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Abstract: The tropical forests in the Amazon store large amounts of carbon and are still considered a
carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due
to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known
from field experiments that forest dynamics at the edge of forest fragments are altered by changes in
the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will
affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study
is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to
identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework
combining forest modelling and lidar-generated forest structure information was combined with
radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to
investigate changes between highly fragmented and less-fragmented landscapes. This study found
that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast,
the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second
step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly
fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and
on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon
rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in
less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest
landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon
rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative
effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest
landscapes increase, the effect may be even more intense. By combining lidar, radar and forest
modelling, this study shows that it is possible to map forest structure, and thus the degree of forest
degradation, over a large area and derive more detailed information about the carbon dynamics of
the Amazon region.

Keywords: GEDI; lidar; fragmentation; radar; forest model; tropical forest

1. Introduction

The Amazon rainforest is the largest intact tropical rainforest on Earth and stores a
huge amount of carbon [1]. Yet, it is still considered a carbon sink [2,3], although first
studies show a negative trend due to ongoing deforestation [3]. Deforestation not only
leads to habitat loss and high carbon emissions, it also leads to a fragmented landscape
of forests [4,5]. In South America, deforestation has been observed at a rate of 0.3% since
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2000 [5–7]. Therefore, the forests in these fragmented landscapes are partially degraded [8].
The main cause of forest degradation is through forest edge effects driven by forest frag-
mentation [9]. The microclimate at the forest edge changes and thus forest dynamics are
altered. The negative consequences of forest fragmentation in the first 100–300 m from the
edge are losses in species diversity, increased tree mortality, less biomass and increased
CO2 emissions due to mortality and degradation [10–12].

Ongoing deforestation causes more forest edges, and therefore increased CO2 emis-
sions [1,4]. Model projections revealed that by 2100, 50% of the tropical forest area will
be at the forest edge, resulting in additional carbon emissions of up to 500 million tons of
carbon per year [5].

Since forest fragmentation has been accelerating for many decades, the edge effects
should be visible in large parts of the Amazon. Previous studies estimated biomass changes
in forests for the whole tropics at a coarse spatial resolution of 500 m [13]. They found that
biomass was reduced in the first 500 m by ca. 25%. One explanation for this decline could
be the changes in forest dynamics at forest edges, but this is difficult to assess due to the
coarse resolution of the used satellite products.

To sum up, changes in the forest edges were observed either locally (with empirical
data or lidar campaigns) or globally with low spatial resolution (500 m–1000 m). Since the
forest edge effects only occur in a range of 100 m to 300 m, it is clear that a resolution of
500 m is not sufficient for such analysis. Furthermore, the use of passive optical satellite
data are not necessarily appropriate for measurements in the dense vegetation of the
Amazon and detecting forest degradation [14]. Active systems such as lidar are better
suited for this, such as the lidar satellite mission GEDI [14].

By linking such lidar data with an individual-based forest model, various forest
properties can be directly examined at the footprint level of the lidar measurement (here,
25 m), such as biomass and productivity [3,15,16]. In addition, radar measurements make
it possible to distinguish between areas where the forest is currently still present and where
the forest has previously been lost [17]. Such forest/non-forest maps (here from TanDEM-X
with 50 m resolution) help to assess the current state of forest fragmentation [17]. By
combining the radar-derived forest maps and high-resolution lidar remote sensing data
with an individual-based forest model, the following questions can be answered:

(1) How does forest biomass and productivity differ in the edge and core area of forest
stands throughout the whole Amazon?

(2) How strong is the effect of fragmentation on forest biomass and productivity for
forest landscapes?

To answer these questions, the forest model FORMIND is used. Lidar data from the
GEDI mission for the entire Amazon rainforest was integrated into this forest model. To
determine the degree of fragmentation, we evaluated forest/non-forest maps from the
TanDEM-X mission.

We suspect considerable differences in biomass and productivity depending on
whether a forest stand is located on the edge or in the intact core area of a forest area.
This should also lead to considerably lower biomass and productivity values in highly
fragmented landscapes.

2. Materials and Methods

In this study, the lidar data from NASA’s Global Ecosystem Dynamics Investigation
(GEDI) mission and radar data from DLR’s TanDEM-X mission were combined and inte-
grated into the forest model FORMIND. The GEDI and FORMIND data fusion ensures
the derivation of forest parameters (like biomass and productivity) through waveform
matching. In addition, the TanDEM-X forest/non-forest data (50 m × 50 m) were used
to investigate the state of forest fragmentation. By linking the derived forest parameters
with the state of forest fragmentation, differentiated information on the forest parameters
in forest edge areas and in forest core areas can be extracted and analyzed. It should be
noted that the derivation of all forest parameters was performed at the GEDI footprint level



Remote Sens. 2024, 16, 501 3 of 16

(diameter of ~25 m) and the fragmentation state analysis at a resolution of 50 × 50 m. Only
for the landscape analysis (see Section 3.3), for some visualization purposes, were these
results aggregated at 100 km2 areas.

2.1. Study Area

This study addressed an ecoregion of the Amazon rainforest with an area of 5.4 × 106 km2

and ranged from 10.5◦N −80.0◦W to −44.5◦S −18.0◦E. For the building of the mask for the
Amazon ecoregion, the Ecoregion 2017 dataset was used [18].

2.2. Degree of Fragmentation from DLR TanDEM-X

The TerraSAR-X add-on for Digital Elevation (TanDEM-X) is a German radar satellite
from the German Aerospace Center (DLR) and the first bistatic SAR mission. The aim of
this mission was to generate a consistent global digital elevation model with high accuracy.
TanDEM-X, launched in 2007, and TerraSAR-X, launched in 2010, were the first configurable
Synthetic Aperture radars (SAR) in space. Both radar satellites moved around the Earth at
an altitude of 500 km and flew in close formation [17,19].

For this study, data from the TanDEM-X global binary forest/non-forest Map (FNF),
developed by the Microwaves and Radar Institute at the German Aerospace Center (DLR),
were used [20]. The available data of TanDEM-X were captured between 2011 and 2016
using the stripmap single polarization (HH) mode of the TanDEM-X bistatic inerferometric
synthetic aperture radar (InSAR) with a spatial resolution of 50 × 50 m and divided
into 1◦ by 1◦ geocells. Pixels flagged as urban areas and invalid pixels were classified as
non-forest [17,20].

To determine the distance of individual forest areas from the forest edge, the Hoshen–
Kopelman algorithm was used [21]. This cluster detection algorithm has already been used
in [4,5,22] for fragmentation analysis and forest edge detection. The connection between
a forest pixel and forest in neighboring pixels was determined assuming a four-pixel
neighborhood. An additional feature of this algorithm is that it determines the distance of
each forest pixel to the nearest forest edge. This additional feature was already implemented
and tested in [5]. These estimated distances make it possible to distinguish forest core areas
from forest edge areas. Forest edge forest areas correspond to forest pixels with a distance
of less than 100 m to the forest edge. If a non-forested area, e.g., a river or a road, is wider
than 50 m, the neighboring forest borders are considered as edges. It should be noted that
the algorithm cannot distinguish between anthropogenic and natural edges. The algorithm
is implemented as a C++ program and calculates the distances as efficiently as possible.
Further details of this forest fragmentation algorithm are explained in Fischer et al. 2021 [5].

2.3. Lidar Data from NASA GEDI

The Global Ecosystem Dynamics Investigation (GEDI) is a NASA mission that mea-
sures forest structure in temperate and tropical forests between 51.6◦ north and south. It
is a large-footprint lidar system placed on the International Space Station (ISS) since 2018
and it generates waveforms and has a footprint diameter of ~25 m. The aim of this mission
was to determine the effects of changing climate and land use on ecosystem structure and
dynamics [14].

The GEDI laser system consists of three lasers: a coverage laser that is split into two
lasers and two full power lasers that remain unchanged. The tracks are located within a
~4.2 km wide strip with a spacing of ~600 m and a footprint spacing per track of 60 m.
The GEDI data consist of footprint and raster datasets and include information on the 3D
characteristics of the vegetation. These data are associated with different levels of data
processing. For this study, the Level2A data were used. These data contain ground height,
canopy height and relative height percentiles (here a relative height of 95% (RH95) was
used) [14].

For this study, data from 2019 to 2020 for the Amazon rainforest ecoregion were
used. After filtering the data by quality flag and workflow processes about 110 million
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individual GEDI waveforms were available [3,23]. GEDI waveforms provide structure-
based snapshots of aboveground biomass and forest productivity that can be decoded with
the FORMIND forest model.

2.4. Individual-Based Forest Model FORMIND

FORMIND is an individual-based forest gap model developed in the late 1990s to
simulate forest dynamics in high spatial resolution patches. In addition, physiological
processes at the tree level were simulated [24–28]. The main processes of FORMIND are
tree growth, tree mortality, recruitment and tree competition. In this study, we applied
FORMIND to the tropical forest in the Amazon [15,26] where the parametrization was
chosen as in Rödig et al. and Bauer et al. [3,15].

The forest model represents tree diversity by grouping tree species into three plant
functional types (PFTs) [29] in the tradition of global vegetation models (PFT grouping
from Rödig et al. [15,16,26] and Bauer et al. [3]). These three PFTs represent different succes-
sional stages: shade-intolerant pioneer species, shade-tolerant climax species and medium
shade-tolerant tree species. It has been shown in several studies that this grouping could suf-
ficiently describe forest dynamics and changes in species group compositions [15,26,30,31].
In addition, the parameters of the dominant PFT with the climax tree species were regionally
adjusted. It was found that the mortality parameters of the forest model for shade-tolerant
late-successional trees could be adjusted to better match forest inventory data and repro-
duce local measurements of aboveground forest biomass, mean wood density and basal
area [26]. The regional mortality parameters depend on local characteristics such as climate
conditions (e.g., precipitation) and soil properties (e.g., clay content), which were derived
from global maps [26].

We then determined forest parameters like the aboveground biomass, net primary
productivity, gross primary productivity and leaf area index of trees. In order to implement
the FORMIND model for the complete Amazon rainforest, the Amazon was split into
environmental regions and we performed forest simulations for the whole Amazon in high-
resolution including simulations of lidar waveforms [26]. This well-established workflow,
which combines FORMIND and GEDI data using waveform matching, determines the
current forest condition in the Amazon region [3,16]. For the waveform matching (Figure 1),
each real GEDI waveform was compared with hundreds of simulated lidar waveforms in
the respective environmental region to determine the state of the forest. The simulated
waveforms with the 50 best overlaps were used to determine the current forest condition
because these waveforms matched best with the real GEDI data. Then, for the best matching
forest stands it was possible to calculate forest attributes like the aboveground biomass, net
ecosystem exchange, gross primary productivity, stem size distribution and leaf area index.
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profiles derived from a forest model (red). The forest model simulates site-specific forest dynamics
and the corresponding lidar profile for each simulated forest stand. The real GEDI lidar measurements
act as a filter to select the current forest state from all possible forest states. More details on this
approach can be found in [3,16].
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With this model-data fusion, we analyzed different forest properties at the footprint
level of a GEDI shoot. The forest properties investigated were aboveground biomass (AGB
in Mg organic dry mass (odm)), net primary productivity (NPP), gross primary productivity
(GPP) and leaf area index (LAI). All attributes were calculated at the individual tree level
and then summed up for all trees within the footprint. GPP is the sum of the gross primary
productivities of all simulated trees within the footprint. NPP is the difference between
GPP and maintenance respiration of trees. LAI is defined as the leaf area per ground surface
(does not include grass and bushes).

2.5. Comparison with Other Satellite Data

In our model-data workflow, we derived the aboveground biomass and net primary
productivity (NPP) values for the forests in the Amazon (among other things). We compared
these values with maps from other sources: the aboveground biomass map for forests from
Santoro et al. (radar remote sensing) [32] and the NPP map from MODIS (optical remote
sensing) [33].

The aboveground biomass map contains data from 2018 with a resolution of 100 m. The
NPP map from MODIS contains data from 2000 to 2010 with a resolution of approximately
1000 m. Both maps were adapted to the grid of the forest/non-forest map used in this study
(50 m). This made it possible to distinguish the biomass and NPP values for the forest edge
and core areas. We used R for the calculations.

3. Results
3.1. The Current State of Forest Distances in the Amazon

We analyzed more than 150 million lidar shots from the GEDI mission (25 m footprint) for
the entire Amazon region and calculated the distance to the forest edge for each measurement
using the TanDEM-X forest/non-forest map (50 m resolution X-band radar) (Figure 2a). The
distances cover a range with values up to 42 km. On average, the distance from a forest stand
to the edge is 1750 m (Figure 2c). The obtained distances to the forest edge in areas along the
Amazon River, in the area of the Arc of Deforestation and near the Andes are rather small.
Here, the distances of forests to non-forest areas range from 0 to 500 m. These values indicate a
strong fragmentation of the rainforest. More intact areas with larger distances to the edge can
be observed in central Amazon. Here, minor fragmentation has occurred and the distances to
the nearest forest-free patch are at least 1500 m.
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1500 m distance. The map has a resolution of 1 km2, also the analysis was performed at 50 m
resolution. In addition, a zoomed-in section of a selected region is shown. In (b), the TanDEM-X
forest/non-forest map with a resolution of 50 m, as well as the GEDI footprints (grey) available in
this area (here: approx. 190,000 shots) and a part of the Amazon river (black) is shown. In (c), the
histogram corresponding to (a) with a resolution of 1 km2 is shown. The mean value of the average
distances to the forest edge is shown in red at 1750 m. The maximum value of the mean distance to
the forest edge in the Amazon is 42 km. A histogram corresponding to (a) on footprint level can be
found in the attachment (Figure S1).

3.2. Impact of Forest Fragmentation on Amazon Rainforest at Forest Stand Level

Each GEDI shot was assigned to forest edge or forest core areas using the TanDEM-X
forest/non-forest map. A forest edge is located up to 100 m away from non-forest areas
and a forest core is located more than 100 m away from non-forest areas (Figure 3a). In
this study, edge and core areas are distributed as follows: 6.5% of the Amazon is edge area
and 93.5% is core area. Lidar waveform matching with a forest model provides important
forest attributes (aboveground biomass AGB, net primary productivity NPP, gross primary
productivity GPP and leaf area index LAI) for all GEDI shots (Table 1, Figures 3 and S2).
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Figure 3. The density distribution of aboveground biomass (b) and net primary productivity (c) for
edge and core areas. Core and edge areas are defined as in the scheme shown in (a). Non-forest is
at 0 m, edge ranges from 0 to 100 m distance from non-forest and core areas are at >100 m distance
from non-forest areas. In the density plots, the mean value of aboveground biomass and net primary
productivity is shown accordingly in the coloring of edge and core. The relative frequency was
plotted for all 110 million GEDI shots for the respective forest attributes at footprint level.
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Table 1. Mean values and standard deviation, the coefficient of variation (CV) for the four forest
attributes considered: aboveground biomass, net primary productivity, gross primary productivity
and leaf area index. In addition, the relative difference between the mean values of the edge and the
mean values of the core area is given. The values were determined for the 110 million GEDI shots
that lie in the edge and core area. CV is the ratio of the standard deviation to the mean.

Edge (CV) Core (CV) Difference between Core and Edge Values

Aboveground biomass [Mg odm ha−1] 172 ± 86
(50%)

235 ± 85
(36%) −27%

Net primary productivity [Mg C ha−1 a−1] 5.4 ± 1.5
(29%)

4.7 ± 1.3
(28%) +13%

Gross primary productivity [Mg C ha−1 a−1] 22 ± 7
(31%)

24 ± 6
(23%) −8%

Leaf area index [-] 3.9 ± 1.4
(35%)

4.6 ± 1.1
(25%) −15%

The mean value for AGB in the forest edge area is 172 ± 86 Mg odm ha−1 compared
to 235 ± 85 Mg odm ha−1 in the core area. This means AGB is 37% higher in the forest core
area than in the edge area. The coefficient of variation (CV) is 50% for the edge area and
36% for the core area, meaning higher AGB variability in the forest edge area than in the
forest core area. (Table 1 and Figure 3a).

The NPP also shows different values for forest edge (mean: 5.4 ± 1.5 Mg C ha−1 a−1)
and core (mean: 4.7 ± 1.3 Mg C ha−1 a−1) areas which differ by 13%. The distribution of
NPP values in forest core areas is slightly narrower and thus less dispersed compared to
NPP values in forest edge areas. It is noticeable that the CV of the two forest areas is similar
(Figure 2c, Table 1).

In addition to AGB and NPP, the forest attributes GPP and NPP were also exam-
ined (Figure S2, Table 1). The obtained mean value for GPP in the forest edge area is
22 ± 7 Mg C ha−1 a−1 and 24 ± 6 Mg C ha−1 a−1 in the core area (Figure S2a, Table 1). For
LAI, the mean value in the core is 18% larger than in the edge (Figure S2b, Table 1).

In addition to the analysis of forest stands, forest core areas were also investigated
(Figures S3 and S4). Since no edge effects occur in the core area of forests, these AGB and
NPP values should only depend on the site factors and not necessarily on fragmentation.
We observe that low values of AGB dominate particularly in the areas of the Arc of Defor-
estation, on the edge of the Andes and on the Amazon River. Biomass values range from
approx. 30–150 Mg odm ha−1 and the net primary productivity values are between 1 and
3 Mg C ha−1 a−1.

3.3. Impact of Forest Fragmentation on Amazon Biomass and Productivity at Landscape Level

In the first part of the study (Section 3.2), we analyzed the forest biomass and produc-
tivity on a fine scale (25 m). In most cases, only small differences were found between forest
edge and core areas (e.g., for NPP +13%, for AGB −27%). In the second part of this study,
we analyzed the impacts of fragmentation on forests on a landscape scale (10 × 10 km2).
The classification of the landscape level was based on the degree of forest fragmentation.
We divided the Amazon rainforest into three different classes: low-fragmented forest,
moderate-fragmented forest and highly fragmented forest (Figure 4). Low-fragmented
forest are regions in which less than 10% of the GEDI shots are in forest edge areas.
Moderate-fragmented areas have between 10 and 25% edge area and highly fragmented
areas are landscapes with more than 25% forest edge area. For the landscape analysis, this
classification was used to differentiate between the various landscape types (Figures 4–7).

The three different fragmentation landscape types are distributed as follows: 53.5% of
the Amazon is low-fragmented, 18.3% moderate-fragmented and 28.2% highly fragmented
(Figure 4). It is evident that low-fragmented landscapes dominate in the central Amazon.
Highly fragmented landscapes are mainly found in the areas of the Arc of Deforestation, at
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the edge of the Andes and along the Amazon River. Moderate-fragmented landscapes are
found in the transition zones.

The aboveground biomass, net primary productivity, gross primary productivity and
leaf area index of forests were examined (10 × 10 km2). As a result, frequency distributions
of the forest attributes were obtained (Figures 5 and S7), including the respective mean
values for low-fragmented, moderate-fragmented and highly fragmented areas.
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Figure 4. The Amazon map divided into three regions: low-fragmented (petrol blue), moderate-
fragmented (yellow) and highly fragmented (purple). In each 10 km2 cell, the GEDI shots were
counted and then the percentage of edge regions was calculated. If less than 10% of the GEDI shots
in the considered tile are in the edge region, it is a low-fragmented area, tiles with an edge percentage
between 10% and 25% are assigned as moderate-fragmented areas, and regions with more than 25%
edge region are highly fragmented. A map showing the Amazon-wide values of edge proportions
can be found in the attachment (Figure S6).
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We also analyzed how the biomass of core forest is influenced by fragmentation (of 
the landscape). The behavior of the biomass in the core area was then investigated with 
the percentage of edge per 100 km2 tile (Figure 6). For landscapes with higher fragmenta-
tion, lower biomasses dominate, whereas for landscapes with a low edge proportion, core 
forests show high biomass. For edge percentages of 90–100%, the biomass values are be-
tween 80 and 180 Mg odm ha−1, whereas the biomass for edge percentages of 0–10% is 
mainly between 130 and 350 Mg odm ha−1. From this, we derive that for high biomass 
values core forests show a dependency on fragmentation (see also Section 4). 

3.4. The Relationship between Forest Properties in Fragmented Landscapes 
The relationship between aboveground biomass and productivity (Figures 7 and S8) 

was investigated within 10 × 10 km2 tiles. The tiles were assigned to the respective land-
scape classes according to the proportion of edge area.  

Figure 6. A Scatterplot showing the amount of forest edge area in a forested landscape against the
aboveground biomass of forest core area in this landscape. The proportion was calculated by dividing
the area of edge forest by the total forest area in a landscape. One pixel corresponds to a 100 km2 tile
in the Amazon. Note that the vertical lines at 0%, 50% and 100% result from the landscape pixels
with a sparse amount of forest, and thus a low number of lidar measurements (<20 GEDI shots per
100 km2). Typically, a 100 km2 landscape pixel has about 2000 lidar measurements. The vertical lines
at 0% and 100% correspond to landscape pixels in which there are only core areas (0% fraction of
forest edge area) or only edge areas (100% fraction of forest edge area).

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 7. Sca erplot showing the relationship between the aboveground biomass and net primary 
productivity. Each point represents a 10 × 10 km2 section in which the GEDI shots and the associated 
forest a ributes were averaged and assigned to the fragmentation landscape types (low-frag-
mented, moderate-fragmented and highly fragmented) based on their edge proportion. 

This analysis shows two trends: on the one hand, an increasing NPP with increasing 
biomass and, on the other hand, a decreasing NPP with increasing biomass (Figure 7). For 
forest landscapes with low aboveground biomass (less than 150 Mg odm ha−1), productivity 
increases from 3 to 6.5 Mg C ha−1 a−1 with increasing biomass. These landscapes are charac-
terized by high fragmentation. The highest NPP values (around 6-7 Mg C ha−1 a−1) are ob-
tained with a forest biomass in the landscape of around 150 Mg odm ha−1. If the forest bio-
mass is greater than 150 Mg odm ha−1, the productivity is between 4 and 6 Mg C ha−1 a−1. 
Here, productivity decreases slightly with increasing biomass. Landscapes with a biomass 
greater than 150 Mg odm ha−1 are characterized as moderate- or low-fragmented. 

3.5. Comparison of Biomass and Productivity with Other Satellite Products 
In our study, we found that differences in forest a ributes depend on whether the 

forest was in an edge or core area. We observed a biomass of 172 Mg ha−1 in the edge area, 
whereas it was 235 Mg ha−1 in the core area (Table 1). This result is confirmed when the 
Santoro biomass map [32] is also divided into forest edge and core areas (Figure 8a,b). 
This analysis shows a clear agreement with our biomass estimations, as well as confirming 
the differences between the forest edge and core (Santoro: mean for forests at edge 186 Mg 
ha−1; Santoro: mean for core forests 248 Mg ha−1). 

A similar comparison was made between the NPP values from MODIS. In general, 
for low and medium NPP values there is a good agreement between the NPP values esti-
mated by MODIS and the method of this study (Figure 8c,d). Our NPP estimates tend to 
be slightly higher, which is mainly due to the fact that our workflow can detect structural 
changes in the forest, and thus also forest degradation. MODIS generally tends to produce 
lower NPP estimates, which has already been discussed in other studies [15,34].  

In our study, we found that NPP is 5.4 Mg C ha−1 a−1 in the edge area and slightly 
lower at 4.7 C ha−1 a−1 in the forest core area (Table 1). Although MODIS provides overall 
lower NPP estimates, our observed trend is also confirmed by the MODIS measurements: 
the NPP from MODIS is 4.5 Mg C ha−1 a−1 for forest edges and 3.8 Mg C ha−1 a−1 for core 
forests. 

Figure 7. Scatterplot showing the relationship between the aboveground biomass and net primary
productivity. Each point represents a 10 × 10 km2 section in which the GEDI shots and the associated
forest attributes were averaged and assigned to the fragmentation landscape types (low-fragmented,
moderate-fragmented and highly fragmented) based on their edge proportion.

The frequency distribution of the aboveground biomass (Figure 5a) shows a clear
difference in the distributions for the three fragmentation landscape types with the highest
values in low-fragmented landscapes. Low-fragmented areas show a mean of 238 Mg odm
ha−1, moderate-fragmented areas have a mean of 210 Mg odm ha−1 and highly fragmented
areas have a mean of 171 Mg odm ha−1. For low-fragmented areas a lower standard
deviation is observed than in highly fragmented areas. The CV for highly fragmented areas
(24%) is 1.5 times greater than the CV for low-fragmented areas (16%).

For net primary productivity (Figure 5b), the mean values for all fragmentation types
are quite similar (Table 2). Highly fragmented areas have a mean value of 5.2 Mg C ha−1 a−1,
moderate-fragmented areas a mean value of 4.9 Mg C ha−1 a−1 and low-fragmented ar-
eas a mean value of 4.6 Mg C ha−1 a−1. The mean value therefore increases with the
degree of fragmentation.
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Table 2. Mean values and standard deviations, as well as the coefficient of variation (CV) averaged
within a 10 × 10 km2 section for the four forest attributes considered: aboveground biomass, net
primary productivity, gross primary productivity and leaf area index. Each fragment was assigned
to a fragmentation landscape type based on the amount of edge area it contained: low-fragmented,
moderate-fragmented and highly fragmented. CV is the ratio of the standard deviation to the mean.

Highly Fragmented (CV) Moderate Fragmented (CV) Low Fragmented (CV)

Mean aboveground biomass
[Mg odm ha−1]

171 ± 42
(24%)

210 ± 38
(18%)

238 ± 37
(16%)

Mean net primary productivity
[Mg C ha−1 a−1]

5.2 ± 0.4
(7.6%)

4.9 ± 0.3
(6.7%)

4.6 ± 0.3
(7.2%)

Mean gross primary productivity
[Mg C ha−1 a−1]

22 ± 3
(14%)

23 ± 2
(10%)

24 ± 2
(8%)

Mean leaf area index 3.8 ± 0.6
(16.3%)

4.3 ± 0.5
(12.5%)

4.6 ± 0.5
(11.2%)

For gross primary productivity, we observe slightly higher values in low-fragmented
landscapes (Figure S7a and Table 2): 24 Mg C ha−1 a−1 for low-fragmented areas and
22 Mg C ha−1 a−1 for highly fragmented areas.

The mean values of the leaf area index are 4.6 for low-fragmented areas, 4.3 for
moderate-fragmented areas and 3.8 for highly fragmented areas (Table 2, Figure S7b). The
CV also increases for the areas with higher fragmentation.

We also analyzed how the biomass of core forest is influenced by fragmentation (of
the landscape). The behavior of the biomass in the core area was then investigated with the
percentage of edge per 100 km2 tile (Figure 6). For landscapes with higher fragmentation,
lower biomasses dominate, whereas for landscapes with a low edge proportion, core forests
show high biomass. For edge percentages of 90–100%, the biomass values are between
80 and 180 Mg odm ha−1, whereas the biomass for edge percentages of 0–10% is mainly
between 130 and 350 Mg odm ha−1. From this, we derive that for high biomass values core
forests show a dependency on fragmentation (see also Section 4).

3.4. The Relationship between Forest Properties in Fragmented Landscapes

The relationship between aboveground biomass and productivity (Figures 7 and
S8) was investigated within 10 × 10 km2 tiles. The tiles were assigned to the respective
landscape classes according to the proportion of edge area.

This analysis shows two trends: on the one hand, an increasing NPP with increasing
biomass and, on the other hand, a decreasing NPP with increasing biomass (Figure 7). For
forest landscapes with low aboveground biomass (less than 150 Mg odm ha−1), productiv-
ity increases from 3 to 6.5 Mg C ha−1 a−1 with increasing biomass. These landscapes are
characterized by high fragmentation. The highest NPP values (around 6–7 Mg C ha−1 a−1)
are obtained with a forest biomass in the landscape of around 150 Mg odm ha−1. If
the forest biomass is greater than 150 Mg odm ha−1, the productivity is between 4 and
6 Mg C ha−1 a−1. Here, productivity decreases slightly with increasing biomass. Land-
scapes with a biomass greater than 150 Mg odm ha−1 are characterized as moderate- or
low-fragmented.

3.5. Comparison of Biomass and Productivity with Other Satellite Products

In our study, we found that differences in forest attributes depend on whether the
forest was in an edge or core area. We observed a biomass of 172 Mg ha−1 in the edge area,
whereas it was 235 Mg ha−1 in the core area (Table 1). This result is confirmed when the
Santoro biomass map [32] is also divided into forest edge and core areas (Figure 8a,b). This
analysis shows a clear agreement with our biomass estimations, as well as confirming the
differences between the forest edge and core (Santoro: mean for forests at edge 186 Mg ha−1;
Santoro: mean for core forests 248 Mg ha−1).
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Figure 8. Comparison between the results of this study and other satellite data. Aboveground
biomass (AGB; a,b) and net primary productivity (NPP; c,d) were compared for forests in the
Amazon (frequency distribution, resolution for biomass 100 m × 100 m, for NPP 1000 m × 1000 m).
A distinction was made between the values in the forest edge area (left) and in the core area (right).
The biomass values of this study were compared with the biomass values of Santoro et al. [32], NPP
estimates with the NPP values derived from MODIS satellite [33].

A similar comparison was made between the NPP values from MODIS. In general, for
low and medium NPP values there is a good agreement between the NPP values estimated
by MODIS and the method of this study (Figure 8c,d). Our NPP estimates tend to be
slightly higher, which is mainly due to the fact that our workflow can detect structural
changes in the forest, and thus also forest degradation. MODIS generally tends to produce
lower NPP estimates, which has already been discussed in other studies [15,34].

In our study, we found that NPP is 5.4 Mg C ha−1 a−1 in the edge area and slightly
lower at 4.7 C ha−1 a−1 in the forest core area (Table 1). Although MODIS provides overall
lower NPP estimates, our observed trend is also confirmed by the MODIS measurements:
the NPP from MODIS is 4.5 Mg C ha−1 a−1 for forest edges and 3.8 Mg C ha−1 a−1 for
core forests.

4. Discussion
4.1. Summary

In this study, lidar data from the GEDI mission and radar data from the TanDEM-X
mission were coupled with the simulations from a high-resolution forest model to obtain
information on forest attributes and fragmentation states for forests in the Amazon. We
found smaller differences in forest attributes at the forest stand level between the forest
edge and forest core areas. At landscape level, larger differences in the forest attributes
were observed for highly fragmented landscapes.
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4.2. Impact of Fragmentation on Edge and Core Forests

In this study, differences in aboveground biomass, net primary productivity, gross
primary productivity and leaf area index were analyzed between the edge and core areas
(forest stand level). Except for net primary productivity, higher values were found in the
core than in the edge forest areas. We assume that most of these observations result from
edge effects. Edge effects occur due to an altered microclimate (e.g., wind or temperature),
altered species composition or increased mortality in forests [10–12]. This leads to a
reduction of biomass in forest edge areas. It is known that forest fragmentation also
alters the dynamics in the edge area of forests [5,11,22,35–38]. Pütz et al. [1] found that
the aboveground biomass in large fragments was reduced by up to 14.7%. For small
fragments, the biomass was even reduced by 68.5%. In our study, the fragment sizes were
not considered, but we obtained an average of 27% lower values for biomass in the edge
areas than in the core areas. Chaplin–Kramer et al. [13] found that the biomass in the first
500 m of a forest fragment is on average 25% lower than in the forest core using optical
satellite measurements (with limitation due to saturation effects).

Surprisingly, in our analysis, the net primary productivity in the edge area is 13%
higher than in the core area, although the biomass is lower at the edge [39,40]. This can be
explained, for example, by a change in species composition: productive pioneer species
can dominate in the forest edge.

Please note that reductions in biomass and productivity depend not only on edge
effects, but that there is also a history of fragmentation. It is often not known how long
ago a deforestation event occurred. Depending on how long the edge effects have been
acting, the differences in biomass can be larger or smaller. A decrease in biomass after
deforestation can take up to 40–60 years [10]. The lidar measurements used in this study
give us just one snapshot in time. In addition, other factors can influence the biomass or
productivity at the edge of forests. These include, for example, site factors (such as climate
and soil properties) or elevation (topology).

4.3. Fragmentation at the Landscape Scale

Since some questions remain unanswered in the footprint scale area, a larger scale was
also analyzed. On the landscape scale, the proportion of the edge area compared to the
total forest area of the landscape was analyzed as a measure of fragmentation state. We
suspect that landscapes with a higher degree of fragmentation were deforested a longer
time ago [41,42].

One result of our analysis shows that the gross primary productivity has lower values
for highly fragmented landscapes in comparison with lower-fragmented landscapes. The
results of net primary productivity at the landscape level are surprising because, in contrast
to the GPP, it shows higher values in highly fragmented areas when compared with areas
with a moderate or low fragmentation. There may be several reasons for this, but one main
reason could be a different species composition in favor of fast-growing pioneer species.
We also derived LAI values from the forest model. Typical values are in agreement with the
MODIS measurements [43]. Please note, there could also be differences in LAI values. This
is because the FORMIND forest model does not take into account the leaf area of shrubs or
grasses, only the leaf area of trees. Please note, the workflow presented here has already
been extensively tested for the Amazon against field data on forest biomass (114 plots, [16])
and against forest productivity (GPP and NPP from MODIS [3,16]). The quality of the used
lidar simulator has been tested against field data from a large forest plot [16,44].

At the same time, it should be noted for the results at landscape level, that the recogniz-
able differences between the fragmentation types are not only influenced by fragmentation
itself, but regional effects can also have an influence. For example, forest biomass in the
Andes is lower due to elevation and temperature. Biomass and productivity are also low in
the Arc of Deforestation region because of the amount of deforestation that has occurred
and is still occurring. Biomasses and productivities in the central Amazon are higher
overall, as there is undisturbed rainforest here. Therefore, it would be interesting to analyze
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the results at landscape level in more detail in the future, as several factors may play a
role in why we observe a low biomass and productivity in some areas (Figures S3 and S4).
For follow-up studies, it would therefore be interesting to investigate the correlations with
climate conditions (e.g., temperature and precipitation) and topological conditions (e.g.,
elevation) to analyze their effect on biomass differences.

4.4. Challenges in Combining Remote Sensing and Forest Models

There can be several reasons for challenges and uncertainties when combining dif-
ferent types of satellite data (here lidar and radar) with different resolutions and then
integrating them into an individual-based forest model with its own resolution. Geolo-
cation uncertainty can play a role especially when combining several data sources. The
geolocation error of GEDI is approximately 10 m [14]. Because the GEDI measurements are
merged with a forest cover map (resolution 50 m × 50 m) in this study, and the remaining
analyses are performed at 1 km2 or 100 km2 resolution, we expect that a 10 m deviation has
minor effects on the results.

It would also be interesting to analyze the temporal development of biomass and
productivity in the forest stands. However, the period of the GEDI measurements is
currently too short for this. In the coming years, it is planned that GEDI will continue to
measure, which will allow us to further integrate data and expand our analysis.

For this study, the forest cover map from TanDEM-X was chosen. Please note, other
forest cover maps are also available, such as the map from Hansen et al. [6]. Most of these
forest cover maps are mainly based on passive optical satellite signals. These have their
limitations for tropical forests, mainly due to frequent cloud cover. The advantage of the
TanDEM-X map is that radar measurements are almost unaffected by cloud cover.

Smith et al. conducted a fragmentation study in the Amazon rainforest and found
that reforestation with secondary forest could reduce the edge effects [45]. This study
showed that the biomass in edge forest areas or highly fragmented forest areas is lower
and reforestation of the affected areas would be useful to better protect the forest fragments
from edge effects.

In summary, the validated workflow from Rödig et al. [16] and Bauer et al. [3] used for
this study produced reasonable results and has the capability to transfer this model-data
fusion to other continents (Africa and Asia). This could be used to investigate whether our
results for the Amazon apply to other tropical regions.

5. Conclusions

In this study on fragmentation, forest modelling was combined with remote-sensing
measurements (lidar, radar) to investigate the changes in forest attributes at the footprint
and landscape scales. Changes in biomass and productivity were especially observed in
highly fragmented landscapes. Biomass values are particularly high in low-fragmented
areas, while the net primary productivity values are higher in highly fragmented areas.
The study shows that a high degree of forest fragmentation should be avoided in order
to maintain large continuous forest areas, and thus the carbon sequestration potential
of forests.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16030501/s1, Figure S1: Frequency distribution of mean distance
at footprint level with mean value, Figure S2: Density distribution of gross primary productivity
and leaf area index for edge and core areas in the Amazon, Figure S3: Amazon map showing
aboveground biomass in core areas based on combining GEDI measurements with forest modelling,
Figure S4: Amazon map showing net primary productivity in core areas, Figure S5: Scatterplot of
aboveground biomass, net primary productivity, gross primary productivity and leaf area index
against distance to nearest non-forest area for forest in the Amazon (footprint level 25 m), Figure S6:
Amazon map showing fraction of edge area in forests, Figure S7: Frequency distribution for mean
gross primary productivity and leaf area index for forest in the Amazon (landscape scale, 10 × 10 km²),
classified according to landscape type (low fragmented, moderate fragmented, highly fragmented),

https://www.mdpi.com/article/10.3390/rs16030501/s1
https://www.mdpi.com/article/10.3390/rs16030501/s1
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Figure S8: Scatterplot showing the relationship between aboveground biomass and gross primary
productivity for forest in the Amazon, Figure S9: Comparision of the three landscape types: low
fragmented, moderate fragmented and highly fragmented with a satellite image, a radar image and
an aboveground biomass map from this study.
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