enclosure, 5 g in each of ten active tunnel entrances (marked with
a bamboo stick) or 6.5 g in each of eight bait boxes that were
placed in the corners and in the centre of each enclosure wall.
The two methods reflected practical use of burrow baiting with
an applicator and perimeter baiting with bait boxes.
Seven days after placing the bait, bait boxes and remaining bait

from tunnel baiting was removed. The voles were live trapped for
3 days with Oos-traps with wooden boxes using wheat, rodent
pellets (Altromin 1324; Altromin Spezialfutter GmbH & Co. KG,
Lage, Germany) and apple slices as bait, and paper as bedding,
if necessary, in winter.22 All traps were checked about every
12 h. Body weight was measured with a spring scale (Pesola
Medio-Line; Pesola-Werke, Switzerland) to the nearest gram. A
blood sample of each individual was collected by puncture of
the retrobulbar sinus with a capillary pipette (Hirschmann ring-
caps 50 μL #9600150). Whole blood samples were stored at
−80°C until further analysis. For identification (and to prevent
multiple blood sampling) all captured animals were individually
marked by injecting a subcutaneous passive integrated transpon-
der (PIT) tag (ID-100B Microtransponder, TROVAN, supplier: Ani-
tech; Edewecht, Germany) into the scruff of the neck.
Furthermore, sex, reproductive status (lactating, pregnant, testis
scrotal), enclosure and trap number were recorded. Afterwards,
the animals were released fromwhere they had been caught. Ani-
mals that were trapped more than once within one trial were
released without processing. Trapping was terminated when
new captures were < 5% (except for summer). The estimate of
population density per enclosure was based on the number
of individuals caught. Trials were conducted in November 2020
(174 samples; 114 animals/ha), June 2021 (56 samples; 27 ani-
mals/ha), September 2021 (236 samples; 157 animals/ha),
November 2021 (151 samples; 102 animals/ha) and March 2022
(150 samples; 100 animals/ha).

2.4 Analysis for Et-IPA residues
The preparation of the blood samples was based on Berentsen
et al. and is described in detail in Jacoblinnert et al.21,23 In brief,
whole blood samples were spiked with the surrogate propyl-IPA
(PR EuroChem Ltd, Zug, Switzerland) as internal standard. Et-IPA
and propyl-IPA were extracted and liquid chromatography-
electrospray tandem mass spectrometry was used to measure
concentrations. All samples were measured twice, concentration
of Et-IPA calculated with peak areas using Analyst 1.7.1 without
surrogate-correction. The limit of Et-IPA detection was 0.05–
0.1 pg/μL whole blood.

2.5 Statistical analyses
In general, two different dependent variables were evaluated
using generalized linear mixed models (GLMMs). First, we evalu-
ated the probability of detecting residues in each individual. For
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this model the dependent variable followed a binomial error dis-
tribution, where individuals were either showing residues regard-
less of quantity or no residues. Second, we evaluated individual
residue levels in a GLMMwith a gamma error distribution. In both
cases, enclosure was used as random factor to account for the
spatial design of the study. Seasonal models were constructed
to evaluate the impact of baiting strategy in conjunction with
individual (sex, reproductive activity, weight) and population level
(density) parameters. Single factor effects in each model were
explored using the ggeffects package (estimated marginal
means) and displayed using the ggplot package in program R.

3 RESULTS
According to Jacoblinnert et al., Et-IPA residue values after the con-
sumption of 1 g bait coated with 1280 μg/g Et-IPA are 119 μg/g
after 1 day and 85 μg/g after 7 days.21 Based on the mean of these
values (102 μg/g) and mean Et-IPA residues in the enclosures of
1404.3 ng/g/body weight (multiplied by 20 g mean vole body
weight = 28 086.5 ng/g), average bait consumption was assumed
to be about 0.28 g. Overall and independent of season and other
intrinsic and extrinsic factors, the mean probability of an animal
consuming Et-IPA bait was 0.73 (box) or 0.82 (tunnel).
The probability of an animal consuming Et-IPA did not differ sta-

tistically significantly between sexes, seasons or baiting strategies
(Fig. 1(a)). The mean Et-IPA blood concentration per body weight
was 1456.95 ng/g/body weight (box) and 1354.95 ng/g/body
weight (tunnel). There was a trend that the Et-IPA blood concen-
tration was up to 33.3% higher if the bait was directly inserted into
tunnel entrances in autumn (P = 0.073) (Fig. 1(b)). In contrast, Et-

IPA blood concentration tended to be up to 44% higher if bait
boxes were used in winter (P = 0.053) (Fig. 1(b)). The statistical
analysis data is provided in Supporting Information, Table S1..
No significant differences have been observed for the probabil-

ity of Et-IPA residues in common vole blood within reproductive
and non-reproductive animals in all seasons, neither for box nor
for tunnel baiting (Fig. 2(a)).
Non-reproductive voles had up to 61% higher Et-IPA-blood res-

idues per body weight in autumn than reproductive animals
(P < 0.01) (Fig. 2(b)). In addition, in winter, Et-IPA-blood residues
were up to 67% higher, if the animals were non-reproductive
(P < 0.01) than reproductive and twice as high if bait boxes were
used (P < 0.01) instead of tunnel baiting (Fig. 2(b)). The statistical
analysis data is provided in Table S2.
There was a trend in spring, that voles of lower body weight

were more likely to have Et-IPA-blood residues than heavier ani-
mals (P = 0.051) (Fig. 3(a)). In autumn, this pattern tended to be
reversed (P = 0.060) (Fig. 3(a)).
In autumn and winter, there was a clear negative effect of body

weight on Et-IPA blood residues per body weight (autumn:
P < 0.01; winter: P < 0.01) (Fig. 3(b)). Furthermore, residues were
up to 31% higher when bait boxes instead of tunnel baiting was
used in winter (P = 0.01) (Fig. 3(b)). The statistical analysis data is
provided in Table S3.
There was a negative effect of population density on the prob-

ability of IPA residues in autumn (P < 0.01) (Fig. 4(a)) and the con-
centration of Et-IPA blood residues per body weight in autumn
and winter (autumn: P < 0.01, winter: P < 0.01) (Fig. 4(b)). In
autumn, Et-IPA residues were up to 37% higher if the bait was
placed directly into the tunnel entrances compared to using bait
boxes (P = 0.02) (Fig. 4(b)). However, in winter, Et-IPA blood con-
centration was up to 37% higher if bait boxes were used com-
pared to baiting tunnel entrances (P = 0.01) (Fig. 4(b)). The
statistical analysis data is provided in Table S4.

4 DISCUSSION
In this replicatedseriesofenclosuretrials,Et-IPAresidueswerepresent
in77%of thevoles. This seemsa suitable fractionof thepopulation to
deliver compounds either for fertility control or for rodenticidal treat-
ment toachieve thedesiredpopulation-level effects. This valuemight
be even higher if bait was to be offered for longer than the 7 days in
this studyor at higherbait density. Eightbait stations at theperimeter
of the enclosure or ten baited tunnels in the 0.25 ha area of an enclo-
surewere sufficient to target a largeproportiononvolespresent. This
is not surprisingbecause commonvole home ranges of 125m2 allow
most animals access to bait duringmovement in or occasionally ven-
turing outside their home ranges.24

Baiting strategy, sex, season, and reproductive status did not
generally affect the proportion of common voles accessing bait.
However, there was an effect of body weight. While body weight
was negatively correlated to the percentage of voles consuming
bait in spring, it was positively correlated to bait uptake in
autumn. This indicates season effects that can alter diet choice
and/or dominance structure.25,26 In spring, there are large over-
wintered individuals present that reproduce early and may
require more food to boost reproduction. In autumn, many juve-
niles are present when the reproductive season comes to an
end. Young (and therefore lighter) animals have a higher food
intake rate than heavier conspecifics, which may explain the
change of pattern in autumn.20 This may explain the negative
effect of body weight on Et-IPA residues in autumn and winter

Figure 1. (a) Probability of Et-IPA residues in common vole blood and
(b) Et-IPA blood concentration (in ng/g/body weight) for male (m) and
female (f) voles with blood residues considering the different baiting strat-
egies (bait box – black symbols, tunnel baiting – red symbols) and seasons.
Measure of variance is ± standard error.
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as less food competition, which gives access to bait not only to
dominant but also subordinate individuals, seems unlikely at
these seasons.25

There were several intrinsic and extrinsic effects on Et-IPA con-
centration, which reflects the amount of bait consumed. Neither
baiting strategy performed consistently better in all conditions
considered and some of the effects (body weight) were not con-
sistent across models. In particular seasons, one or the other bait-
ing strategy tended to be superior but differences in residuesmay
not be highly relevant as long as an effective dose is delivered to
reach the management aim.
The findings for body weight effects on the probability of bait

uptake were confirmed by Et-IPA concentration that was lower in
heavier animals in autumn/winter and higher densities were also
correlated to lower residues. During summer, few voles
were present and if so, most of them in the same enclosure despite
of similar procedures of balancing uneven densities. As a result,
data from summer is of high variance and may lack robustness.
It is somewhat surprising that higher Et-IPA blood residues

occurred in non-reproductive animals, because lactating Brandt's
voles (Lasiopodomys brandtii, Radde, 1861) have higher energy
demands than non-lactating females.27 This is similar in ricefield
rats and house mice.25,26 The contrasting finding of higher Et-
IPA residues in non-reproductive animals was restricted to
autumn at the end of the reproductive period. It seems unlikely
that bait boxes are more attractive or more accessible to non-
reproducing voles so other unknown mechanisms may matter.
When managing rodent pest species, effective baiting strategies

are essential for both fertility control and the use of rodenticides.

For both methods, an appropriate percentage of the population
has to consume the bait to achieve the desired effects at popula-
tion level.5,28,29 Our results indicate that tunnel baiting and the
use of bait boxes can deliver bait to a large percentage of individ-
uals. Tunnel baiting is labour intensive because bait has to be
placed manually in tunnel entrances unless (expensive) machinery
is used. This technique is restricted to crop stages with low vegeta-
tion that allows finding of tunnel entrances. The use of bait boxes is
rare. It requires manual filling of stations, distribution, checks and
removal. Future research could consider developing biodegradable
pre-filled bait stations that can be distributedwithmachinery. More
bait was consumed from bait stations in winter and at tunnel bait-
ing in autumn. Usually, bait application is conducted at the start of
the breeding season in late spring. At this time, baiting strategy
does not seem tomatter. However, if baiting is conducted in winter
or autumn, one or the other technique may yield better results but
crop stage (vegetation height) may limit suitability.
Some rodent populations can recover rapidly from manage-

ment action that lower population size. For example, midday ger-
bils (Meriones meridianus, Pallas, 1773) recover due to immigration
within 4–8 months and common voles even within 10–15 days
after population collapses.30 Insufficient amount of bait, duration
or inappropriate timing of baiting can lead tomanagement failure
and waste of resources.31 Zinc phosphide bait is the most com-
mon rodenticidal compound used in Europe to manage overa-
bundant common vole populations.32 Assuming a wheat grain
weight of about 45 mg, bait uptake of 0.28 g is equal to 6.2 wheat
grains.33 Assuming a zinc phosphide concentration of 0.8 g/kg
(this is the lowest concentration of products available in

Figure 2. (a) Probability of Et-IPA residues in common vole blood and
(b) Et-IPA blood concentration (in ng/g/body weight) for reproductive
(1) and non-reproductive (0) common voles with blood residues consider-
ing the different baiting strategies (bait box – black symbols, tunnel
baiting – red symbols) and seasons. Measure of variance is ± standard
error.

Figure 3. Effect of body weight (in grams) on (a) the probability of Et-IPA
blood residues and (b) Et-IPA blood concentration (in ng/g/body weight)
in common voles with blood residues considering the different baiting
strategies (bait box – black symbols, tunnel baiting – red symbols) and sea-
sons (95% confidence intervals in grey).
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Germany), bait uptake of 0.28 delivers 2.24 mg zinc phosphide to
a 20 g vole. This is almost three-fold the median lethal dose
(LD50) of 39 mg/kg.34 Similar calculations could be performed
to estimate uptake of other active ingredients such as compounds
relevant for future fertility control.

5 CONCLUSION
We tested two baiting strategies in enclosure trials with common
voles. Both baiting strategies seem to be suitable to reach a large
percentage of the population but extrinsic and intrinsic effects on
bait uptake seem inconsistent. Overall, tunnel baiting results in
82% animals consuming bait, slightly more than the 73% when
using bait boxes. Both percentages seem to be sufficient for fertil-
ity control. A higher percentage might be necessary for rodenti-
cide use. However, the results of this enclosure study need
validation in the field.
This study provides valuable information for field experiments

and field application including the negative correlation of pop-
ulation density and bait consumption that points towards
increasing bait density when abundance is high. Knowledge
resulting from field trials should help farmers to select the most
appropriate baiting strategy and application rate to manage
common voles.
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