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Summary 

Downy mildew of grapevines is one of the most destructive diseases caused by an obligate 

biotrophic oomycete Plasmopara viticola, triggering severe yield loss. Regular applications of 

fungicides are necessary to prevent such losses, but this leads to severe environmental issues 

and decreased social acceptance. As a potential equivalent to traditional downy mildew 

management strategies, cultivars with durable resistance could contribute to sustainable and 

environmentally friendly viticulture. It is, therefore, common for grapevine breeders to develop 

fungus-resistant varieties utilizing naturally occurring resistance from wild species. Therefore, 

the primary breeding goal is to identify new resistances with different defence mechanisms and 

stack them in new varieties to prevent disease outbreaks and resistance-breaking isolates, thus 

minimizing fungicides in viticulture. Heretofore, more than 30 resistance loci against P. viticola 

have been already discovered. In this study, the bi-parental F1 population (‘Morio Muskat’ x 

COxGT2 (V. coignetiae x ’Gewürztraminer’)) Gf.2018-063 was investigated to identify and 

map resistance to P. viticola. The source of resistance is the East Asian wild species Vitis 

coignetiae. In addition to 109 simple sequence repeats (SSR) markers, 647 transferrable RNase 

H2-dependent amplicon sequencing (rhAmpSeq) markers are implemented in the creation of a 

genetic map. The resulting high-resolution rhAmpSeq map spanned a total map length of 

1147.36 cM, comprising 19 linkage groups and an average distance between loci of 3.2 cM. 

Using each linkage map separately and three years of leaf disc assay based phenotypic data, 

quantitative trait locus (QTL) analysis was performed resulting in a consistent and highly 

significant QTL on chromosome 14 with an explained phenotypic variance of up to 36.4 %. 

This QTL does not share any SSR marker alleles with the pre-existing East Asian V. amurensis 

derived Rpv8 and Rpv12 QTLs on chr. 14. Therefore, it was designated as Rpv32 (Resistance 

Plasmopara viticola 32) (Malagol et al., 2023, in preparation). SSR and rhAmpSeq markers 

identified in this research work can be exploited in Marker-assisted selection (MAS) for 

introgression of Rpv32 into breeding lines and stacking resistances.  

Furthermore, microscopic staining studies at various time intervals and quantitative analysis of 

P. viticola (5 dpi) demonstrated and confirmed that the genetically identified resistant parental 

genotype (COxGT2), in contrary to the second parental genotype (‘Morio Muskat’), prevents 

pathogen proliferation.  
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Moreover, the population utilized in this study showed segregation for the morphological trait 

leaf hair and a significant QTL was identified on LG 5 with an explained variance of 24 % 

(ribbon trichome). The hypothesis that leaf hair serves as physical barrier against P. viticola was 

tested in all three years. However, no strong association was observed between the leaf hair 

density and P. viticola infection on the leaf discs.  

When different people work on phenotypic data evaluation in various years, traditional 

phenotyping methodologies turn out not only to be time-consuming and labor-intensive, but also 

immensely subjective. This subjectivity tends to introduce statistical noise and bias into the final 

analytical result. Therefore, this research also focused on training and developing a high-

throughput SCNN (shallow convolutional neural network) based model for downy mildew 

disease quantification (Zendler et al., 2021). The model achieved an overall prediction accuracy 

of 97 %. The SCNN model performance was demonstrated by a strong and significant 

correlation with independently evaluated experts’ data. This SCNN model in combination with 

an automated imaging system, shows accuracy and potential reduction in time spent on 

phenotyping. This pipeline serves as a valuable tool in grapevine breeding research.  

As an additional aspect of this research, a Residual Networks-based Convolutional Neural 

Network (ResNet-CNN) for leaf hair quantification was developed due to the lack of accurate 

and precise tools available (Malagol et al., 2023, in preparation). The model achieved an overall 

prediction accuracy of 95.41 %. The validation and cross validation with two expert and two 

non-experts showed exceptional correlation (R = 0.98 and R = 0.92, RMSE 8.20 and 14.18, 

respectively). The absolute errors calculated clearly indicated bias introduced due to the 

subjectivity. To conclude, the developed ResNet-CNN is capable of enhancing objective 

phenotyping accuracy for leaf hair density, allowing for a more precise analysis of this trait 

(refer to Annex III & Annex IV). 
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Zusammenfassung 

Der Falsche Mehltau der Rebe, der durch den obligat biotrophen Oomyceten 

Plasmopara viticola verursacht wird, gehört zu den gefährlichsten Erkrankungen der Rebe, da 

er zu erheblichen Ertragsverlusten führen kann. Der regelmäßige Einsatz von Fungiziden ist 

notwendig, um Ertragseinbußen zu verhindern, führt aber zu nachteiligen Umweltauswirkungen 

und geht einher mit einer geringen gesellschaftlichen Akzeptanz. Resistente Rebsorten können 

eine Ergänzung zu den herkömmlichen Strategien in der Bekämpfung des Falschen Mehltaus 

darstellen und zu einem nachhaltigen und umweltfreundlichen Weinbau beitragen, indem durch 

ihre Nutzung die Ausbringung von Pflanzenschutzmitteln drastisch reduziert werden kann. 

Daher ist es naheliegend, dass die Rebenzüchtung den Fokus auf pilzresistente Sorten legt und 

dabei natürlich vorkommende Resistenzen von Wildarten der Rebe nutzt. Die primären 

Zuchtziele sind daher die Identifizierung neuer Resistenzen mit unterschiedlichen 

Abwehrmechanismen, um einen Krankheitsausbruch und resistenzbrechende Isolate zu 

verhindern. Bis heute wurden mehr als 30 Resistenzloci gegen P. viticola identifiziert.  

In dieser Studie wurde die bi-parentale F1-Population ('Morio Muskat' x COxGT2 

(V. coignetiae x 'Gewürztraminer')) Gf.2018-063 untersucht, um Resistenzen gegen P. viticola 

zu identifizieren und zu kartieren. Als Resistenzquelle diente die bisher ungenutzte ostasiatische 

Wildart Vitis coignetiae. Es wurde eine genetische Karte basierend auf 109 simple sequence 

repeats (SSR)-Markern erstellt sowie eine weitere genetische Karte mit 647 Markern auf 

Grundlage der RNase-H2-abhängigen Amplikon-Sequenzierung (rhAmpSeq). Die daraus 

resultierende hochauflösende rhAmpSeq-Karte umfasst eine Gesamtlänge von 1147,36 cM, mit 

19 Kopplungsgruppen und einem durchschnittlichen Abstand zwischen den Loci von 3,2 cM. 

Die phänotypischen Daten (Blattscheiben-Test) wurden über drei Jahre erhoben und in 

Quantitative Trait Locus (QTL)-Analysen unter Verwendung jeder einzelnen Kopplungskarte 

eingesetzt. Es konnte ein konsistenter und hoch signifikanter QTL auf Chromosom 14, mit einer 

erklärten phänotypischen Varianz von bis zu 36,4 % ermittelt werden. Dieser QTL teilt keine 

SSR-Markerallele mit den bereits existierenden, von V. amurensis abgeleiteten, QTLs Rpv8 und 

Rpv12 auf Chr. 14. Daher wurde er als Rpv32 (Resistenz Plasmopara viticola 32) bezeichnet 

(Malagol et al., 2023, in Vorbereitung). SSR- und rhAmpSeq-Marker, die in dieser 

Forschungsarbeit identifiziert wurden, können in der markergestützten Selektion für die 

Introgression von Rpv32 in Zuchtlinien und die Pyramidisierung von Resistenzen genutzt 



XII 
 

werden. Darüber hinaus zeigen und bestätigen mikroskopische Färbungsstudien in 

verschiedenen Zeitintervallen und quantitative Analysen von P. viticola (5 dpi), dass der 

resistente parentale Genotyp (COxGT2) im Gegensatz zum anfälligen Genotyp ('Morio 

Muskat') die Vermehrung des Pathogens verhindert. Weiterhin zeigt die in dieser Studie 

verwendete Population eine Segregation für das morphologische Merkmal Blattbehaarung, für 

das ein signifikanter QTL auf Chr. 5 mit einer erklärten Varianz von 24 % (ribbon trichome) 

identifiziert wurde. Die Hypothese, dass die Blattbehaarung als physische Barriere gegen 

P. viticola dient, wurde in allen Jahren analysiert. Jedoch wurde kein Zusammenhang zwischen 

der Dichte der Blatthaare und dem Befall der Blattscheiben mit P. viticola im vorliegenden Fall 

festgestellt.  

Herkömmliche Methoden der Phänotypisierung sind sowohl zeit- und arbeitsintensiv, als auch 

subjektiv, wenn unterschiedliche Personen solche Daten erheben. Diese Subjektivität kann zu 

statistischem Rauschen und zu Verzerrungen im Ergebnis führen. Daher konzentrierte sich die 

vorliegende Forschungsarbeit zusätzlich auf das Training und die Entwicklung eines auf 

künstlicher Intelligenz (SCNN: Shallow convolutional neural network) basierenden 

Hochdurchsatzmodells zur Quantifizierung der Resistenzeigenschaften gegen den Erreger des 

Falschen Mehltaus (Zendler et al., 2021). Das Modell erreicht eine 

Gesamtvorhersagegenauigkeit von 97 %. Die Leistung des SCNN-Modells wurde durch eine 

hohe und signifikante Korrelation mit den Daten von unabhängig bewertenden Experten 

nachgewiesen. Dieses SCNN-Modell, in Kombination mit einem automatisierten 

Bildgebungssystem, bietet eine hohe Genauigkeit und verringert den Zeitaufwand für die 

Phänotypisierung. Die Pipeline ist daher ein wertvolles Instrument für die Forschung in der 

Rebenzüchtung.  

Als zusätzlicher Aspekt dieser Arbeiten wurde ein auf Convolutional Neural Network (ResNet-

CNN) basierendes Analysemodell für die Quantifizierung von Blatthaaren entwickelt, da bisher 

keine genauen und präzisen Werkzeuge zu deren Phänotypisierung zur Verfügung standen 

(Malagol et al., 2023, in Vorbereitung). Die Gesamtvorhersagegenauigkeit des Modells beträgt 

95,41 %. Die Validierung und die Kreuzvalidierung mit zwei Experten und zwei Nicht-Experten 

zeigten eine außergewöhnliche Korrelation (R = 0,98 und R = 0,92, RMSE 8,20 bzw. 14,18). 

Die berechneten absoluten Fehler weisen eindeutig auf eine durch die Subjektivität bedingte 

Verzerrung hin. Zusammenfassend lässt sich sagen, dass das entwickelte ResNet-CNN in der 
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Lage ist, die objektive Phänotypisierungsgenauigkeit für das Merkmal „Dichte der Blatthaare“ 

zu verbessern und eine präzisere Analyse des Merkmals zu ermöglichen (Annex III & Annex 

IV). Damit steht ein neues Werkzeug zur Verfügung, das die Voraussetzungen für die genetische 

Analyse der Dichte der Blattbehaarung als physische Barriere gegen P. viticola schafft.
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1. Introduction 

1.1 The grapevine Vitis vinifera ssp. sativa and viticulture 

Grapevine is one of the economically most important horticultural fruit crops, botanically a berry, 

mainly grown in temperate and subtropical areas. Grapevine contributes to the global gross 

production value of 67.8 US billion dollars (FAO-United Nations, 2022). However, in addition to 

producing wine, grapevines are also consumed as fresh fruit, juice, and raisins (Ren and Wen., 

2007; Wan et al., 2013), resulting in a total annual production of 74.08 million tons of grapes for 

the year 2022 and a value that has been steadily rising over the previous years (International 

Organisation of Vine and Wine, 2022). In the European Union (EU), wine production is anticipated 

to reach 157 million hectoliter in 2022, representing a 3.5 million hectoliter (+2 %) rise compared 

to 2021 (International Organisation of Vine and Wine, 2022).  

Next to beer, wine is one of the oldest alcoholic beverages humans have produced and established 

between 6600-7000 BCE (McGovern, 2003; Chojnacka, 2010). The genus Vitis comprises of more 

than 70 species and is further subdivided into the EuVitis (2n = 38) and Muscadinia (2n = 40) 

subgenera, with about 40 Asian and 30 American Vitis species, respectively (Wan et al., 2008; Liu 

et al., 2012). The origin of the domesticated grapevine Vitis vinifera ssp. sativa probably lies in 

the region known as Transcaucasia, between the Caspian and Black Seas (Vavilov, 1930; Töpfer 

et al., 2011b). The effect of early domestication of V. vinifera ssp. sylvestris originated V. vinifera 

ssp. sativa, lead to larger berry size, a greater sugar content, and a shift in sexuality from dioecious 

to hermaphrodite (Vavilov 1930; Kole, 2011, p. 9; Myles et al., 2011; Töpfer et al., 2011a; Zhou 

et al., 2017). However, paleobotanical discoveries in Spain from 3000 BC highlighted the issue of 

additional domestication hubs in the western Mediterranean (Nunez & Walker 1989). Based on 

the microsatellite analysis, it is assumed that there was a secondary domestication of cultivated 

vines from locally occurring wild vines in Europe (Arroyo-Gracia et al., 2006; Imazio et al., 2006). 

The first cultivation of grapevines in Europe may have occurred about 2800 years ago under the 

influence of the Greeks (Bouquet, 1982). The quality of the cultivated European grapevine could 

not be compared to its closely related Eurasian wild species V. vinifera ssp. sylvestris for two 

significant reasons: because the European cultivated vines can be optimized and selected in terms 

of high yield and faster growth, and the noticable berry quality (Alleweldt & Possingham, 1987; 
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Mullins et al., 1992; Zohary, 2003; Keller, 2015a; Grassi & Arroyo-García, 2020). This is 

demonstrated by the fact that practically all cultivated vines which are cultivated today are based 

on the V. vinifera ssp. sativa species (Zohary & Hopf, 1994; This et al., 2006).  

In 2007, grapevine became the fourth flowering plant (Magnoliopsida) to have its genome entirely 

sequenced and assembled. A new era in grapevine research resistance and breeding began with 

sequencing the nearly homozygous inbred grapevine line PN40024 derived from V. vinifera cv. 

‘Pinot Noir’ / ‘Helfensteiner’ (Jaillon et al., 2007). Currently, different updated versions of 

PN40024 are available. The latest improved annotated version of the grapevine reference genome 

called PN40024.v4 is available while defining estimated genes up to 35,230 (Velt et al., 2022).  

 

In addition to European V. vinifera other Vitis species exist outside of Europe covering the 

geographical location of North America and Asia. About 70 wild species of Vitis have been 

described thus far (This et al., 2006). The most important representative species of the American 

continent include Muscadinia rotundifolia, V. labrusca, V. riparia, V. cinerea, V. aestivalis and 

V. rupestris. In Asia species include V. amurensis, V. romanetii, V. davidii, V. chungi, 

V. adenoclada and V. piasezkii (This et al., 2006; Li et al., 2021). These wild species represent 

valuable genetic resources due to their close affinity and possibility to hybridize with European 

V. vinifera spp. sativa (Staudt and Kassemeyer, 1995; Maul et al., 2021). Hybridization between 

non-European grapevine species (e.g. V. amurensis, V. labrusca etc.) and V. vinifera, and several 

backcrosses over time resulted in a new group of cultivars, so called PIWIs (ger. 

pilzwiderstandsfähige Rebsorten (fungus resistant grapevine varieties) or pioneer wines/vines). 

Common to the PIWIs is their resistance to the mildew diseases (powdery mildew and downy 

mildew) originating from the wild Vitis species. One of the most popular and regularly planted 

grape varieties with resistances is the 'Regent', crossed in 1967, covering it´s maximal average of 

2,200 ha of vineyards by 2008 (Töpfer et al., 2011a; Maul et al., 2021). 

1.2 Grapevine diseases 

International commerce was made feasible by technological advancement, explorers' expeditions, 

and transportation networks, which served as the potential drivers behind global distribution and 

contributed to the spread of many animal and plant species (McKinney & Lockwood, 1999). As a 

result, infectious diseases and pests often spread unknowingly by travelling with the appropriate 



3 
 

host (Brown & Hovmoller, 2002; Meyerson & Mooney, 2007; Hulme, 2009; Bebber et al., 2014). 

Thus, many natural settings currently contain assemblages of alien species that endanger native 

species populations and change ecosystem function, whether as a result of intentional or 

unintentional introduction (McGeoch et al., 2010).  

As an example, invasive grapevine diseases and pests established themselves in Europe in the 

middle of the 19th century by transatlantic trade of vines of diverse Vitis species between Europe 

and North America (Töpfer et al., 2011a; Vezzulli et al., 2022). The most prevalent pathogens with 

American origin have been posing an increasing hazard to the susceptible European grapevines 

(V. vinifera). The diseases included, powdery mildew, caused by Erypsiphe (syn. Uncinula) 

necator (Anamorphic Oidium tuckeri Berk., 1834) which was first observed and reported in 1845 

(Berkely, 1847; Wilcox et al., 2015; Töpfer et al., 2011). In the middle of the 1860s, the grape 

phylloxera (Daktulosphaїra vitifoliae) was first identified in France (Ordish, 1972; Walker et al., 

1991; Ferris et al., 2012). The rapid proliferation implied that the pathogen was widely dispersed 

before being discovered, most likely on a contaminated greenhouse, equipment, and infected 

rooting from growers and nurseries (Walker et al., 1991). However, to overcome this crisis, 

decades later, phylloxera infestations could be combat by grafting V. vinifera cultivars onto 

rootstocks of American wild grapevines exhibiting root phylloxera tolerance (Weaver, 1976; 

Kocsis et al., 1999; Granett et al., 2001). The first introduction of downy mildew (Plasmopara 

viticola (Berk. & Curt) Berl. & de Toni) occurred in Europe in the 1870s (Fontaine et al., 2021), 

known to cause severe yield loss of up to 90 % (Calonnec et al., 2004). In addition, the ongoing 

climate change and increased global warming enhance these catastrophic disease outbreaks 

affecting the grapevines (Coakley et al., 1999; Salinari et al., 2007; Chakraborty et al., 2000b; 

Zyprian et al., 2018; Delrot et al., 2020). 

1.2.1 Downy mildew 

Plasmopara viticola ((Berk & Curt.) Berl. & de Toni), an obligate biotrophic oomycete, is the 

underlying cause of grapevine downy mildew and contributes to devastating yield losses 

worldwide. Despite fungus-like structures, oomycetes are more closely linked to brown algae 

producing septate hyphae in contrast to fungi (Karling, 1981; Dick, 2001; Judelson & Ah-Fong, 

2019). In addition, they produce their cell walls predominantly from β-1,3 and 1,6-glucans, 

arachidonic acid and cellulose, and possess diploid cell phases throughout the mycelium's 
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vegetative phase (Beakes, 1987 and 1989; Gessler et al., 2011; Fawke et al., 2015; Robinson and 

Bostock, 2015; Judelson & Ah-Fong, 2019). Due to the absence of genes in nitrogen metabolism 

and aminobutyric acid catabolism, P. viticola evolved from a pathogen similar to Phytophthora 

species that adopted a biotrophic lifestyle (Brilli et al., 2018). 

 

P. viticola, in particular, is widespread in all temperate or tropical regions and infects all the green 

tissues of the grapevine, especially invading the stomata on the abaxial surface of leaves 

(Moriondo et al., 2005). Under optimal circumstances, infections can also be seen on 

inflorescences and immature bunches (Lafon & Clerjeau, 1988). Early signs include yellow oil 

spots on the upper leaf surface and white cottony growth (Figure 1B) on the lower leaf surface. As 

disease progresses the affected area becomes necrotic and eventually leads to defoliation of the 

host plant (Koblet et al., 1994; Ollat & Gaudillere, 1998; Kassemeyer, 2017) (Figure 1C). 

Therefore, developing optimal disease control strategies and predictive models requires a thorough 

understanding of the pathogen's life cycle. 

 

 

 

 

 

 

 

 

 

 

1.2.2 Life cycle of P. viticola causing downy mildew disease 

P. viticola depends on living plant tissue and spreads via sexual and asexual reproductive cycles 

(Figure 2) (Park et al., 1997; Caffi et al., 2013). For infection, downy mildew requires optimal 

environmental conditions like warm and humid weather conditions (Mendgen & Hahn, 2002). 

Therefore, during the late spring and early summer (t >8 °C), the oospores germinate under wet 

soil conditions and form macrosporangia. The primary sporangium formed produces up to 

C A B 

Figure 1 Downy mildew infection/symptoms. (A) Healthy susceptible ‘Müller Thurgau’ leaf; (B) White cottony growth 

due to P. viticola infection on the abaxial surface of the leaf; (C) Defoliation to downy mildew infection. 
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60 diploid zoospores, which are dispersed via wind and rain (Kortekamp et al., 1998; Kiefer et al., 

2002; Gessler et al., 2011). Zoospores create germ tubes that enter the stomata and grow into a 

sub-stomatal vesicle forming primary hyphae and mycelia (Walker et al., 2007; Buonassisi, 2017).  

The mycelium expands via the intercellular spaces of mesophyll cell and the plasma membrane of 

the parenchyma cells, forming a nutrient feeding structure called haustorium (Langcake & Lovell, 

1980; Jones et al., 2006; Fröbel & Zyprian 2019b). As signs of early symptoms, yellow oil spot 

lesions start appearing on the adaxial surface of the leaves. The incubation period ranges from 5 

to 21 days, depending on the temperature. White cottony growth appears on the abaxial leaf surface 

after the post-inoculation stage. At this point, sporangiophores spread by wind or rain, causing 

secondary infections and a successful primary pathogen life cycle (Caffi et al., 2007; Delmas et 

al., 2014; Velasquez-Camacho et al., 2022). Under optimal weather condition, the pathogen 

continues to repeatedly proliferate by encysting and germinating through new tissue for asexual 

reproduction (Figure 2). 

 

During the end of the asexual reproduction, the thick-walled oospores produced by fertilization of 

oogonia by antheridia, act as survival spores. The oospores are lodged in dead leaves and other 

host tissues on the vineyard soil’s surface (Figure 1C) (Rouzet et al., 2003). The pathogen is known 

to persist in the soil for several years in this hibernating stage of oospores. Oospores develop into 

one germ tube that matures in a sporangium. In order to complete the life cycle, the zoospores 

mature inside the sporangia and represent primary inoculation for the next late spring (Buonassisi, 

2017). 
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1.3 The plant immune system 

The study of defence mechanisms has long been a research topic since plants serve as hosts for 

various pathogens and pests (Bentham et al., 2020). During evolution, plants have developed 

several defence mechanisms such as physical barriers, secondary metabolites and antimicrobial 

compounds to combat phytopathogens (Gindro et al., 2006, Zhang et al., 2019; Zhou & Zhang, 

2020). Plants possess structural defence through an impermeable waxy cuticle and thorns that 

serve as their first line of defence by a non-host resistance strategy (Paris et al., 2016; Nishad et 

al., 2020; Han & Tsuda, 2022). The widely distributed diversity of trichomes also contributes to 

plant resistance (Kortekamp et al., 1999; Ma et al., 2016; Xing et al., 2017; Barba et al., 2019). 

Grapevine research, including investigations on leaf hair, demonstrates that the hydrophobic 

properties of leaf hair structures serve as an effective physical barrier against fungal pathogens 

(Kortekamp & Zyprian, 1999; Barba et al., 2019) (Figure 3). Pathogens entering the apoplast 

naturally enter through stomata, and some studies have shown the role of stomata in plant defence 

(Wang and Gou et al., 2021). The plant's immune system is a network of interactions between 

Figure 2 Life cycle and epidemiology of P. viticola (Velasquez-Camacho et al., 2022). Red arrows refer to the sexual 

cycle. Blue arrows refer to the asexual cycle. 
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several defense systems inside the cell and the primary protective barriers outlined above (Tsuda 

& Katagiri, 2010). This depends on the innate immunity of each cell, systematic signalling from 

the infection sites and the systemic acquired resistance (SAR) (Ausubel et al., 2005; Dangl & 

Jones, 2001 and 2006; Dodds & Rathjen, 2010; Ali et al., 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The ‘ZigZag model’, which describes the evolution of plant-pathogen interactions of biotrophic 

and hemibiotrophic diseases, speculates a reduction in the host immunity due to the co-evolution 

between plant and pathogen (Figure 4) (Dangl & Jones, 2006; Keller et al., 2016; Kanyuka & 

Rudd, 2019). In plants, two complementary strategies are involved in pathogen recognition, 

although both are initiated in different host cell compartments (Lu et al., 2021). Firstly, a pattern 

recognition receptor (PRR) present on the cell surface detects pathogen-associated molecular 

patterns (PAMPs)/microbial associated patterns (MAMPs) and induces PAMP-triggered immunity 

(PTI) (Figure 4; Step 1). Pathogens possess PAMPs and effector proteins. PAMPs are genera-

specific structural molecules such as flagellin, chitin, glucans and peptidoglycan (Felix et al., 1993; 

Gust et al., 2007; Erbs et al., 2008; Thomma et al., 2011). Whereas effectors are known to be 

species-specific molecules triggered to suppress the primary PTI (Chisholm et al., 2006; Bent et 

al., 2007). To supress the innate immunity (PTI) exhibited by the plants, pathogens deploy the 

Figure 3 Hydrophobic characteristics; (A) wettable susceptible ‘Morio Muskat’ and (B) non-wettable genetic resistant 

donor COxGT2 leaf disc. 
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effector molecules into the extracellular spaces of plant cells leading to pathogen triggered 

susceptibility (PTS) (Figure 4; Step 4). However, some plants have evolved and have directly or 

indirectly developed proteins (NBS-LLR) to recognize isolate-specific pathogen effectors leading 

to effector-triggered immunity (ETI), an enhanced variant of PTI that is frequently linked to 

hypersensitivity response (HR) and programmed cell death (PCD) (Zänker, 2008; Rivas, 2012) 

(Figure 4; Step 3). As counteract, certain evolved pathogens retrigger effector triggred 

susceptibility (ETS) in plants, by deploying effector variants. The reactivation of the ETI, however, 

occurs in some plants as a result of adaptation to the evolved pathogen-specific effectors (Jones & 

Dangl, 2006) (Figure 4; Step 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Zigzag model for the evolution of plant innate immunity. The following four phases are illustrated: Step 1: 

Pathogen/Microbe associated molecular patterns (PAMPs/MAMPs) (red and dark grey) bind to the transmembrane 

pattern recognition receptors (PRR), initiating PAMP triggered immunity (PTI) in plants. Step 2: Pathogens secrete 

effector molecules (red and green) into the extracellular spaces of a plant cell to inhibit/suppress the PTI leading to 

effector-triggered susceptibility (ETS). Step 3: In specific cases, evolved plants directly or indirectly recognise the 

effector molecules by NBS-LRR receptors leading to activation of effector-triggered immunity (ETI) (Grey). Step 4: 

Certain pathogens with effector variants that retrigger an ETS in the plant and the reactivation of the ETI as a result 

of an adaptation of the plant to recognise these new effectors (red and green). The intensity and effectiveness of the 

defence reaction (amplitude of defence) are indicated as a function of a scale and by exceeding specific limit values 

(the threshold for effective resistance, the threshold for hypersensitive response/programmed cell death) (Jones & 

Dangl 2006; Zvereva & Pooggin, 2012). 
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1.3.1 PTI: PAMP-Triggered Immunity 

PTI is commonly referred to as a broad-spectrum primary immune response used by plants to 

recognize a wide range of features of various intruding pathogens (Ezzat, 2014; Boutrot & Zipfel, 

2017; Wan et al., 2019). Pathogens contain conserved range of motifs called ‘Pathogen associated 

molecular patterns’ that play a major role in activating PTI in plants. These PAMP molecules, for 

example, bacterial lipopolysaccharide (LPS)/ endotoxins/ protein subunit of flagellum, are 

identified by the toll-like receptors (TLRs) and pattern recognition receptors (PRRs) (Chisholm et 

al., 2006; Ingle et al., 2006; Kato & Svensson, 2015). Structurally, both receptor types have an 

ectodomain for recognizing pathogenic ligands outside the cell, a simple transmembrane domain 

for anchoring in the membrane, and a cytoplasmic domain for intracellular signalling (Couto & 

Zipfel, 2016). In general, the possible defence reactions that can be elicited as a result of a PTI 

response include, such as an apoplastic oxidative burst, a calcium influx channel, rapid responses 

of the cytoskeleton, activation of mitogen-activated protein kinase signalling (MAPKs) and 

activation of a transcriptional cascade. Evidently, which includes stress-related hormone like 

ethylene and jasmonic acid are all triggered (Chinchilla et al., 2007; Boller & Felix, 2009; Héloir 

et al., 2019). The PRR-interacting protein identification offers information on the immediate 

downstream signalling activities (Bigeard et al., 2015). For instance, the RLK family member 

FLAGELLIN-INSENSITIVE (FLG) is a well-researched PRR in Arabidopsis thaliana. The FLS2 

gene identified in A. thaliana, which codes for an LRR-RLK type receptor, is associated with an 

immune response to the flg22 elicitor (Gómez-Gómez & Boller, 2002).  

The flagellin polypeptide flg22, identified as a bacterial elicitor, triggeres a PTI for representative 

species of the genus Vitis (Felix et al., 1999; Chang & Nick, 2012). The molecular mapping of the 

cell system of the wild American grapevine V. rupestris revealed cell death-independent defence 

triggered by PAMP flg22 and the cell death-related ETI activated by an elicitor called Harpin 

(Chang et al., 2017). Studies by Luo et al., 2019 on Chinese wild grapevine varieties revealed that 

the elicitor flg22 activated and participated in the promoter MYB15-induced basal immunity (PTI). 

Sulfated laminarin (PS3) has been demonstrated to induce resistance to P. viticola in susceptible 

grapevine cultivars (V. vinifera cv. Marselan) (Ménard et al., 2004; Trouvelot et al., 2008). In the 

same study, it was also demonstrated that the cell wall component β-1,3 glucan sulfate triggers a 

series of defence mechanisms against P. viticola (Trouvelot et al., 2008). Another study by Guan 
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et al. (2020) showed that a modulator compound called O-methylmellein, in addition to specific 

elicitors, plays a role in triggering basal immunity against grapevine trunk diseases. 

Additionally, one of the initial forms of defence in grapevine is the fast contraction of actin 

filaments and removal of microtubules (Qiao et al., 2010; Guan et al., 2014). In conclusion, 

Thomma et al. (2011), however, draws attention to the fact that individual forms of defence 

reactions often need to be more clearly attributable to PTI or ETI processes. For instance, recent 

research has shown that the EDS1-PAD4-ADR1 node serves as the foundation for defensive 

signalling cascades that are activated by both surface-resident and intracellular LRR receptors 

(Pruitt et al., 2021). 

1.3.2 ETI: Effector Triggered Immunity 

Effector-triggered immunity (ETI), commonly referred to as gene-for-gene resistance, is a 

different strategy for inducing plant immunity (Flor, 1971; Jones & Dangl, 2006). As a result of 

evolution, adaptive microbial pathogens secrete chemical factors or "effectors," that suppress and 

block PTI, eventually reactivating and promoting infection and leading to effector triggered 

susceptibility (ETS) (Nürnberger & Kemmerling, 2009; Tsuda & Katagiri, 2010). In some plants, 

these effector molecules are recognized via intracellular receptors resulting in ETI. Resistance 

genes (R-genes) encode the majority of these intracellular receptors, which are nucleotide binding 

site (NBS) and leucine-rich repeat (LRR) domain-containing proteins (NBS-LRR), and are 

expressed on the basis of the perception of the pathogen effectors (Dangl & Jones, 2001; McHale 

et al., 2006; Dodds et al., 2010; Kourelis & Van Der Hoorn, 2018; Shao et al., 2019). 

Unquestionably, utilizing R-genes to provide disease resistance to the plants is the most successful, 

ethical, and commonly employed approach in breeding. Furthermore, breeding more robust, 

sustainable and long-lasting resistance is to stack many R-genes in single genotype (Douglas & 

Halpin, 2010; Chepsergon et al., 2021). 

According to structural differences and localization in the N-terminal region, plants have two 

primary types of NB-LRRs, i. e., TIR-NB-LRR and CC-NBLRR proteins (Takken & Joosten, 

2000; Dangl & Jones, 2001; Inohara et al., 2005; Shao et al., 2019). Avirulence (Avr) protein is 

the identified effector perceived by a receptor that initiates a particular or specific resistance 

response in plant cytoplasm, explaining the gene for gene model (Oort, 1944; Luderer and Joosten 

et al., 2002). The investigation of ‘R-protein' function in signal transduction during the plant 
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resistance response to pathogens was made possible by recently found additional domains (e. g. 

RPM1, RPS2, RPS5 and WRKY) (Bent et al., 1994; Grant et al., 1995; Mindrinos et al., 1994; 

Warren et al., 1998; Glowacki et al., 2011). The "guard hypothesis", according to which R-proteins 

"guard" certain host proteins (referred to as "guardees") that are modified by pathogen effectors 

(Dangl & Jones, 2001; Luderer & Joosten, 2002). As an example, PBS1 (Guardee) is targeted by 

bacterial effector protein ‘AvrPphB’ and guarded by ‘RPS5’ (van der Hoorn & Kamoun, 2008; 

Shao et al., 2019). 

According to Feechan et al. (2013), only two TIR-NBS-LRR receptor-coding R-genes have been 

found in the North American grapevine M. rotundifolia species, mediating resistance to powdery 

mildew (Run1) and downy mildew (Rpv1), respectively. It’s well studied that P. viticola-related 

infections result in the introduction of cytoplasmic effectors of motif type, i. e., RxLR (Arginine-

xxx-Leucine-Arginine), crinkling and necrosis-inducing families (CRN) and cysteine, histidine, x, 

cycteine (CHXC) into the plant cytoplasm through particular signals (Stassen & Van den 

Ackerveken, 2011; Lan et al., 2019; Chepsorgen et al., 2021). ETI was activated in leaves of 

V. vinifera after infection with the oomycete P. viticola and secretion of RxLR- and CRN-type 

effector molecules (Jiang & Tyler, 2012). Hence, concluding the association of RxLR effectors in 

triggering ETI and they also represent potential avirulence proteins (Avr proteins) (Xiang et al., 

2016; Yin et al., 2017). 

 

In general, plants initiate defensive reactions after effectors are recognised, including the 

hypersensitive response (HR) and systemic acquired resistance (SAR) (Brader et al., 2017; 

Esmaeel et al., 2018; Koledenkova et al., 2022). A recent study showed the recognition of Avr 

proteins by the induction of an ETI-dependent immune response led by Caspase-like proteases, 

causing HR and preventing further colonization of the pathogen in resistant grapevine cultivars 

(Gong et al., 2022). Whereas rapid influx of calcium ions causing HR, it in turn, induces the 

production of reactive oxygen species (ROS), triggering intracellular signalling pathway causing 

oxidative burst, finally leading to PCD (Kim et al., 2011; Hatsugai et al., 2015; Wang et al., 2018). 

Furthermore, the downstream signalling leads to early stomatal closure, accumulation of 

pathogenesis-related proteins (ex: β-1–3 glucanase), triggering the production of callose and lignin 

synthesis, and secondary antimicrobial metabolites (e. g. phenols, phytoalexins) (Godfrey et al., 

2007; Bigeard et al., 2015; Patel et al., 2020). Jasmonic and salicylic acids mediate resistance to 
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biotrophic and necrotrophic pathogens, respectively (Zhou & Zhang, 2020). ‘VaRPP13’ protein 

identified in Arabidopsis, tobacco and grapevine (V. amurensis ‘Shuang Hong’) is known to 

contribute broad-spectrum resistance to oomycetes via activating SA signalling pathway (Chen et 

al., 2022). 

Evidence of P. viticola isolates known to overcome Rpv3.1, Rpv10, Rpv12, and Rpv29 mediated 

resistance (Peressotti et al., 2010; Eisenmman et al., 2019; Paineau et al., 2022; Marone Fassolo 

et al., 2022) are the classical examples that demonstrate the Avr effector's adaptation of P. viticola 

leading to ETS response in plants. Nevertheless, the interaction of PTI and ETI to provide plant 

immunity has yet to be understood entirely. However, research on Arabidopsis, tobacco and 

tomato suggests that the PTI and ETI receptors may coexist in the same protein complex with 

speculation of early-stage interaction between PTI and ETI signalling (Dodds & Rathjen, 2010; Qi 

et al., 2011; Li et al., 2019). 

1.4 Current status of downy mildew resistance 

Resistance to P. viticola opens up new breeding opportunities for grapevines. Finding new sources 

of naturally existing P. viticola resistance is paramount in breeding (Eibach et al., 2007; Töpfer et 

al., 2011). Additionally, to prevent the selection of pathogen strains capable of overcoming these 

resistances, pyramiding these resistance loci is one of the effective strategies in grapevine breeding 

(Zini et al., 2019; Töpfer & Trapp et al., 2022). To date, numerous QTLs (quantitative trait loci) 

are identified in different genetic backgrounds of Vitis species and hybrids. These loci vary in their 

strength, from weak to providing strong resistance to P. viticola (Koledenkova et al., 2022; 

Possamai & Wiedemann-Merdinoglu, 2022; www.vivc.de/loci accessed on 10th December 2022). 

To date, identified loci and their allelic forms include: Rpv1 and Rpv2 from M. rotundifolia 

(Merdinoglu et al., 2003; Wiedemann-Merdinoglu et al., 2006); Rpv3 and Rpv19 in American 

V. rupestris (Welter et al., 2007; Bellin et al., 2009; Di Gaspero et al., 2012; Divilov et al., 2018; 

Foria et al., 2020); Rpv3.1, Rpv3.2 and Rpv3.3 (Fischer et al., 2004; Zyprian et al., 2016; Vezzulli 

et al, 2018; Possamai et al., 2020; Ciubotaru et al., 2021). Rpv4, Rpv7, Rpv11, Rpv17, Rpv18, 

Rpv20, and Rpv21 from interspecific hybrid (North American species) (Fischer et al., 2004; Welter 

et al., 2007; Bellin et al., 2009; Van Heerden et al., 2014; Divilov et al., 2018); Rpv15 and Rpv16 

in V. piasezkii Maxim. (Pap et al., unpublished). Rpv5, Rpv6 , Rpv9, and Rpv13 in V. riparia 

(Marguerit et al., 2009; Moreira et al., 2011); Rpv14 in V. cinerea (Ochssner et al., 2016); Rpv8, 
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Rpv10, Rpv12, Rpv22, Rpv23, Rpv24, Rpv25, and Rpv26 in V. amurensis (Blasi et al., 2011; 

Schwander et al., 2012; Venuti et al., 2013; Song et al., 2018; Lin et al., 2019; Schneider et el., 

2019; Fu et al., 2020); Rpv27 in V. aestivalis (Sapkota et al., 2015, 2019). Rpv28 in V. rupestris 

cv. Scheele and V. riparia ‘Michaux’ (Bhattaria et al., 2021). Rpv29 from ‘Mgaloblishvili’ 

(V. vinifera) and Rpv30 and Rpv31 in other varieties from Georgia (Sargolzaei et al., 2020). 

Figure 5 illustrates the physical/genomic position of all the resistance loci mentioned above 

(Figure 5). 

 

Figure 5 Illustration of the chromosomal location of up to date identified resistance loci to P. viticola (Rpv) according 

to www.vivc.de/loci (n = 19; length in [Mb]). The black and white bands on chromosome do not resemble any 

information. 

 

1.4.1 Wild species: Vitis coignetiae 

The V. coignetiae also called the crimson glory grapevine, is native to Far East Asia (Japanese 

Islands, Korea, Sakhalin island of Russia) (Figure 6). Some genetic diversity in the V. coignetiae 

grapevines has been observed and reported in Hiruzen, Japan (Okamoto et al., 2002). Furthermore, 

research reveals current attempts in the last two decades to domesticate V. coignetiae in Japan to 

produce wine (Okamoto et al., 2002). In addition, V. coignetiae is used as an ornamental plant in 

many parts of the world due to its vigorous, mildew tolerance, deciduous climber, lush growth 

file:///E:/www.vivc.de/loci
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characteristics and striking red colours in autumn. However, V. coignetiae has not been exploited 

in any resistance investigations thus far although it is cross-fertile with V. vinifera. 

 

1.5 Grapevine resistance breeding 

1.5.1 Artificial Intelligence-based phenotyping 

In addition to genomics, phenotypic information, which is still a bottleneck in plant breeding, is a 

critical factor in accelerating plant breeding (Furbank & Tester, 2011; Crossa et al., 2017; Singh 

et al., 2019). Revolutionizing phenomics with artificial intelligence (AI) has successfully classified 

various plant traits. Machine learning (ML), a discipline of artificial intelligence, is recognized for 

executing specific tasks by building algorithms models (Singh et al., 2016; Zhou, 2021). The field 

of ML is further divided into supervised and unsupervised ML. Supervised learning aims to 

determine the output for a given object based on a set of provided input features. At the same time, 

unsupervised ML involves fitting predictive model's parameters to perform well on labelled 

training data, consisting of inputs and known outputs (Mahesh, 2020; van Dijk et al., 2021). ML 

or training computers to learn from structures and patterns in large datasets has been widely 

utilized in plant breeding research to identify, classify and interpret observable dynamic 

phenotypic traits (Andrade-Sanchez et al., 2013; Yang & Guo, 2017; Niazian and Niedbala et al., 

Figure 6 Vitis coignetiae (♂) as an ornamental vine at the Institute for Grapevine Breeding. 
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2020). AI-based, non-invasive, and high throughput phenotyping systems are in great demand, 

contributing to precision plant breeding. Recent studies have shown the effectiveness, efficiency, 

and accuracy of sensor and computer-based vision phenotyping approaches in many agricultural 

systems (Lau et al., 2014; Tardeiu et al., 2017; Mahlein et al., 2019; Van Es et al., 2019; 

Schramowski et al., 2022; Ren et al., 2022). In grapevine research, AI has been implemented in 

modelling and predicting phenotyping traits to the AI-based fermentation process (Florea et al., 

2022; Fraiwan et al., 2022). In general, when processing sensor data, ML plays a vital role in 

measuring traits on different levels (van Dijk et al., 2021). Both ground and aerial high throughput 

(HTP) ML platforms equipped with sensors are utilized to fast and precisely quantify different 

traits, diseases and vineyard management (van der Heijden et al., 2012; Oerke et al., 2016; Virlet 

et al., 2017; Romero et al., 2018; Bendel et al., 2020; Rist et al., 2018 & 2022). Based on the recent 

advancements in machine vision and its application in phenotyping, it is possible to develop a tool 

for automated image acquisition and analysis (Bock et al., 2010; Mutka & Bart, 2015). 

1.5.1.1 The Convolutional Neural Networks  

Several ML models have been implemented under vision-based image classification depending on 

the model’s layer depth, including the first Convolutional Neural Network (CNN) architecture 

AlexNet to Inception and its variant, and from ResNet (Residual neural Network) to the latest 

YOLO family (You Only Look Once) (Jiang et al., 2022). CNN was invented in 1995 by LeCun 

and Bengio. Deep Convolutional Neural Networks (DCNNs) are well known for their image 

classification using deep learning techniques due to the larger number of layers and capability to 

simultaneously process red, green and blue (RBG) elements of an image (Canziani et al., 2016; 

Sewak et al., 2018). In general, features are extracted by different convolution layers repeatedly 

during an image classification and simultaneously combined with mathematical imputation, and 

the network finally produces an output label (Sewak et al., 2018). CNNs have been extensively 

reviewed in computer vision reviews, which summarize the basis of their use, their history and 

their future applications (Rawat et al., 2017; Gracia-Gracia et al., 2018). Deep learning 

advancements have improved to the point that they can compete with humans in correctly 

identifying and classifying pictures. However, according to the studies, it is worth to note training 

CNN with high-quality images might be difficult owing to the constraints of the Graphical 

Processing Unit and computer memory. Whereas training using low-resolution images may result 

in the loss of features, ultimately leading to poor accuracy (Véstias, 1997). 
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In recent years, CNNs have been enthusiastically embraced, and an exponentially developing trend 

is predicted for CNN-based plant phenotyping. The review articles presented by Saleem et al. 

(2019) and Lu et al. (2021), provide detailed insights into implementing CNNs in plant 

phenotyping. Yang & Xu et al. (2021) provides extensive information on deep learning 

methodologies in horticulture research. Deep learning has been implicated in the identification of 

different grapevine cultivars (Liu et al., 2021). Studies conducted in grapevine breeding research 

have shown that CNNs have outperformed traditional phenotyping methods for improved image 

processing and precision (Lauguico et al., 2020; Nasiri et al., 2021; Mohimont et al., 2022; Fraiwan 

et al., 2022). Grapevine breeding research and investigations like linkage and association mapping 

rely heavily on precise phenotypic data (Zendler et al., 2021). Breeding for disease resistance traits 

(powdery mildew and downy mildew) mainly involves artificial inoculation experiments (leaf disc 

assays) followed by manual phenotyping (Huang et al., 2020; Possamai & Merdinoglu, 2022). 

When more than one individual works on a traditional phenotypic method involving a score-based 

system, the subjectivity is intense, effecting the overall output. 

Furthermore, phenotyping thousands of samples using biological replicates makes the entire 

procedure not only time-intensive but also laborious (Lu et al., 2021). This indicates that there is 

a requirement for HTP, accurate and objective phenotyping tools. However, it is possible to 

develop algorithms capable of learning complex features which can be implemented in laboratory-

based phenotyping models. Eventually, it can speed up breeding studies by boosting phenotyping 

accuracy and minimizing manpower requirements. Bierman et al. (2019) presented a CNN-based 

GoogLeNet model with 94 % accuracy for HTP quantification of powdery mildew. Accurate and 

precise downy mildew evaluation tools are crucial for QTL analyis. Whereas, traditional 

methodologies tend to produce bais and are time intensive. In addition, no laboratory based image 

analysis tools are currently available for downy mildew disease assessment. In this study, a shallow 

convolutional neural network (SCNN)-based grapevine downy mildew disease quantification 

model (Zendler et al., 2021) involving less hidden layers in comparison to DCNN and a Residual 

Neural Network (ResNet) based model for grapevine leaf hair quantification was developed. 

 



17 
 

1.5.2 Genotyping 

1.5.2.1 PIWI cultivars (ger. pilzwiderstandsfähige Rebsorten)  

Grapevine (V. vinifera L.) has enormous agricultural and commercial importance globally, with 

several million hectares invested in viticulture (OIV, 2021; Sosa-Zugina et al., 2022). Some of the 

major devastating fungal diseases of grapevine include downy mildew (Plasmopara viticola) and 

powdery Mildew (Erysiphe necator) effecting the quality and quantity (refer to section 1.2). In a 

broader spectrum, severe yield and financial losses have been observed over the years (OIV, 2020; 

OIV, 2021; Jermini et al., 1997, 2010). The management strategies for the diseases in traditional 

V. vinifera cultivars necessitate the extensive use of fungicides regularly. Over the years, fungicide 

use has become increasingly widespread since the mid-19th century and is widely considered to 

offer the best protection against grapevine diseases (Nicholas et al., 1994). In the European Union, 

viticulture uses nearly 60-70 % of fungicides to control downy and powdery mildew infection 

(Furiosai et al., 2022). In additon to the synthetic fungicides for controlling downy mildew, copper 

sulfate has been used successfully utilized in the form of sulfate in organic viticulture. According 

to EU regulations, maximum of 6 kg/ha of copper is used for viticulture. In the last two decades, 

the German ministry for agriculture spent about €10.2 million for research on a copper 

minimisation strategy (Kühne et al., 2017; Tamm et al., 2018a, 2018b).  

However, despite their usefulness, they potentially pose a significant threat to humans and the 

environment (Steeland and Bofetta, 2000; Carausu et al., 2016; Li et al., 2018; Dimuitriu et al., 

2022). Moreover, copper is a heavy metal and according to the recent studies the negative impact 

of copper sulfate residues found in soil and aquifers give rise to eco-toxicological effects (Ruyters 

et al., 2013; Ballabio et al., 2018; Karimi et al., 2021). In addition, studies have shown a negative 

impact on non-target organisms due to the fungicide application in viticulture (Bereswill et al., 

2012; Marhino et al., 2020).  

Viticulture's sustainability depends on finding a critical balance between controlling fungal 

diseases and protecting the environment. Naturally available resistances from American wild 

grapevine species were apparently used in generating the first fungus resistant cultivars known as 

'French/ American Hybrids' as early disease control options (Kole, 2011, p. 10; Eibach & Töpfer, 

2007; Blaser & Scherz, 2011). These early varieties were particularly resistant but had poor wine 

quality, prompting France to restrict these fungal-resistant cultivars in 1953 (Alleweldt & 

Possingham, 1988; Di Gaspero et al., 2012). However, contemporary PIWI varieties (ger. 
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pilzwiderstandsfähige Rebsorten (fungus-resistant cultivars)) established through multiple 

repeated backcrosses with V. vinifera varieties are particularly beneficial in terms of sustainability, 

in addition to excellent resistance and wine quality (Alleweldt & Possingham, 1988; Töpfer et al., 

2011a; Di Gaspero et al., 2012; Rousseau et al., 2013; Finger et al., 2022). Since 2008 (Germany 

and Europe), cultivar 'Regent' is one of the most cultivated PIWI and an excellent successful story 

of grapevine resistant breeding (DeStatis, 2016; Pedneault & Provost, 2016; Maul et al., 2021). 

Recent data suggest a minor reduction in ‘Regent’ cultivation (1,917 ha), although it remains one 

of Germany's most extensively grown PIWI cultivars (DeStatis, 2016; Müllner, 2021). Some of 

the impactful representative cultivars increasing in demand include ‘Cabernet Blanc’, ‘Calardis 

Blanc’, ‘Muscaris’, ‘Sauvitage’, ‘Sauvignac’ and ‘Souvignier Gris’ (Richter, 2022). Over the last 

few years, there has been a gradual growth in PIWI cultivation. In 2019, the total area under PIWI 

wine cultivation was approximately 2,600 ha; in 2020, approximately 2,650 ha and in 2021 

2,713 ha. This corresponds to 2.62 % of the German vineyard area (103,421 ha) (Richter, 2022). 

Private entities and public research institutes have launched grapevine-breeding activities for 

fungus-resistant cultivars (Spring & Dupraz, 2021). 

1.5.2.2 Marker-Assisted Selection  

American/French hybrids opened up new perspectives in grapevine breeding. However, using 

classical hybridization principles and conventional selection processes, the decision to include 

resistance and viticultural traits from a particular parentage was mainly based on long-term visual 

evaluation and micro-vinification results (Töpfer et al., 2011; Eibach & Töpfer et al., 2015). In 

addition, a further obstacle was grapevine’s woody perennial nature, with their long generation 

cycle (3-5 years) due to a long juvenile period, strong inbreeding depression, and require plenty of 

resources and time (Kole, 2011, p. 160; Töpfer et al., 2011; Töpfer & Trapp, 2022). Furthermore, 

breeding a new cultivar using traditional selection techniques took approximately 25 – 30 years 

from the initial cross to its release (Eibach & Töpfer et al., 2015). 

Molecular tools and the sequencing of the grapevine genome have revolutionized grapevine 

breeding in the 21st century (Jaillon et al., 2007; Velasco et al., 2007; Smit et al., 2020). Linkage 

(QTL) and association mapping (GWAS), based on DNA marker information from a specific 

parental cross, have made it possible to introduce molecular markers and then assist in selecting 

desirable traits, a process commonly referred to as Marker-Assisted Selection (MAS) (Paterson et 

al., 1988; Tanksley, 1993; Kearsey, 1998). The introduction of polymorphic SSR-based DNA 
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markers made an early contribution to creating linkage maps (Riaz et al., 2006 & 2008). The QTL 

analysis, involving phenotypic and genotypic correlation, assisted in the identification of new 

resistance loci associated with the traits and subsequently developing markers for MAS (Dalbo et 

al., 2000; Kole 2011, p. 112). 

MAS is exploited by breeders to accelerate the breeding process and select genotypes more 

effectively with minimal use of resources (Collard, 2005; Collard & McKill, 2008). In addition, in 

contrary to the empirical breeding, MAS assists in selecting prospective young seedlings early on, 

improving genetic gain by rapid development of varieties with targeted traits and reduce the time 

of breeding process by 5-10 years (Eibach & Töpfer 2015; Töpfer & Trapp, 2022). Several marker 

systems have been developed based on the method of detection and mode of transmission that help 

in linkage or association mapping and successfully applied in plant breeding activities (Agarwal 

et al., 2008; Grover & Sharma, 2016; Nadeem et al., 2018). The PCR-based DNA marker 

techniques include: RFLP (restriction fragment length polymorphism) earlier used to identify 

polymorphic loci due to different DNA restriction patterns, RAPD (random amplified polymorphic 

DNA, AFLP (amplified fragment length polymorphism), and SSR (simple sequence repeats).  

The genome-wide distribution, codominant, highly transferable, polymorphic, and cost-efficient 

features of SSR markers made them reliable in linkage studies (Töpfer et al., 2011b; Vieira et al., 

2016). The latest genetic studies in grapevine involved the usage of genotyping-by-sequencing 

(GBS) and amplicon-based SNP markers, enabling the detection of point mutations, insertion and 

deletion (InDels) of individual nucleotides (Lijavetzky et al., 2007; Laucou et al., 2018; Negus et 

al., 2021; Vervelle et al., 2022). A recent SNP study revealed genome-wide variation linked to the 

early ripening of grape mutants (Pei et al., 2021). Furthermore, SNP-based genotyping has been 

employed in assessing genetic variability, diversity, population structure and genetic architecture 

of multiple traits in grapevines (Mercati et al., 2016; De Lorenzes et al., 2019; D’Onofrio et al., 

2021; Bianchi et al., 2022). The Vitis genus presents a significant degree of structural variation, 

challenging the transferable marker development (Zou et al., 2020). Hence, marker transferability 

remains an additional concern in grapevine breeding research. The latest rhAmpSeq marker system 

was designed especially for the core Vitis genome. It offers high marker transferability of up to 

92 %, high throughput, and the detection of multi-allelic SNPs (Zou et al., 2020). In addition, the 

rhAmpSeq markers system provides highly specific binding of markers and obtain high 

multiplexing avoiding primer dimer formation. The implication of the rhAmpSeq markers and its 
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transferability has been successfully shown in recent studies (Yin et al., 2021; Olson et al., 2021; 

Karn et al., 2021; Reshef et al., 2022; Alhakoon et al., 2022; Buck et al., 2022; Park et al., 2022). 

1.5.2.3 Pyramiding resistance loci 

The resistant PIWI cultivars allow for a reduction of fungicide application depending on the 

strength of their resistance (Töpfer & Trapp, 2022). The ultimate aim of grapevine breeding is to 

develop grapevine cultivars with durable resistance without compromising the wine quality 

(Töpfer et al., 2011a). As a new dimension, climate change plays a vital role and a deciding factor 

in terms of the quantity of fungicides applied and the outbreak of diseases (Töpfer & Trapp, 2022). 

Eventually, finding new resistance loci is of high importance and value. However, single locus 

imparting resistance is broken due to the continuous adaptation of the pathogen (Peressotti et al., 

2010; Töpfer et al., 2011). Recent studies have shown the existence of different isolates of 

P. viticola and their capability of overcoming host resistance, i. e., Rpv3, Rpv10, and Rpv12 

(Delmotte et al., 2006, 2014; Gómez-Zeledón et al., 2013, 2017; Eisenmann et al., 2019; Wingerter 

et al., 2021; Paineau et al., 2022). Therefore, stacking loci from different resistant donors with 

diverse resistance mechanisms might be a feasible strategy to durable resistant cultivars (Töpfer 

et al., 2011 and 2011a). A first example of resistance pyramiding in grapevine was shown by 

Eibach et al. (2007), combining resistances of line VRH3082-1-42 carrying Run1/Rpv1 locus with 

resistance found in ‘Regent,’ i. e., loci Ren3/Rpv3. The offspring of this cross was screened using 

MAS to identify the presence of pyramided loci, followed by corresponding phenotyping 

assessments. A recent study conducted by Ciubotaru et al. (2021) showed that, contrary to mono-

locus genotypes, an early (12 h) synthesis of metabolites (phenolic compounds, acids, aldehydes, 

etc.) was observed in pyramided genotypes (Rpv3.1 and Rpv12; Rpv3.1, Rpv3.2 and Rpv10) in 

response to P. viticola infection. As a result, it was concluded that pyramided resistance involves 

many mechanisms that inhibit pathogen growth and are helpful for genetic improvements in 

grapevine. 

1.6 Research objectives  

As previously stated, traditional grapevine cultivars derived from V. vinifera are in high demand 

due to their exceptional wine quality. However, they are also highly vulnerable to downy mildew, 

a catastrophic disease caused by the host-specific oomycete P. viticola, that necessitates the 

extensive and regular application of fungicides. This research's primary and fundamental aim is to 
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reduce the usage of fungicides that are applied to control downy mildew incidences by identifying 

the novel resistances from an unexploited wild species. Since the world demands sustainable 

viticulture, the elimination of the detrimental impact of fungicides on human health and the 

environment is crucial. Existing resistant grapevine cultivars are developed through long-term 

breeding strategies, and several resistance loci to P. viticola have been identified (www.vivc.de). 

However, only a few of these resistance loci have been exploited in developing cultivars showing 

promising resistance to downy mildew.  

The research objective is identifying naturally occurring new resistance loci from the unexploited 

wild Vitis species V. coignetiae by applying genetic mapping with classical QTL analysis. 

Greenhouse grown potted plants of a bi-parental F1 population (‘Morio Muskat’ x COxGT2 

(V. coignetiae x ‘Gewürztraminer’)) were utilized for genetic and phenotypic analysis (leaf disc 

assay). Field resistance to downy mildew was observed in the V. coignetiae derived cross 

‘COxGT2’ individual. In addition, the F1 population shows quantitative seggregation for the 

morphological trait leaf hair, know to act as a physcial barrier against downy mildew. Therefore, 

the association between the leaf hair and downy mildew will be determined in this study. Markers 

linked tightly to the resistance loci shall be identified as a prerequisite for MAS in breeding 

programs. Furthermore, the comparison of identified resistance loci to some of the already existing 

resistance loci will be carried out. Moreover, P. viticola proliferation in different resistance 

carrying genotypes (Rpv8, Rpv12) and microscopic analysis of pathogen mycelium development 

in the parental genotypes (‘Morio Muskat’ and COxGT2) will be evaluated at different time points 

(1, 3, and 5 days post inoculation).  

Additionally, due to a large number of F1 individuals (#496) and replicates (approx. 

2000 leaf discs/single experiment/year), manual scoring phenotyping results are time-consuming, 

tedious, and highly subjective. Nevertheless, revolution in machine learning has led to the 

development of accurate and precise measurement of phenotypic traits. This research work also 

focused on developing a low-cost artificial intelligence-based high throughput (HTP) downy 

mildew disease severity and leaf hair quantification models. Both the CNN-based models will be 

trained, tested, and validated on the F1 population Gf.2018-063. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 List of chemicals and kits 

Chemicals Application Supplier 

2-Mercaptoethanol 

(≥ 99 %) 

Total genomic 

DNA extraction 
Carl Roth GmbH + Co. KG, Karlsruhe 

Agar  

Gel 

electrophoresis 
Gustav Essig GmbH & Co. KG, Mannheim 

Leaf disc assays Essig GmbH & Co. KG, Mannheim, Germany 

Agarose 
Gel 

electrophoresis 
Axon Labortechnik GmbH, Kaiserslautern 

Aniline blue 
Microscopic 

staining 
Merck KGaA, Darmstadt 

DNeasy® Plant Mini 

Kit 

Total genomic 

DNA extraction 
Qiagen, Venlo, Netherlands 

Ethanol, absolute DNA extraction Th. Geyer GmbH & Co. KG, Renningen 

GeneRulerTM 1 kb 

DNA Ladder Mix 
DNA ladder 

Thermo Fisher Scientific Inc., Waltham, MA, 

USA 

GeneRulerTM LR DNA ladder 
Thermo Fisher Scientific Inc., Waltham, MA, 

USA 

KAPA2G Fast 

Multiplex Mix 

Multiplex kit 

for SSR marker 

analysis 

KAPA Biosystems, Wilmington, Massachusetts, 

USA 

NucleoSpin® 96 Plant 

II 

Total genomic 

DNA extraction 
Macherey-Nagel GmbH & Co. KG, Düren 

peqGOLD Plant DNA 

Mini Kit 

Total genomic 

DNA extraction 
VWR International GmbH, Randor, PA, USA 

Trypan blue 
Microscopic 

staining 
PanReac AppliChem ITW Reagents, Darmstadt 
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50x TAE Puffer pH 

8,3 

Total genomic 

DNA extraction 
Carl Roth GmbH + Co. KG, Karlsruhe 

50x TE Puffer (pH 

8,0) 

Total genomic 

DNA extraction 
Carl Roth GmbH + Co. KG, Karlsruhe 

EDTA-Na2 
Total genomic 

DNA extraction 
Carl Roth GmbH + Co. KG, Karlsruhe 

TRIS 
Total genomic 

DNA extraction 
Carl Roth GmbH + Co. KG, Karlsruhe 

 

2.1.2 List of laboratory equipments 

Application Equipments Suppliers 

Agarose gel 

documentation 
QUANTUM ST5 with UV light 

Vilber Lourmat GmbH, 

Eberhardzell 

Centrifugation 

Table top centrifuge 5452 Eppendorf AG, Hamburg 

Sigma 6-16KS 
Sigma Laborzentrifugen GmbH, 

Germany 

Incubator Thermomixer compact Eppendorf AG, Hamburg 

Leaf disc assay 

Stereo microscope Axio Zoom.V16 Carl Zeiss AG, Oberkochen 

Corning® 245 mm Square 

BioAssay Dish with Handles, not 

TC-treated Culture (no. 431111) 

Corning, Arizona, USA 

Hemocytometer (counting 

chamber) 

Paul Marienfeld GmbH & Co. KG, 

Lauda Königshofen 

Thermo Fischer scientific Cork 

borer (10mm) 

Thermo Fischer scientific, 

Houston, USA 

Plant Tissuelyser 
Paint Shaker-SK450 

Fast & Fluid Management B. V., 

Sassenheim, NL 

Tissuelyser RETSCH Qiagen GmbH, Hilden 

Photometer Microplate-Reader CLARIOstar BMG Labtech GmbH, Ortenberg 

PCR ABI 9700 Thermocycler Applied Biosystems, Darmstadt 
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GeneAmp PCR system 9700 Applied Biosystems, Darmstadt 

PCR fragment 

analysis 

ABI 3130xl Genetic Analyser Applied Biosystems, Darmstadt 

Agagel Mini BiometraR GmbH, Göttingen 

EC360 Midi Cell 

Electrophoretic Gel System 

 

E-C Apparatus Corporation, 

Milford, USA 

Power Supply EC105 
E-C Apparatus Corporation, 

Milford, USA 

Microscopy 

Stereo microscope Leica M205FA 

1x – 160x 
Leica Camera AG, Wetzlar 

Microscope specimen slide 
Thermo Fisher Scientific Inc., 

Waltham, MA, USA 

Micro slide and cover glass 
Waldemar Knittel 

Glasbearbeitungs GmbH, Bielefeld 

Miscellaneous 

384-Well-Plate 
Biozym Scientific GmbH, 

Hessisch Oldendorf 

96-Well-Plate 
Kisker Biotech GmbH & Co. KG, 

Steinfurt 

Deep freezer -20°C GNP 4166 Liebherr, Bulle, CH 

Eppendorf micro tube 

(0.2,0.5,1,1.5,2,15,50 ml) 
Eppendorf AG, Hamburg 

Eppendorf table centrifuge Eppendorf AG, Hamburg 

Refrigerator +4°C ,KS36VAW41 Siemens, München 

Vortex Vortex Genie 2TM 
Scientific Industries, Bohamia, NY 

USA 

Weigh balance 
Weighing balance PB3015 Sartorius, Göttingen 

Kern ABJ-NM KERN & SOHN GmbH, Hamburg 
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2.1.3 List of software and online tools 

Application Softwares and 

online tools 

Suppliers/links 

SCNN/ResNet CNN 
Python 3.10.7 Python Software Foundation License 

Unix/Linux Debian 

Data Bank 

BLAST 

 

Basic local alignment search tool 

https://blast.ncbi.nlm.nih.gov/Blast.cgi 

Altschul et al., 1990 

Altschul et al., 1997 

BUSCO 

 

Benchmarking Universal Single-Copy Orthologs 

https://busco.ezlab.org/ 

Simão et al., 2015 

Waterhouse et al., 2018 

National Center for 

Biotechnology 

Information (NCBI) 

NCBI Bethesda MD, USA 

www.ncbi.nlm.nih.gov 

Phytzome Version 

13 
https://phytozome-next.jgi.doe.gov/ 

GBVitis 

 

JKI/DV S. Kecke, G. Marx, A. Ganesh v6.4 

 

Vitis International 

Variety Catalogue 

(VIVC) 

www.vivc.de 

Maul et al., 2021 

Genetic map - SSR Join Map 5.0 Kyazma, Wageningen, Netherlands 

Genetic map -

rhAmpSeq 

Lep-MAP3 

(Genetic map) 

https://sourceforge.net/p/lep-

map3/wiki/LM3 %20Home/ 

Unix/Linux Debian 

Perl https://www.perl.org/ 

Java 
Oracle 

(https://www.java.com/download/ie_manual.jsp) 
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GWAS - rhAmpSeq Tassel 5.0 
BUCKER LAB (Ed Buckers laboratory) 

https://tassel.bitbucket.io/ 

PCR fragment 

analysis 
Gene Mapper 5.0 Applied Biosystems, Darmstadt 

QTL analysis - SSR Map QTL 5 and 6 Kyazma, Wageningen, Netherlands 

Respository GitHub © 2022 GitHub, Inc., https://github.com 

Statistical analysis R and R-studio 

Version 4.0.3 

https://www.R-project.org/ 

R Core Team, 2020 

 

2.1.4 Plant material  

The breeding line COxGT2 (also denominated as ‘PIWI süd’) plant material described to exhibit 

a high level of field resistance to downy mildew was obtained from the nursery of grapevine 

breeder Edwin Schrank, Dackenheim, Germany. A biparental segregating F1 population ‘Gf.2018-

063’ (Figure 7) consisting of 496 individuals derived from the crossing of ‘Morio Muskat’ x 

COxGT2 was utilized in resistance mapping studies. The crossing was completed in 2018 and the 

seedlings were planted in 2019.  

A 'Cabernet Dorsa' ('Blaufränkisch' x 'Dornfelder') x Couderc 13 (Vitis aestivalis var. lincecumii x 

Couderc 162-5) population, ‘Gf.2018-074’, consisting of 314 F1 individuals, was used in addition 

to the 'Gf.2018-063' population to develop a SCNN-based downy mildew quantification system. 

The ResNET-based leaf hair quantification model was developed using the populations Gf.2018-

063 and validated using three well-known hairy (‘Pinot Meunier’, ‘Tigvoasa’, and V. thunbergii) 

and non-hairy (‘Riesling’, ‘Merlot’, and ‘Cabernet Sauvignon’) genotypes. 

All the experimental plants utilized in this study are maintained in the greenhouses at the Institute 

for Grapevine Breeding Geilweilerhof with a single shoot of approx. 30-40 cm in height and a pot 

diameter of 20 cm. The plants were regularly irrigated and sprayed with sulphur-containing 

fungicides to prevent powdery mildew incidences. No spraying was carried out a week before the 

artificial leaf disc inoculation experiment. 



27 
 

 

 

 

 

 

 

 

 

 

2.1.5 Plasmopara viticola spore material 

P. viticola spores were collected using a filter-based suction tip from the naturally infected 

susceptible grapevine varieties ‘Müller Thurgau’ and ‘Riesling’ from untreated fields. Some of the 

spore material was propagated on ‘Müller Thurgau’ and ‘Riesling’ leaves under controlled 

laboratory conditions (32 °C, 72 % rH). The collected material was stored at -20 °C and was 

thawed at room temperature before use.  

2.2 Methods 

2.2.1 Phenotypic assessment 

2.2.1.1 Leaf disc assay  

The phenotypic assessment of resistance was carried out using artificially inoculated leaf disc 

assays (LDA). To achieve an uniform physiological leaf age for all the genotypes, the fourth or 

fifth leaf from the apical node was collected. Four leaf discs per genotype were excised using a 

stainless steel cork borer (1 cm diameter) and were placed upside-down on 1 % water agar in 

245 mm Square BioAssay Dishes and were placed according to a template of two 96 sample grids 

as shown in the Figure 8A and 8B. Control leaf discs were sprayed with autoclaved ddH₂O. The 

grid template was designed to suit the Zeiss AxioZoom v16 (see 2.2.1.2) motorized table's 

specifications. The leaf discs were artificially infected by placing 30 μl of sporangia suspension of 

concentration approximately 22,000 sporangia/ml. The water-diluted sporangia density was 

‘Gewürztraminer’ 

COxGT2 

V. coignetiae 

‘Muskateller’ 

‘Morio Muskat’ 

‘Silvaner’ 

F1: Gf.2018-063 

(#496) 

Figure 7 A bi-parental F1 population ‘Gf.2018-063’ (N = 496) derived from the cross of ‘Morio Muskat’ x COxGT2 

(V. coignetiae x ’Gewürztraminer’). 
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determined before infecting discs using a hemocytometer and the concentration was adjusted 

accordingly. Infected leaf discs were incubated overnight in dark at 24 °C, the spore suspension 

drops were removed the next day using a water-jet pump, and further incubation was carried out 

at 22 °C with a photoperiod of 16 h (full spectrum light) and high relative humidity of 72 %. Leaf 

discs were evaluated post five days of inoculation. 

 

 

2.2.1.2 High throughput imaging 

A Zeiss Axio Zoom V16 (Jena, Germany) with a motorized table and a 0.5 magnification lens 

(PlanApo Z 0.5/0.125; Free Working Distance 114 mm) was utilized for automated imaging of 

post five days inoculated leaf discs with P. viticola. All the leaf disc images were recorded at 10.5-

fold magnification. The program ZenBlue version 3.4 (Zeiss, Jena, Germany) was used to create 

a movement template that automatically accessed the 96 places with one cm diameter spacing 

(Figure 8). The leaf discs were lit using a backlight, two gooseneck lights, and an LED ring light. 

To appropriately illuminate sporangiophores growing from the leaf discs, the gooseneck lights 

were angled at a 45° angle. The combined exposure period of the three lights was adjusted and 

fixed to default at 18–20 ms, making the whole imaging process high throughput. The Zeiss Axio 

Zoom (Jena, Germany) V16 is integrated with a software-autofocus, which was utilized to 

determine the ideal focal height for each individual leaf disc before imaging. Lowest suitable 

aperture of 39 % was utilized to get feasible maximum focal depth. For the trained CNN to 

accurately classify images, consistent illumination of leaf discs was essential. The plate was turned 

B A 

Figure 8 Grid template (A) used for placing leaf discs on a square 24.5 cm × 24.5 cm petri dish filled with 1 % water 

agar and a picture of square dishes with leaf discs on them (B). 
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180° after imaging the first 96 samples, and the second half of the plate was captured. It took 

around 15 minutes to image all 96-leaf discs. For additional analysis, images were exported as 

JPEG files with a resolution of 2752 x 2208 dpi and original files were saved as .czi format. With 

the use of a Python script and a naming template, the exported photos were renamed (available in 

the GitHub repository). A sample template which can be directly loaded into Zen Blue 3.0 is 

available in the below link (https://github.com/Daniel-Ze/Leaf-disc-scoring). 

2.2.1.3 Manual phenotyping: Downy Mildew  

Downy mildew phenotypic evaluation was based on the number of sporangia formed on the leaf 

disc images captured at 5 dpi (days post-inoculation). A reversed five-class OIV 452-1 descriptor 

(OIV, 2nd edition 2001, https://www.oiv.int/) scale was utilized for the visual phenotypic 

assessment (Figure 9). The density of sporangia developed on the leaf discs defined disease 

severity. Where score 1: no sporangiophores (highly resistant), score 3: one to five 

sporangiophores (resistant), score 5: six to twenty sporangiophores (moderate), score 7: more than 

twenty (susceptible), and score 9: a dense uniform cottony cloud of sporangiophores (highly 

susceptible). 

 

 

 

 

 

 

2.2.1.4 Manual Phenotyping: Leaf hair  

The leaf hair evaluation was based on the density of abaxial (lower surface) leaf hair present on 

the leaf discs. A well-established OIV-086 descriptor was utilized for leaf hair evaluation (OIV, 

PGRI; 6.1.37, https://www.oiv.int/). Where class, 1: None/Very low hair; 3: Low; 5: Medium; 

7: High; 9: Very high (Lanate/ dense cover of hair) (Figure 10). 

Figure 9 A reversed five-class OIV 452-1 descriptor for downy mildew resistance. 

https://github.com/Daniel-Ze/Leaf-disc-scoring
https://www.oiv.int/en/technical-standards-and-documents/description-of-grape-varieties/oiv-descriptor-list-for-grape-varieties-and-vitis-species-2nd-edition
https://www.oiv.int/public/medias/2274/code-2e-edition-finale.pdf
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2.2.1.5 Correlation of Phenotypic data: Downy Mildew vs. leaf hair  

According to the hypothetical question, the influence of leaf hair density on P. viticola infection 

decrement was investigated by correlating at both molecular and phenotypic level. The manually 

evaluated phenotypic data of downy mildew resistance were correlated with the phenotypic data 

of leaf hair each year with individual experiments using Spearman correlation coefficient (rSp), 

using the statistical program ‘R’ software, v. 3.4.5 (R Core Team 2017). 

2.2.2 DNA extraction 

To extract the genomic DNA from the young and healthy grapevine leaf material, about 1 cm² of 

leaf from the third leaf of a shoot tip were harvested in 96 deep well plates containing steel beads, 

frozen in liquid nitrogen and ground using a TissueLyser mill (Qiagen GmbH, Hilden, Germany). 

The genomic DNA utilized for the SSR marker was isolated using the protocol of Nucleospin 96 II 

DNA Kit (Macherey Nagel, Germany). Whereas, the genomic DNA for rhAmpSeq marker 

analysis was extracted using the protocol of peqGOLD Plant DNA Mini Kit (VWR). 

2.2.3 Marker analysis 

The concentration and the quality of all the extracted genomic DNA samples were analyzed on the 

agarose gel and spectrophotometric measurements (CLARIO STAR) at 260 nm (A260). For 

further marker analysis, the average concentration of all the DNA samples was set to 1 ng/µl by 

dilution. 

2.2.3.1 SSR markers 

Preexisting Simple Sequence Repeats (SSR) markers available at the institute were utilized in the 

initial genetic map creation and fine mapping of the population Gf.2018-063. The SSR markers 

used were selected from published mapping work (Thomas & Scott, 1993; Bowers et al., 1996; 

Figure 10 A five-class OIV 086 descriptor for leaf hair density. 
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Bowers et al.,1999; Vitis Microsatellite Consortium; Sefc et al., 1999; Scott et al. 2000; Scott et 

al., 2000; Dalbo et al., 2001; Adam-Blondon et al. 2004; Merdinoglu et al., 2005; Doligez et al., 

2006; Di Gaspero et al., 2005 and 2007; Welter et al., 2007; Cipriani et al., 2008; Salmaso et al., 

2008; Coleman et al., 2009; Fournier-Level et al., 2009; Di Gaspero et al., 2011; Blasi et al., 2011; 

Schwander et al., 2012; Fechter et al., 2012 and 2014; Venuti et al., 2013; Van Heerden et al., 

2014; Zyprian et al., 2016; Zendler et al., 2017) and were chosen based on their functionality 

standard and fluorescent dye (FAM, HEX, TAMRA and ROX). These markers were tested on a 

subset of the population for testing their suitability for multiplexing and their segregation pattern. 

Up to eight markers with suitable segregation, patterns were multiplexed further and run on the 

overall population. 

2.2.3.2 PCR 

PCR was performed in 96 or 384 well plates using the GeneAmp PCR System 9700 (Applied 

Biosystems) thermocyclers, according to the Kapa2G Fast Multiplex PCR Mix kit protocol and 

following approach given in Table 1. The fragments (between 35 – 500 bp) of the size standard 

mixed post PCR reaction were marked with LIZ® and identical to the commercially available 

GeneScan™ 500 LIZ®.  

 

Table 1 PCR approach and protocol. 

 

 

After performing the PCR, the amplified products were diluted with 10 μl of H₂O and 1 μl of the 

diluted reaction was transferred to a new 96 or 384-well plate. 12.5 μl of LIZ solution (0.5 μl LIZ 

Master mix 5 μl approach 

Component Amount [μl] 

gDNA (1 ng) 1 

Forward primer 0.015 – 0.03 

Reverse primer 0.015 – 0.03 

PeqLab-Mastermix 2.5 

H2O 5 

PCR protocol 

Temperature [°C] Time [min] 

95 3:00 

95 0:15 

X 30 60 0:30 

72 0:30 

72 7:00 

4 ∞ 
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size standard and 12 μl H₂O LiChrosolv) were then added to the DNA followed by denaturation 

at 95 °C for 5 min and cooled down to 4 °C. To analyze genetic markers, the plate was transferred 

to a capillary sequencer (ABI 3130 xl, Applied Biosystems, Invitrogen, Foster City, California, 

USA) of the 16-channel capillary (36 cm) filled with polymer POP-7™. Each SSR marker's primer 

has a fluorescent dye (6-FAM, HEX, TAMRA, or ROX) tagged at the 5' end for detection (the 

primers were created and marked by Metabion, Planegg-Martinsried). The fragment length was 

analyzed using the GeneMapper® 5.0 software program (Applied Biosystems, Invitrogen, Foster 

City, California, USA). 

2.2.3.3 RNase H2-dependent amplicon sequencing markers 

The population Gf.2018-063 including parental and grandparental DNA were genotyped utilizing 

2057 amplicon-based SNP markers referred to as RNase H2-dependent amplicon sequencing 

markers (rhAmpSeq markers). The Cornell University, Geneva, New York, service providers 

carried out rhAmpSeq marker-based sequencing (Zou et al., 2020). 

2.2.4 Genetic mapping 

The genetic map was created using two separate marker technologies: first, SSRs was used to build 

the initial map, and SNP based rhAmpSeq was used for the fine mapping. 

2.2.4.1 Simple Sequence Repeats based genetic map 

An integrated genetic map was produced using the JoinMap 4.1 tool (Van Ooijen, 2006), which 

also produced independent maternal and paternal genetic maps. The allele combinations of the 

relevant F1 individuals identified through the analysis with GeneMapper® 5.0 were coded in 

accordance with the five potential segregation patterns (Table 2) and were submitted in this format 

to the JoinMap 4.1 tool. 
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Table 2 JoinMap program’s recommended possible segregation patterns and F1 genotypes in a full-sib family of an 

outbreeding species. 

Segregation 

pattern 

Description Possible F1 

genotypes 

<abxcd> With four alleles, the locus is heterozygous in both parents ac, ad, bc, bd 

<efxeg> With three alleles, the locus is heterozygous in both parents ee, ef, eg, fg 

<nnxnp> 
Maternal locus is homozygous with paternal heterozygous 

locus (Paternally segregating marker) 
nn, np 

<lmxll> 
Paternal locus is homozygous with maternal heterozygous 

locus (Maternally segregating marker) 
lm, ll 

<hkxhk> 
With two alleles, the locus is heterozygous in both parents 

(bi-parentally segregating) 
nn, np 

 

The maps were constructed using the "Double Pseudo-Testcross" Strategy (Grattapaglia & 

Sederoff 1994). Based on the "Grouping Tree", the markers were combined into coupling groups. 

The program's default settings were utilized with the "Maximum Likelihood Mapping" (ML-

mapping) approach. The Chi-square test validation was used to determine the markers' segregation 

in the F1 individuals. The Integrated Genetic Map computation excluded markers with more than 

40 % deviation. The grouping of markers into the linkage groups was performed using the 

“independence LOD score” with minimum LOD value of eight (according to Adam Blondon et al. 

(2004)). The number of markers (M), the maximum, flows into the formula E(G) = M(M-1)X/K 

Distance between two markers (X) and the number of locus pairs above the LOD significance limit 

(K). 

2.2.4.2 RNase H2-dependent amplicon sequencing marker based genetic map 

The raw rhAmpSeq sequencing data for the mapping family Gf.2018-063 was initially sliced (keep 

minor allele frequency > 0.05) using the script ‘slice.py’ offered by the service provided (Zou et 

al. 2020). Perl program-based script ‘to_lep_map.pl’ was used to convert the raw ‘hap genotype’ 

containing four most frequent haplotype alleles for each marker into a Variant Calling Format file 

(.vcf), where each haplotype allele of a marker was converted to a pseudo A, T, G, or C allele. As 

quality control (QC) analyses, multidimensional scaling (MDS) and Mendelian error detection 
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were carried out using TASSEL 5.0 software to identify self-fertilization, contamination, or 

mislabeling of the genotypes. The genetic map creation and QTL analysis did not include the QC 

tests failed samples.  

Lep-MAP3 v.0.2 (LM3; Rastas, 2017) was used to construct the genetic map. The following LM3 

modules were used in creating the genetic maps: (1) ParentCall2 - used to call parental genotypes; 

(2) Filtering2 - for filtering (dataTolerance = 1.00E-6) the distorted / monomorphic markers based 

on a χ2 test (chi-squared to determine if a significant deviation of the allele ratio from the expected 

mendelian ratio has occurred, based on the above tolerance threshold); (3) SeparateChromosomes2 

module - used to split the markers into 19 linkage groups (LG); (4) OrderMarkers2module - used 

to order the markers within each LGs (iterations/group = 20), and computing parental and sex 

averaged genetic distances. Marker collinearity was estimated using the physical position of the 

markers based on the reference genome “PN40024” (version12X.v2) (Zou et al. 2020) and their 

genetic positions in the genetic map, in order to check structural variation and genome 

organization. The ‘map2genotypes.awk’ script was used to transform the phased output data from 

the OrderMarkers2 step into phased genotype data followed by converting the data into 1 1 = AC 

= 1, 1 2 = AD = 2, 2 1 = BC = 3 and BD = 2 2 = 4 for QTL analysis. QTL analysis was performed 

using package ‘R/qtl’ (R version 3.6.3; Broman et al., 2003). 

2.2.5 QTL analysis 

2.2.5.1 Simple Sequence Repeats  

MapQTL 6 software was implemented in the detection of QTL. The analysis included Kruskal-

Wallis test, an interval mapping and a multiple QTL mapping. An automated cofactor selection 

(ACS) with a p-value of less than 0.005 was carried out before the MQM mapping. Chromosome-

specific significance threshold (p = 0.05) of the LOD value was determined using a permutation 

test (1000 repetitions). 

2.2.5.2 RNase H2-dependent amplicon sequencing markers  

R software, version 3.4.5, and the ‘R/qtl2’ package (Broman et al. 2003) were used for all analyses 

(R Core Team 2007). Using ‘calc.genoprob’ with step = 0 (probabilities calculated at the marker 

sites), the genotype probabilities were estimated under the 1.0e-4 genotyping error rate 

assumption. To find the significant LOD thresholds, 1,000 permutation tests at alphas of 0.1 and 
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0.05 were carried out using the one-dimensional ‘scanone’ function and expanded Haley-Knott 

(HK) (Feenstra et al. 2006) method to confirm the relevance and to detect the QTLs. The "AID" 

package's boxcoxnc function was used to power transform the phenotypic data of all the years that 

were identified to be non-linear or skewed. In addition, the confidence interval test was determined 

as Bayesian credible intervals ‘lod integer’, 1.5 - LOD support intervals for QTLs were calculated. 

The overall phenotypic variation described by the QTL was determined using the ‘Fitqtl’ tool, 

which was also used to test for qtl-qtl interactions. 

2.2.6 Microscopy: Aniline blue staining 

In order to monitor P. viticola intracellular mycelial development within the leaf discs, three 

biological replicates of each genotype leaf discs were artificially infected using spore suspension. 

Leaf discs were collected at different time points 1, 3, and 5 days post inoculation (dpi), and were 

incubated for 3-6 h in 1N KOH solution at 65 °C. The leaf discs were rinsed thrice in deionized 

H₂O and placed upside down (adaxial surface facing the glass slide) on a glass slide. The leaf discs 

were treated with 50 μl of aniline blue solution (0.05 % aniline blue, 0.067 mol-1 K2HPO4, pH 9). 

After 10 min of bench incubation, the aniline blue solution was carefully rinsed using deionized 

H₂O and the excessive remaining solution was removed using a paper towel until streaks were no 

longer visible. The samples were documented and analysed using Zeiss axio zoom V16 

fluorescence microscopy (GFP filter at λ=470 nm). 

2.2.7 Growth and sporulation  

To observe the P. viticola growth and development on five days post inoculation, two susceptible 

genotypes ‘Morio Muskat’ and ‘Müller Thurgau’ and three P. viticola resistance carrying 

genotypes, COxGT2 (Rpv32), V. amurensis (Rpv8), ‘Kunbarat’ (Rpv12) and V. coignetiae were 

utilized in the experiment. Two leaves per genotypes were harvested (4th and 5th from the apical 

node) and six biological replicate leaf discs (three discs each leaf) were produced representing 

each genotype. The leaf disc assay was performed using section 2.2.1 of methods. Post five days 

inoculation, leaf disc images were captured using Zeiss Axio zoom stereo microscope V16 

followed by washing each leaf disc in 1.5 ml Eppendorf tubes. If required a needle was used to 

remove the rest pathogen on the leaf discs and washing was repeated. The tubes were vortexed and 

the sporangia were observed and counted using the hemocytometer. The average of six leaf discs 

https://pubchem.ncbi.nlm.nih.gov/#_blank
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were utilized in the statistical analysis. Multiple pairwise comparison tests were run to compare 

the difference between the genotypes.  

2.2.8 Artificial Intelligence-based phenotyping  

2.2.8.1 SCNN: Training and performance evaluation 

According to Zendler et al., 2021, for the training of the neural network-based classifier, five leaf 

discs representing reversed five-class OIV 452-1 descriptor were selected (Figure 9) belonging to 

the F1 population Gf.2018-063. The single leaf disc images were sliced into 506 equal segments 

and were manually classified into respective classes as background, leaf and sporangiophores 

(Figure 11) using a python-based script ‘image-sorter2’. The SCNN model was trained using sliced 

images as the labelled input images.  

 

 

 

 

 

 

 

 

 

 

 

For training and validation, a Python script was used to randomly select input image slices from 

the corresponding classes. The CNN1 (Figure 12) was trained to distinguish between ‘background’ 

and ‘leaf’ with 2919 images and validated with 947 images per class. Whereas, the CNN2 (Figure 

12) was trained to distinguish between infected and non-infected. In total, 968 images per class 

were used for training and 437 images per class were used for validation in the final dataset. All 

SCNN trainings were conducted on a desktop computer with a 24-thread CPU, 32 GB of RAM on 

an Ubuntu 20.04 operating system. Three image convolutions and a fully linked dense layer with 

512 nodes were utilized to create the CNN1 model. Stochastic gradient descent (SGD) with 

‘Nesterov momentum’, with 0.1 learning rate and 0.4 dropout were chosen as the optimizer. CNN2 

Figure 11 Leaf disc image and respective input image classes (1: water agar background, 2: leaf and 3: infected leaf 

with sporangiophores) obtained by slicing (Zendler et al., 2021). 
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was structured slightly different, ‘Nadam’ optimizer with a learning rate of 0.0001 and a dropout 

of 0.5 were chosen, with two dense layers of ‘512’ and ‘1024’ nodes, respectively, and an 

additional extra convolution layer. Each convolutional layer compromises of convolution 

(Cov2D), activation (ReLU = rectified linear unit activation function) and pooling 

(MaxPooling2D). ReLU activation is also present in the dense layers, which are completely linked. 

The Sigmoid activation function necessary for the binary output of the CNNs is present in the last 

‘Dense 1’ layer.  

 

 

2.2.9 Statistics 

All the statistical tests conducted in this work were run using the statistical program ‘R’ software, 

v. 3.4.5 (R Core Team, 2020). 

  

Figure 12 Block diagram of CNN1 (back vs. leaf) and CNN2 (infected vs. non-infected) including the input layer 

(convolution), hidden layer (convolution+ReLU and pooling) and binary output layer (Dense) (Zendler et al., 2021). 
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3 Results 

3.1 SCNN-based downy mildew quantification 

All the results associated to SCNN on the grapevine downy mildew quantification system are 

published as second author in Zendler et al., 2021 (https://doi.org/10.3390/agronomy11091768). 

3.1.1 SCNN: Training results 

Suitable CNN models were chosen, trained and validated to calculate the overall validation 

accuracy. The model training and validation accuracy results of CNN1 and CNN2 are shown in 

the Figure 13. The CNN1 (background vs. leaf disc) achieved an overall validation accuracy of 

98 % with a minimum validation loss of 6 %. The CNN2 (infected vs. non-infected leaf disc) 

achieved an overall accuracy of 95 % with a slightly higher validation loss of 15 %. The 

discrepancies between the validation loss of CNN1 and CNN2, are due to the feature complexities 

of the image slices. Since it can be seen, the classification of background vs. leaf disc (CNN1) is 

much easier compared to infected vs. non-infected leaf discs (CNN2). As indicated by the 

overlapping of the training and validation curves, both models are accurate in predicting the classes 

in the leaf disc classification pipeline. 

https://doi.org/10.3390/agronomy11091768
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3.1.2 Experts generated ground truth data 

A leaf disc set compromising of 15 leaf disc images from the cross of ‘Morio Muskat’ x 

COxGT2 and a second population of ‘Cabernet Dorsa’ x Couderc 13 were selected and 

manually classified into respective OIV classes (3 images/class). This set of selected leaf disc 

images was run through the CNNs and leaf disc slices were independently evaluated by three 

experts. As shown visually in the RGB images (Figure 14), there is a substantial degree of 

similarity between the three expert manual ratings and the CNN results. In addition, the 

expert’s data significantly resemble and are in accordance with the CNN-classified leaf disc 

images. 

The CNN1 shows consistently efficient results in classifying the background and the leaf disc 

for all the images in both the cross populations. However, very slight discrepancies between 

the slices were observed, which often have no impact on the final results. In addition, some 

minor differences were also observed between the three expert’s results indicating subjectivity. 

The images from the population ‘Cabernet Dorsa’ x Couderc 13 utilized for model validation 

Figure 13 CNN model training results. (A) CNN1 (background vs. leaf disc), (B) CNN2 (infected vs. non-infected 

leaf disc). Val_accuracy: Validation accuracy; accuracy: training accuracy; val_loss: validation loss; loss; training loss 

plotted for 30 epochs (Zendler et al., 2021). 

A 

B 



40 
 

exhibited a high number of discrepancies from the population used for model development 

‘Morio Muskat’ x COxGT2, primarily as a result of a change in image quality specification 

and possibly due to a dissimilar genetic background. There is a chance that a neighboring leaf 

disc cross the grid when they are arranged on the agar plate. For instance, a second leaf disc 

that is only partially visible in the image class7_3 has been recognized, and results of this leaf 

disc are added too the final findings, thus it is important to take care of this. When comparing 

the ‘leaf with sporangiophores’ image slices to the RGB images and the ground truth data, it 

is clear that they are consistently predicted in the appropriate places of the leaf disc (Figure 14). 

However, it appears that not all image slices with sporangiophores are detected by the second 

CNN. The leaf disc images from the ‘Cabernet Dorsa’ x Couderc 13 cross, which were not 

utilized for neural network training, appear to have this problem more noticeably. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 14 Randomly selected original pictures of three leaf disc belonging to each of the five OIV classes. The results 

of two different segregating populations are shown. (A) ‘Cabernet Dorsa’ x Couderc 13 and (B) ‘Morio Muskat’ x 

COxGT2. The ground truth data generated by three experts and the results of the CNN classification of the image 

slices. (Black = background (1), dark blue = sporangiophores (2), light blue = no sporangiophores (3) (Zendler et al., 

2021). 
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3.1.3 Overall performance evaluation 

The validation of the leaf disc image set was evaluated using the OIV scale (Figure 9) and the 

SCNN pipeline. The percentage of true positives was calculated for each individual image 

compromising 506 sub-images (slices) as shown in Figure 15A. For the 15 ‘Morio Muskat’ x 

COxGT2 leaf disc images, the median percentage of true positive classifications ranged between 

96-97 % and the overall percentage of true positives ranged from an average between 92–100 %. 

Whereas, in the ‘Cabernet Dorsa’ × Couderc 13 leaf disc images, the median percentage of true 

positive classifications ranged between 92 – 94 % and the overall percentage of true positives 

ranged from an average between 89 – 99 % (Figure 15A). To evaluate the performance of the 

SCNN, the inverse OIV452-1 classes scoring and the manual percentage scoring of whole leaf disc 

data by three experts were independently correlated with SCNN-based estimations. The correlation 

coefficient (r) of 0.92 and 0.91 was obtained for the population ‘Morio Muskat’ x COxGT2 and 

‘Cabernet Dorsa’ × Couderc 13 respectively (p < 0.01). The results are indicated in Figure 15B 

and 15C. The correlation coefficient was 0.91 for the ‘Cabernet Dorsa’ x Couderc 13 leaf disc 

pictures, lower in contrary to ‘Morio Muskat’ x COxGT2 leaf disc pictures but still very 

significant. 

The final correlation was run using the OIV452-1 classes assigned leaf disc scores and the SCNN-

based evaluation in percentage. One linear regression is suggested since all three experts assigned 

the same classifications to the various leaf disc pictures. The cross ‘Morio Muskat’ x COxGT2 

and ‘Cabernet Dorsa’ x Couderc 13 yielded a correlation coefficient of 0.96 and 0.92 respectively 

(p < 0.001). Thus, according to the results for true positives and the two distinct correlations, the 

output of the CNN classification appears to reflect the values evaluated by individual experts 

independently. 
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Figure 15 (A) Ground truth vs. SCNN results; Comparison between the SCNNs true positive classifications and three 

experts' independent manual classification. (B) Manual percentage vs. SCNN; Pearson’s correlation (R) results 

between the manual scoring [%] of experts vs. CNN output [%] (p < 0.05) including the confidence intervals for each 

linear regression. (C) OIV classes vs. SCNN results; Pearson’s correlation (R) results between OIV scale based 

evaluation of the leaf discs vs. the SCNN results. Populations utilized for CNN training and validation are 'Morio 

Muskat' x COxGT2 and 'Cabernet Dorsa' x Couderc 13 respectively (Zendler et al., 2021). 

3.1.3.1 Classification pipeline: SCNN and ResNet  

A leaf disc picture is first virtually divided into 506 parts, which were categorized as either leaf 

disc or water agar (background) by CNN1. CNN2 further classifies leaf disc pictures into ‘leaf 

discs with sporangiophores’ and ‘leaf discs without sporangiophores’. The pipeline iterates over 

each image in a given folder to classify each image and then runs an R script to plot the recognized 

slices of sporangiophores on the original RGB image (Figure 16). A similar workflow of the 

pipeline was followed in the case of the ResNet model (Figure 17). A plot showing the proportion 

of leaf disc area covered by sporangiophores and an excel file of all the values are generated is 

presented in Figure 16. As a measure of control, each image of categorized sporangiophores is 

kept in a separate folder for manual review. One can access the SCNN pipeline and thorough 

installation instructions at www.github.com/Daniel-Ze/Leaf-disc-scoring.  

file:///E:/malagol/final_thesis_/www.github.com/Daniel-Ze/Leaf-disc-scoring
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Figure 16 Example of the leaf disc scoring pipeline's output. (A) Three original RGB images recognized "with 

sporangiophores" leaf disc slices. (B) Summary of the [%] leaf disc areas determined for the collection of photos under 

analysis. X-axis indicates: the population evaluated; Y-axis: [%] of sporangiophores on the leaf disc (C) A tab delimited 

table produced by the leaf disc scoring process (Exp name_experiment name; Sample: Sample ID utilized in the analysis; 

Number: serial number; Leaf disc: slices identified as being from leaves; Agar: slices identified as being from 

agar/background; Spo: slices identified as being infected with sporangiophores; no_spo: slices without spores; perc: 

indicates percentage) (Zendler et al., 2021). 

Figure 17 Leaf hair classification pipeline. Slice map - The original RGB images recognized "with hair" leaf disc 

slices (red color). A CSV output delimited table that produced by the leaf disc scoring process (img name: image 

name; back: slices identified as back; hair: slices identified as hair; nohair: slices identified as no hair; perc hair: 

hair percentage; perc_nohair: no hair percentage) (Malagol et al., 2023 in preparation). 
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3.2 Summary of phenotypic data 

3.2.1 Downy mildew resistance and morphological trait leaf hair (trichrome) density 

The Gf.2018-063 bi-parental population with 496 individuals was phenotyped for resistance to 

downy mildew by performing independent laboratory-controlled LDAs (leaf disc assay) in 3 years. 

The leaf discs were manually evaluated according to the reversed scale of the well-established 

OIV 452-1 descriptor (Figure 9). The phenotypic data distribution and the trait segregation for the 

years 2020 (three experiments), 2021 (four experiments) and 2022 (single experiment) are shown 

as bar plots (Figure 18). Based on the number of sporangia the resistant donor (COxGT2) was 

assigned the OIV score 3 and the susceptible parent (‘Morio Muskat’) was assigned the 

OIV score 9. As can be seen, in all the years the data roughly reflects a bimodal distribution and 

indicates the difference between the susceptible and the resistance genotypes. At this point, the 

rejection of a normal distribution was expected, since the sample shows a splitting of the 

individuals concerning the resistance characteristic. However, in the phenotypic data distribution 

for the years 2020 and 2022, the number of individuals varies being resistant or susceptible from 

individual experiment to experiment, and year to year. Additionally, in the year 2020, the first two 

leaf disc experiments showed 38 % of individuals belonging to the class score 1, i. e. resistant in 

comparison to the third experiment and similar to the results in the year 2022 due to the indirect 

adverse effect of spraying (powdery mildew control).  

The population Gf.2018-063 showed quantitative segregation of the trait leaf hair density, known 

to be involved in physical resistance to downy mildew due to its hydrophobic characteristic. In 

general, it can be seen in the Figure 3 (refer to section Introduction), that the resistant donor 

COxGT2 shows hydrophobic characteristics of lower leaf side hairs in comparison to the 

susceptible non-hairy parent ‘Morio Muskat’. In the years 2019, 2020, and 2022, the individual 

leaf discs from single evaluations were manually rated for morphological trait leaf hair using the 

OIV-086 scale represented below as bar plots (Figure 19). All the independent evaluations of trait 

leaf hair density appeared to be consistent throughtout the years. In general, about 1/4th of the 

population showed low leaf hair density in all the years. All the independent experiment’s non-

linear data were rank/box cox transformed and tested for normality using Shapiro-Wilk test before 

the QTL analysis. 
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A 

C 

B 

Figure 18 Phenotypic data distribution of the mapping population Gf.2018-063 for the year 2020 (A), 2021 (B) and 

2022 (C) associated with resistance to P. viticola scored 5 days post inoculation (dpi). X-axis represent the reversed 

OIV 456-1 scores from 1 = highly resistant to 9 = highly susceptible. Y-axis represent the number of individuals per 

score. LDA_01, LDA_02, LDA_03 and LDA_04 indicate the number of independent leaf disc assay/ experiments 

performed per year (season).  
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3.3 Genetic map 

3.3.1 Initial map: SSR marker 

As per the objective, SSR marker-based initial framework map was generated for the bi-parental 

population Gf.2018-063 (384 individuals). In total, 297 SSR markers were selected based on thier 

available physical position (reference genome PN40024) and were tested on the entire population, 

thus the coverage was reached with reduced efforts. In total 109 markers were mapped and used 

to calculate the final integrated map. The map comprises of 19 linkage groups (LGs) with 

homogeneously distributed makers on an average marker density of 5.05 per chromosome and 

covering total map length of 1899 cM (Figure 20). In addition, parental maps for maternal parent 

'Morio Muskat’ and paternal COxGT2 were created. In comparison to the integrated map, a smaller 

number of markers were used for the individual parental maps. In general, it can be observed that 

the LGs (2, 7, and 12) with fewer number of markers showed larger gaps between the markers. 

Table 3 provides an overview of the mapping in terms of total number of markers per chromosome, 

marker distance and length of the LGs. 

Figure 19 Phenotypic data distribution of the mapping population Gf.2018-063 representing evaluation of the trait 

leaf hair of three single experiments in the year 2020, 2021 and 2022. X-axis representing the OIV-086 score, Where 

class 1: None/Very low hair; class 3: Low; class 5: Medium; class 7: High; class 9: Very high (lanate / dense cover 

of hair) and Y-axis representing the number of individuals per score. 
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3.3.2 Fine mapping: rhAmpSeq marker 

In total, 2057 rhAmpSeq core genome markers were tested on the entire population (Gf.2018-063) 

of 496 individuals. The quality control failed individuals (41) and markers were discarded in the 

final genetic map construction, leading to 455 individuals and only 32 % (639) of the markers were 

mapped and utilized in the final map creation. To verify the genome organization and overall 

genome coverage of the mapped rhAmpSeq markers, the genetic positions calculated for each 

marker of the LGs were tested for their collinearity. The genetic positions were correlated to the 

physical position from the version 12x.V2 of the PN40024 reference genome. According to the 

results, the marker order and the positions on the genetic maps had a high correlation (r > 0.90) to 

their physical position (Figure 21). Structural variation and some inconsistencies that appear to be 

more frequent in the wild Vitis genotypes than in V. vinifera that are to be responsible for some 

physical gaps (chr. 3, chr. 10, chr. 12 and chr. 17) can be clearly seen in the genome coverage of 

the rhAmpSeq markers as indicated by Zou et al., 2020. All the expected 19 LGs were identified 

covering total map length of 1147.3 cM on an average of 53 loci per LG (Figure 22). The LG 07 

covered with the highest number of markers (49) and LG 12 covered with lowest number of 

markers (12). The linkages groups’ lengths ranged between 46 cM (LG 15) to 70.4 cM (LG 01), 

from lowest to highest, respectively. Table 4 provides the summary of rhAmpSeq based genetic 

map in terms of total number of markers per chromosome, average distance between the markers 

and length of each linkage group.  
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Table 4 Overview of the rhAmpSeq marker-based genetic map including total number of markers, average marker 

distance [cM] and length [cM] of the linkage group (LG) (Σ = Sum and x̅ = Average). 

  

LGs No. of Markers Length of LG [cM] Avg. distance between markers [cM] 

LG 01 49 70.4 1.06 

LG 02 35 53.3 0.79 

LG 03 25 48.2 0.77 

LG 04 36 54.8 1.48 

LG 05 46 57.9 1.09 

LG 06 33 51.1 1.16 

LG 07 54 80.6 1.48 

LG 08 47 60.6 1,37 

LG 09 31 51.3 1.12 

LG 10 22 50 1.21 

LG 11 37 52 1.36 

LG 12 12 66.8 2.38 

LG 13 33 64.5 1.84 

LG 14 23 57.6 1.69 

LG 15 29 46.5 1.40 

LG 16 30 48.4 1.51 

LG 17 22 53.6 1.57 

LG 18 42 73 2.43 

LG 19 33 51.7 1.47 

x̅ 33.63 54.4 1.77 

Σ 639 1147.3  
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Figure 21 Dot plots depicting the collinearity relationship between the genetic [cM] and the physical position [Mb] 

for the population Gf.2018-063 genetic map. X-axis indicates the physical position in mega base from the version 

12x.V2 of the PN40024 reference genome. Y-axis indicates the genetic position in centiMorgan of each marker 

derived from the rhAmpSeq based genetic map of the population Gf.2018-063. (chr: chromosome; blue color refers 

to the parent COxGT2; pink refers to the parent ‘Morio Muskat’). 

COxGT2 

‘Morio Muskat‘ 
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Figure 22 rhAmpSeq marker-based genetic map of the population 'Morio Muskat' x COxGT2. The positions of the 

markers are shown distributed over 19 linkage groups (LG) in [cM]. Black box (red colour) indicates the identified 

resistance locus Rpv32 on LG 14. 
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3.4 QTL analysis 

After the phenotypic data evaluation and a genetic map generation, mapping of downy mildew 

disease resistance was performed. In the year 2020, the QTL analysis was carried out for three 

independent experiments using the SSR-based initial genetic map. No QTLs were detected in the 

year 2020 due to a large gap on the chr. 14. Later, fine mapping of SSR based genetic map in the 

year 2021 followed by QTL anaylsis showed a significant QTL on LG 14. Nevertheless, the overall 

density of the SSR marker per LG was too low. In order to increase the overall marker density, a 

rhAmpSeq marker based genetic map was created in the year 2021 and henceforth rhAmpSeq-

based genetic map was employed in the QTL analysis of the year 2020, 2021, and 2022. Genetic 

maps based on rhAmpSeq and SSR were kept separate and were not combined due to lack of 

reliable marker conversion tools. 

3.4.1 SSR marker data 

Interval mapping (IM) and Multiple QTL Mapping (MQM) type was utilized to locate the regions 

of the genetic map linked to the expression of downy mildew resistance. Based on the integrated 

map of the population Gf.2018-063, a highly significant and strong QTL was identified on LG 14 

in one of the downy mildew phenotypic evaluations conducted in the year 2020 (Table 5). In 

addition to IM (green, whiskers box plot), a multiple-QTL mapping (MQM) (red, whiskers box 

plot) indicating the LOD ± 1 (whiskers) confidence intervals was performed for the population 

using a co-factor selection (Figure 23). Subsequently, no additional QTLs were identified by 

setting the LODmax marker as cofactor in MQM analysis and the area of QTL could not be 

narrowed down. However, the LODmax marker ‘VMC1E12’ remained as the potential marker 

associated to the trait (Figure 23). In both the mapping types conducted, marker ‘VMC1E12’ 

determined on LG 14 reached a maximum LOD value of around 8.08, explaining the percentage 

phenotypic trait variance of up to 10.5 %. The confidence intervals determined for this QTL 

(LODmax-1) ranged between 0.2 cM to 5.4 cM (Figure 23). 
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Table 5 Overview of the QTL analysis based on the phenotypic data of LDA for the year 2020 of three independent experiments. Linkage group (LG); LOD 

maximum marker; position in cM; LOD maximum value determined by Interval Mapping (IM) and MQM (Multiple QTL Mapping); VMC1E12 selected as co-

factor for the MQM analysis; PEV: explained phenotypic variance for the trait downy mildew resistance for the LODmax marker “VMC1E12” in percentage. * 

Physical position of the SSRs in the reference genome PN40024 12X.v2 in Mega base pairs [Mb]; Confidence intervals calculated as Bayesian credible intervals 

(CI) with a probability of coverage of 0.95. Determined significance of genome wide threshold of LOD values is 3.2 for 1000 permutations (at α = 0.05). “--”; No 

QTL/data found for the LDA experiment 1 and 2, respectively. 

 

Mapping 

type 

No. of Expt 

(year 2020) 

LG LODmax 

marker 

LODmax 

value 

 

PEV 

[%] 

Genetic 

Position 

[cM] 

Physical 

Position* 

[Mb] 

CI (cM) 

[LOD
max

 − 1] 

IM 

1 

14 

-- -- -- -- -- -- 

2 -- -- -- -- -- -- 

3 VMC1E12 8.08 10.5 3.8 7.1 0.2 - 5.4 

MQM 

1 

14 

-- -- -- -- -- -- 

2 -- -- -- -- -- -- 

3 VMC1E12 8.07 10.5 3.0 7.1 0.2 - 5.4 
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3.4.2 rhAmpSeq marker data 

The aim was to create an initial genetic map using SSR markers and perform QTL analysis. 

However, the development and release of highly transferable rhAmpSeq markers (Zou et al. 2020) 

gave an opportunity to establish a high marker density genetic map utilizing the most recent 

haplotype SNP markers and conduct QTL analysis. 

3.4.2.1 QTL analysis: downy mildew resistance 

The rhAmpSeq genetic map with the phenotypic data of all the years showed a consistent, single 

and strong QTL in all the independent LDA evaluations over three years (2020, 2021, and 2022). 

The highly significant downy mildew resistance locus detected on the upper arm of chr. 14 was 

Figure 23 QTL for (LOD) P. viticola resistance identified on LG 14 of the integrated map; Marker distances in [cM]; 

IM (green, whiskers box plot) and MQM (red, whiskers box plot) indicating the LOD ± 1 (whiskers) confidence 

intervals. The LG specific significance level of 2.4 is indicated by the dotted line. 
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designated as ‘Rpv32’. In the year 2020, the QTL was identified in two experiments with LOD 

value of 11.6 and 4.6, explaining the total phenotypic variance of 11.5 % and 4.7 % respectively, 

spanning the region between 3.2 cM to 4.5 cM. In the year 2021, all the experiments yielded the 

same QTL with improved LOD value ranging from 7.82 – 31.6, and with explained variance 

between 7.8 % and 28.15 %. LODmax marker ‘chr14_6974992’ at 4.5 cM was found to be 

significantly associated to the trait with the left and right flanking markers ‘chr14_88562’ and 

‘chr14_19715337’, respectively (Figure 24A). The QTL was identified consistently in all the 

experiments of 2020 and 2021 (Figure 24B and C). Similarly, the QTL was also detected in the 

year 2022 (Figure 24D), conclusively proving the existence of natural genetic resistance to downy 

mildew in COxGT2 (Table 6). The position of the QTL shifted slightly in the year 2022, however, 

covering a wider interval with the same flanking markers. The allele responsible for the trait was 

inherited from the V. coignetiae, which has not been examined and exploited in breeding. The 

QTLs of all the three years are always located between the same left flanking markers chr14_88562 

(3.4 cM) and chr14_3303300 (3.6 cM), and right flanking markers chr14_8308158 (9.3 cM) and 

chr14_19103240 (9.6 cM), respectively (refer to Table 6). 

3.4.2.2 QTL analysis: Leaf hair 

Segregation for leaf hair density was observed in the population Gf.2018-063, previously used to 

identify a QTL for downy mildew resistance on chr. 14. A highly significant and stable QTL 

associated to the morphological trait leaf hair was identified on chr. 5 located between the interval 

4.3 to 8.7 cM. The explained phenotypic trait variance ranged between 24.23 % and 25.36 % with 

a highest LOD value of 28.33 (Table 6 and Figure 25C). The QTL associated to the trait leaf hair 

density identified in all the years (2020, 2021 and 2022) and the LODmax marker with flanking 

markers are shown in Figure 25B. In all years, the interval was consistently flanked by 

chr5_196931 and chr5_2429823 markers. The allele responsible for the trait leaf hair density was 

contributed by the maternal parent ‘Morio Muskat’.  
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chr14_994202 0.0 
chr14_2055250 3.2 
chr14_88562 3.4 
chr14_3303300 3.6 
chr14_6974992 4.5 
chr14_8308158 9.3 
chr14_19103240 9.6 
chr14_18868775 10.7 
chr14_20733951 11.3 
chr14_19715337 13.4 
chr14_23135090 16.1 
chr14_25499021 17.2 
chr14_26404940 20.8 

chr14_27729833 29.4 
chr14_27425134 33.1 
chr14_27607541 34.2 
chr14_27856994 37.1 
chr14_27926007 41.0 
chr14_29138298 41.9 

chr14_29234849 47.7 
chr14_29335601 49.5 
chr14_29446606 52.0 

chr14_30126656 57.6 

Chr 14 

A B 

C D 

Figure 24 QTL analysis for downy mildew resistance using rhAmpSeq marker-based genetic map. (A) The physical 

position of peak marker (bold red) and their LOD interval (marked purple) on the upper part of chr. 14. Logarithms of 

the odds (LOD) score for genetic markers distributed across the chr. 14 for the individual experiments (B) year 2020, 

(C) 2021 and (D) 2022. The dotted line (black) indicates the 95 % confidence threshold. ‘LDA_expt1' indicates the 

number of the independent experiment conducted in ascending order. Bayesian (black colored interval) and LOD 

integer (purple colored interval) based interval are shown separately. 



61 
 

Table 6 Summary of the QTL analysis of the F1 population ‘Morio Muskat' x COxGT2 (Gf.2018-063) based on the downy mildew resistance phenotypic data of 

LDA and leaf hair density performed in three years (2020, 2021 and 2022). Linkage group (LG); LOD maximum marker; Peak marker position in [cM]; LODmax: 

LOD maximum value; PEV: explained phenotypic variance for the trait downy mildew resistance and leaf hair density in percentage. * Physical position of the 

rhAmpSeq marker in Mega base pairs [Mb]; Confidence intervals calculated as Bayesian credible intervals (CI) with a probability of coverage of 0.95. Determined 

significance of genome wide threshold of LOD values is 4.2 for 1000 permutations (at α = 0.05). “--”; No QTL/data found for the LDA experiment 3 for the year 

2020, respectively. Common LODmax marker/significant marker shown in red colour; Left and right flanking markers for each LODmax marker are also indicated. 

In the bottom section, the summary of the QTL analysis of the population “Gf.2018-063” is shown based on the single experiment of leaf hair phenotypic data 

collected in three years (2020, 2021 and 2022), using multiple imputation and Haley–Knott (HK) method of scanone Rqtl with 95 % Bayesian interval. 

Trait: Downy mildew resistance  

Year LG LODmax 

marker 

Peak marker 

position [cM] 

LOD 

value 

PVE [%] Left flanking 

marker 

Right flanking marker 

2020 14 chr14_6974992 4.5 11.6 11.56 chr14_3303300 chr14_18868775 

chr14_88562 3.4 4.61 4.77 chr14_994202 chr14_23135090 

-- -- -- -- -- -- 

2021 chr14_6974992 4.5 25.42 23.32 chr14_88562 chr14_19103240 

chr14_6974992 4.5 31.6 28.16 chr14_3303300 chr14_8308158 

chr14_88562 3.4 7.82 7.83 chr14_994202 chr14_19715337 

chr14_19103240 9.57 16.9 16.37 chr14_88562 chr14_19715337 

2022 chr14_19715337 13.4 7.98 8.13 chr14_3303300 chr_25499021 

Trait: Leaf hair  

2020 5 chr5_1449735 7.63 28.33 25.36 chr5_196931 chr5_2429823 

2021 chr5_1449735 7.63 26.92 24.26 chr5_1120092 chr5_2429823 

2022 chr5_1449735 7.63 26.88 24.23 chr_196931 chr5_2429823 

 

.
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Figure 25 QTL analysis for the morphological trait leaf hair. (A) Logarithm of the odds (LOD) score for genetic 

markers distributed across the 19 chromosomes for the year 2020 (blue), 2021 (red) and 2022 (green). (B) The physical 

position of peak marker (bold red) and their LOD interval (marked purple) on the upper part of chr. 5. (C) QTL analysis 

of the experiment conducted in 2020 showing the highest LOD value. X-axis indicates the map position and Y-axis 

indicates the LOD score [cM]. The dotted line (black) indicates the 95 % confidence threshold. Bayesian (purple 

colored interval) and LOD integer (green colored interval) based interval are shown separately. 
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3.4.3 Marker analysis to differentiate Rpv8, Rpv12 and Rpv32 locus 

The new resistance locus Rpv32 was identified on the upper part of chr. 14 in the vicinity of marker 

VMC1E12 (7136678 bp) close to Rpv8 and Rpv12. However, Rpv32 origin is from wild 

V. coignetiae, whereas Rpv8 and Rpv12 were identified in V. amurensis genetic background. 

Therefore, Rpv8 and Rpv12 locus-associated published markers were tested on Rpv8, Rpv12 and 

Rpv32 resistance-carrying genotypes. Table 7 clearly shows significant differences in the marker 

data of Rpv8 (Blasi et al., 2011) and Rpv32 for the marker Chr14V015. Similarly, significant 

differences between all the marker data of Rpv12 (Venuti et al., 2013) and Rpv32 showed no 

genetic relation of this chromosomal region, indicating a new resistance locus. However, no 

differences were observed between Rpv12 and Rpv8 except for a 2 bp difference of the allele sizes 

for marker UDV-350 at 8.963.620 bp. 

 

Table 7 Comparative analysis with Rpv8 (Blasi et al., 2011), Rpv12 (Venuti et al., 2012), and Rpv32 (this work) 

allel size of associated SSR markers on genotypes carrying Rpv8, Rpv12 and Rpv32 resistance. Physical positions of 

markers in base pairs (bp). 

Publication Marker Physical 

position 

12x.V0 [bp] 

V. amurensis 

(Rpv8) 

‘Kunbarat’ 

(Rpv12) 

COxGT2 

(Rpv32) 

Blasi et al., Chr14V015 6.641.772 212 212 207 

Venuti et al. Sc81_7.4 8.426.630 275 275 322 

Venuti et al. Sc81_8.2 8.741.251 -- 265 -- 

Venuti et al. UDV-350 8.963.620 308 310 320 

Venuti et al. UDV-343 9.011.802 160 160 172 

Venuti et al. UDV-345 9.057.903 220 220 216 

Venuti et al. UDV-340 9.145.458 178 178 176 

Venuti et al. UDV-360 9.910.299 208 208 184 
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3.4.4 Correlation between downy mildew resistance and leaf hair density 

In principle, the leaf hair density has a negative effect on P. viticola infection reduction due to its 

hydrophobic properties. Hence, correlation between the individual trait data sets was carried out 

before performing the correlation analysis between downy mildew resistance and leaf hair density. 

The phenotypic leaf hair correlation between the years 2020, 2021, and 2022 ranged between 

r 0.78 to 0.92. Whereas, the correlation between the downy mildew resistance ranged between 

r = 0.72 to 0.86. The influence of leaf hair density on genetic resistance was determined by 

correlating three years of manually evaluated leaf hair phenotypic data (Figure 18) with downy 

mildew resistance phenotypic data for each year (Figure 19). The results show a weak negative 

correlation coefficient (r) ranging between - 0.08 to - 0.12 (Annex I, Table 1). However, no 

significant correlation was identified in all the three years, except for the fact that leaf hair density 

and downy mildew resistance were significantly inversely linked, leading to no association or 

influence of leaf hair on downy mildew disease severity. In addition, the correlation between 

highly significant LOD-max marker for the trait leaf hair ‘chr_5_1449735’ and downy mildew 

resistance marker ‘chr_14_6974992’ yielded a non-significant correlation. 

3.5 Aniline blue staining 

All the leaf discs from susceptible ‘Morio Muskat’ and resistant COxGT2 were inoculated with 

P. viticola. To observe the intracellular development of the mycelium network, aniline blue stained 

leaf discs were prepared and evaluated at three different days post inoculation (dpi), day_1 (24 h), 

day_3 (72 h) and day_5 (120 h). Out of six independent staining experiments conducted, a single 

representative picture for each genotype is presented in Figure 26. In terms of the development of 

hyphae and germ tubes, there were no discernible changes between the susceptible and resistant 

genotypes on day one (Figure 26A and 26D). However, on day_3, a substantial amount of 

differences is observed between the susceptible and resistant genotypes. A moderate amount of 

dense network can be observed in the susceptible genotype in contrast to the resistant genotype 

with limited growth (Figure 26B and 26E). The day_5 results provide a clear picture and 

conclusive differences between both the genotypes (Figure 26C and 26F). In contrast to the 

resistant genotype, which showed limited fungal development, the susceptible genotype displayed 

extreme mycelial proliferation that nearly entirely covered the leaf disc. These results indicated 
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that the restriction of the growth and development of the pathogen were initiated in a time frame 

of 24 – 72 h.  

3.6 Comparison of different resistances: Rpv8, Rpv12, and Rpv32 

To evaluate the proliferation of the pathogen P. viticola and to compare the degree of resistance 

conferred by different genotypes, growth and sporulation were observed on day 5 in susceptible 

cultivars i. e. ‘Müller Thurgau’ and ‘Morio Muskat’ (both V. vinifera), and grapevine cultivars 

carrying Rpv8 (V. amurensis), Rpv12 (‘Kunbarat’) and Rpv32 (COxGT2 and V. coignetiae). Since 

the resistance locus was located in close vicinity to the Rpv8 and Rpv12 locus, both originated 

from V. amurensis, it was decided to include them in the experimental setup. The production of 

sporangia was manually counted on six leaf discs of each genotype and resistance was evaluated 

by the number of sporangia that formed on 5 dpi. The results of each genotype were statistically 

compared using multiple pairwise comparisons (Kruskal-Wallis and Conover-Iman test). In 

general, no differences were observed between the susceptible genotypes as expected for 

V. vinifera. However, the results demonstrated significant and reliable differences between the 

susceptible (~ 40,000 sporangia/mL) and all the resistant (~ 2,000 - 5,700 sporangia/mL) 

genotypes (Figure 27). In particular, the number of sporangia quantified on the Rpv32 carrier 

COxGT2 was significantly lower than on the susceptible ‘Morio Muskat’. In addition, COxGT2 

showed highly significant differences in sporangia count in contrast to the Rpv12 carrier genotype 

‘Kunbarat’. Furthermore, no major observable differences were found between COxGT2 and the 

Rpv8 carrier V. amurensis.
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Figure 26 Comparison of intracellular Plasmopara viticola development in susceptible ‘Morio Muskat’ and resistant COxGT2 at three different days post 

inoculation (dpi). Day1: A and D; Day3: B and E; Day5: C and F. Arrow marks indicating the obscure growth of small mycelial structure. The best 

representative picture from the three biological replicates and six separate experiments are represented by the images. Scale bars represent 1000 µm. The 

zoomed in version of the images A and D can be seen on the right bottom corner of their respective picture. 
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Figure 27 Plasmopara viticola proliferation in susceptible (‘Müller Thurgau’ and ‘Morio Muskat’) and resistant 

(COxGT2, ‘Kunbarat’, V. amurensis, and V. coignetiae) genotypes evaluated on 5 days post inoculation (dpi). 

Representative pictures are shown above. X-axis: All the genotypes used in the experiment and their individual 

resistance loci are indicated below the image. Y-axis: indicating the average sporangia concentration per ml. Whiskers 

box plot indicating multiple pairwise comparisons using Kruskal -Wallis and Conover-Iman test (p < 0.05). Error bars 

show standard deviation. ns: non-significant. Rpv: Resistance to Plasmopara viticola. 
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4 Discussion 

4.1 New resistance locus in ‘Morio Muskat’ x COxGT2 population 

In unexploited East Asian wild Vitis species V. coignetiae, naturally existing resistance was 

identified in order not only to minimize but also to long-term replacement of fungicides. The 

ultimate goal is to aid the grapevine breeding community and create PIWI 

(ger. pilzwiderstandsfähige Rebsorte (fungus resistant cultivar), Pioneer wine/vine) cultivars that 

are durable in resistance, sustainable and environmentally friendly. The below section provides 

detailed information about the new resistance locus Rpv32. In addition, staining studies conducted 

between the susceptible and the resistant donor to compare the intracellular mycelial growth at 

different time points provides a conclusive picture of the resistance. Furthermore, quantitative 

analysis of P. viticola involving control susceptible and resistance carrying genotypes (Rpv8, 

Rpv12 and Rpv32) speak about the strength of the resistance loci. Moreover, this section gives 

detailed information on the development and validation of two artificial intelligence-based low-

cost, high-throughput and objective quantification systems for grapevine downy mildew and leaf 

hair. 

4.1.1 SCNN: An artificial intelligence based downy mildew quantification system 

A significant effort is made to breed new grapevine varieties resistant to pathogens, causing severe 

yield losses in temperate climates. These initiatives attempted to combine excellent wine quality 

present in the cultivated Vitis vinifera L. sp. sativa with resistance traits observed in 

American/Asian Vitis species (Töpfer & Trapp, 2022). A combined approach, including 

phenotyping and genotyping, is one promising strategy for combating these severe diseases. One 

of the most significant issues with conventional plant breeding is the genotype-to-phenotype gap 

(Houle et al., 2010; Großkinsky et al., 2015). The demand for high-throughput phenotyping 

techniques, however, arises when breeding programs are compelled to expand their capacity (Cid 

et al., 2019; Rist et al., 2018; Underhill et al., 2020; Carvalho et al., 2021; Dunlevy et al., 2022; 

YongJian et al., 2022). Many high-throughput digital phenotyping techniques have been put forth 

recently, all of which promise to ease the current visual phenotyping bottleneck occurring in 

modern plant breeding programs (Divilov et al., 2017; Biermann et al., 2019). Previous studies 

conducted on downy mildew involved phenotypic evaluation utilizing traditional manual scores 
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(Bellin et al., 2009; Schwander et al., 2012; Höschele et al., 2022). Accurate and reliable 

measurement of a quantitative variable is essential to unveil the hidden genetics of quantitative 

research. In favour of this context, phenotyping several individuals by different personnel in 

different years can inevitably introduce subjectivity, affecting the overall results. Furthermore, it 

can be tedious and time-consuming to measure the responses of the many different treatments at 

the appropriate time, which is another major challenge. 

There have been reports of several distinct CNN architectures for plant phenotyping, and these 

have shown ground-breaking performance in image classification (Jiang & Li, 2020). However, 

the type of CNN architecture used determines the amount of time and computational power 

needed. This work aimed to develop a low-cost-effective model for evaluating disease severity on 

grapevine leaf discs with a limited amount of image data and computational resources. CNN1 

demonstrates that detecting leaf disc image slices is a relatively simple task for the neural network. 

Based on the training of CNN1, the accuracy of its validation was 98 %, and the validation loss 

was below 10 %. Due to the sophistication of the distinguishing feature itself (Leaf with 

sporangiospores vs leaf without sporangiophores), CNN2 had a high validation loss. However, 

adjustments in terms of additional layers, the validation loss of 15 % and validation accuracy of 

95 % were achieved (Figure 13). In general, several CNN models are deployed in plant 

phenotyping, proving to be an excellent model with validation accuracy of above 80 % (Lee et al., 

2015; Pound et al., 2017; Sardogan et al., 2018; Ferenitnos et al., 2018; Kattenborn et al., 2019; 

Zhang et al., 2020). 

Before the model is deployed in a real-world application, it is essential to evaluate its performance. 

To test this, 30 leaf disc images were selected, three leaf discs for each OIV class. The 30 leaf disc 

images selected compromised of two different genetic backgrounds i. e., 15 images for each 

background. In total, three experts independently classified 15,180 image slices into three 

categories: background, leaf disc with sporangiophores, and leaf disc without sporangiophores 

(Figure 9). Irrespective of the different genetic backgrounds, a promising characteristic of a trained 

SCNN is their transferability. Under ideal circumstances, the SCNNs should have learnt different 

features allowing the classification of new unperceived images. The median ratio of true positives 

for the images from the trained and unrelated genetic backgrounds was approximately 96 % and 

93 %, respectively. These results suggest that there is only a little accuracy loss in the 

transferability. The plausible reason for the decrease in accuracy might be due to poor image 
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quality, such as pixel resolution, saturation, and exposure time. If the network is trained on images 

with very comprehensive information, it can identify and categorize even the smallest feature in 

the images. It's interesting to see that the last two photos of class_1 in Figure 14, ‘Cabernet 

Dorsa’ x Couderc 13, are clearly subjective among the three experts. Additionally, about 6 slices 

of the background for image classes 5 and 7 were incorrectly classified as a leaf. This is plausible, 

but in the context of 506 slices, the error contributed is less than 0.5 %. Moreover, use of agar as 

the background and spore suspension in LDA, it is possible that any accidental droplets of 

suspension will cause the image slices to be misclassified. In order to optimize transferability and 

improve the two SCNNs already existing performance, in addition, we suggest adjusting a diverse 

training set made up of many distinct genetic backgrounds to compensate for the observed 

discrepancy. Finally, the model's architecture does not decide the excellent accuracy but rather the 

quality of the training data (Barbedo, 2016; Litjens et al., 2017). 

A correlation analysis between SCNN-based downy mildew evaluations and manual evaluations 

of the leaf disc [%] on two distinct genetic backgrounds produced a significantly high correlation. 

A slight decrease in the correlation for the unrelated genetic background can be observed in 

comparison to the population used in model training. However, in both cases the correlation 

coefficient value is r > 90 (Figure 15B). Furthermore, the correlation analysis between the SCNN-

based results versus the OIV 452-1 inverse class yielded significantly high correlation coefficient 

values for both populations (Figure 15C). Based on the above model performance results, it is 

evident that the two SCNNs are a suitable objective substitute for the subjective manual scoring 

methods. Moreover, a high number of images can be evaluated within a fraction of a second.  

In summary, the proposed SCNN model showed excellent results for the overall downy mildew 

quantification task. To improve the model accuracy or train the same model for different pathogen 

systems, the model can be improved by switching from a binary classification system to a 

categorical. Furthermore, the model presented in this work can be implemented in different 

magnitudes of application. For instance, grapevine disease, including black rot, rip rot and 

anthracnose, which lack laboratory-based high-throughput phenotyping tools (Modesto et al., 

2022). Additionally to different pathogen, crop-pathogen and any other morphological traits. 

Depending on the computational resource available, semantic labelling of the trait can deliberately 

contribute to improved prediction accuracy. Some of the recent CNN architectures have achieved 

high prediction accuracy based on the trait segmentation and implication of deep neural networks 
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(Xie et al., 2020; Yasrab et al., 2020; Liu et al., 2021; Esgario et al., 2021; Chen et al., 2021; Tugrul 

et al., 2022; Wang et al., 2022). In conclusion, the SCNN is an accurate and efficient tool for the 

automated analysis of leaf disc image data. The subjective and time-consuming manual scoring 

can be eliminated by implementing SCNN-based leaf disc analysis. It will guarantee uniform score 

outcomes in experiments and, importantly, across all the years. In addition, it has the potential to 

serve as a low-cost and valuable tool in a variety of agronomic disciplines, from fundamental 

research to plant breeding. 

4.1.2 Phenotypic evaluation of downy mildew 

Leaf disc assays (LDA) were performed to evaluate the response to P. viticola infection. For 

practical reasons, the degree of infection (1: none, 3: low, 5: medium, 7: high, 9: very high) per 

leaf disk was determined inversely to the guidelines of the OIV-452 descriptor (OIV, 2nd edition 

2001, https://www.oiv.int/). For the ‘Morio Muskat’ x COxGT2 F1-population (n = 496), three to 

four independent laboratory-controlled artificial infection assays were carried out in all the years, 

2020, 2021 and 2022. In the year 2020, skewness (positive/right side) was observed in the 

phenotypic data (Figure 18A) of the first two LDA experiments (LDA_01 and LDA_02). In the 

year 2022, similar skewness was seen due to the results of excessive spraying of sulphur. Sulphur 

was utilized to protect the greenhouse-grown populations from early powdery mildew infections, 

which eventually contributed to the indirect adverse effect on the downy mildew resistance assays. 

Bleyer (2021) published similar observations based on concrete experimentations in 2017 and 

2021. The third LDA (LDA_3) in the year 2020, conducted two weeks after sulphur spraying 

showed negligible effect on the phenotypic data.  

The LDA_1 and LDA_2 assays for the year 2021 were conducted at the beginning of the season 

without application of sulphur. The LDA_3 assay of 2020 and the LDA_3 and LDA_4 of 2021 

were sprayed a week before the assays were conducted, clearly demonstrating the breakdown of 

the test's phenotypic distribution. The population's split based on resistance is a result of the parent 

plants' diverse genetic makeup. A natural bimodal phenotypic data distribution addressing the 

slight split in the resistance and susceptible genotypes was observed (Figure 18A and 18B). This 

splitting of resistance characteristics within a bi-parental cross population has already been 

reported in the phenotypic analysis. According to previous studies, a bimodal distribution of 

phenotypic data indicates the presence of a major single dominant locus (Bellin et al., 2009; 

https://www.oiv.int/en/technical-standards-and-documents/description-of-grape%20varieties/oiv-descriptor-list-for-grape-varieties-and-vitis-species-2nd-edition
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Malcarane et al., 2011). In general, based on the phenotypic data of all individuals with a low 

degree of infection (OIV scores 1 and 3) represent genotypes of the population that have increased 

resistance to P. viticola. In case of susceptible genotypes (OIV score 7 and 9) dense growth of 

sporangiosphores in the infected area could be observed. Mostly, some of the characteristics of 

observable resistance mechanisms offer convincing evidence of resistance, for instance: A typical 

programmed cell death-based plant response to the pathogen infection called hypersensitive 

response (HR) (Mur et al., 2008; Casagrande et al., 2011; Boubakri et al., 2012; Lam, 2004; Liu 

et al., 2005). No necrotic spots were observed on the leaf disc of the 'Morio Muskat' x COxGT2 

population, which confirms the defence mechanism is different from that observed until now in 

North American and other Asian Vitis species. However, several other induced resistances (IR) 

involving many molecular and cellular activities, such as the induction of reactive oxygen species 

(ROS), cell wall strengthening, pathogenesis-related protein expression and callose deposition, can 

contribute to the resistance mechanisms (Boubakri, 2020).  

Interestingly, distinguishable quantitative segregation for the trait leaf hair was seen in the 

population ‘Morio Muskat’ x COxGT2 (Figure 10). A medium-dense cover of hair (ribbon 

trichome) was observed in the resistant donor COxGT2 in comparison to no hair susceptible parent 

‘Morio Muskat’ (refer to section introduction, Figure 3), speculating the assumption of leaf hair as 

a physical barrier against P. viticola infection. Ribbon-shaped leaf hair (trichome), evident on the 

abaxial surface of the leaves of the grape genus Vitis, is beneficial for taxonomy (Ma et al., 2016). 

Based on previous studies, hairs play a significant physico-chemical role and can affect the 

wettability of the leaves due to their hydrophobic characteristics (Figure 3) (Kortekamp & Zyprian, 

1999; Kortekamp et al., 1998), thus, preventing the P. viticola infection. The possibility of 

switching off leaf hair's hydrophobic properties by applying detergent provides sufficient evidence 

that leaf hair contributes to some degree of physical resistance (Kortekamp & Zyprian, 1999). Leaf 

discs were prepared to evaluate the leaf hair density phenotypically. The density of hair evaluation 

was based on (1: none, 3: low, 5: medium, 7: high, 9: very high); each leaf disc was scored 

according to the guidelines of OIV-086 descriptor (OIV, 2nd edition 2001, https://www.oiv.int/). 

The results were consistent across different years (2020, 2021 and 2022) (Figure 19). According 

to the phenotypic data distribution of all the years, only 12 % of the individuals (OIV score 7 and 

score 9) contributed to the high leaf hair density scores. Very limited segregation of the trait can 

be seen across the population. Notably, the phenotypic expression of leaf hair density depends on 

https://www.oiv.int/en/technical-standards-and-documents/description-of-grape-varieties/oiv-descriptor-list-for-grape-varieties-and-vitis-species-2nd-edition
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the age of the leaves and the environmental factors (Roy et al., 2001). However, because it is very 

subjective, the leaf hair trait is challenging to evaluate using a manual scale and can affect results 

in general. 

4.1.3 Mapping and QTL analysis 

In general, our understanding of the Rpv loci must be expanded in order to develop long-term 

sustainable alternatives for controlling P. viticola infection and to preventing high-yield losses. To 

date, 32 downy mildew resistance loci have been identified in different genetic backgrounds, and 

some of them are employed in developing new resistant cultivars (Bellin et al., 2009; Blasi et al., 

2011; Schwander et al., 2011; Venuti et al., 2012; Di Gaspero et al., 2012). All the details regarding 

the resistant loci can be found on the Vitis International Variety Catalogue's home page (VIVC; 

http://www.vivc.de). 

In addition to the phenotypic evaluation, the construction of a genetic map employing molecular 

markers serves as a solid foundation for linkage mapping (Grattapaglia & Sederoff, 1994). A 

classical QTL approach was implemented to identify the genetic region responsible for the 

resistance to downy mildew. Two DNA marker-based strategies were implemented in the creation 

of the genetic map. An initial genetic map was created using SSR (simple sequence repeats) 

markers due to their easy transferability across related Vitis species, including both coding and 

non-coding regions, codominant and highly polymorphic characteristics (Gupta, 1998; Scott et al., 

2000; Doligez et al., 2003; Töpfer et al., 2011a). In addition, it was observed that the SSR marker 

system is an effective useful genomic tool due to the polymorphism of V. vinifera-based SSR 

alleles showing reproducibility in non-vinifera species. Furthermore, SSR markers serve as a 

potential marker system in MAS utilized successfully in different breeding programs. The second 

marker technique explicitly used for fine mapping utilized the latest rhAmpSeq markers system. 

This new generation of amplicon-based SNP markers developed specifically for the core Vitis 

genome has potential to detect many variants within the haplotypes (Zou et al., 2020). In contrast 

to SSR markers, rhAmpSeq sequencing and genotyping promises a high transferability system for 

the creating dense genetic maps (Yin et al., 2021; Karn et al., 2021; Reshef et al., 2022). The initial 

SSR-based framework map, which was created for 351 F1 individuals and consisted of 109 

uniformly distributed markers (5.7 loci per linkage group), detected all 19 linkage groups (Figure 

20 and Table 3). There were no discrepancies detected in the map's overall marker order. Whereas, 
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out of 2057 rhAmpSeq markers tested, only 647 markers (31 %) were mapped on an average of 

42 loci per linkage group, covering the total map length of 1147 cM (Figure 22 and Table 4). In 

terms of genome coverage, it is similar to those from maps with similar marker quantities 

(Schwander et al., 2022; Moreira et al., 2011; Zhang et al., 2009) and within the range of 

comparable grapevine-specific genetic maps (Di Gaspero et al., 2007; Doligez et al., 2006; Welter 

et al., 2007). A significant high correlation was produced by the association of collinearity between 

the genomic location (cM) and the physical positions (Mb) of the rhAmpSeq markers (Figure 21). 

The reference genomes utilized in deriving rhAmpSeq markers involved mainly North American 

Vitis species and European V. vinifera (Zou et al., 2020). This may explain the lower number of 

functional rhAmpSeq markers and poor marker transferability to East Asian genetic backgrounds 

like V. coignetiae used in this study. However, this study presents the first independent SSR and 

rhAmpSeq marker-based genetic linkage map for the interspecific cross between V. vinifera and 

wild V. coignetiae. The three consecutive years of QTL analysis performed on the ‘Morio 

Muskat’ x COxGT2 population yielded a stable and highly significant single downy mildew-

associated resistance locus.  

This Rpv locus, located on the upper part of chromosome 14, explained the phenotypic variation 

of up to 36 % in all three years of the study, including both independent marker approaches, 

respectively. In the initial single QTL analysis, mapping methods such as Interval Mapping (IM) 

and subsequent Multiple QTL Mapping (MQM) involving cofactor represented VMC1E12 as the 

LODmax marker at 3.8 cM (7136678 bp) (Figure 23, Table 5). In addition, QTL analysis using 

the rhAmpSeq marker yielded QTL in all independent experiments of all the years. The rhAmpSeq 

marker chr14_6974992 located at 4.5 cM (6974992 bp) was found to be associated with downy 

mildew resistance in four experiments (Figure 24, Table 6). In this study, we name the new 

resistance locus as Rpv32. Based on the genetic analysis and field observation, Rpv32 is the first 

resistance derived from an unexploited East Asian Vitis species that confers strong resistance to 

P. viticola. The resistance trait was introgressed by the cross-breeding between susceptible 

European Vinifera ‘Morio Muskat’, known for excellent high wine quality, and interspecific cross-

derived COxGT2 (V. coignetiae x ‘Gewürztraminer’). Downy mildew disease resistance QTLs are 

important for improving resistance in susceptible varieties (Eibach et al., 2007). 

In COxGT2 derived population, resistance to downy mildew can be explained by a dominant major 

locus contributing to the total resistance. Considering the fact that, QTL analysis utilizing two 
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distinct genetic maps that covered the entire genome produced no additional significant factors 

that could contribute to the resistance. Resistance loci from unspecified American Vitis species 

have been found in some of the already described loci display varying levels of resistance 

(Merdinoglu et al., 2003; Wiedemann-Merdinoglu et al., 2006; Welter et al., 2007; Bellin et al., 

2009; Fischer et al., 2004; Marguerit et al., 2009; Ochssner et al., 2016). Few Rpv loci have also 

been identified in Asian genetic background, V. amurensis, contributing to a high degree of 

resistance (Blasi et al., 2011; Schwander et al., 2012; Venuti et al., 2013; Lin et al., 2018). A recent 

study has also identified resistance loci in V. vinifera germplasm (Sargolzaei et al., 2020). 

However, the mode of interaction between Vitis species and the pathogen, as well as the co-

evolution of the pathogen, are the main determinants of the degree of resistance conferred (Jürges 

et al., 2009). 

Among all the 32 resistance loci identified against downy mildew, three loci are located on 

chromosome 14 (https://www vivc.de/loci). Vitis amurensis accession-derived resistance Rpv8 and 

Rpv12 are located on the upper part of chromosome 14 (Blasi et al., 2011; Venuti et al., 2013). 

While, Rpv27 is mapped on the lower part of chromosome 14 (Sargolzaei et al., 2020). Rpv8 was 

originally localized close to ‘Chr14V015’ marker (6641772 bp), and flanked by VVIp05 (3275203 

bp) and VVIp22 (18364396 bp) markers (Blasi et al., 2011). In total, this covered approx. a 

distance of 15.11 Mb. Whereas, Rpv12, identified a few years later, was confined between the 

markers UDV014 (8034665 bp) and UDV370 (10110182 bp) (Venuti et al., 2013). Although 

V. amurensis and V. coignetiae differ in their geographical origin (Galet, 1988), the presence of 

the Rpv32 marker VMC1E12 (7136678 bp) in close proximity to Rpv8 and Rpv12 genomic regions 

raises concerns. To answer these questions, two approaches were used. Firstly, ampelographic-

based characterization clearly showed the difference in shoots, young leaves and mature leaves 

(Galet, 1988) of V. amurensis and V. coignetiae. In addition, the genetic analysis performed 

utilizing SSR marker published by Blasi et al. (2011) and Venuti et al. (2013) on the Rpv8, Rpv12 

and Rpv32 carrying genotypes showed a substantial amount of reliable difference in the SSR 

alleles between Rpv8 and Rpv32, and Rpv12 and Rpv32 (Table 7). The marker Chr14V015 (Blasi 

et al., 2011) at the physical position of 6641772 bp and all the markers (Sc81_7.4, Sc81_8.2, UDV-

350, UDV-343, UDV-345, UDV-340 and UDV-360) published in Venuti et al. (2013), ranging 

between the physical positions of 8426630 bp to 9910299 bp showed significant differences in all 

the allele sizes. However, the presence of the Rpv32-associated LODmax marker VMC1E12 
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position (7136678 bp) is located far above the suggested markers by Venuti et al., 2013. On the 

contrary, no differences were observed between the allele sizes of Rpv8 and Rpv12 carrier, except 

for a 2 bp difference for the marker UDV350 (8963620 bp). The comparative SSR marker data 

between Rpv8 and Rpv12 are in accordance with Müllner et al. (2022). These results provide strong 

evidence that there is a genetic basis for distinguishing between the Rpv8/Rpv12 and Rpv32 based 

on their ampelographic and genetic differences in the allele sizes. The V. amurensis accessions 

and COxGT2 do not share any common ancestry.  

4.1.4 Aniline blue staining 

Grapevines susceptible to P. viticola are infected through the substomatal space of their leaves or 

other young green tissue. Under optimal conditions, the pathogen penetrates the stomata utilizing 

germ tube of the zoospores, followed by dense intracellular mycelial network development (Fröbel 

& Zyprian, 2019b; Burruano et al., 2000). In this investigation, aniline blue staining demonstrated 

that zoospores were equally capable of encysting the stomata and developing primary hyphae on 

susceptible ‘Morio Muskat’ and resistant carrying genotype COxGT2 after 1 dpi (24 hours) (Figure 

26). In general, the results are consistent with the previous studies conducted by Kortekamp et al. 

(1997) and Eisenmann et al. (2019) showing no significant observable differences between the 

susceptible and resistant genotypes in the early stages of infection. In resistant grape varieties, 

defence reactions were triggered as soon as the haustoria were visible (Díez-Navajas et al., 2008). 

At 3 dpi, leaf discs showed interesting results between the susceptible and the resistant donor. 

Slightly decreased sporulation was observed on the resistant donor COxGT2, in comparison to the 

susceptible ‘Morio Muskat’. At 5 dpi clear differences were observed, COxGT2 genotype 

exhibited reduced and stagnated sporulation but not complete suppression of P. viticola (Figure 

26). A previous study of susceptible and resistant varieties revealed differences in histology after 

infection with P. viticola (Kortekamp et al., 1998; Gindro et al., 2003; Polesani et al., 2010). 

According to Kortekamp et al. (1998), the resistant varieties 'Orion' (Rpv3.1) and 'Phoenix' 

(Rpv3.1) were able to demonstrate restricted hyphal growth on 3dpi. Based on Gindro et al. (2003), 

‘Solaris’ (Rpv10, Rpv3.3) exhibited a defence mechanism involving callose and attachment to 

encysted zoospores. These results suggest that defence mechanisms-mediated resistance rely on 

the recognition of elicitors from plants or pathogens (Keen & Yoshikawa, 1983; Kortekamp & 
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Zyprian, 2003; Selim, 2013). In oomycetes, β-1,3- and β-1,6-glucan are already identified as 

elicitors (Raaymakers & Ackerveken, 2016). 

Subsequently, similar staining experiments were conducted, including three additional different 

resistant carrying genotypes, i. e., ‘Muscaris’ (Rpv10), Vitis amurensis (Rpv8), V. amurensis 

(Rpv12) and V. coignetiae (Rpv32). The preliminary results indicated successful completion of the 

life cycle of P. viticola on all the genotypes with no differences on 1 dpi. Nevertheless, comparable 

establishment and initiation of primary hyphae and haustorium were observed in susceptible and 

all resistant genotypes (Annex II, Figure 1). According to earlier studies, the first interaction of 

P. viticola with the plant cell occurs post-pathogen haustoria formation (Langcake et al., 1980: 

Unger et al., 2007). Similarly, to the results of Figure 26, observable differences in hyphal growth 

were seen at 3 dpi. Contrary to the resistant genotypes, a high amount of elongated hyphae and 

branching within the mesophyll can be seen on the susceptible cultivar. At 5 dpi, the susceptible 

cultivar showed intercostal field filled with mycelium, whereas resistant genotypes showed loose 

mycelium in the intercostal field, indicating the presence of resistant mechanism hindering tissue 

colonization. The pathogen development on susceptible ‘Morio Muskat’ was seen to produce fan-

shaped lobed hyphae on 5 dpi to overcome physical obstacles like conducting tissue, as observed 

by Fröbel & Zyprian et al. (2019). 

Furthermore, based on the preliminary results, Rpv10 carrier ‘Muscaris’ and Rpv32 carrier wild 

V. coignetiae showed a comparably low level of mycelial development between 3dpi to 5 dpi in 

comparison to COxGT2 (Rpv32), V. amurensis (Rpv8) and V. amurensis (Rpv12). The mechanism 

of Rpv10-mediated resistance from the Asian wild species V. amurensis and Rpv12 is presently 

being studied (Zyprian et al., in preparation). Nevertheless, Foria et al. (2020) reported the 

resistance associated with HR and accumulation of stilbene phytoalexins for Rpv10 carriers 

(Alonso-Villaverde et al., 2011). Previous studies conducted using Rpv10 carrying genotypes 

showed similar results (Fröbel et al., 2019; Marie Jurascheck et al., 2022). Furthermore, based on 

recent studies the early (8 hpi) production of hydrogen peroxide in Rpv12 carrier coincided with 

the appearance of PCD (Wingerter et al., 2021). No significant differences were observed between 

the Rpv8 (V. amurensis), Rpv12 (V. amurensis) and Rpv32 (COxGT2). However, a number of 

variables, including the leaf's surface and age, influence the LDA. For example, the Rpv8 carrier 

plant utilized in this experiment is a wild type, whereas the Rpv12 carrier is a non-wild type. 

Another reasonable possibility is that the experiment's leaf material came from a greenhouse (Blasi 
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et al., 2011) or field (Venuti et al., 2013). Moreover, no differences in Rpv8 and Rpv12 mediated 

resistance were observed. The microscopic differences between Rpv8 and Rpv12 mediated 

resistance are explained in Müllner et al. (2022), where no difference in mycelial growth was 

identified. In conclusion, additional experiments, including different strains of P. viticola and 

staining methods are needed to conclusively elucidate the distinguishable characteristics between 

different resistant carriers. The interpretations here are based solely on the spread of the pathogen 

in the leaf tissue by staining hyphae and cell wall compartments of encysted zoospores. 

4.1.5 Growth and sporulation of P. viticola on different resistance loci carriers 

P. viticola proliferation was measured quantitatively at 5 dpi on the susceptible cultivar ‘Müller-

Thurgau’ and ‘Morio Muskat’ (negative control), and resistance carrying genotypes, i. e., 

V. amurensis (Rpv8) V. amurensis (Rpv12) and V. coignetiae (Rpv32) and COxGT2 (Rpv32) leaf 

discs to report the degree of resistance conferred by each genotype (Figure 27). Previous 

investigations have reported on the degree of resistance imparted by Rpv12 carriers (Bellin et al., 

2009; Venuti et al., 2013; Possamai et al., 2020; Bove & Rossi, 2020; Wingerter et al., 2021; 

Panineau et al., 2022) in comparison to different resistance carrying loci. A comparable level of 

P. viticola resistance between Rpv10 and Rpv12 was reported by Bovi & Rossi in 2020. Whereas, 

Possamai et al. (2020) stated that stronger resistance was mediated by Rpv12 carrier in comparison 

to Rpv10 mediated P. viticola resistance. In addition, Wingerter et al. (2021) demonstrated 

significant differences between Rpv10 and Rpv12 resistance based on two different isolates of 

P. viticola. The different techniques employed to measure the degree of resistance and the lack of 

reference protocols could be the reasons explaining these contradictory results. However, the 

absence of the Rpv10 carrying genotype in our experimental setup makes it difficult to draw 

conclusions based on the previously found results. Nevertheless, our preliminary results based on 

the microscopic studies are in accordance with the previous studies conducted by Wingerter et al. 

(2021). It was discovered that, in contrast to cultivars that are susceptible, sporulation is much 

lower on Rpv32 resistant carriers, indicating strong resistance. Interestingly, highly significant 

differences were observed between the Rpv12 (V. amurensis) and Rpv32 (COxGT2) mediated 

resistance carriers, with low sporulation on COxGT2. However, no significant difference is seen 

between Rpv8 and Rpv32 (COxGT2). In addition, prominent necrotic lesions were observed on 

Rpv8 and Rpv12 carrying genotypes as described by Possamai et al. (2020), with no difference in 
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sporulation. This adds intrigue to the study and recommends that additional research is necessary 

to determine the differences between Rpv8, Rpv12, and Rpv32. Moreover, it is worth noting that 

no significant difference in sporulation on COxGT2 and wild V. coignetiae (parent of COxGT2) 

indicates a loss of resistance intensity in the next generation. Complicated biological conditions 

with uncharacterized strains can complicate research because the pathogen's evolution is a factor 

in the breakdown of resistance (Panineau et al., 2022). Further experiments in upcoming years, 

including different resistant carriers, could provide more detailed insights and concrete results. 

4.1.6 Downy mildew vs. leaf hair: A weak negative correlation 

A quantitative segregation for leaf hair (trichome) density on the abaxial surface of the leaf was 

shown in ‘Morio Muskat’ x COxGT2, the same population where the Rpv32 was identified. A 

trichome is a distinctive feature of different organ surfaces and is essential for taxonomy in the 

grape genus Vitis. The diversity and anatomy of trichomes have been studied previously, providing 

preliminary insights into the distribution and density of trichomes (Yong-hua et al., 1994; Werker, 

2000; Chitwood et al., 2014). Recent research provides opportunities for better ampelographic 

identification of grapevine (Vitis vinifera L.) cultivars via understanding of the microanatomy of 

leaf trichrome (Gago et al., 2016). A systematic study of Vitis trichome morphology, structure and 

ontology has been presented in great detail (Ma et al., 2016). In the population Gf.2018-063, 

segregation for ribbon trichomes was observed which are flat, twisted and with varying density 

(Figure 10). In North America, East Asia, and Europe, both subgenera of Vitis have ribbon 

trichrome (Moore, 1991; Ma et al., 2016). Due to their diverse morphological, phytochemical and 

mechanical properties, trichomes have a variety of functions in plant physiology and ecology 

(Levin, 1973; Kortekamp & Zyprian, 1999; Wagner et al., 2004). 

Earlier versions of the hypothesis came from Kortekamp and Zyprian (1999) and Divilov et al. 

(2018) that illustrated the effect of leaf hair on downy mildew disease resistance. The QTL on 

chromosome 5 (7.6 cM) identified in this study has been overlapping with a previously reported 

QTL region by Kono et al. (2018) in a population of V. vinifera ‘Muscat of Alexandria’ × 

V. labruscana ‘Campbell Early’. They found a major QTL for leaf trichome (ribbon) density on 

the upper end of LG 5 at 2.8 cM, named Leaf Hairs 1 (LH1) and provided concrete evidence on 

leaf hair as a structural defence against downy mildew. In addition, QTL on LG 5 was also 

identified by Barba et al. (2019) for the trait hair on leaf blade, showing the influence on predatory 
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mite abundance. This QTL has been validated in different genetic backgrounds by Teh et al. (2017) 

and found to overlap with the QTL identified by Barba et al. (2019). Furthermore, on LG 5, loci 

identified as Rpv10 and Rpv11 had small effects on downy mildew resistance (Fischer et al., 2004; 

Schwander et al., 2012). However, leaf hair is not a qualitative resistance and disease progression 

cannot be completely stopped. Nevertheless, the disease incidence and severity were found to be 

less in hairy genotypes than in non-hairy indicating quantitative resistance characteristics 

supporting durability (Kou et al., 2010). Irrespective of population, the ultimate outcome of our 

research is in contrary to the study conducted by Kono et al. (2018). The leaf hair QTL on 

chromosome 5 was consistent in all three years of the experiment (Figure 25). However, a weak 

correlation (ranging between R = -0.08 to -0.12) was found between the downy mildew resistance 

and leaf hair density. Only 10 % of the 496 F1 individuals showed high densities of abaxial leaf 

hair (OIV score 7 and 9), reflecting limited segregation. Vitis labrusca species generally show an 

extremely high density of abaxial leaf hair covering the whole leaf except the veins (Gerrath et al., 

2015). According to Cadle-Davidson (2008), ‘Concord’, a hybrid between ‘Catawba’ and 

V. labrusca, showed consistent and moderate foliar resistance due to the high density of leaf hair. 

Based on the results with the population utilized, Kono et al. (2018) concluded that the presence 

of thick and dense hair contributes to durable resistance. Additionally, environmental influences 

may impact the leaf hair density depending on whether the study was conducted on field plants or 

greenhouse plants. However, it is unclear how genetic mechanisms improve leaf hair density—

nevertheless, the first candidate gene contributing to the trait leaf hair was proposed by Barba et 

al. (2019). The recent studies conducted by Yin et al. (2021) validated the function of transcription 

factor WER (regulates the hairless cell fate), NAC transcription factor 29, EF-hand protein, and 

MYB140. Furthermore, it was found that the homozygous deletion at the end of the transcription 

factor WER caused the dense trichome phenotype. Additionally, they discovered that a 

heterozygous deletion at the exact location in a different genotype resulted in a less dense trichome 

phenotype (Yin et al., 2021). 

However, the resolution of the phenotypic evaluation and variability in the phenotypic score 

caused due to age of the leaves might have contributed to the poor phenotypic association with 

downy mildew. Although there was no strong correlation between trichome density and downy 

mildew resistance, further detailed analysis is required, mainly focusing on generating leaf hair 

phenotypic data and a more suitable population showing high segregation for leaf hair density. 
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Instead of only quantifying leaf hair, a different new approach is required to provide phenotypic 

measurements that highlight wettability. Since leaf hair represents a physical barrier, it is not 

sufficient to quantify only leaf hair, but also its wettability in a new phenotyping approach. An 

ultimate goal should be to eludidate whether or not physical resistance imparted by leaf hair can 

be utilized in breeding programs to complement systems like gene for gene resistance. 
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5 Conclusion and future perspective 

In this study, the East Asian species Vitis coignetiae was investigated for the very first time to 

identify downy mildew resistance. The bi-parental F1 population Gf.2018-063 was utilized in 

linkage mapping and phenotypic studies across three years. Two independent marker technologies, 

i. e., SSR and the latest rhAmpSeq haplotype markers, have been implemented to create a genetic 

map and identify the resistance locus responsible for downy mildew resistance. At the same time, 

the rhAmpSeq-based genetic map shows a higher marker density than the SSR-based genetic map. 

The QTL analysis performed based on the linkage mapping and phenotypic data of all three years 

in two to three independent experiments showed a strong and stable QTL on the upper arm of 

chromosome 14. A novel resistance locus identified in this study was named Rpv32 (Resistance to 

P. viticola) (Malagol et al., 2023, in preparation). The Rpv32-associated markers identified in this 

study can be used in marker-assisted selection, and developing pyramided cultivars, eventually 

contributing to the reduction of fungicides in viticulture. Based on the reference genome PN40024, 

the genomic area responsible for resistance to downy mildew can be screened for putative 

candidate genes. However, the available reference genome PN40024 is susceptible to downy 

mildew, thus, making the study intricate. Nevertheless, sequencing the resistance donor and 

functionally characterizing the genes can be carried out. As the grapevine genome is highly 

heterozygous, the trio-binning method exploits heterozygosity and can effectively identify the 

resistance genes. The advantage of trio binning over other methods is that it offers simplifying 

haplotype assembly by resolving allelic variation prior to assembly, thus, improving diploid 

genome assembly and will facilitate studies of haplotype variation and inheritance (Koren et al., 

2018; Yen et al., 2020; Sichel et al., 2022). Furthermore, an alternate option could be RNA-Seq 

analysis of resistant and susceptible genotypes to identify the differentially expressed genes 

mediating Rpv32 resistance.  

The preliminary results of pathogen proliferation between the Rpv12 and Rpv32 carrier genotypes 

showed significant differences. In comparison, no differences were observed between Rpv8 and 

Rpv32. Additional experiments are required to conclusively demonstrate the strength of Rpv32 

resistance in contrast to other P. viticola resistance-carrying genotypes (Rpv8, Rpv12, Rpv10, and 

Rpv3). To expand upon the current work, analyzing resistance mechanisms with different staining 

methods to gain detailed insights on Rpv32 mediated defence mechanisms to P. viticola. 

Furthermore, adding different isolates of P. viticola in addition to different resistance-carrying 
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genotypes to the current experimental set-up can shed information on minimizing the danger of 

new isolates breaking the resistance. 

This study investigated the intriguing question of leaf hair as a physical barrier against the downy 

mildew pathogen. The existence of quantitative segregation of the trait leaf hair (ribbon trichome) 

in the Gf.2018-063 population resulted in the identification of a locus on the upper end of 

chromosome 5 (previously mentioned by Kono et al., 2018). However, a very weak and negligible 

association was found between the leaf hair density and the downy mildew disease 

severity/incidence. Although the current work was performed on a population exhibiting limited 

segregation for the trait leaf hair, in order to answer the questions and utilize the trait for breeding 

purposes, it is necessary to study populations showing high segregation. In addition, it is necessary 

to use more precise and accurate phenotyping tools to measure the trait.  

This study also includes developing two independent low-cost artificial intelligence-based CNN 

models used for the automated analysis of grapevine leaf disc image data: The SCNN model for 

the high-throughput downy mildew disease severity quantification (Zendler et al., 2021) and a 

ResNet-based model for leaf hair quantification (Malagol et al., 2023, in preparation). Both the 

models were tested, validated and cross-validated using three independent experts and yielded a 

significant correlation coefficient (r > 90) with manual scoring. Implementing these AI-based 

pipelines eliminates the need for subjective manual scoring, reduces staffing, and provides 

consistency across all experiments over the years. For future work, it would be better to switch 

from binary to categorical classification using the most recent deep convolutional architectures 

(Ex: YOLO, RCNN, AX-RetinaNet etc.). Semantic labelling and segmentation are preferable 

alternatives for improving prediction accuracy. However, this can result in a large amount of 

computing resources, high image quality, and intense model training. Additionally, the SCNN 

pipeline for DM quantification is publicly available on the GitHub repository and can be retrained, 

adapted to the specific plant-pathogen system and different traits (https://www.github.com/Daniel-

Ze/Leaf-disc-scoring). These pipelines can serve as a valuable and efficient tool in a wide range 

of studies, from basic plant research to breeding. 
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Annex I 

 

Table 1 Phenotypic and genotypic correlation of Downy mildew and leaf hair correlation data for the year 2020, 2021 

and 2022. 

 

 

 Downy mildew vs. Leaf hair correlation data (rs) 

Year Phenotypic Genotypic (marker) 

2020 -0.08 

0.10 2021 -0.10 

2022 -0.12 
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Annex III 

ResNet model development: Training and performance evaluation 

A slightly different approach was utilized in producing labelled input images for the training of 

the Residual Network-based CNN model for leaf hair quantification. Leaf disc images were 

divided into four equal halves, 70% for the training and 30% for testing, followed by slicing into 

506 equal segments, and were manually classified into respective classes as background, leaf with 

hair and leaf without hair (Annex III, Figure 1). All the image slices were manually classified into 

three classes, background (water agar), leaf without hair, and leaf with hair using a python script 

‘image_sorter2’. 

 

 

 

 

 

 

 

 

 

 

In both the CNNs employed in classification workflow, a residual neural network with a structure  

resembling ‘Xception network’ was selected. The CNN1 was trained to classify between 

‘background’ and ‘leaf’ with 10089 images from the training set and validated with 4323 images 

per class. Whereas, the CNN2 was trained to classify between ‘leaf with hair’ and ‘leaf without 

hair’, trained using 1872 slices and tested with 4369 slices. All the CNN calculations were 

performed on the GPU. All CNNs were trained using Jupyter Notebooks on Google Colaboratory 

Instances running Ubuntu 18.04.5 LTS, a 2-core Xeon CPU at 2.20 GHz, 13.3GB RAM, and an 

Nvidia Tesla K80 GPU with 12GB Memory. Each slice for CNN1 was loaded in the shape of 112 

x 112 with RGB channels and followed by rescaling to scale the RGB values lying between 0 and 

255 down to 0 and 1 and applied two blocks consisting of a 2D Convolution layer, a Batch 

A B C 
1 

2 

3 

Figure 1 Leaf disc images. (A) divided into four equal halves (B), ¾ images for training (with bold borders) and ¼ 

(dotted border) for testing the model followed by 506 slices (C) of the leaf disc to produce individual input slices (1: 

Background, 2: Leaf without hair 3: leaf with hair). 
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Normalization Layer, followed by an Activation Layer using ReLU. Block one compromises a 32-

layer convolution, whereas block with 64-layer convolution. The residual was retained until further 

usage after the initial two blocks. Furthermore, four blocks with separable 2D convolutions in sizes 

128, 256, 512, and 728 were added. Each block consists of a 2D Max Pooling Layer, a final 2D 

Convolution layer with the previous block residual as input, an Activation Layer (ReLU), a 

Separable 2D Convolution layer, a Batch Normalization Layer, another Activation Layer (ReLU), 

a Separable 2D Convolution layer, another Batch Normalization Layer, and a final 2D Convolution 

layer. The current values were updated with the previous outcome and reused in the following 

block. The Separable 2D Convolution Layer of size 1024, the Batch Normalization Layer, and the 

Activation Layer (ReLU) is added after the first four blocks, and the outcome was passed through 

a Global 2D Average Pooling Layer before being transmitted through a Dropout layer with a rate 

of 0.5. A deeply Connected Dense Layer with one unit in a combination of sigmoid activation was 

used as the output layer for CNN1 and similar architecture with a dropout rate of 0.2 were utilized 

for CNN2 (Annex III, Figure 2). Finally, Adam optimizer with a learning rate of 0.001 and loss 

calculation was done using binary_crossentropy. Both CNN's were trained for 30 epochs each 

(Annex IV, Figure 1). All datasets for Downy mildew quantification 

(https://www.github.com/Daniel-Ze/Leaf-disc-scoring) and leaf hair quantification 

(https://github.com/1708nagarjun/ResNet-CNN-Leaf-hair) are available as open source on the 

given GitHub Repository.

https://www.github.com/Daniel-Ze/Leaf-disc-scoring
https://github.com/1708nagarjun/ResNet-CNN-Leaf-hair
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Annex IV 

 

ResNet based CNN performance evaluation 

 

Training results 

The first ResNet CNN1 "background" vs. "leaf disc" considering a small margin of validation loss 

after 30 epochs, yielded an overall final validation accuracy of 98%. In contrast, the second ResNet 

CNN2, "leaf with no hair" vs. "leaf with hair" resulted in overall validation accuracy of 94.51% 

and a validation loss of 13%. Due to the input slices simpler feature sets than CNN2, CNN1 has a 

greater model validation accuracy than CNN2 (Annex IV, Figure 1). As a consequence, the CNN2 

model has a little lower validation accuracy as a result of its more thorough feature complexities 

extraction. Although no overfitting nor under fitting of the models was found, this suggests the 

existence of a possible image classifier model. In general, the model has achieved satisfying overall 

validation accuracy. 
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Performance validation  

In order to evaluate the model performance, three different model validation approaches were 

performed.  

 

Expert validation  

After the completion of training and testing the model, the model was employed in quantifying 20 

leaf disc images (4 images per OIV class) (Annex IV, Figure 2). By categorizing the slices and 

manually rating the leaf discs, two experts independently evaluated the identical set of images to 

produce the ground truth. The expert-generated independent ground truth data are very similar 

between slices and manual ratings (Annex IV, Table 1). The ResNet CNN values (%) for all the 

leaf disc images (four for each OIV 086 class) are in excellent agreement with the ground truth 

data produced by two experts. Additionally, both the expert's slice (%) and ResNet CNN (%) results 

looked to be quite close, proving the accuracy and sensitivity of working at the slice level. 

However, there are some discrepancies. For instance, Image 1 of class 9 (Annex IV, Figure 2) is 

poorly quantified by ResNet CNN and expert 1 due to poor image characteristics, uneven 

illumination, and image quality. The validation showed a strong connection between expert 

evaluation and predictions made by the ResNet CNN model (Annex IV, Figure 3). With extremely 

significant R-square values of 0.98 and 0.92 and RMSE (Root Mean Square Error) values of 8.20 

and 14.18, respectively, the correlation between expert slice categorization (%) for both experts 

and ResNet CNN (Annex IV, Figure 3A). While in contrast the correlation between manual rating 

(%) and ResNet CNN (%) for experts was considerably less significant, with R values of 0.86 and 

0.87 with RMSE of 21.43 and 20.37, respectively (Annex IV, Figure 3B). In summary, it was 

determined for both experts, the correlation at the slice level categorization was more thorough, 

accurate, and superior to manual rating correlation. The need for an objective classification 

approach was demonstrated by the significant subjectivity between the Manual (%) ratings and 

slice (%) level categorization in both experts. Our findings also suggest that manual rating is 

preferable for qualitative traits. The discs covered between 70% - 90% of the leaf hair, the 

correlation coefficient varied most in the case of manual evaluation, impacting the total correlation. 

The correctness and effectiveness of the model are amply demonstrated by the classification 

correlation of ResNet CNN (%) and expert slice (%) for both experts (i.e., R=0.98 and R=0.92, 
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respectively). To precisely define statistically separating characteristics like leaf hair, it is 

imperative to apply objective machine vision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Leaf disc images used four per OIV-086 class for model validation (Validation 1; between ResNet CNN and 

two experts). 
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Expert vs. non-expert validation  

ResNet CNN model was employed to identify and assess the leaf hair density of three hairy 

genotypes (‘Pinot Meunier‘, ‘Tigvoasa‘, and V. thunbergii) and three non-hairy genotypes 

(‘Riesling‘, ‘Regent‘, and ‘Cabernet Sauvignon‘) (Annex IV, Table 2). In addition, absolute 

accuracy error (absolute error) was estimated for each of the subsequent individual leaf discs. A 

panel consisting of two experts and two non-experts and considered ResNet CNN (%) to be true 

values and evaluator values as the estimated values (Annex IV, Table 3, Figure 4). For the evaluated 

genotypes, absolute error variance was determined to be extremely low and negligible between two 

experts on both the slice (%) and manual (%) assessments (Annex IV, Figure 4A; B1 and B2). 

Experts showed improved precision, accuracy, and repeatability in the evaluations that were 

conducted. The absolute error on slice (%) categorization for both non-experts varied from 15% to 

Figure 3 Validation 1: A) Correlation results between two experts slice (%) classification vs. ResNet CNN (%) 

evaluation and B) experts manual (%) rating vs. ResNet CNN (%) evaluation of leaf discs. (p<0.05). 
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30%, strongly suggesting an overestimation bias. Furthermore, both non-experts underestimated 

the density of the leaf hair when grading it manually (%), with absolute errors ranging between -

20% and -50% (Annex IV, Figure 4A; B3 and B4). Surprisingly, the three hairy genotypes were 

underrated, demonstrating that manual evaluation made by non-experts might include considerable 

bias. These results strongly suggest the necessity for an objective and accurate method to measure 

leaf hair density. 

 

Audience validation  

A panel compromising of 16 audience members evaluated the leaf disc images varying in hair 

density presented on a projector. In general, our results suggest the evaluations often overestimate 

the non-hairy genotypes and underestimate the hairy genotypes in the absence of a ResNet CNN 

classifier (Annex IV, Figure 5, Table 4). For completely non-hairy genotypes, the overall 

Figure 4 Validation 2: Absolute errors (actual value - estimated value) estimation. A) Comparison between two 

experts for (B1) slice% and (B2) manual% rating vs. B) Two non-experts for (B3) slice% and (B4) manual% rating, 

respectively. The red dotted (“0”) line represents the no error line. Filled circles represent evaluator 1 and filled 

triangles represent evaluator 2. Each color indicates a single genotype. 
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significant bias in terms of absolute error was found to range from 0% to 30%, whereas, for hairy 

genotypes, it ranged between -5% to -60% (Annex IV, Table 5). Additionally, the results indicate 

it was difficult to rank the intermediate genotypes, V. thunbergii and Tigvoasa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Validation 3: Absolute errors (actual value - estimated value) estimation of manual rating for a panel of 16 

novice evaluators. 
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Table 1 Validation 1: Summary of ResNet CNN (%) and experts evaluation of leaf discs, four each OIV 086 class. 

Slice%: Slice classification ("background"/”Leaf with hair”/”Leaf without hair”). Manual%: Manual rating of leaf 

discs (0-100%). 

 

 

 

 

 

 

Class 1 

ResNet CNN (%) 1 0.7 1.4 0.7 

Expert 1 

 (Slice %) 

0 0 0 1 

Expert 2 

(Slice%) 

0 0 0 0 

Expert 1 

(Manual %) 

0 0 0 0 

Expert 2 

(Manual %) 

1 0 0 0 

 

 

 

 

 

 

Class 3 

ResNet CNN (%) 25.4 24.7 30.5 48.6 

Expert 1  

(Slice %) 

26 21 37 66 

Expert 2 

(Slice%) 

18 20 33 60 

Expert 1 

(Manual %) 

27 19 30 52 

Expert 2 

(Manual %) 

25 20 35 60 
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ResNet CNN (%) 45.8 41 39.2 36.5 

Expert 1  

(Slice %) 

68 40 48 54 

Expert 2 

(Slice%) 

75 50 50 50 

Expert 1 

(Manual %) 

60 33 40 60 

Expert 2 

(Manual %) 

70 45 50 55 

 

 

 

 

 

Class 7 

ResNet CNN (%) 87.2 89.8 20 92.2 

Expert 1  

(Slice %) 

90 90 28 92 

Expert 2 

(Slice%) 

90 92 85 93 

Expert 1 

(Manual %) 

79 79 60 88 

Expert 2 

(Manual %) 

90 90 85 92 

 

 

 

 

 

ResNet CNN (%) 37 94.1 96.7 97.1 

Expert 1  

(Slice %) 

33 97 99 99 
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Class 9 

Expert 2 

(Slice%) 

96 98 97 99 

Expert 1 

(Manual %) 

73 87 94 97 

Expert 2 

(Manual %) 

90 98 96 100 
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Table 2 Validation 2: Summary of ResNet CNN (%) vs panel of two expert and non-expert evaluation of six genotype 

leaf discs. Slice%: Slice classification ("background"/”Leaf with hair”/”Leaf without hair”). Manual%: Manual rating 

of leaf discs (0-100%). 

  Hairy genotypes Non hairy genotypes 

  V. thunbergii ’Tigvoasa’ 

 

‘Pinot 

Meunier’ 

’Riesling’ ’Regent’ ’Cabernet 

Sauvignon’ 

 ResNet 

CNN (%) 

60.0 68,4 89 0 0.4 2.2 

Evaluator 1 Expert 1 

(slice %) 

58.9 72.2 95 0 0 1.8 

Evaluator 2 Expert 2 

(Slice %) 

61 71.2 97 0 0 1.5 

Evaluator 1 Expert 1 

(Manual %) 

60 70 92 0 0 0 

Evaluator 2 Expert 2 

(Manual %) 

58 65 92 0 0 0 

Evaluator 1 Non-expert 

1 (slice %) 

86 93 96 11 3 31 

Evaluator 2 Non-expert 

2 

(Slice%) 

91 98 99 0 0 22 

Evaluator 1 Non-expert 

1 

(Manual %) 

10 30 80 0 0 1 

Evaluator 2 Non-expert 

2 

(Manual %) 

15 25 82 0 0 2 
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Table 3 Validation 3: Absolute errors (AE) calculation. ResNet CNN represents true values. AE slice represents 

estimated values for slice (%) classification. AE manual represents estimated values for manual rating (%). Evaluators 

consist of two experts and two non-experts. 

Genotypes ResNet CNN AE Slice  AE Manual Evaluators 

V.thunbergii 60 -1.1 0 Expert 1 

’Tigvoasa’ 68.4 4.1 1.6 Expert 1 

‘Pinot Meunier’ 89 6 3 Expert 1 

‘Riesling’ 0 0 0 Expert 1 

’Regent’ 0.4 -0.4 -0.4 Expert 1 

’Cabernet 

Sauvignon 

2.2 -0.4 -2.2 Expert 1 

V.thunbergii 60 1 -2 Expert 2 

’Tigvoasa’ 68.4 2.8 -3.4 Expert 2 

’Pinot Meunier’ 89 8 3 Expert 2 

’Riesling’ 0 0 0 Expert 2 

’Regent’ 0.4 -0.4 -0.4 Expert 2 

’Cabernet 

Sauvignon’ 

2.2 -0.7 -2.2 Expert 2 

V.thunbergii 60 26.7 -50 Non-expert 3 

Tigvoasa 68.4 24.5 -38.4 Non-expert 3 

’Pinot Meunier’ 89 7.4 -9 Non-expert 3 

’Riesling’ 0 11 0 Non-expert 3 

’Regent’ 0.4 2.6 -0.4 Non-expert 3 

Cabernet 

Sauvignon 

2.2 29 -1.2 Non-expert 3 
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V.thunbergii 60 31.5 -45 Non-expert 4 

Tigvoasa 68.4 29.3 -43.4 Non-expert 4 

Pinot Meunier 89 9.5 -7 Non-expert 4 

Riesling 0 0 0 Non-expert 4 

Regent 0.4 -0.4 -0.4 Non-expert 4 

Cabernet 

Sauvignon 

2.2 19.8 -0.2 Non-expert 4 
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Table 4 Summary of audience manual rating of six genotypes. Non-hairy genotypes: Riesling, cabernet Sauvignon 

and Regent. Hairy genotype: Tigvoasa, Pinot Meunier and V. thunbergi. 

 Riesling Pinot 

Meunier 

Cabernet 

Sauvignon 

Tigvoasa Regent V. thunbergii 

ResNet CNN % 0 89 2.2 68.4 0.4 60 

Evaluator 1 0 80 2 15 0 20 

Evaluator 2 0 100 10 80 0 50 

Evaluator 3 1 70 0 20 0 10 

Evaluator 4 0 70 5 25 0 15 

Evaluator 5 20 80 30 50 15 70 

Evaluator 6 0 100 0 30 0 10 

Evaluator 7 20 100 20 0 20 50 

Evaluator 8 0 96 0 63 0 52 

Evaluator 9 0 75 0 5 0 2 

Evaluator 10 0 80 7 20 5 27 

Evaluator 11 0 80 10 20 0 40 

Evaluator 12 0 90 5 40 0 20 

Evaluator 13 10 90 25 50 20 35 

Evaluator 14 0 80 0 40 20 30 

Evaluator 15 0.5 98 5 25 3 30 

Evaluator 16 0 98 0 50 0 30 
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Table 5 Absolute errors estimation of audience validation. 

 Riesling Pinot 

Meunier 

Cabernet 

Sauvignon 

Tigvoasa Regent V. thunbergii 

Evaluator 1 0 -19 -0.2 -68.4 -0.4 -8 

Evaluator 2 0 -19 -0.2 -63.4 -0.4 -10 

Evaluator 3 0 -14 -0.2 -53.4 -0.4 -10 

Evaluator 4 0 -9 -0.2 -48.4 -0.4 -20 

Evaluator 5 0 -9 -0.2 -48.4 -0.4 -25 

Evaluator 6 0 -9 -0.2 -48.4 -0.4 -30 

Evaluator 7 0 -9 1.8 -43.4 -0.4 -30 

Evaluator 8 0 -9 4.8 -43.4 -0.4 -30 

Evaluator 9 0 1 4.8 -38.4 -0.4 -33 

Evaluator 10 0 1 4.8 -28.4 -0.4 -40 

Evaluator 11 0 7 6.8 -28.4 2.6 -40 

Evaluator 12 0 9 9.8 -18.4 4.6 -45 

Evaluator 13 1 9 9.8 -18.4 14.6 -50 

Evaluator 14 10 11 19.8 -18.4 19.6 -50 

Evaluator 15 20 11 24.8 -5.4 19.6 -58 

Evaluator 16 20 11 29.8 11.6 19.6 10 
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