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In recent years, breeding programs have increased significantly in size and complexity, with various highly interdependent parameters 
and many contrasting breeding goals. As a result, resource allocation in these programs has become more complex, and deriving an 
optimal breeding strategy has become increasingly challenging. To address this, a common practice is to reduce the optimization prob
lem to a set of scenarios that differ only in a few parameters and can therefore be analyzed in detail. The goal of this article is to provide a 
framework for the numerical optimization of breeding programs that goes beyond the simple comparison of scenarios. For this, we first 
determine the space of potential breeding programs only limited by basic constraints like the budget and housing capacities. 
Subsequently, the goal is to identify the optimal breeding program by finding the parametrization that maximizes the target function 
by combining different breeding goals. To assess the value of the target function for a parametrization, we propose using stochastic 
simulations and the subsequent use of a kernel regression method to cope with the stochasticity of simulation outcomes. This procedure 
is performed iteratively to narrow down the most promising areas of the search space and perform more and more simulations in these 
areas of interest. In a simplified example applied to a dairy cattle program, our proposed framework has shown its ability to identify an 
optimal breeding strategy that aligns with a target function aiming at genetic gain and genetic diversity conservation limited by budget 
constraints.
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Introduction
Designing a breeding program is a complex task that requires con
sidering multiple interdependent breeding objectives (Berry 2015; 
Hickey et al. 2017). Limited resources, both financial and practical, 
impose restrictions on the scale and scope of breeding activities 
(Henryon et al. 2014). As a result, breeders face the challenge of 
making various decisions to maximize resource utilization by pri
oritizing specific breeding objectives and optimizing strategies to 
achieve the best possible outcome within the given constraints.

Over the years, various methods using quantitative genetic the
ory have been developed to estimate the impact of specific 
changes on the breeding program. For example, the breeder’s 
equation (Lush 1947; Falconer and Mackay 1996) provides an esti
mate of how selection intensity, generation interval, and predic
tion accuracy will impact the response to selection. Based on 
this, several tools like ZPLAN (Täubert et al. 2010), SelAction 
(Rutten et al. 2002), and MTINDEX by J. van der Werf (see http:// 
www.personal.une.edu.au/˜jvanderw/software.htm) have been 
developed to predict multiple breeding decisions with each other 
and estimate the expected response to selection, enabling stra
tegic resource allocation, and making informed decisions.

While this formula provides valuable insights for optimizing 
breeding programs, its applicability is often restricted to 

simplified scenarios, and its limited generalizability hinders its 
application to modern programs that involve numerous inter

dependent parameters. In such programs, comparing diverse 

breeding schemes with different objectives becomes challenging. 
Even minor adjustments in one parameter can significantly affect 

multiple aspects of the program (Henryon et al. 2014; Simianer et 
al. 2021).

With increasing computational power, stochastic simulations 
have emerged as a valuable enhancement for analyzing breeding 

programs with various software solutions available (Sargolzaei 

and Schenkel 2009; Faux et al. 2016; Liu et al. 2018; Pook et al. 
2020). This provides additional challenges but also opportunities. 

On the one hand, it is not possible to directly derive the expected 

outcome/value of key metrics of the breeding scheme (e.g. as done 

with the breeder’s equation). On the other hand, there are many 
benefits of using stochastic simulations, where it is often pre

ferred over a deterministic simulation approach. To name a few: 

(1) their ability to incorporate multistage selection and rates of in

breeding more easily (de Roos et al. 2011), (2) simulation of popula

tions over a specific time considering variability and stochastic 

events that can influence the population dynamics (de Roos et 
al. 2011; Lillehammer et al. 2011; Mc Hugh et al. 2011), and (3) in

stead of considering cohorts of individuals like in the traditional 
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gene-flow model (Hill 1974), stochastic simulations simulate indi
viduals and all breeding actions, which also allows for changes in 
the accuracy of breeding values by considering SNP effects and 
the genetic distance between the reference population and the 
predicted population (Lillehammer et al. 2011; Mc Hugh et al. 
2011), allowing for more flexibility and in-depth modeling of mod
ern breeding schemes. Nevertheless, as the expected outcome of a 
breeding scheme cannot be calculated deterministically, optimiz
ing breeding programs using stochastic simulation has to cope 
with the additional challenge of stochasticity (Amaran et al. 2016).

Due to the advantages mentioned above, stochastic simulation 
has been utilized in different studies to execute such simulations 
for specific breeding actions and evaluate various breeding strat
egies. Several breeding programs aim to maximize genetic gain 
while minimizing the rate of inbreeding, which can have negative 
consequences on genetic diversity and overall program success. 
To achieve this balance, various methods and algorithms have 
been developed for different optimization strategies. Depending 
on the study, the focus of optimization can range from selection 
and mating decisions (Moeinizade et al. 2019, 2022; Kinghorn et 
al. 2022), weighting between different breeding objectives/traits 
(Gorjanc and Hickey 2018; Duenk et al. 2021), the use of optimal 
contribution selection (Woolliams et al. 2015; Wellmann 2019), 
or maintenance of genetic diversity (Pryce and Daetwyler 2012).

Unlike deterministic calculations, the output of a stochastic 
simulation of breeding programs is the realization of a stochastic 
process. As a result, optimization cannot be achieved by straight
forwardly maximizing a formula through derivative calculations. 
Therefore, applying mathematical optimization techniques, such 
as gradient descent (Kiefer and Wolfowitz 1952), simulated an
nealing (Kirkpatrick et al. 1983), genetic algorithms (Holland 
1992), or Bayesian optimization (Schonlau 1998), becomes in
creasingly difficult. This is primarily due to the resource-intensive 
nature of stochastic simulations, as evaluating the optimization 
target for a single parametrization can require substantial com
puting time compared to the optimization algorithm itself. Due 
to the complex system architecture and the various sources of un
certainty, combined with the high number of parameters to con
sider, it becomes computationally challenging to simulate each 
potential breeding scheme and directly derive the optimal one. 
Therefore, to overcome these challenges, performance evaluation 
of the breeding program and designing breeding plans using deci
sion frameworks are usually limited to a couple of potentially in
teresting scenarios, which are then simulated and compared 
against each other (Wensch-Dorendorf et al. 2011; Esfandyari et 
al. 2015; Gaynor et al. 2017; Büttgen et al. 2020; Pook et al. 2021).

Another commonly used technique for optimization is the use of 
a grid search algorithm (Longin et al. 2006; Gordillo and Geiger 2008; 
Mi et al. 2014, 2016; Pook et al. 2021). However, while grid search of
fers an acceptable solution to the problem in many smaller applica
tions, it becomes inefficient for a large number of parameters. This 
inefficiency arises due to the exponential increase in computation
al time required to define and evaluate a grid of possible parameter 
combinations. Consequently, this often leads to the use of a very 
sparse grid, limiting its effectiveness in such scenarios.

While several algorithms and techniques have been developed to 
address optimization problems and resource allocation in breeding 
programs, the effectiveness of many existing algorithms can vary 
depending on specific problem characteristics. Although these fra
meworks offer valuable insights into setting up a breeding program, 
the aim of breeding program optimization so far has been focused 
on custom-designed programs, with aspects chosen specifically 
for the analysis of the particular breeding program at hand.

The goal of this article is explicitly not the optimization of the 
design of a specific breeding program but to provide a general 
framework to formalize the structure of a breeding program into 
a general optimization problem that in turn can be optimized. 
The particular focus here is on providing a framework to handle 
the randomness in stochastic simulations for the optimization 
of breeding program design, which makes it challenging for con
ventional optimization solvers to converge to optimal solutions.

Materials and methods
General pipeline for optimizing breeding 
programs
We will propose a general pipeline for optimizing breeding programs 
in the following. A schematic overview of the different steps is given 
in Fig. 1. Subsequently, we will discuss the individual steps of the 
pipeline in more detail and discuss them along a classical dairy cattle 
scheme with a detailed description given in Supplementary File S1
and a summary of the simulation process outlined in 
Supplementary Table S1. Note that the breeding scheme described 
here is an oversimplified representation of reality and should only 
be seen as a toy example. However, the principles outlined can be 
adapted and applied to even more complex breeding schemes that 
involve multiple breeding steps, advanced selection techniques, 
varying cost structures, and other relevant factors.

Step 1: Determine the search space and bounds for decision 
variables
The first step in an optimization process is to identify which para
meters can be changed and are subject to optimization and what 
range of values these can take. In the case of the dairy cattle ex
ample, we want to consider three variables x = (x1, x2, x3) for opti
mization with x1 being the number of test daughters, x2 being the 
number of test bulls and x3 as the number of selected sires, and 
these numbers must be non-negative integers. For a breeding pro
gram, the associated costs will most commonly provide basic 
boundaries to the considered variable. For our analysis, we will 
disregard any potential effects of economies of scale and instead 
assume a fixed annual budget of 10M €. Additionally, we will con
sider a housing cost of 3,000 € per bull and 4,000 € per cow.

As the entire search space will be considered for optimization, it 
can additionally make sense to limit parameters to a range of reason
able values based on prior expectations. For our analysis, we will fo
cus on breeding schemes where the number of test bulls ranges from 
100 to 700, and the number of selected sires ranges from 3 to 30. We 
chose to limit our consideration to this range as other designs are ex
pected to be less efficient, and we excluded them to save computing 
time. If the optimal solution is found in a corner solution, these con
straints may need to be adjusted and softened to ensure that the best 
solution will not be missed. Similarly, one could imagine practical 
limitations like a maximum housing capacity in the stable

x1 + x2 + x3 ≥ 0

100 ≤ x2 ≤ 700

3 ≤ x3 ≤ 30

4,000x1 + 3,000x2 − 10,000,000 ≤ 0 

Step 2: Determine the target function
To perform any type of optimization it is required to have a well- 
defined target function, hence a breeding goal with the final ob
jective being to find the parameterization in our search space to 
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maximize this target. Options for this are basically endless, and 
from our experience, even breeding companies typically struggle 
to describe what their overall and concrete breeding goal is. 
Consequently, this can range from a purely economic description 
of what financial impact a given breeding program has to minim
ize money spent to fulfill a set amount of genetic gain or to maxi
mize genetic gains in a certain time frame plainly. This requires 
analyzing the output of the stochastic simulations, which in con
trast to the simulations themselves, should be computationally 
relatively cheap and thus allow for limitless complexity in the tar
get function.

In our toy example, we want to obtain high genetic gain while 
also maintaining genetic diversity in the population. For this, we 
are considering the following target function m:

m(x1, x2, x3) = g(x1, x2, x3) − 50 × f (x1, x2, x3) 

with g being the resulting genetic gain and f being the inbreeding 
level in newly born animals after 15 years of breeding. g is calcu
lated based on the true underlying genomic values of individuals 
[get.bv() in MoBPS (Pook et al. 2022)], and f is calculated based on 
kinship [kinship.emp.fast() in MoBPS (Pook et al. 2022)].

In this example, we chose a scaling factor of 50 for f to give ap
proximately equal importance to both breeding goals. It is import
ant to note that this choice was arbitrary and based on the range 
of values observed in f and g. The appropriate choice of the weight
ing factor will vary depending on the specific breeding scheme and 
goals. In the end, in our example, this allows the two objective 
functions to be compared and allows for a more balanced consid
eration of their trade-offs. To account for various time horizons in 
the breeding scheme, an alternative approach is to incorporate 
not only genetic gains after 15 years but also consider a composite 
target function that includes genetic gains after 1, 2, 3, 5, and 10 
years.

Step 3: Evaluation of the target function
In contrast to most other fields, evaluating the target function 
itself is the main computational bottleneck of the optimization 
procedure. We split this up into first simulating the breeding pro
gram, corresponding to sampling a realization of the target func
tion for a given parametrization, and estimating/approximating 
the target function based on these outputs.

Step 3a: Simulation of the breeding program
The process of simulating a breeding program is often overlooked 
in many scientific manuscripts focusing on simulation studies, 
but setting up this script can be seen as one of the key components 
of any simulation study. For a general optimization, it is required 
to write the simulation script in a flexible and general way to han
dle all parameter settings within the considered search space. For 
instance, when exploring the use of optimum genetic contribution 
(OGC) to preserve genetic diversity within a breeding program 
(Quinton and Smith 1995), the simulation script must be designed 
to adapt based on the chosen parameterization. It should be cap
able of incorporating OGC when applicable and excluding it when 
irrelevant. Additionally, if one is investigating the utilization of 
admixture arising from a founding population comprising various 
subpopulations, the simulation script should be developed to in
clude the coexistence of all subpopulations throughout the simu
lation process (Corbett-Detig and Jones 2016). Furthermore, if 
certain scenarios involve generating specific cohorts, the code 
should be flexible enough to handle cases where these cohorts 
may or may not be present. One way to achieve this flexibility is 
by utilizing binary parameters that control whether a particular 
breeding action is executed or skipped within the simulation 
script.

In our example, we utilized the R package MoBPS (Pook et al. 
2020) to perform the stochastic simulation of the breeding scheme. 

Fig. 1. Procedure proposed for optimization via simulation for a breeding strategy.
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This package offers a flexible environment and a wide range of 
preimplemented functions that facilitate the implementation of 
the intended breeding action. Given the simplicity of our toy ex
ample, the implementation process was fairly straightforward 
(Supplementary File S3). However, for more complex breeding 
programs, the general procedure remains the same, albeit with 
longer computing times and additional considerations when pre
paring the simulation script.

Step 3b: Estimation of the target function (via kernel 
regression)
If unlimited computing power was available, one could simulate 
each potential parameterization of the breeding program multiple 
times. These simulations would then be evaluated against the tar
get, enabling the identification of the breeding scheme that max
imizes the desired outcome. The outcomes of our simulation are 
just realizations of a stochastic process and not direct calculations 
of g, f, and m, respectively. Instead, we want to use these realiza
tions to calculate estimators ĝ, f̂ , and m̂.

Given the large number of potential settings and the computa
tional demands associated with simulations, achieving this level 
of exhaustive evaluation is practically unfeasible. Additionally, 
due to the high level of stochasticity in the results, the target func
tion does not behave well when employing relatively simplistic 
means of approximation, such as linear interpolation, and this 
hinders the application of downstream optimization techniques 
[e.g. utilizing gradient descent as an optimization technique ne
cessitates a well-defined derivative and may encounter difficulties 
such as local maxima arising from stochastic outliers (Shah et al. 
2020)].

We here propose the following approximation pipeline for m. 
To initialize this procedure, it is necessary first to simulate poten
tial parametrizations of the breeding scheme with broad coverage 
of the search space. In our particular example, values for x2 and x3 

were drawn from a uniform distribution, and x1 was subsequently 
calculated based on the budget constraint. In our study, we 
sampled 60,000 potential parametrizations for the breeding pro
gram. This sample size was chosen considering the relatively 
low computing time of the toy example and the significant influ
ence of stochasticity observed. It is important to note that the 
number of simulations conducted will depend on the available 
computing time and with more simulations a better initial ap
proximation can be achieved.

For the approximation of ĝ, f̂ , and m̂, we propose using kernel 
regression via a Nadaraya–Watson estimator (Nadaraya 1964; 
Watson 1964), which provides a locally weighted average with 
weighted derived based on the distance of each input paramet
rization to the target value (x1, x2, x3) to estimate the underlying 
function. We can define the estimator of m as:

E(Y|x = (x1, x2, x3)) = m̂(x1, x2, x3)

=

􏽐
yi × K

􏼐x1 − xi,1

h1
,

x2 − xi,2

h2
,

x3 − xi,3

h3

􏼑

􏽐
K
􏼐x1 − xi,1

h1
,

x2 − xi,2

h2
,

x3 − xi,3

h3

􏼑 .

Note that Y is a random variable with an expected value 
m(x1, x2, x3) and unknown variance. yi is the realization of sto
chastic simulations for our three input parameters (xi,1, xi,2, xi,3). 

For each value of x, the locally weighted average of the yi is com
puted with weights given by the used kernel function. We here use 

a multivariate Gaussian kernel with independent individual com
ponents, resulting in the following:

K(x1, x2, x3) = K1(x1)K2(x2)K3(x3) 

with

Ki(x) =
1
���
2π
√ exp −

x2

2

􏼒 􏼓

, 

where x is the distance between the query and a data point in the 
input space, the kernel function is linked to the smoothing param
eter bandwidth h, which controls the weight given to each simula
tion in the smoothing procedure. A smaller bandwidth means that 
the xi closer to x will have higher relative weights, and therefore 
their yi values will have more influence on the estimate.

For the choice of the initial bandwidth, one could consider using 
cross-validation (Hardle and Marron 1985; Jones et al. 1996) or esti
mation of the variance in the given parameter (Brockmann et al. 
1993). For our toy example, we chose the initial bandwidth based 
on visual inspection to obtain a relatively well-based function with
out over-smoothing with (h1 = 30, h2 = 30, h3 = 1) for g. In order to 
mitigate biases in the estimation process caused by the higher 
weighting of scenarios with varying selection intensities during 
cases of high selection intensity, the bandwidth values for f were di
vided by 3. This adjustment was made specifically to address the 
major changes in the realization of f for the low number of selected 
sires x3 (high selection intensity).

Step 4: Optimization
Results from the kernel regression provide an approximated tar
get function that offers the advantages of quick evaluation for a 
given parametrization and reasonable behavior. This approxima
tion enables the utilization of diverse optimization techniques. 
With a limited number of parameters, it will often just be possible 
to evaluate all parametrizations (as demonstrated in our toy ex
ample using the brute-force approach). However, one could also 
consider gradient descent [optimr by Nash (2019)], simulated an
nealing [GenSA by Xiang et al. (2013)], genetic algorithms [GA by 
Scrucca (2013, 2017)], differential evolution [DEoptim by Mullen 
et al. (2011)]. See Schwendinger and Borchers (2023) for an over
view of methods for mathematical optimization.

Moreover, it is important to note that the target function is not 
directly observed but rather approximated. Therefore, it becomes 
crucial to utilize the results of the approximation in order to iden
tify the most promising regions within the search space by run
ning additional simulations in those areas. With the additional 
simulations, the approximation of the target function can be im
proved, leading to a reduction in estimation bias. This improve
ment can be achieved by decreasing the bandwidth of the kernel 
regression, which in turn, reduces bias. Additionally, conducting 
more simulations helps to decrease the variance of the estima
tion, contributing to a more accurate approximation overall. 
Hence, optimization is performed iteratively until a stable point 
is reached in the estimated maximum of those identified areas. 
At this stage, further exploration is unlikely to yield significant 
changes, indicating that convergence has been achieved.

Comparison of approximation techniques
To assess and compare the performance of the suggested kernel 
regression method, we compared optimization results obtained 
through plain linear interpolation [interp by Akima et al. (2022)]. 
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For evaluation purposes, we generated a dataset of 30,000 sam
ples from the original dataset, which contained 60,000 simula
tions, using bootstrapping. This process was repeated 100 times 
to ensure reliability and consistency. We then compared the two 
metrics based on the average value of the target function, as esti
mated from the full set of simulations, and the average distance of 
the suggested optima from the same full set.

Number of simulations
The inherent randomness in stochastic simulation can lead to sig
nificant variations between individual simulations. To determine 
the precision of our results within a single iteration, we evaluated 
the required number of simulations. For this purpose, we per
formed simulations using different sample sizes (1,000, 10,000, 
20,000, 60,000). Subsequently, we compared the likelihood of the 
estimated optima occurring in the search space using varying 
numbers of simulations. Further details of this method can be 
found in Supplementary File S2.

Computing time for simulation
A server cluster with Intel Platinum 9242 (2X48 core 2.3 GHz) pro
cessors was used for this study. Simulations were performed on 
the single core and required ∼19 min and 5GB RAM peak memory 
usage per simulation (MoBPS Version: 1.10.40).

Results
Optimization via visual inspection
In the following section, we will present the results obtained by 
applying our optimization pipeline to the toy example. Despite 
conducting as many as 60,000 simulations, the approximated tar
get function derived from linear interpolation did not exhibit the 
desired behavior. Thus, this makes the application of the standard 
optimization techniques very challenging (Fig. 2c). By applying 
kernel regression to the target function, we significantly improved 
its smoothness, and we observed the highest value for the target 
function at (2377,163,18), yielding the optimal value of 107.1139 
(Fig. 2d).

When looking into the individual components of the target 
function, we observe that genetic gain is maximized by using as 
many test daughters as possible to ensure high prediction accur
acy and minimizing the number of used selected sires for a high 
selection intensity (2425, 100, 3) with a genetic gain of 12.2 
(Fig. 2a). On the contrary, minimizing average kinship involves se
lecting as many selected sires as possible from a smaller pool of 
test bulls (2425, 100, 30), resulting in an inbreeding coefficient of 
0.022 (Fig. 2b). Suppose those individual components would be 
the sole optimization goal, one should investigate to loosen 
the initially defined constraints. However, if these constraints 
are met in practice, one could stop the optimization process 
here and consider these corner solutions as the best optima.

However, when dealing with the composite function, the opti
mization process becomes less straightforward. It should be noted 
that we intentionally selected weights in the target function to en
sure that the optima are within our search space. When zooming 
on the plot of the composite function, we can identify three local 
optima, where two different local maxima with similar values 
(2375, 166, 15) and (2362, 184, 20) lead to a value for the target 
function of 107.1073 and 107.0834, respectively. Thus, this first it
eration is insufficient to narrow down the absolute maximum. 
However, it allows us to narrow down the search space for subse
quent iterations to 120 ≤ x2 ≤ 250 and 13 ≤ x3 ≤ 22, as all three va
lues fall within this area (Fig. 3a).

As a result, an additional 50,000 simulations were conducted in 
the second iteration, focusing only on the promising areas of the 
search space (areas inside of the black square in Fig. 3b). In the se
cond iteration, the search space size was significantly reduced by 
narrowing the grid from a 27 × 600 grid to a 9 × 130 grid, resulting 
in a 14-fold decrease in the search space. As the number of simu
lations increased within the defined window size for calculating 
the kernel function, the variance in the estimation of the target 
function decreased compared to the first iteration. This allows 
us to reduce the bandwidth, allowing for a better approximation 
of our target function. Therefore, the bandwidth was halved, 
which resulted in the best solution 107.1205 from optimization, 
suggesting (2364, 181, 19) as the optimum.

In the third iteration, we conducted an additional 12,000 simu
lations by reducing the grid from 9 × 130 to 6 × 80, where the size 
of the search space was decreased by 2-fold. The reduction in the 
search space size enabled an increase in the number of observa
tions within the defined window and a reduced bandwidth by 
half. The optimization suggests (2368, 175, 19) indicating stabiliza
tion of the optima with the best value of 107.1399 (Fig. 3c). Note 
that as no further simulations were run outside of the areas of 
interest, the chosen bandwidth will be too small to reliability esti
mate m outside the new search space as seen in Fig. 3c. If a specific 
region shows high potential, it may be worthwhile to run addition
al simulations in those previously disregarded regions. This will be 
particularly relevant for more complex optimization problems 
with more parameters.

Identifying the global maxima and, or the target area for fur
ther iterations based on the simulation of the first iteration has 
a significant amount of variance, due to the inherent randomness 
of the stochastic simulation process. When just conducting 1,000 
simulations, the estimated global maximum for m is estimated to 
be in a corner solution in 21% of all runs with 100 ≤ x2 ≤ 150 
(Fig. 4a). Only 18% of all estimated global maxima fall within the 
range (130 ≤ x2 ≤ 210 and 15 ≤ x3 ≤ 21) that we chose for final in
vestigation. In comparison 10,000 (Fig. 4b), 20,000 (Fig. 4c) and 
60,000 (Fig. 4d) simulations result in 33%, 41%, 56% of the runs 
in our afterward chosen search space.

Optimization via approximation techniques
All reported optima were computed by brute-force calculation of 
all potential values of the target function. However, for 
large-scale optimization problems with numerous parameters, 
this approach becomes impractical. To address this, we em
ployed various mathematical optimization techniques on both 
the plain target function obtained from linear interpolation 
and our suggested kernel regression. When kernel regression 
was applied to the target function (Supplementary Table S2), 
all algorithms demonstrated the ability to converge to solutions 
that were only marginally worse than those obtained through 
the brute-force method.

Regarding the distance of the suggested optima to the finally 
obtained optima of (2377, 163, 18) in the first iteration, the GA 
and DEoptim algorithms resulted in a lower average distance. 
The optimization results obtained using the optimr algorithm in 
our small example demonstrated its sensitivity to the choice of 
the starting point. With a good initial guess (x2 = 200, x3 = 20), 
the algorithm performed satisfactorily, converging to a global op
timum. However, when a slightly worse initial guess was pro
vided, the algorithm failed to produce meaningful results (e.g. 
with an initial guess of (x2 = 250, x3 = 25), the optima found 
were (x2 = 245, x3 = 23) with a target function value of 106.986). 
The optimr, GA, and DEoptim algorithms exhibited superior 
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(a) (b)

(c) (d)

Fig. 2. Visualization for Nadaraya–Watson estimator for a) genetic gain (ĝ) with a bandwidth (h2 = 30, h3 = 1), b) inbreeding coefficient (f̂ ) with a bandwidth 
of ĝ/3, c) composite function m̂ based on 60,000 simulations when using linear interpolation for smoothing, d) composite function m̂ based on 60,000 
simulations when using kernel regression for smoothing. The colors represent the relative value of the target function, with dark red showing the 
favorable outcome of the target function.

(a) (b) (c)

Fig. 3. Smoothed surface contour map for the composite function of a) full space (zoom-in plot of Fig. 2d to show three local optima): First iteration with a 
bandwidth (h2 = 30, h3 = 1), b) second iteration with a bandwidth (h2 = 15, h3 = 0.5), c) third iteration with a bandwidth (h2 = 7.5, h3 = 0.25). The indicated 
bandwidth here refers to the bandwidth for g, and this bandwidth for f in all iterations was divided by three. Dots indicate local maxima and the area 
inside of the squares indicates the search space in the current iteration. The area outside the square shows the prominent effect of the bandwidth and the 
variance of our estimates, which is related to the number of simulations used to estimate the kernel function. The colors represent the relative value of 
the target function, with dark red showing the favorable outcome of the target function.
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speed, being approximately 38.85, 6.88, and 3.82 times faster than 
the brute-force method, respectively. The GenSA model, similar to 
the optimr algorithm, requires an initial guess to initiate the opti
mization process. Although it has the capability to converge to a 
good solution even with a suboptimal initial guess, it tends to 
take a longer time, needing approximately 5.75 times more time 
than the brute-force approach to reach convergence.

Similar trends were observed when the target function was in
terpolated without kernel regression in terms of speed 
(Supplementary Table S3). However, all algorithms achieved a 
lower value for the target function and failed to converge to a glo
bal optimum. The optimr model, with a good initial guess 
(x2 = 200, x3 = 20), performed exceptionally well in this scenario. 
It achieved the best solution regarding the target function and 
distance to the optimal solutions. On the other hand, the brute- 
force model performed the worst, and despite exhaustively 
searching through the entire solution space, it was not able to 
find a solution that matched the performance of the other 
algorithms.

Discussion
In this study, we have developed a general optimization pipeline 
for breeding programs that goes beyond the limitations of trad
itional methods and can cope with the variability in the outcome 
of stochastic simulations. Insights from the results highlight five 
key points for discussion:

Kernel estimator vs other optimization algorithms
The algorithm discussed in this study offers additional benefits 
over traditional methods like grid search when the optimal par
ameter region has a complex shape and the target function value 
has an unknown functional form but can be evaluated at any 
point. E.g. imagine that the optimum for a parameter is 150. If 
we use a grid-search algorithm that only considers a limited set 
of discrete values, such as 100, 200, 300, and 400, we miss the 
true optimum and settle for a suboptimal value of 100 or 200 as 
the best solution, which could lead to significant performance 
degradation compared to the optimal setting of 150 (Fu et al. 2017).

(a) (b)

(c) (d)

Fig. 4. Estimates of the optimum values after smoothing using KDE associated with the number of simulations needed: a) using 1,000 simulations, b) 
using 10,000 simulations, c) using 20,000 simulations, d) using 60,000 simulations. Regions with darker red shades on the plot represent areas where the 
estimated optima are more likely to occur or are more densely distributed, whereas lighter shades suggest regions where the estimated optima are less 
likely to occur or are sparsely distributed.
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By employing kernel regression and initializing a larger random 
search space, a more comprehensive exploration of the problem 
was achieved. This approach enabled a thorough investigation 
of the underlying relationships and dependencies between differ
ent parameterizations, leading to a deeper understanding of the 
optimization landscape. This can be valuable for identifying 
trends or patterns that may not be immediately visible with a 
smaller search space.

The application of kernel regression helped overcome the chal
lenges posed by the stochastic nature of evaluating the target 
function in a given parametrization. Kernel regression led to im
proved optimization results by the better average optimization 
of the target function and smaller average distances to the 
optimum values in Supplementary Table S2 compared to 
Supplementary Table S3, where the target function was interpo
lated. Differential evolution (Deoptim) and genetic algorithm 
(GA) showcased the most effective algorithms. These algorithms 
use principles of natural selection and genetics to explore the so
lution space through populations of candidate solutions and gen
etic operations like crossover and mutation (McCall 2005). They 
are known for their ability to explore a wide range of solutions 
and adapt to changing environments, which could be advanta
geous in scenarios where kernel regression alone may not be 
sufficient (brute-force evaluation of all parameterizations is 
impossible).

Similarly, the simulated annealing approach, such as GenSA, 
takes a more exploratory approach to optimization. It explores 
the search space by iteratively accepting probabilistic uphill 
moves, which enables it to break free from local optima and find 
the global optimal solution, or at least a very close approximation 
to it. However, this feature of accepting uphill moves comes at a 
cost. Simulated annealing requires a large number of iterations 
to explore the search space adequately. Discovering potential so
lutions can be computationally expensive and slow for large-scale 
optimization problems with many parameters (Wang and Shi 
2013).

The gradient descent algorithm (optimr) relies heavily on the 
gradient information, making it prone to converging to nearby lo
cal optima. Such a requirement for precise starting points can 
make this approach highly sensitive to initial conditions, and 
even a slight deviation can result in suboptimal solutions 
(Dattner 2015). Moreover, running the local optimization algo
rithm multiple times from different initial conditions can become 
impractical, especially for complex and high-dimensional opti
mization problems.

Note here that one of the key downsides of kernel regression is 
that with the increasing number of parameters, the number of si
mulations needed to have good coverage of the entire search area 
will increase exponentially (Lavergne and Patilea 2008; Geenens 
2011). Thus, optimization based on kernel regression will be lim
ited to a relatively small number of parameters. It is crucial to 
weigh the benefits of adding additional parameters against the po
tential limitations they can impose on the accuracy and general
ization of the model. Adding too many parameters can lead to 
overfitting and reduced model performance, as it increases both 
the computational complexity of the algorithm and the resources 
required to run it.

To address this challenge, one possible suggestion is to com
bine kernel regression with other powerful sequential optimiza
tion strategies using stochastic simulations, such as Bayesian 
optimization (Shahriari et al. 2016) or evolutionary algorithms 
(Bäck et al. 2000). These algorithms are known for their iterative 
nature, generating new solutions in each iteration, while kernel 

regression contributes its localized estimation capabilities. By 
combining the solutions from previous iterations with kernel re
gression, iterative optimization algorithms can guide the explor
ation of the search space in a more focused and efficient manner.

The impact of bandwidth
As shown in this manuscript, kernel regression can be a powerful 
tool for smoothing/approximating a function with realizations 
impacted by stochasticity. However, it can be sensitive to the 
choice of bandwidth (Hardle and Marron 1985; Chen and Zitikis 
2015). It is important to ensure that the bandwidth facilitates 
the use of appropriate counts of observations at different stages 
of the estimation process, as there is a well-known bias-variance 
trade-off for selecting the bandwidth in high or small-density 
areas of search space. This can have a significant impact on the 
accuracy and reliability of the smoothing process, as it determines 
the shape and width of the smoothing window. A wider h will re
sult in a smoother curve with less detail, risk of systematical bias, 
and over-smoothing. By contrast, a narrower h will produce a 
more detailed curve with more variability.

Thus, an appropriately chosen bandwidth will weigh between 
those two factors. In our particular case with three variables, fit
ting the bandwidth via visual inspection was sufficient, facilitat
ing our understanding of the bandwidth behavior. Based on the 
results, as the inbreeding level changed substantially for a few se
lected sires, kernel regression with large bandwidth can lead to 
substantial biases in the approximation. To negate this, the initial 
bandwidth for the genetic gain g was three times larger than for 
the inbreeding f. However, with many parameters, relying solely 
on visual inspection to determine the appropriate bandwidth 
choice for kernel regression is no longer applicable.

For this, various automated methods for bandwidth selection, 
such as cross-validation (Hardle and Marron 1985; Jones et al. 
1996) and variance-based approaches (Brockmann et al. 1993), 
can minimize mean-squared errors and aid in selection. When 
using such an automated procedure for our example (particularly 
for the first iteration), the suggested bandwidth was smaller than 
what we used in this study. In general, we would recommend 
using conservative choices with a relatively large bandwidth in 
the first iteration, as the focus in the early iterations is not unbia
sedness but the identification of target areas for further testing.

Target function
Formulating an adequate target function is an important part of 
any decision-making breeding process (Simianer et al. 2021). 
This requires careful consideration of both short- and long-term 
objectives, as well as weighing the risks associated with each op
tion, which plays an important role in determining the optimal so
lution to the optimization problem. In the example provided, the 
weighting between g and f was chosen arbitrarily, but in practice, 
this process requires more thoughtful consideration due to the 
limited options available. For example, a company focused on 
economic production may prioritize traits such as yield over f 
and may choose a lower weighting factor for f compared to a con
servation breeding program, where the goal is to preserve genetic 
diversity, and thus the weighting factor for f can be higher. 
Besides, one could imagine a target function that reflects the eco
nomic impact of the breeding program (Nielsen et al. 2014), with 
further potential issues to quantify how much impact an improve
ment of e.g. fertility trait (in genomic SD units) would lead to how 
much increase in average annual net profit. This enables breeders 
to ensure that whatever resources are being spent result in ex
pected outcomes without sacrificing too much money upfront.
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Apart from calculating overall economic gains, there is consid
erable interest in how changes in inbreeding affect the distribu
tion of total gains over many years. In practice, it is common to 
set a threshold for the maximum amount of inbreeding gain per 
year to ensure that the population’s genetic diversity is not com
promised (Weigel and Lin 2000). In this situation, one could also 
consider using a target function like our exemplary case by con
sidering genetic gain and inbreeding. This can be done by testing 
different penalty values placed on two objectives to find the opti
mal target function that results in inbreeding rates similar to 
those chosen for the breeding scheme or by considering a non
linear weighting of parameters (e.g. applying a high penalty on 
the target function when a threshold value for a yearly inbreeding 
rate is exceeded). Finally, these solutions can be analyzed in de
tail, allowing the breeders to adjust the trade-offs between a 
short-term (operative) and a long-term (strategic) perspective.

Optimization problems can vary in complexity, but the number 
of parameters often plays a more significant role in determining 
the complexity of a problem, rather than the complexity of the 
target function itself. As the number of parameters increases, 
the search space grows exponentially, making it more challenging 
to find the optimal solution efficiently (Härdle and Müller 1997). 
Our attention in this study has been focused on an approach 
that eliminates the stochasticity aspect of the objective problem 
before optimization, which requires the decision-maker to weigh 
her or his objectives. In other words, rather than planning breed
ing experiments to obtain one generalized scheme, the focus is on 
using the kernel regression model in combination with an object
ive function to explore relevant conditions for a particular breed
ing goal and to capture complex relationships between variables.

Number of simulations needed
The number of simulations required can be estimated from the re
sults in Fig. 4, a–d. As a general pattern, an increased number of 
simulations increases the likelihood of finding the optimal or 
near-optimal solution (Xu et al. 2015). Additionally, sampling error 
and variance can be reduced by expending additional simulation 
effort to achieve a predetermined level of statistical power for the 
optimization strategy. However, using an unnecessarily large 
number of simulations wastes resources. In contrast, a small 
number of simulations may produce unreliable results. For basic 
optimization procedures, choosing fewer simulations might be 
feasible to obtain the desired statistical power, but making such 
decisions for complex optimization problems with various inputs 
is not straightforward, and it will be highly dependent on the 
breeding program at hand.

Careful consideration should be given to external factors such 
as time, hardware capabilities, or software availability, which 
cannot be directly altered by users but must still be considered 
when designing simulation studies. One approach that can be 
used successfully in this situation is to consider how much time 
and resources one is willing to allocate to the optimization process 
(L’Ecuyer and Yin 1998; Chen et al. 2000). As a rough guideline, we 
would be recommended to use at most 1/3 of the total available 
computing time in the first iteration. This initial iteration can 
be beneficial to quickly identify areas of the search space that 
are likely of low interest and can be disregarded for further inves
tigations. After that, the number of simulations in subsequent 
iterations can be increased. This approach allows for quick pro
gress while ensuring accuracy by focusing on areas of interest, 
avoiding running too many simulations in areas where the optima 
are not likely to be found.

Another strategy for optimization is to run a small number of 
simulations first and then apply kernel regression. If the results 
obtained from this initial analysis are not sufficiently smooth, fur
ther simulations can be performed as needed to refine the opti
mization process. In our example, increasing the number of 
simulations from 10,000 to 60,000 led to an improvement in de
tecting the absolute optima. However, when aiming to narrow 
down the search space for a second iteration, the results from 
both 10,000 and 60,000 simulations were very similar.

Simulating breeding schemes: the fine line 
between realism and efficiency
Simulation plays a vital role in understanding the complexities of 
breeding schemes, but creating an accurate and efficient simula
tion can be challenging. A realistic simulation must consider vari
ous factors such as genetics, environmental and management 
conditions, and other relevant considerations. However, including 
too much detail can make the simulation slow and difficult to run. 
It is crucial to consider the purpose of the simulation and the level 
of detail necessary to achieve that purpose. Not all factors may be 
equally important, and some details that similarly affect all para
metrizations might be worth to be excluded to ensure fast simula
tion. By making strategic choices about what details to include 
and what to exclude, the simulation can provide valuable insights 
while still being efficient to run, where the goal of the simulation 
should still provide an accurate representation of reality for the 
intended breeding purpose.

Conclusion
In conclusion, kernel regression has proven to be a valuable tool in 
optimizing breeding programs with few parameters and particu
larly helps in coping with the stochastic nature of the target func
tion. Its flexibility in considering a large space allows for accurate 
predictions, and its ability to reduce variability and refine the ob
jective function in optimization strategies using stochastic simu
lations provides a more reliable assessment of potential solutions. 
Our finding highlights the limitations of the current optimization 
methods when applied to optimization problems using stochastic 
simulation and highlights the importance of including kernel re
gression. This promising strategy opens up avenues for further re
search in optimizing test resources and tackling larger-scale 
breeding optimization tasks as an intermediate step in the opti
mization process to maintain high accuracy while also consider
ing practical limitations such as limited hardware capacities.

Data availability
Supplementary files, along with the exact model for the simula
tion script (Supplementary File S3), visualization script 
(Supplementary File S4), model comparison (Supplementary File 
S5), and generated data for reproducing the results have been 
shared with the scientific community at Figshare: https://doi. 
org/10.6084/m9.figshare.21996311.v1.
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Ser A. 26:359–372.

Weigel KA, Lin SW. 2000. Use of computerized mate selection pro
grams to control inbreeding of holstein and Jersey cattle in the 
next generation. J Dairy Sci. 83:822–828. doi:10.3168/jds.S0022- 
0302(00)74945-9

Wellmann R. 2019. Optimum contribution selection for animal 
breeding and conservation: the R package optisel. BMC 
Bioinformatics. 20:25. doi:10.1186/s12859-018-2450-5

Wensch-Dorendorf M, Yin T, Swalve HH, König S. 2011. Optimal 
strategies for the use of genomic selection in dairy cattle breeding 
programs. J Dairy Sci. 94:4140–4151. doi:10.3168/jds.2010-4101

Woolliams JA, Berg P, Dagnachew BS, Meuwissen THE. 2015. Genetic 
contributions and their optimization. J Anim Breed Genet. 132: 
89–99. doi:10.1111/jbg.2015.132.issue-2

Xiang Y, Gubian S, Suomela B, Hoeng J. 2013. Generalized simulated 
annealing for global optimization: the GenSA package. R J. 5:13. 
https://api.semanticscholar.org/CorpusID:10302429

Xu J, Huang E, Chen CH, Lee LH. 2015. Simulation optimization: a re
view and exploration in the new era of cloud computing and big 
data. Asia-Pacific J Oper Res. 32:1550019. doi:10.1142/S02175959 
15500190

Editor: G. de los Campos

Optimization of breeding program design | 11

https://doi.org/10.1007/s00122-005-0192-z
https://doi.org/10.1086/281520
https://doi.org/10.1016/j.cam.2004.07.034
https://doi.org/10.3168/jds.2010-4016
https://doi.org/10.1007/s00180-015-0583-9
https://doi.org/10.2135/cropsci2013.10.0699
https://doi.org/10.1534/g3.118.200842
https://doi.org/10.1534/g3.118.200842
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.1137/1109020
https://CRAN.R-project.org/package=optimr
https://doi.org/10.1071/AN21076
https://doi.org/10.1534/g3.120.401193
https://doi.org/10.1071/AN11098
https://doi.org/10.2527/1995.7382208x
https://doi.org/10.1093/jhered/93.6.456
https://doi.org/10.1093/bioinformatics/btp045
https://doi.org/10.1093/bioinformatics/btp045
https://CRAN.Rproject.org/view=Optimization.
https://CRAN.Rproject.org/view=Optimization.
https://doi.org/10.18637/jss.v053.i04
https://doi.org/10.32614/RJ-2017-008
https://doi.org/10.32614/RJ-2017-008
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1111/jbg.v138.2
https://doi.org/10.3724/SP.J.1004.2013.01957
https://doi.org/10.3724/SP.J.1004.2013.01957
https://doi.org/10.3168/jds.S0022-0302(00)74945-9
https://doi.org/10.3168/jds.S0022-0302(00)74945-9
https://doi.org/10.1186/s12859-018-2450-5
https://doi.org/10.3168/jds.2010-4101
https://doi.org/10.1111/jbg.2015.132.issue-2
https://api.semanticscholar.org/CorpusID:10302429
https://doi.org/10.1142/S0217595915500190
https://doi.org/10.1142/S0217595915500190

	Optimization of breeding program design through stochastic simulation with kernel regression
	Introduction
	Materials and methods
	General pipeline for optimizing breeding programs
	Step 1: Determine the search space and bounds for decision variables
	Step 2: Determine the target function
	Step 3: Evaluation of the target function
	Step 3a: Simulation of the breeding program
	Step 3b: Estimation of the target function (via kernel regression)
	Step 4: Optimization

	Comparison of approximation techniques
	Number of simulations
	Computing time for simulation

	Results
	Optimization via visual inspection
	Optimization via approximation techniques

	Discussion
	Kernel estimator vs other optimization algorithms
	The impact of bandwidth
	Target function
	Number of simulations needed
	Simulating breeding schemes: the fine line between realism and efficiency

	Conclusion
	Data availability
	Acknowledgments
	Funding
	Conflicts of interest
	Literature cited




