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Abstract: Usutu virus (USUV) is a flavivirus transmitted to avian species through mosquito bites that
causes mass mortalities in wild and captive bird populations. However, several cases of positive
dead birds have been recorded during the winter, a vector-free period. To explain how USUV
“overwinters”, the main hypothesis is bird-to-bird transmission, as shown for the closely related
West Nile virus. To address this question, we experimentally challenged canaries with intranasal
inoculation of USUV, which led to systemic dissemination of the virus, provided the inoculated dose
was sufficient (>102 TCID50). We also highlighted the oronasal excretion of infectious viral particles
in infected birds. Next, we co-housed infected birds with naive sentinels, to determine whether
onward transmission could be reproduced experimentally. We failed to detect such transmission but
demonstrated horizontal transmission by transferring sputum from an infected to a naive canary. In
addition, we evaluated the cellular tropism of respiratory mucosa to USUV in vitro using a canary
tracheal explant and observed only limited evidence of viral replication. Further research is then
needed to assess if and how comparable bird-to-bird transmission occurs in the wild.

Keywords: Serinus canaria; usutu virus; infection; horizontal transmission

1. Introduction

Over the last few years, the emergence of several mosquito-borne flaviviruses has
been observed all around the world. These viruses have the capacity to affect a wide
variety of species, including mammals, birds, and reptiles, with considerable variations
in virulence. Usutu virus (USUV) is closely related to West Nile virus (WNV), and both
are classified in the Japanese encephalitis virus (JEV) serogroup, in the Flavivirus genus
of the Flaviviridae family [1]. The main hosts of this virus are avian species, in which it is
transmitted by ornithophilic mosquitoes, mostly Culex pipiens. USUV has been responsible
for several epornitics in Europe [2–6], often resulting in an important die-off, with a major
impact on wild and captive populations of birds [7], especially in common blackbirds
(Turdus merula) [8,9]. USUV is transmitted to a wide variety of avian hosts, which may
result in different clinical signs depending on the species infected, ranging from mild
symptomatology for resistant species to severe multisystemic disease with a high mortality
rate in susceptible species [5].
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Although mosquito bites represent the main route of transmission, we cannot exclude
that other routes are involved in avian species. Indeed, evidence of infection caused by
WNV and USUV has been observed during the vector-free period, which occurs mostly
during the winter [10–13]. The ability of a vector-borne virus to pass through the winter,
without any competent insect vector to allow its transmission and maintenance is called
“overwintering”. Although some cases of chronic disease with persistent viremia after
WNV infection have been described in susceptible bird species like the crow [14] or house
sparrow [15], direct transmission in birds remains the most likely hypothesis. Mosquito
bites seem unlikely to be the sole cause of countless deaths in bird populations observed
during outbreaks. Moreover, bird-to-bird transmission has been highlighted for WNV
in several bird species [16–18]. Furthermore, different routes of shedding have been
investigated, and viral particles were found in feces, feathers, and oral and cloacal swabs
of naturally and experimentally WNV- [15,18] and USUV-infected birds [19,20]. Even if
nest sharing in a big community of birds seems auspicious for fecal–oral transmission, no
WNV RNA was detected in the samples of feces collected from three crow roosts despite
evidence of WNV circulation [14]. Another route of infection seems more likely, namely
the oro-nasal entry route. Human nasal epithelial cells appear to be highly permissive
to several flaviviruses, including WNV and USUV [21]. It has also been shown that
intranasal inoculation of WNV and USUV in mice could lead to systemic dissemination
of the virus [22,23]. Similar observations have been made for Langat virus (LGTV) and
tick-borne encephalitis virus (TBEV) in mice, showing horizontal transmission of the virus,
through direct contact and a contaminated environment, but not through aerosols [24].
Furthermore, even if USUV is not a respiratory virus, high viral titers were found in the
lungs of infected birds after a parenteral infection for several species [19,20], which suggests
that this organ could also be a site of viral replication.

Based on all these data, we wondered if direct transmission of USUV, most likely via
the oro-nasal route, might be partly responsible for the overwintering phenomenon and
contribute to the massive die-off events observed in wild and captive bird populations
during outbreaks in Central and Western Europe.

2. Materials and Methods
2.1. Virus

For the challenge, the Usutu strain USU-BE-Seraing/2017 (GenBank: MK230892,
lineage Europe 3) was used. The strain was isolated from the organs of a European
blackbird found dead during an avian outbreak in 2017 in Belgium [25]. The virus was
amplified in African green monkey Vero cells (ATCC CRL-1586) and titrated using the
50% tissue culture infective dose (TCID50) technique in Dulbecco’s minimum essential
medium (DMEM) (Gibco®, London, UK), supplemented with 2% of heat-inactivated fetal
bovine serum (FBS) (Biowest®, Nuaillé, France) and 1% of penicillin/streptomycin (Gibco®®

Antibiotic-antimycotic 15240-062, UK).

2.2. Canary Experiments

All canaries (Serinus canaria) involved in our study were six-month-old males, pro-
vided by a breeding facility (Animalerie Smets, Oupeye; certification number: HK51603061)
and installed into the biosafety level 2 (BSL2) experimental animal facility of the Depart-
ment of Pathology at the Faculty of Veterinary Medicine in Liège, Belgium. They were
marked by numbered colored leg rings and housed in cages with water and grains ad
libitum. A blood sampling was performed under anesthesia with 5% isoflurane inhalation
one week before inoculation in order to test for the presence of anti-WNV/USUV antibodies
prior to the infection. All injections/inoculations were performed under anesthesia with
5% isoflurane inhalation. During the experiments, canaries were monitored twice per day
and weighed daily for 15 days post-infection. Neurological symptoms or a weight loss
of over 20% of their initial weight were fixed as humane endpoints requiring euthanasia.
The animal welfare and all procedures performed on the canaries were approved and
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supervised by the Committee for Ethics in Animal Experimentation of the University of
Liege, Belgium (Identification code: 21-2363, date of approval: 14 July 2021).

2.2.1. Comparison of the Intranasal and Intradermal Inoculation Routes of USUV
in Canaries

A first group of six canaries was enrolled and received 106 TCID50 of USUV by the
intranasal route, dispersed in 25 µL of DMEM (12.5 µL per nostril). In parallel, as parenteral
control, six canaries received 106 TCID50 of USUV by the intradermal route (in the skin of
the chest), dispersed in 25 µL of DMEM. Given the thinness of the canary dermis, a 30 G
insulin syringe (BD Micro-FineTM + Demi 30G× 8 mm U-100 0.3 mL; BD, Wokingham, UK)
was used for the injection. Moreover, to optimize the intradermal route, each inoculum was
injected into two separate sites, with 12.5 µL in each site. A second experiment was carried
out in order to determine the dose–effect response with different viral concentrations after
intranasal inoculation. To that end, two groups of six canaries received 104 TCID50 or
102 TCID50, respectively, of USUV by the intranasal route, as previously described.

2.2.2. Evaluation of the Horizontal Transmission of USUV in Co-Housed Sentinels

The infected group was composed of six canaries having received 106 TCID50 of USUV,
intradermally or intranasally, following the protocol described above. The sentinel group
was composed of six naive canaries. Both groups, infected and sentinels, were co-housed
and shared the same feeding and drinking places for 15 days after the infection.

2.2.3. Evaluation of “Forced” Transmission of USUV in Canaries

We assessed the possibility of indirect transmission in order to mimic what happens
during chick feeding in the wild, or forced feeding in rehabilitation centers. We intrader-
mally infected a group of four canaries with 106 TCID50 of USUV, as described above. An
oral swab was then collected at the peak of excretion (previously determined) from these
canaries, and directly inoculated into the oral cavity of a group of four naive canaries. Each
naive canary received the swab of an infected canary, and the couples created were identi-
fied using colored leg rings. The parameter that was evaluated here was the occurrence
or not of a seroconversion (protocol detailed below) in the canaries having received the
infected swab.

2.3. Sample Collection

As one of the main goals of the study was the evaluation of possible non-vector
transmission of USUV, several excretion routes were assessed in the first experiment. Thus,
fresh droppings were harvested every day between days 1 and 6 post-infection. Samples
of water in drinking places were also collected. Finally, swabs in the oral cavity were
performed on all canaries, both infected and sentinels, on days 2, 4, and 6 post-infection.
All these samples were mixed with 500 µL of DMEM and centrifuged at 1400× g for 5 min,
then filtrated on a 0.2 µm membrane (Acrodisc® 32 mm Syringe Filter with 0.2 µm Supor®

Membrane; PALL®, Port Washington, NY, USA). In the case of euthanasia of a canary
when a critical point was reached, a necropsy was performed and 25 ± 1 mg of the spleen,
liver, brain, lungs, kidney, eye, and heart were collected and stored at −80 ◦C for PCR
analysis. Other portions of these organs, as well as the skin and trachea, were fixed in
paraformaldehyde 4% for histological and immunohistochemical evaluations. At 15 days
post-infection (dpi), all surviving canaries were euthanized, and blood was collected. Serum
and clot were separated by centrifugation at 1400× g for 10 min and the serum was stored
at −20 ◦C for antibody detection analysis.

2.4. Virus Isolation and Titration

USUV isolation was performed as in [20]. Briefly, filtrates of samples of droppings,
water, and swabs were dropped on Vero cells in 6-well plates with complete DMEM
medium and incubated at 37 ◦C 5% CO2. Plates were checked daily for the occurrence
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of cytopathic effects. Three blind passages on fresh Vero cell culture were performed
after 5 days of incubation. After the last passage, supernatants were tested by RT-qPCR
to confirm the presence of USUV observed on the basis of visualization of cytopathic
effects. However, as several passages on Vero cells had been performed, the quantification
of the initial number of viral particles was no longer possible. The titration of the oral
swabs was therefore carried out using Aedes albopictus clone C6/36 cells (ATCC CRL-1660),
whose permissivity to flaviviruses has been demonstrated in the literature [26–28]. Briefly,
filtrates of samples of oral swabs were titrated using the TCID50 technique in Roswell Park
Memorial Institute medium (RPMI 1640) with L-glutamine and 25 mM HEPES (Biowest®,
France), supplemented with 2% of heat-inactivated fetal bovine serum (FBS) (Biowest®,
France), 1% of penicillin/streptomycin (Gibco® Antibiotic-antimycotic 15240-062, UK),
1% of sodium pyruvate (Gibco®, UK), and 1% of MEM non-essential amino acid solution
(Lonza®, Durham, NC, USA), and the plates were incubated at 28 ◦C 5% CO2 for 5 days.

2.5. Viral Detection by RT-qPCR

Total RNA was extracted from collected organs, swabs, droppings, and cell culture
supernatants using the TANBead® Nucleic Acid Extraction Kit OptiPure Viral Auto Tube
(Taiwan Advanced Nanotech®, Ref. W665S66) with the extraction robot Maelstrom 9600
(Taiwan Advance Nanotech®, Taoyuan, Taiwan). The total RNA of each sample was
previously standardized based on quantification using Isogen Life ScienceTM’s NanoDrop®

Spectrophotometer (ND-1000). USUV RNA was detected and measured by absolute
quantification using a reverse transcriptase quantitative polymerase chain reaction (RT-
qPCR), according to [5]. Briefly, the following primers were used for the RT-qPCR: forward
5′-CGTTCTCGACTTTGACTA-3′; reverse 5′-GCTAGTAGTAGTTCTTATGGA; probe: 5′-
ACCGTCACAATCACTGAAGCAT-3′. The Luna® Universal One-Step RT-qPCR Kit (New
England Biolabs Inc., Ipswich, MA, USA) was used, under the following conditions: retro
transcription for 20 min (minute) at 45 ◦C; inactivation and initial denaturation at 95 ◦C
for 10 min; then 40 cycles of amplification: 95 ◦C for 15 s (second), 48 ◦C for 20 s, 72 ◦C for
60 s; and a final extension at 72 ◦C for 1 min. The number of viral RNA copies was then
calculated by absolute quantification using a standard curve, as described previously [19].

2.6. Histopathology and Immunohistochemistry

After paraffin embedding, tissue samples were sectioned (5 µm thick) and stained
with hematoxylin and eosin. To test for the presence of viral antigens, slides were pro-
cessed for immunohistochemistry (IHC) using a polyclonal rabbit anti-USUV antibody,
as described in [29], with some modifications. Briefly, sections were deparaffinized and
rehydrated, and an antigen retrieval step was performed using distilled water in a mi-
crowave, 3 × 5 min at 600 W. Then, slides were incubated for 10 min with H2O2 0.35% to
block the endogenous peroxidases. Unspecific reactions were blocked with Animal-Free
Blocker® (Vector Laboratories, Burlingame, CA, USA) for 25 min at room temperature.
The anti-USUV antibody was used at a 1:2000 dilution in Tween 20/phosphate-buffered
saline (PBS) (1:5 dilution) for 1 h at 37 ◦C. The negative control was incubated with Tween
20/PBS. An anti-rabbit secondary antibody (EnVision+ System-HRP Labelled Polymer
Anti-Rabbit; Dako®, Carpinteria, CA, USA) was used for 30 min at room temperature.
Then, a chromogen (AEC+ High Sensitivity Substrate Chromogen; Dako®, Carpinteria, CA,
USA) was used according to the manufacturer’s instructions, and a counterstaining was
performed with Gill’s hematoxylin.

2.7. USUV Antibodies Detection

Serum samples collected prior to infection and at the end of both experiments were
screened for antibodies against USUV with a competitive ELISA kit (ID Screen® West Nile
Competition Multi-species, Grabels, France). This kit is not designed to work with USUV in
particular but it contains the WNV envelope protein, allowing the fixation of immunoglob-
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ulins M and G on the common epitope of viruses from the Japanese encephalitis virus
serocomplex [19,30].

2.8. Tracheal Explants

In order to determine which cell types are involved in the viral replication in the
respiratory tract, an ex vivo infection of the canary tracheal explants was performed. To
achieve this goal, we followed the protocol described in [31,32], with some modifications.
Briefly, tracheas from two canaries were carefully dissected, and each was sectioned into
three parts, to work in triplicates. Each segment was placed in an individual well in
a 24-well plate in 1 mL of complete DMEM medium, as previously described. First, a
kinetic study of the viral replication was performed. After infection with 105 TCID50/well
of USUV and incubation for 1 h 30 min at 37 ◦C 5% CO2, the inoculum was removed,
and fresh medium was added. Culture supernatants were harvested at 0, 24, and 48 h
post-infection and the samples were analyzed for USUV RNA by RT-qPCR. In parallel,
in order to visualize which type(s) of cells contain viral antigens, triplicates of tracheal
segments were infected as described previously, but with 106 TCID50/well. The infection
was stopped after 12 h, and segments were fixed in paraformaldehyde 4% for 2 h and then
embedded in paraffin wax for IHC evaluation of viral antigens.

2.9. Statistical Analyses

All analyses were performed using SAS (version 9.3) and significance levels were set
at 5%. All variables were checked for normality assumption. Survival curves were plotted
and compared using the log-rank and the Gehan–Breslow–Wilcoxon tests in GraphPad
Software (version 9, La Jolla, CA, USA).

The Kruskall–Wallis test was used to study the effect of time (T0 h pi, T24 h pi, and
T48 h pi) on Viral RNA loads. The Wilcoxon–Mann–Whitney test was used to study the
effect of virus isolation (negative, positive) on Ct value. The Fisher test was used to compare
the rate of seroconversion between infected and sentinel groups.

3. Results
3.1. Susceptibility of Canaries to the Intranasal Inoculation of USUV

Although USUV is classically transmitted to avian species via the bite of a mosquito,
other routes of transmission are suspected to explain the outbreaks observed during vector-
free periods. As bird-to-bird transmission appears as the likely hypothesis, we addressed
this question by challenging canaries with an intranasal inoculation of USUV and compared
the outcome with the intradermal route.

After intranasal inoculation (i.n.) of USUV with 106 TCID50/canary, one canary
started to show clinical signs, such as ruffled feathers, lethargy, isolation, and depression
at 8 dpi. Because of the deterioration of its general condition, this bird was euthanized
and a substantial loss in the initial body weight of 15.3% was recorded. The other infected
canaries did not show any symptoms and all survived (Figure 1).

In parallel, the intradermal inoculation (i.d.) of USUV led to comparable symptoms
in two canaries, i.e., depression and lethargy between 5 and 6 dpi, and the birds were
euthanized at days 6 and 7 pi, respectively (Figure 1). A loss in the initial body weight of
10.4% and 14.7%, respectively, was recorded for these birds.

Interestingly, contrary to mammals, the infected canaries did not show evidence of
typical neurological symptoms of encephalitis but rather a sudden and severe depression,
leading to death the day after. Moreover, canaries succumbed to the infection about a week
after the infection, regardless of the inoculation route.

Based on previous data showing evidence of oro-nasal excretion of USUV, we assessed
which might be the minimal dose needed in intranasal inoculation to generate a clinical
disease in canaries. We then noticed the appearance of typical clinical signs in one canary
infected with 104 TCID50 after 9 dpi (Figure 2). The loss in the initial body weight of this
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canary was 19.8%. However, in the 102 TCID50 group, no canary showed any symptoms
and there were no mortalities.
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Figure 2. Kaplan–Meier survival curves of canaries infected with USUV via the intranasal route with
106 TCID50 (n = 6), 104 TCID50 (n = 6), or 102 TCID50/canary (n = 6). The difference among the three
groups was not statistically significant, as assessed by both the log-rank (Mantel–Cox) p = 0.5911, and
the Gehan–Breslow–Wilcoxon tests p = 0.5888.

At the end of the experiment, i.e., 15 dpi, the serological analyses showed that after
intradermal inoculation of USUV, all surviving birds were positive for the presence of USUV
antibodies. Concerning the groups intranasally infected with 106 TCID50 and 104 TCID50,
50% (the bird that succumbed to the infection and two birds out of the five survivors)
and 33% (the bird that succumbed to the infection and one bird out of the five survivors),
respectively, showed evidence of seroconversion. All canaries infected with 102 TCID50
were negative.

All dead canaries showed high amounts of USUV RNA in their organs as determined
by RT-qPCR, with variations between organs and time of death, as shown in Table 1.
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Table 1. Viral RNA loads (expressed as the number of USUV RNA copies/100 ng of total RNA) in
the organs of lethally infected canaries, as determined by absolute quantification by RT-qPCR. “x”
dpi corresponds to the day of death post-infection for each canary.

Spleen Liver Brain Heart Lung Kidney Eye

Intranasal infection

Canary 106 TCID50 8 dpi 8.78 ± 0.02 8.76 ± 0.02 6.45 ± 0.01 7.89 ± 0.01 8.84 ± 0.02 7.95 ± 0.02 8.06 ± 0.01

Canary 104 TCID50 9 dpi 6.06 ± 0.01 5.70 ± 0.01 4.57 ± 0.01 5.72 ± 0.02 6.90 ± 0.01 5.25 ± 0.01 6.92 ± 0.02

Intradermal infection

Canary 6 dpi 8.75 ± 0.02 8.86 ± 0,01 5.78 ± 0.01 7.20 ± 0.02 8.21 ± 0.01 7.33 ± 0.03 8.21 ± 0.02
Canary 7 dpi 5.74 ± 0.03 5.01 ± 0.03 2.26 ± 0.04 4.37 ± 0.02 5.76 ± 0.01 3.41 ± 0.03 5.92 ± 0.02

3.2. Histopathological Lesions and Cellular Tropism Are Independent of the Route of Inoculation
of USUV

During the necropsy of dead canaries, the main gross lesions were a pallor of the liver
and splenomegaly. Microscopic findings in these organs consisted of a multifocal moderate
mononuclear inflammation and necrosis in the liver and a slight lymphoid depletion in the
spleen. After intradermal inoculation, lymphoplasmacytic and histiocytic infiltration in the
dermis and adjacent muscle was observed at the inoculation site (Figure 3A,B). A similar
infiltrate was present in the mucosa/submucosa of the trachea and nasal turbinates of dead
canaries after intranasal inoculation (Figure 3C,D). No specific pathological findings were
made in the brain, heart, and lungs.
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Figure 3. Pathological findings in two canaries lethally infected with 106 TCID50 of USUV, by
intradermal (A,B) or intranasal (C,D) inoculation. In both cases, a massive lymphoplasmacytic
and histiocytic infiltration was observed in the lamina propria and submucosa, responsible for the
thickening of the tissue, regardless of the inoculation site. Hematoxylin and eosin. Scale bars: 20 µm.

All lethally infected birds showed evidence of USUV antigen immunolabeled cells
randomly distributed in the spleen and liver at the time of death. Large numbers of
macrophages were positive in the liver, with numerous mononuclear leucocytic positive
cells in the spleen (Figure 4A,B) of i.d.- and i.n.-infected canaries dead at 6, 7, and 8 dpi,
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respectively. Concerning the trachea, positive mononuclear leucocytic cells were observed
in the lamina propria (Figure 4C), but only in the case of canaries dead after intranasal
inoculation at 8 dpi. Respiratory epithelial cells did not show any evidence of staining, just
as the lung, heart, brain, and skin at the time of death.
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Figure 4. Immunohistochemical labeling of USUV antigens using a polyclonal rabbit anti-USUV
antibody. Red-brown staining in antigen-positive cells in the liver (A) and spleen (B) from an
intradermally infected canary dead at 6 dpi, but also in the trachea (C) of an intranasally infected
canary (with 106 TCID50) dead at 8 dpi. Gill’s hematoxylin counterstain. Scale bars: 5 µm (A,B),
10 µm (C).

3.3. The Avian Airway Mucosa Is Only Weakly Permissive to USUV

The intranasal inoculation of USUV leads to a multisystemic disease very similar
to that observed after parenteral inoculation. Since human respiratory epithelial cells
are permissive to USUV [21], we wondered about the cellular tropism of USUV for the
airway mucosa. To address this question, we infected tracheal explants of canaries ex
vivo. The kinetic and quantitative analysis of the concentration of viral RNA in the culture
supernatant at 24 and 48 h post-infection showed a slight viral amplification by tracheal
cells (Figure 5), but not statistically significant (p = 0.11). A few respiratory epithelial cells
appeared slightly positive for viral antigens by immunochemistry (Figure 6A). However,
strong USUV labeling was present in some foci of cells in the adipose tissue, surrounding
the trachea (Figure 6B). A more accurate characterization of these cells is necessary to
determine their exact nature. Muscular cells next to these cells also showed positive
labeling, but less intense (Figure 6A,B).
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Figure 5. Viral RNA loads (Log10 RNA copies/10 ng of total RNA) detected in the culture supernatant
of tracheal explants from canaries at 0, 24, and 48 h post-infection with USUV.
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Figure 6. Immunohistochemical staining of USUV antigens using a polyclonal rabbit anti-USUV
antibody. Red-brown staining in antigen-positive cells in the epithelial tracheal cells (A) and in cells
from the surrounding adipose tissue (B). Gill’s hematoxylin. Scale bars: 10 µm (A) and 5 µm (B).

3.4. Infected Canaries Shed Infectious USUV Particles

To assess the occurrence of viral excretion by infected birds, we collected samples
from the environment (droppings and water), but also from the oral cavities of infected
canaries. All the swab samples collected on days 2, 4, and 6 were analyzed by RT-qPCR
and the results were compared with those obtained after virus isolation on Vero cells.
First, it appeared that there was a link between the presence of cytopathic effects in cell
cultures after three blind passages and the detection of USUV RNA by RT-qPCR. Positive
wells corresponded to oral swabs collected from lethally infected birds on days 2, 4, and
6, and, for survivors, on day 4 only. However, among survivors, we noticed that 100% of
intradermally infected canaries showed a shedding of infectious particles at day 4, whereas
this was only the case for 50% of the intranasally infected group with 106 TCID50 and
only 17% with 104 TCID50. In addition, because of the high permissivity of the C6/36
cells for USUV, we performed a viral titration of oral swabs collected from intradermally
infected birds. We observed viral titers from 102 to 103 TCID50/swab on day 4 in 100% of
individuals and only in 33% on day 6. Moreover, the analysis of oral swabs presented two
different scenarios. For canaries which succumbed to the infection (i.d. or i.n.), high viral
RNA levels from 6.06 ± 0.06 to 5.37 ± 0.07 log10 viral RNA copies (VRC)/swab (RT-qPCR
cycle thresholds (Ct) values from 23.2 to 25.6) were observed on swabs collected from day 2
to day 6 pi, while for all other canaries, viral RNA loads were higher on days 2 and 6 with
values from 3.84 ± 0.04 to 1.77 ± 0.06 VRC/swab (Ct values from 30.7 to 37.6) than on day
4 with values from 6.30 ± 0.06 to 4.07 ± 0.07 VRC/swab (Ct values from 22.5 to 29.9). Thus,
the peak of the viral excretion phase seems to be around day 4 pi in all infected animals.
A meaningful link also appeared between the mortality and the possibility of isolating
infectious virus on days 2, 4, and 6 pi (p < 0.0001). Thus, an association exists between the
intensity of oro-nasal excretion and the survival of the animal.

Interestingly, it appears that the threshold needed to isolate infectious viruses from
oral swabs corresponds to a Ct value inferior to 30.0. This observation was confirmed by
statistical analyses, as shown through the box plot in Figure 7.

All detailed results for each animal are presented in the Supplementary Materials.
Regarding the collected droppings, only low amounts of viral RNA were found.

For the intradermally infected group, a mean of 2.16 ± 0.04 log10 viral RNA copies
(VRC)/50 mg at day 1 and 1.89 ± 0.03 log10 VRC/50 mg at day 2 was recorded. For
the group infected via the intranasal route, 2.28 ± 0.04 log10 VRC/50 mg at day 1 and
1.89 ± 0.04 log10 VRC/50 mg at day 2 were observed. No longer viral excretion was
observed in collected droppings from days 3 to 6. However, no infectious virus isolation
was possible after the cultivation of droppings samples. In addition, all collected water
samples were negative.
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3.5. Evidence of Horizontal Transmission of USUV Infection to Naive Canaries

As we showed the oral excretion of infectious viral particles by infected canaries,
we wondered about the possibility of direct or indirect transmission of USUV in a bird
population. To address this question, infected canaries (i.n. or i.d.) and naive sentinels
were co-housed and shared the same environment for 15 dpi (Figure 8). Among sentinels,
neither clinical signs nor mortalities were recorded. An analysis of oral swabs showed that
some viral RNA was present in the oro-nasal cavity at 4 dpi in 50% of sentinels (Ct range:
37.8 to 38.2) in contact with i.d.-infected canaries, but none among sentinels in contact with
the i.n.-infected group. Interestingly though, 100% and 83% of the sentinels, respectively,
in contact with i.n.-infected and i.d.-infected birds had viral RNA in their oral cavity at
6 dpi (i.n. Ct range: 35.0 to 37.7; i.d. Ct range: 37.9 to 38.1). Despite positive PCR results,
no infectious viral particles were isolated on Vero cell cultures.
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Figure 8. Schematic representation of the evaluation of the direct transmission of USUV infection
to naive canaries. Canaries were infected intradermally or intranasally with 106 TCID50/canary of
USUV (i.d.-and i.n.-infected; grey; n = 6) and co-housed for 15 days with naive canaries (i.d. and i.n
sentinels.; yellow; n = 6). Serum samples were collected 15 days post-infection, and an ELISA test
was performed to evaluate the presence of antibodies against USUV.
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Spleen and liver samples of the sentinels were PCR-negative for viral RNA, and no
evidence of seroconversion was recorded after 15 days of co-housing (Figure 8).

The study of the viral shedding by infected birds highlighted a peak of oral viral
excretion at 4 dpi. To address the possibility of indirect horizontal transmission, we
collected oral swabs from four infected canaries at 4 dpi and used these swabs to “inoculate”
four naive canaries by the oral route (Figure 9). Among these birds, neither clinical signs
nor mortalities were recorded. However, evidence of seroconversion was recorded in one
canary out of four 15 days after the inoculation (Figure 9).
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Figure 9. Schematic representation of the evaluation of the indirect transmission of USUV infection
to naive canaries. Canaries were infected intradermally with 106 TCID50/canary of USUV (infected;
grey; n = 4), and an oral swab collected at 4 days post-infection (dpi) was inoculated in the oral cavity
of naive canaries (sentinel; yellow; n = 4). Serum samples were collected 15 days post-infection, and
an ELISA test was performed to evaluate the presence of antibodies against USUV. p = 0.071.

4. Discussion

The emerging mosquito-borne flavivirus USUV has been responsible for massive
mortalities in wild or captive bird populations [6,8,9]. Cases of USUV- or WNV-positive
dead birds have also been reported during the winter, a vector-free period [10,11]. Therefore,
it cannot be excluded that other routes of transmission than mosquito bites are involved, at
least in avian species. The most likely hypothesis to explain such winter outbreaks is bird-
to-bird transmission, which has been highlighted for WNV in several bird species [16–18].
The aim of this study was to investigate the importance of horizontal transmission of USUV
in birds.

In this study, we assessed two particular routes of USUV inoculation in domestic
canaries, i.e., intranasal and intradermal (as a proxy for mosquito bites). We showed
that the systemic dissemination of the virus was independent of these inoculation routes.
Interestingly, the viral amplification in the body of intranasally infected birds was strongly
influenced by the inoculation dose, i.e., a 106 TCID50 USUV inoculum per canary was by
factors more efficient than 104 or 102 TCID50. Co-housing of sentinel birds with either
intranasally or intradermally infected animals, did not reveal any horizontal transmission,
albeit scarce virus genomes could be revealed in the throat swabs of the sentinel birds in
contact with intradermally infected canaries. This motivated us to conduct an experiment
on transmission from intradermally infected canaries to sentinel birds. Interestingly, one
out of four sentinel canaries developed USUV antibodies after such exposure, which is a
strong indication that clinically infected animals can infect their fellow sentinels via their
sputum, i.e., horizontally.

In order to assess the intranasal and intradermal inoculations of USUV as possible
infection routes, we used an experimental model already validated in the laboratory,
the domestic canary [19]. The choice of the canary species was made with regard to its
belonging to the Passeriformes order, whose members were found to be highly susceptible to
USUV infection in the wild [2,33]. Moreover, it has been proven that the inoculation route
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could have an impact on viral dissemination in mice [22,34]. In addition, the intradermal
route best mimics the inoculation by a mosquito bite [35]. We showed that both routes
lead to a similar systemic dissemination of the virus, and can result in the death of the
canary. It thus appears that the local viral replication in the respiratory airways is sufficient
to generate a comparable disease in canaries. Interestingly, we observed a very similar
local host reaction at the inoculation site (skin or nasal turbinates) for both routes, with a
prominent lymphoplasmacytic and histiocytic response. This strikingly similar response
whatever the infection route suggests that similar mechanisms are involved in the host
immune response. Indeed, after the initial amplification of the virus, a massive inflow
of permissive leucocytes attracted to the site of viral inoculation seems to be the key to
flavivirus dissemination through the organism [36–38]. Incoming leukocytes could thus be
the main actors of the pathogenesis of mosquito-borne flaviviruses and might explain the
difference in susceptibility between hosts [39]. Further studies are necessary to elucidate
this point.

High viral RNA loads in the spleen, liver, and lungs, and large numbers of antigen-
positive cells especially in the spleen and liver were found in lethally infected birds. The
lack of antigen-positive cells in the brain, liver, and lungs, in spite of the detection of
significant viral RNA loads, might reflect the blood distribution of viral RNA (either free or
in virions) in these organs rather than local replication. Indeed, we previously showed that
canaries lethally infected by USUV have very high RNAemia levels during the course of
their infection [19]. It thus appears from these observations that the key event in the viral
pathogenesis in avian hosts is the systemic spread of the virus, whatever the inoculation
route. Strikingly, the brain appeared as the organ, among those we sampled, containing
the lowest amounts of viral RNA. This is consistent with the lack of detection of antigen-
positive cells by IHC, but also with the absence of neurological symptoms during our
experiments. USUV infection in birds appears more as a systemic than a pure neurotropic
disease, in opposition to what has been described in mammals [22,40,41]. These data are
consistent with those obtained after intraperitoneal inoculation in a previous study in the
laboratory [19], but also with the observations made in canaries after subcutaneous WNV
infection [42]. Even if WNV appeared more virulent than USUV, with a higher mortality
rate, the antigen detection by IHC showed similar results, with strongly positive cells mostly
found in the liver and spleen. This therefore suggests a marked tropism of flaviviruses
for these organs in birds, making them important sites of viral replication. Further, IHC
analysis revealed that the most consistently positive cells were likely of histiocytic type,
their exact nature remaining to be determined.

However, we noticed that the mortality rate in our experiment was lower than previ-
ously observed by Benzarti et al. [19]. We also noticed that the neurotropism of USUV was
quite less pronounced here than in the case of naturally infected birds. Indeed, neurological
symptoms were observed in wild birds, confirmed by multifocal neuronal necrosis in the
brain [4,33]. These differences between naturally and experimentally infected birds could
be explained by the several passages in Vero cells of the USUV stock used. Moreover,
even though we tried to mimic a natural infection, we could not reproduce all the biolog-
ical parameters of mosquito-borne transmission. Indeed, the critical role of components
of mosquito saliva has been described in the literature on flaviviruses [43,44], including
WNV [45,46]. Mosquito saliva enhances WNV replication in vitro [47], but also in vivo
in mammals and birds [46,48]. In addition, the amount of USUV infective particles in-
oculated by an infected mosquito is unknown. For WNV, it was estimated to vary from
103.4 to 106.1 PFU, depending on the mosquito species [49]. These data and the study by
Benzarti et al. [19] are consistent with what we observed in the dose–effect study, where
we highlighted that the minimal infectious dose for an intranasal infection was superior to
102 TCID50/canary.

In addition, as we showed that the intranasal inoculation of USUV led to systemic
dissemination of the virus, we wondered which were the resident cell type(s) responsible
for the initial amplification of the virus inoculated in the nasal cavities of the canary. Indeed,
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human nasal epithelial cells were shown to be permissive to several flaviviruses (including
USUV) in vitro [21]. It was thus tempting to suggest that avian respiratory epithelial cells
might also be a site of viral replication after intranasal inoculation. We addressed this
question using ex vivo tracheal explants from naive canaries, as previously described in
mice [31] and chicken [32]. Indeed, trachea and nasal turbinates share a similar ciliated
epithelium in terms of cellular composition, except for the olfactory epithelium [50,51]
and the local immune system [52,53]. Moreover, using explants has the advantage of
providing the entire in situ cellular environment but without the intervention of incoming
leucocytes. However, in our hands, viral amplification appeared, at best, very limited in
the kinetic study, and only a low number of antigen-positive epithelial cells was observed.
Consequently, canary respiratory epithelial cells did not seem to be as permissive to USUV
as their human counterparts. Nevertheless, another hypothesis could be the role played by
nervous system cells, such as neurons, which are also present in the olfactory epithelium,
and in which USUV replication has been demonstrated for the central and peripheral
nervous system of birds [19] and mice [40]. Further studies are thus necessary to identify
the cell type(s) responsible for the initial replication of USUV after an intranasal inoculation.

As an oro-nasal entry route appears as the most likely hypothesis for bird-to-bird
transmission of USUV, oral and fecal shedding was monitored in infected canaries. USUV
shedding in droppings and feathers had already been proved by our team and others [19,20]
but, to our knowledge, an oral excretion of USUV in infected birds had not been assessed
yet. Such oral excretion has been shown for WNV in geese [18] but also in canaries [42].
This last study showed that significant amounts of infectious viral particles were excreted
by infected birds. The proportion of canaries shedding an infectious virus was dependent
on the infectious dose used, with variations in the peak of excretion occurring between 2
and 4 dpi [42]. In our experiment, we highlighted that all birds eventually seroconverted
excreted infectious particles at 4 dpi in their oral cavity. For birds that succumbed to
the infection, we also isolated infectious viruses at 2 to 6 dpi. We then wondered if the
Ct-value could be a good predictor of the contagiousness of USUV, as it was used in human
medicine during the SARS-CoV-2 pandemic to assess if a convalescent patient could be
discharged from the infectious diseases ward [54,55]. Interestingly, we showed that a
Ct-value, determined by RT-qPCR, inferior to 30.0 in oral swabs in our conditions was
a good predictor of the possibility of isolating the infectious virus. In parallel, we also
monitored the fecal excretion of USUV by infected canaries, showing the presence of low
amounts of viral RNA, albeit not infectious. This last observation is in line with what was
reported for crow roots with WNV [14].

Taking into account the oro-nasal shedding of infectious viral particles and the sus-
ceptibility of canaries to the intranasal inoculation of USUV, a direct transmission by this
route in avian species is strongly suspected. This bird-to-bird transmission was assessed for
WNV for several bird species, especially of the Passeriformes order, both in natural [11,14,16]
and experimental conditions [17,18]. The aim was to explain the phenomenon of over-
wintering. All these experiments led to evidence of transmission of WNV in sentinels
which were co-housed with infected birds, such as mortalities and/or seroconversion. To
experimentally assess this bird-to-bird transmission of USUV, uninfected sentinels shared
the same cage as infected canaries (i.n. or i.d.), and, surprisingly, we failed to show such
transmission in our experimental conditions. Indeed, all the sentinels survived and there
was no evidence of seroconversion. However, we demonstrated a strong dose effect after
i.n. inoculation of USUV on the seroconversion rate of canaries. Relatively high doses of
USUV were necessary to observe seroconversion in some birds (all birds were negative
at 102 TCID50/canary, with a seroconversion rate of 33% at 104 TCID50/canary). In our
experiment, it is likely that the dose transmitted to sentinel birds was noticeably inferior to
106 TCID50/canary, necessary to observe a high seroconversion rate. Indeed, viral titers
on C6/36 cells of oral swabs from i.d.-infected canaries at day 4 pi ranged from 102 to
103 TCID50/swab. Interestingly though, we noticed low amounts of USUV RNA in the oral
swabs of the sentinel birds by RT-qPCR. These results suggest that a contact transmission of
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viral RNA happened between the canaries, but these contacts seemed insufficient to allow
a significant transfer of infectious particles to the sentinels. In addition, it is likely that only
limited contact occurred between adult canaries during our experiment. Indeed, there are
only a few social interactions between adult birds in captivity, contrary to mammals such
as mice [56,57], which could additionally explain the lack of transmission. Further, the
behavior of adult birds in experimental conditions is quite different from what happens in
the wild. Indeed, we created “artificial” groups of male canaries in an environment where
enrichment is restricted, limiting the expression of their instinctive habits [56]. In addition,
data from the literature suggest that horizontal transmission of flaviviruses is possible,
including for the closely related WNV [17,18], through direct contact with infected birds,
but also possibly in more specific situations, such as, for example, chicks feeding, picking,
or scavenging [10,18]. Forced feeding in rehabilitation centers might also be a favorable
situation for the transmission of such viruses. We thus tried to reproduce these specific
situations, by inoculating a naive canary with an oral swab collected from an infected
canary at 4 dpi. Interestingly, we recorded evidence of seroconversion in one canary out of
four after 15 days post-inoculation. It thus appears that horizontal transmission of USUV
between birds is possible but under specific conditions, such as sufficient excreted dose
and close contact between birds during the peak of the oral excretion phase.

5. Conclusions

In summary, evidence of an oral excretion of USUV by experimentally infected canaries
leads us to highlight the possibility of horizontal transmission of the virus. Although this
transmission only occurred under specific conditions experimentally, it could play a role in
a natural environment during the vector-free period. Further studies are thus needed to
identify the key factors responsible for bird-to-bird transmission of flaviviruses in the wild.
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