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Abstract
Symbiotic bacteria can alter host biology by providing protection from natural
enemies, or alter reproduction or vectoral competence. Symbiont-linked con-
trol of vector-borne disease in Anopheles has been hampered by a lack of
symbioses that can establish stable vertical transmission in the host. Previ-
ous screening found the symbiont ‘Candidatus Tisiphia’ in Anopheles plum-
beus, an aggressive biter and potential secondary vector of malaria parasites
and West Nile virus. We screened samples collected over 10-years across
Germany and used climate databases to assess environmental influence on
incidence. We observed a 95% infection rate, and that the frequency of infec-
tion did not fluctuate with broad environmental factors. Maternal inheritance is
indicated by presence in the ovaries through FISH microscopy. Finally, we
assembled a high-quality 1.6 Mbp draft genome of ‘Ca. Tisiphia’ to explore
its phylogeny and potential metabolic competence. The infection is closely
related to strains found in Culicoides biting midges and shows similar patterns
of metabolism, providing no evidence of the capacity to synthesize
B-vitamins. This infection offers avenues for onward research in anopheline
mosquito symbioses. Additionally, it provides future opportunity to study the
impact of ‘Ca. Tisiphia’ on natural and transinfected hosts, especially in rela-
tion to reproductive fitness and vectorial competence and capacity.

INTRODUCTION

Bacterial symbionts in insects form vital components of
their host’s biology, ecology and evolution. They are
known to influence how insects reproduce, how they
respond to environmental stress and their susceptibility
to pathogen attack (Dunbar et al., 2007; Hayashi
et al., 2016; Hendry et al., 2014; Himler et al., 2011;
Vega et al., 2012; Xie et al., 2014). In many cases,
symbionts are vertically inherited from one generation
to the next, usually through the maternal germline, and
may become intrinsically linked with their host physiol-
ogy, metabolism and development (Buchner, 1965;
Giorgini et al., 2010; Kremer et al., 2009; Moran

et al., 2008; Zchori-Fein et al., 2006). Most importantly,
symbionts have been deployed in the control of vector
populations and vector competence (Hoffmann et al.,
2011; Laven, 1967).

Success in symbiont-mediated disease control has
been restricted to species from the genera Aedes and
Culex. Transinfection with Wolbachia from a drosophilid
fly has been successfully used to alter vector compe-
tence and lower risk of catching dengue fever from
Aedes aegypti L. in endemic areas (Hoffmann
et al., 2011; Pereira et al., 2018; Walker et al., 2011).
Similarly, Culex pipiens fatigans L. has a natural infec-
tion with a Wolbachia (wPip) that causes cytoplasmic
incompatibility (Laven, 1967), and has been used to
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transinfect Culex quinquefasciatus Say, 1823 as a
potential method of population size control (Atyame
et al., 2015). However, important vector species within
the genus Anopheles are poorly receptive to transinfec-
tion with Wolbachia (Hughes et al., 2014) and are rarely
naturally infected (Kittayapong et al., 2000; Ricci
et al., 2002), with a single well-established case of nat-
ural Wolbachia infection (Walker et al., 2021). There-
fore, it is desirable to identify additional symbionts
compatible with anopheline mosquitoes that are either
more capable of surviving transinfection or alter vector
competence in the native host.

We previously detected the symbiont ‘Candidatus
Tisiphia’ (= Torix group Rickettsia) in three Anopheles
plumbeus Stephens, 1828 individuals sampled in the
United Kingdom (Pilgrim et al., 2021). An. plumbeus is
broadly distributed across Europe and is an indiscrimi-
nate biter. This species is also capable of transmitting
West Nile virus and malaria parasites, although these
pathogens do not natively occur in the majority of the
mosquito species’ known distribution range, and vector
competence has only been tested in the laboratory set-
ting (Bueno-Marí & Jiménez-Peydr�o, 2011; Dekoninck
et al., 2011; Schaffner et al., 2012). It has been
highlighted as a species that could act as a secondary
vector of ‘tropical’ disease agents as changing climate
causes their northward spread and their associated pri-
mary hosts like Aedes albopictus Skuse, 1894 (Heym
et al., 2017; Schaffner et al., 2012).

‘Ca. Tisiphia’ appears to be particularly associated
with hosts deriving from wet or aquatic environments
and may originate from symbionts of freshwater ciliates
(Driscoll et al., 2013; Kang et al., 2014; Schrallhammer
et al., 2013). Infection with this symbiont occurs in a
broad range of invertebrates, from annelids to gastro-
pods to arthropods (Pilgrim et al., 2021), as well as in
algae (Hollants et al., 2013) and amoebae (Dykov�a
et al., 2013). Their relatives in the genus Rickettsia are
capable of nutritional symbioses, protecting against
fungal infections and reproductive manipulation
(Bodnar et al., 2018; Giorgini et al., 2010; Hendry
et al., 2014; Hurst et al., 1994). However, the known
effects of ‘Ca. Tisiphia’ are limited to an association
with increased host size in Torix leeches, and weak
impacts on fecundity in the bedbug, Cimex lectularius
L. (Kikuchi & Fukatsu, 2005; Thongprem et al., 2020).
There is no observed congruence of host and symbiont
phylogeny, indicating that host shifts occur commonly
and that long-standing associations with species are
rare (Davison et al., 2022). External influence such as
temperature or natural enemies can influence the prev-
alence of symbionts in host populations, but the impor-
tance of these factors are not yet established for ‘Ca.
Tisiphia’ (Cass et al., 2016; Corbin et al., 2017; Leclair
et al., 2017).

In this study, we used PCR assays to establish the
extent of ‘Ca. Tisiphia’ infection in An. plumbeus mos-
quitoes collected throughout Germany in collaboration

with a citizen science initiative. We provide evidence
that the symbiont is vertically transmitted through the
maternal germline through fluorescence in situ hybridi-
sation (FISH) imaging of ovary material. The symbiont
genome was sequenced and assembled and then
examined through bioinformatics approaches to estab-
lish potential nutritional or protective symbioses. We
also assessed associations with temperature, precipita-
tion and forest type.

EXPERIMENTAL PROCEDURES

Mosquito sampling

Materials for screening ‘Ca. Tisiphia’ infection in An.
plumbeus were collected from 2012 to 2021 across
Germany by part of the authors and citizen volunteers
of the mosquito atlas (Mückenatlas) project (Werner
et al., 2014). The samples comprised 245 females and
10 males, with the low number of males reflecting col-
lection methods favouring biting females rather than an
intrinsic sex ratio bias. Specimens were stored in 70%
ethanol or dry (see Supporting Information for storage
and exact geographic information). Post hoc analysis
indicated storage method did not affect detection of
symbionts by PCR assay.

Additional live specimens were also collected in
Germany as larvae in 2021 and raised to adults
in water collected from their larval pools for the purpose
of imaging and genomic sequencing. These specimens
were either killed by flash freezing in liquid nitrogen
prior to genomic DNA extraction, or in 4% paraformal-
dehyde solution prior to fluorescence imaging.

DNA extraction and PCR screening of An.
plumbeus for ‘Ca. Tisiphia’

Promega Wizard® Genomic DNA Purification kit
(Promega, USA) was used for DNA preparation as per
manufacturer instructions. The presence and quality
of DNA was checked with a combination of HCO/C1J
primers HCO_2198 (5’-TAA ACT TCA GGG TGA CCA
AAA AAT CA-3’)/CIJ_1718 (5’-GGA GGA TTT GGA
AAT TGA TTA GT-3’) (Folmer et al., 1994; Hajibabaei
et al., 2005; Siozios et al., 2020); the presence of
strong bands indicated that DNA was intact and that
the positive results of subsequent PCR could be
trusted. ‘Ca. Tisiphia’ presence was assessed with a
PCR assay amplifying the 320-bp region of the 17 kDa
outer-membrane protein (OMP) gene with primer
pair Ri17kD_F (5’-TCTGGCATGAATAAACAAGG-
3’)/Ri17kD_R (5’-ACTCACGACAATATTGCCC-3’;
Pilgrim et al., 2017). PCR conditions used were as
follows: 95�C for 5 min, followed by 35 cycles of
denaturation (94�C, 30 s), annealing (54�C, 30 s)
and extension (72�C, 120 s).
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A selection of ‘Ca. Tisiphia’ amplicons from collec-
tions across time and space were Sanger-sequenced
through Eurofins Genomics Europe barcoding service
(Ebersberg, Germany) and identity was confirmed
by comparing the sequences to the NCBI database
via BLAST homology searches. Confirmed sequences
have subsequently been deposited in the same
database under accession numbers OQ512853-
OQ512860.

De novo sequencing, assembly and
annotation

A combination of short and long read sequencing was
used to construct scaffolds of the ‘Ca. Tisiphia’
genome. For short reads, Iridian Genomes (Bethesda,
USA) extracted and processed DNA of a single
laboratory-reared An. plumbeus male for Illumina
sequencing deposited under bioproject accession
PRJNA694375. The short reads of An. plumbeus were
cleaned with Trimmomatic v0.36 (Bolger et al., 2014)
and quality-checked with FASTQC v0.11.9 (Babraham
Bioinformatics, 2019). For long reads, genomic DNA
from one male was extracted with the QIAGEN
Genomic-tip 20/G kit (QIAGEN, Netherlands) as per
manufacturer instructions for ultra-low PacBio sequenc-
ing carried out by the Centre for Genomic Research,
University of Liverpool, UK. Long-read sequences have
been deposited under bioproject accession number
PRJNA901697.

A combination of long- and short-read data were
used to assemble as complete a genome for ‘Ca. Tisi-
phia’ as possible. First, the ‘Ca. Tisiphia’ genome was
identified in the Illumina short reads and assembled
through Minimap2, MEGAHIT and MetaBAT2 as per
the pipeline that can be found in the github repository in
Davison (2022) and described in Davison et al. (2022).
Second, PacBio HiFi long read sequences were
assembled using Flye v2.9. 1-b1780 with the ‘-meta’
flag to improve sensitivity for low coverage reads. Third,
the long-read assembly was queried against a local
blast database of Rickettsia and ‘Ca. Tisiphia’
genomes (including the Illumina assembly from the first
step) to identify sequences belonging to this strain of
‘Ca. Tisiphia’. Finally, the long-read assembly was
polished with the Illumina reads using Polypolish v0.5.0
(Wick & Holt, 2022) with default settings, giving 23 final
scaffolds.

Phylogeny and metabolic predictions

Annotation of the final assembly was carried out with
InterProScan v5 (Jones et al., 2014). Prediction of met-
abolic pathway presence and completion was carried

out through Anvi’o v7 using KEGG kofams and COG20
(Aramaki et al., 2020; Eren et al., 2021; Galperin
et al., 2021). NRPS pathways were investigated with
AntiSMASH 6.0 (Blin et al., 2021).

The genome of the An. plumbeus ‘Ca. Tisiphia’
strain was compared to other existing ‘Ca.
Tisiphia’ genomes through Anvi’o 7. The new genome
will subsequently be referred to as TsAplum, a contrac-
tion of ‘Ca. Tisiphia’ and its host, An. plumbeus. A core
genome consisting of 205 gene clusters that contain a
total of 3690 genes was estimated through Anvio-7.
Summaries of gene clusters can be found in Table S5
Phylogenies were estimated from single copy gene
clusters with IQTREE v2.2.0.3 using Model Finder Plus
and with 1000 ultrafast bootstraps (Hoang et al., 2018;
Kalyaanamoorthy et al., 2017; Minh et al., 2020). The
model selected by Model Finder Plus is Q.plant + F
+ R4. A supporting phylogeny to confirm the identity of
17 kDa OMP genes was produced with the model
TIM2 + F.

Fluorescence in situ microscopy

Reproductive organs of a single An. plumbeus female
and a single male were dissected and incubated in cold
4% paraformaldehyde for 3 h, agitated gently every
30 min, then washed with cold PBS for 5 min two times.
Tissue was stained with Hoechst 33342 (Thermo
Fisher Scientific, USA) for 30 min at room temperature,
then hybridised overnight at room temperature with
hybridisation buffer (5� SSC, 0.01% SDS, 30% form-
amide) and 50-CCATCATCCCCTACTACA-(ATTO
633)-30 oligonucleotide probe specific to ‘Ca. Tisiphia’
16S rRNA (as described in Pilgrim et al., 2017 and
Thongprem et al., 2020). Hybridised tissue was washed
in wash buffer (5� SSC, 0.01% SDS) at 48�C for
60 min with gentle shaking every 20 min. Samples
were then mounted in Vectashield (Vector Laborato-
ries, Inc., USA). Images were taken with a ZEISS LSM
880 confocal microscope through ZEISS Zen black,
and final images were annotated in Inkscape v1.2
(Inkscape Project, 2020).

Association of symbiont prevalence with
geographic and climatic information

Annual average monthly temperature and precipitation
data were retrieved for each sample’s coordinate and
year from TerraClim (Abatzoglou et al., 2018), which has
a spatial resolution of �4 km (1/24th degree). Forest
cover data were retrieved from Copernicus land datasets
for 2018 (European Union, 2018) and raster data for for-
est type extracted in QGIS 3.16 (QGIS.org, 2020) within
a 3-km radius of each sample location. An. plumbeus
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has historically been recorded to have a maximum flight
range of up to 13 km (Becker et al., 2010). However, this
is based on one single study from 1925 and is not veri-
fied by other sources. As such, we chose an estimated
range of 3 km based on the average flight ranges other
anopheline mosquito species (Becker et al., 2010; Ver-
donschot & Besse-Lototskaya, 2014). Scikitlearn’s stan-
dard scaler (Pedregosa et al., 2011) was applied to the
data before performing a generalised linear model with a
binomial logit link function on data with the following for-
mula: ‘Infected’ denotes if a sample was PCR positive
for ‘Ca. Tisiphia’, ‘tasmin’ is the annual average mini-
mum temperature, ‘tasmax’ is the annual average maxi-
mum temperature, ‘precip’ is the annual average
precipitation, ‘forest_ratio’ is the ratio of deciduous to
coniferous forest.

Infected� tasminþ tasmaxþprecipþ forest_ratio

All statistics and geographic inferences were carried
out in Python with the packages Statsmodel and Scikit-
learn (Pedregosa et al., 2011; Rossum & Drake, 2009;
Seabold & Perktold, 2010). QGIS 3.16 was used to pro-
duce maps and extract raster data for forest types
before passing it to Python for analysis (QGIS.
org, 2020). All other figures were produced with Matplo-
tlib and Seaborn (Hunter, 2007; Waskom & Seaborn
Development Team, 2020).

RESULTS AND DISCUSSION

Distribution and predicted environment

PCR assay of ‘Ca. Tisiphia’ found 244 of 255 (95.6%)
An. plumbeus samples to be positive across all sites
examined in Germany. The few negative specimens
were found mostly in the southeast of the country
(Figure 1 and Figure S1). There was no difference in
infection rate between male and female samples. We
can be confident prevalence is very high (binomial con-
fidence intervals for prevalence if PCR has no false
negatives/positives: 91%–97%); potential false nega-
tives from PCR failure of old template DNA make it pos-
sible infection is fixed or nearly fixed; 17 kDa PCR
amplicons were sequenced for five specimens, and
these proved to be identical in sequence, indicating a
single circulating strain. The infection seems to be sta-
ble in frequency, with samples from all years spanning
2012 to 2022 displaying similar rates of infection
(Figures S1 and S2, Table S1). There is also no clear
evidence of an association between ‘Ca. Tisiphia’
infection rates in An. plumbeus and average minimum
or maximum temperature, precipitation or forest types
(described in Supporting Information Figures and
Results).

Phylogeny and metabolism

The symbiont genome assembled into 1.6 Mbp across
31 contigs, with high CheckM completeness (94.55%
vs. 97.63% for the closed ‘Ca. Tisiphia’ genome of Culi-
coides impunctatus) (Table 1). The small genome size
of 1.6 Mbp is typical of Rickettsia-like bacteria which
vary from 1.1 to 2.3 Mbp (Davison et al., 2022; Diop
et al., 2018). TsAplum has a single full set of rRNAs
(16S, 5S and 23S), and GC content is �33%. It also has
several genes with repeat domains that are enable
protein–protein interactions and which are prevalent in
Wolbachia and other symbionts (Davison et al., 2023;
Rice et al., 2017; Siozios et al., 2013). Core gene analy-
sis indicated the bacteria sequenced from An. plumbeus
are most closely related to a ‘Ca. Tisiphia’ found in the
biting midge Culicoides newsteadi (Figure 2).

All infections tested were the same strain of ‘Ca.
Tisiphia’ (Figure S5). General features of both
genomes are consistent with other ‘Ca. Tisiphia’
(Table 1 and Tables S2–S4).

Overall, the predicted metabolic capabilities of the
‘Ca. Tisiphia’ bacteria found in An. plumbeus mirrors
that of other members of its genus (Figures S6 and S7,
and Table S4). Metabolic pathway that would contribute
to nutritional symbiosis such as B vitamin production
were not predicted, nor was there any evidence for a
NRPS/PKS system for small molecule synthesis that
might be associated with protection (Tables S3 and
S4). The genome does have several predicted toxin/
anti-toxin systems as well as Tat, Sec, VirB (Type IV)
secretion pathways, all of which are essential in various
symbiont-host interactions (Dale & Moran, 2006; Masui
et al., 2000; Meloni et al., 2003; Tseng et al., 2009; Wu
et al., 2004). Additionally, this ‘Ca. Tisiphia’ strain has
a number of ORFs containing ankyrin- and leucine-rich
repeats, which are thought to be important in interac-
tions with cognate eukaryotic proteins (Rice
et al., 2017; Siozios et al., 2013). Thus, the genome
itself, whilst firmly placing the symbiont in the context of
the genus, identifying relatedness to other strains and
consistent with its symbiotic nature, does not raise obvi-
ous hypotheses about the impact of infection on the
host. Phenotype studies are required to properly
assess the influence of this strain and its relatives on its
various hosts. Key studies would address the factors
driving the spread of the symbiont into the population
(testing for beneficial aspects of infection, cytoplasmic
incompatibility and paternal inheritance) and impacts
on viral infection and transmission outcomes.

FISH imaging

‘Ca. Tisiphia’ infection is observed in oocytes and ovi-
duct branches but is not detected in testes, indicating

RICKETTSIACEAE IN ANOPHELES 3067
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that maternal inheritance is the method of transmission,
and that paternal inheritance is unlikely (Figure 3
vs. Figure S8). Localisation and clear polarity of the
infection in ovaries strongly suggest that this is a mater-
nally inherited infection (Figure 3). The bacteria cluster
around the oocyte of the primary follicles as well as in

the lateral ducts and secondary follicles. In Drosophila
melanogaster, Wolbachia is similarly polarised to one
end of the primary follicles to the oocyte (Ferree
et al., 2005), and Sodalis endosymbionts in Proechi-
nophthirus fluctus appear to use lateral oviducts to
access the ovaries (Boyd et al., 2016).

F I GURE 1 A map of ‘Ca. Tisiphia’ infection rates in Anopheles plumbeus across Germany with the size of the circle representing the
number of individuals sampled and the colour indicating the proportion of ‘Ca. Tisiphia’ infected individuals. Red = 90%–100% infection to light
yellow = 50%–60% infection. Source data can be found in Table S1.
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Final conclusions

An. plumbeus and its infection with the bacterium
‘Ca. Tisiphia’ make a good model for symbioses in
Anopheles mosquitoes, as well as for ‘Ca. Tisiphia’
infections more generally. Outside of An. plumbeus,
there is only a single well-substantiated case of Wol-
bachia in anopheline mosquitoes (Walker
et al., 2021) and no reports of other heritable
microbes. The symbiosis with An. plumbeus is clearly
evidenced, likely heritable and occurs in a species
that has previously been successfully bred in a labo-
ratory colony (Kotter, 2005). Beyond this, An. plum-
beus is a species of interest with the ability to
transmit West Nile virus and Plasmodium parasites
(Dekoninck et al., 2011; Schaffner et al., 2012). ‘Ca.
Tisiphia’ infection in An. plumbeus provides a viable
avenue for symbiont-mediated vector modification
and control that can be tested in anopheline species.
It is also an example of a temporally and spatially sta-
ble infection of non-pathogenic Rickettsiaceae and a
good comparison to fluctuating systems like Belli
Rickettsia in Bemisia tabaci (Bockoven et al., 2020).

Symbiosis may be beneficial or deleterious to the
host, and indeed this status vary according to biotic
and abiotic pressures (Drew et al., 2021). Future work
should establish the effects of ‘Ca. Tisiphia’ in the An.

TAB LE 1 Summary of the genome assembly for ’Ca. Tisiphia’
str. TsAplum.

Strain name TsAplum

Symbiont genome
accession

SAMN31737641

Host Anopheles plumbeus

Raw reads accession Pacbio SRR22298143, Illumina
SRR13516402

Total nucleotides (bp) 1,622,210

Contigs 31

Completeness (CheckM) 94.55%

Contamination (CheckM) 1.66%

GC content 32.82%

N50 62,798

Number of CDS 1701

Avg. CDS length (bp) 788

Coding density 82.57%

rRNAs 1 � 5S, 1 � 16S, 1 � 23S

tRNAs 31

ORFs with Ankyrin repeat
domains

3

ORFs with Leucine rich
repeats

1

ORFs with
Tetratricopeptide
repeats

6

F I GURE 2 Genome-wide phylogeny of ‘Ca. Tisiphia’, Rickettsia and ‘Ca. Megaira’. Maximum likelihood (ML) phylogeny constructed from
205 single-copy gene clusters that contain a total of 3690 genes (summarised in Table S5). The new genome is indicated by ◄, and bootstrap
values based on 1000 replicates are indicated with coloured circles (red, ≥90 and <100; yellow, >80 and ≤90; black, ≤80). Accession numbers
for each genome are available in Table S2.
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plumbeus and how it is maintained. There are three
non-mutually exclusive methods by which purely mater-
nally inherited symbionts might be maintained in their
host:sex ratio distortion, cytoplasmic incompatibility or
beneficial contribution to female host survival and
reproduction. Sex ratio distortion is unlikely because
the infection is present in both sexes and at rates of
>95% of the wild population. Cytoplasmic incompatibil-
ity should be tested as it is observed in a wide variety
of symbiotic bacteria (Wolbachia, Cardinium, Rickett-
sia, Spiroplasma) (Altinli et al., 2018; Gillespie
et al., 2018; Gotoh et al., 2007; Hayashi et al., 2016;
Pollmann et al., 2022; Shropshire et al., 2020; Walker
et al., 2011). Cytoplasmic incompatibility would be par-
ticularly significant as it can be used in disease vector
control (Hoffmann et al., 2011; Laven, 1967). Beneficial
contributions by symbionts can be diverse and include
nutritional and protective roles, both of which may be
key features of host biology and can result in closely
linked evolution, as seen with symbionts like Buchnera
and Hamiltonella in aphids (Buchner, 1965; Leclair
et al., 2017) or Stammera in shield beetles (Salem
et al., 2020).

Investigations of how transinfection in alternative
hosts affect the symbiont’s function will also be desir-
able. Symbionts like Wolbachia are known to produce
functionally interesting phenotypes related to vector
competence when transferred from the original host
into other, naïve species (Moreira et al., 2009). Along-
side this, impacts on host function and physiology, and
potential means of spread into natural populations

would need to be assessed. A first step to establishing
transinfection would be to isolate ‘Ca. Tisiphia’ into cell
culture, which would also represent an important com-
munity resource for onward studies.

In summary, ‘Ca. Tisiphia’ is found in approximately
95% of An. plumbeus individuals from Germany and
forms a well-established, stable, and heritable infection
that persists across space and time. Metabolic potential
is typical of similar symbiotic bacteria species, and we
find no evidence of large-scale environmental factors
influencing rates of infection. However, ‘Ca. Tisiphia’
and An. plumbeus provide a unique opportunity to
study the effects of a native symbiont infection in
anopheline mosquitoes, as well as explore its potential
use for disease mitigation in other species that cannot
be infected with currently used symbionts.
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