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Microalgae as functional
feed for Atlantic salmon:
effects on growth, health,
immunity, muscle fatty acid
and pigment deposition
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Tom Goldammer4,5, Jacqueline Lindemeyer6,
Thekla Schultheiß6, Henrike Seibel2 and Carsten Schulz1,2
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Kiel, Germany, 2Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering
IMTE, Aquaculture and Aquatic Resources, Büsum, Germany, 3Department of Safety and Quality of
Milk and Fish Products, Max Rubner-Institut, Kiel, Germany, 4Fish Genetics Unit, Institute of Genome
Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, 5Faculty of
Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany, 6Institute of
Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein,
Kiel, Germany
Microalgae are increasingly being investigated as functional feed additives in a

variety of fish species, but our knowledge on how microalgae supplementation

affects Atlantic salmon remains limited. We hypothesized that microalgae

inclusion of 8% in the feed would improve performance, fatty acid and

pigment deposition as well as health and immunity of Atlantic salmon reared in

recirculating aquaculture systems (RAS). We fed Atlantic salmon smolts with five

different microalgae enriched diets containing Tetraselmis chuii (TC), Arthrospira

platensis (AP), Schizochytrium limacinum (SL) or Chlorella vulgaris, either intact

(CVI) or as broken cell wall derivative (CVB) or a control diet (CD). After eight

weeks of feeding in brackish water (13 psu), all groups were transferred to

seawater (32 psu) for additional two weeks. Our results indicate that CVB

improved feed conversion and protein retention, but reduced condition factor

(p < 0.05) compared to fish fed with a control diet. Voluntary feed intake

decreased in seawater, but was similar among diet groups. The amount of

docosahexaenoic acid was particularly high in SL-fed fish and alpha-linolenic

acid was enriched in fish fed CVI, CVB and TC (p < 0.05). Following seawater

transfer, fat content and monounsaturated fatty acids decreased in the muscle,

while polyunsaturated fatty acids increased. Lutein was present in all muscle

samples, but highest concentrations were found in CVB-, CVI- and TC-fed fish.

In the anterior intestine, microalgae supplementation induced differentially

regulated trout protein 1 (drtp1) expression in CVI- and CVB-fed fish, but

reduced the expression of interleukin 1 and 10 receptor (il1r2 & il10rb) in CVI-

fed fish. In the liver, feeding CVI and SL induced complement C1q like 2 (c1ql2)

expression, while reducing serum amyloid A5 (saa5) expression. Superoxide-
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dismutase protein concentration was induced in the liver of fish fed SL, while

myeloperoxidase was reduced in most microalgae-fed groups. In conclusion, we

show that commercially relevant microalgae can be used as functional feed

additives for Atlantic salmon promoting different health aspects without

negatively affecting their growth performance when cultivated in RAS.
KEYWORDS

microalgae, functional feed, bioactive compound, fatty acids, carotenoids, immunity,
fish health, Atlantic salmon
1 Introduction

Feed in aquaculture is a finite resource, which provides nutrients

but should also promote the growth and health of farmed fish.

Consequently, interest is growing in developing functional feeds

that guarantee good fish health, improve performance and mitigate

farming related stressors. Although a variety of compounds have been

investigated as functional ingredients in fish feed, microalgae have

only recently been considered. These single cell algae contain different

types of polysaccharides, sulfolipids, polyunsaturated fatty acids and

pigments (Riccio and Lauritano, 2020). Green algae such as Chlorella

sp. and Tetraselmis sp. are rich in pigments such as chlorophylls and

carotenoids, while heterotrophic Schizochytrium (herein considered

as microalgae) contain high amounts of docosahexaenoic acid (DHA;

Nakahara et al., 1996; Ren et al., 2010).

The diverse chemical composition of microalgae holds potential

for a variety of biological activities, including antioxidant (Carballo

et al., 2018; Teimouri et al., 2019), antimicrobial (Guzmán et al.,

2019) as well as anti-inflammatory activities (Fujii, 2000; Guzmán

et al., 2003). Feeding microalgae to different fish species was found

to affect their health and immunity. Including Chlorella vulgaris

into the feed, for instance, counteracted soy-bean meal-induced

intestinal inflammation in Atlantic salmon Salmo salar (Grammes

et al., 2013) and zebrafish Danio rerio (Bravo-Tello et al., 2017).

Dietary administration of Chlorella sorokiniana further stimulated

humoral innate immunity in rainbow trout Oncorhynchus mykiss

(Chen et al., 2021), while Tetraselmis chuii and Phaedactylum

tricornutum increased phagocytotic and complement activity in

gilthead seabream Sparus aurata (Cerezuela et al., 2012a).

Although health and immune promoting effects are described

for different microalgae species, the majority of studies in fish has

investigated microalgae as a source to replace fishmeal or fish oil in

the feed (Carvalho et al., 2020; Kousoulaki et al., 2020; Sarker et al.,

2020a). Studies evaluating the functional properties of different

microalgae species under challenging environmental conditions are

currently missing.

Such challenging environmental conditions can occur during

the production of Atlantic salmon in recirculating aquaculture

systems (RAS). Production of Atlantic salmon in RAS is globally

expanding (Bergheim et al., 2009; Davidson et al., 2021). This is

because these systems allow a controlled production environment
02
with a high level of biosecurity and a significantly reduced discharge

of waste products into the aquatic environment (Dalsgaard et al.,

2013; Ahmed and Turchini, 2021). However, the RAS environment

is considered particularly challenging for fish health due to higher

stocking densities (Calabrese et al., 2017), accumulation of waste

products (Ruyet et al., 2008), as well as water disinfection treatment

(Soleng et al., 2019; Stiller et al., 2020). Dietary mitigation under

these conditions may be a promising strategy to improve overall

health and performance of salmon cultivated in RAS. Currently the

use of a brackish water phase in RAS before seawater transfer is

investigated as an alternative to shorten the production time in the

sea (Ytrestøyl et al., 2020; Ytrestøyl et al., 2023). While it is well

established that transfer to seawater of Atlantic salmon is associated

with a drastic stress-related reduction in appetite (Usher et al.,

1991), little is known about whether microalgae, which contain

different amino and fatty acids, could potentially increase feed

intake in this critical time period.

A thorough assessment of the fish’s health and immune

status in functional feeding studies requires investigating both

transfer of functional components from feed to fish and their

subsequent effects in vivo. The former is usually performed using

analytical chemistry to trace fatty acids, pigments and other

functional compounds. The latter requires investigating different

aspects of the fish’s health and immune status. Functional feeds

are expected to provoke a local response in the intestine (Bae

et al., 2020; López Nadal et al., 2020), but also systemic effects

may occur. These are reflected in physiological alterations of the

blood plasma, the spleen and the liver, being constantly exposed

to antigens from the bloodstream (Bayne et al., 2001; Wu

et al., 2016).

In this study, we aimed to elucidate whether functional diets

enriched with different commercially relevant microalgae species at

8% inclusion in the feed can improve performance, health and

immune status of Atlantic salmon reared in RAS. Since seawater

transfer of salmon smolts is a particular critical time period

following land-based rearing in RAS (Usher et al., 1991; Karlsen

et al., 2018), we evaluated diet dependent effects during this time-

period in addition. Alongside with performance indicators, fatty

acid and pigment profiles, a set of putative biomarkers on gene and

protein level in plasma, liver, intestine and spleen were used to

evaluate the health and immune status of the salmon.
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2 Materials and methods

2.1 Feed formulation

Six isonitrogenous and isoenergetic (on dry matter basis; see

Table 1) experimental diets were formulated based on the nutrient

requirements of Atlantic salmon (National Research Council, 2011).

The diets were designed to include one of the following microalgae:

Chlorella vulgaris, Tetraselmis chuii (TC), Arthrospira platensis (AP) or

Schizochytrium limacinum (SL) at an inclusion level of 8%. Two

different Chlorella vulgaris were included in the experimental design,

one had an intact (CVI) and the other a broken cell wall (CVB). The

microalgae were obtained from a commercial supplier and were

cultivated in both open and closed bioreactors under commercial

settings (Supplementary Table 1). All microalgae were spray-dried

after harvesting. Inclusion of the microalgae was done in exchange for

wheat starch, wheat gluten and canola oil. In contrast to other studies

basal feed components (e.g. fishmeal and fish oil) were kept constant in

the diet formulation and hence allowed to evaluate the direct effect of

every microalgae ingredient. The experimental diets were pelletized

(Type 14U175, Amandus Kahl, Hamburg, Germany) at temperatures

below 60°C to pellets with 4mm diameter and stored at 4°C in the dark

before and during the trial.
2.2 Experimental setup

The experiment was conducted at the facilities of the Fraunhofer

IMTE, Büsum, Germany. Atlantic salmon smolts were obtained from

Jurassic Salmon, Poland and were acclimated for two months in a

recirculating aquaculture system. During acclimation, the fish were fed
Frontiers in Marine Science 03
a commercial salmon diet (Aller Aqua, Denmark). Water treatment of

the RAS (7.6 m3, turnover rate 4 times h−1) consisted of a moving bed

biofilter, a bead filter (PolyGeyser, Model DF-6, Aquaculture Systems

Technologies, L.L.C., New Orleans, LA, USA), a protein skimmer and

UV-light disinfection. Water quality parameters were measured on a

daily basis (NH4
+ and NO2

- biweekly) and kept in a suitable range for

Atlantic salmon (13.5 ± 0.4°C, 7.3 ± 0.1 pH, 10.3 ± 0.2 mg/L O2, 0.2 ±

0.1 mg/L NH4
+, 0.2 ± 0.04 mg/L NO2

-, (Microquant test kit for NH4
+

and NO2
-, Merck, Darmstadt, Germany). Salinity was set to 13.0 ± 0.8

psu (HI 96822 Seawater Refractometer, Hanna Instruments Inc.,

Woonsocket-RI, USA) by mixing freshwater and seawater. Light was

provided for 24 h throughout the experimental period. Prior to the start

of the experiment Atlantic salmon smolts (mean body weight 82.32 ±

1.96 g) were randomly divided into six different groups in triplicate,

each consisting of 28 fish and stocked into 18 tanks (300 L) of the RAS

(Figure 1). Following rearing the fish for eight weeks in brackish water,

all of the fish were transferred into a new RAS system, which was

identical to the other, but operated with full strength seawater (salinity

of 31.8 ± 0.5 psu). Water parameters for this system were as followed:

13.4 ± 0.3°C, 7.2 ± 0.1 pH, 10.4 ± 0.3 mg/L O2, 0.2 ± 0.1 mg/L NH4
+,

0.2 ± 0.07 mg/L NO2
-. The fish were kept under these conditions for

additional two weeks before the experiment was terminated. The fish

were fed manually twice per day (8 a.m. and 2 p.m.) until apparent

satiation during the entire experiment. Leftover pellets were collected,

counted and used to calculate feed intake.
2.3 Fish sampling

Samples were collected before the onset of the experiment (T0),

after two weeks (T1) and eight weeks of feeding the experimental
TABLE 1 Feed formulation of experimental diets in g/100g dry matter (DM).

Ingredients (g/100g DM) CD CVI CVB TC AP SL

Fish meal1 15 15 15 15 15 15

Microalgae 0 8 8 8 8 8

Blood meal2 6 6 6 6 6 6

Gelatine3 5 5 5 5 5 5

Pea protein isolate4 14 14 14 14 14 14

Soy protein concentrate5 11 11 11 11 11 11

Wheat gluten6 12 7.17 6.53 8.44 5.25 9.44

Wheat starch6 21.4 18.45 18.85 17.86 20.2 19.3

Canola oil7 5.5 5.5 5.5 6.1 5.5 2.5

Fish oil1 6 6 6 6 6 6

Methionine8 0.1 0.1 0.1 0.1 0.1 0.1

Vitamin & mineral premix4 0.5 0.5 0.5 0.5 0.5 0.5

CaHPO4
9 2 2 2 2 2 2

Bentonite10 1.5 1.28 1.52 0 1.45 1.16
1Bioceval GmBH & Co. KG, Cuxhaven; Germany; 2Saria SE & Co. KG, Selm, Germany; 3Gustav Ehlert GmbH & Co. KG, Verl, Germany; 4Emsland-Aller Aqua GmbH, Golßen, Germany;
5EURODUNA Rohstoffe GmbH, Barmstedt, Germany; 6Kröner-Stärke GmbH, Ibbenbüren, Germany; 7Cargill GmbH, Riesa, Germany; 8Evonik Industries AG, Essen, Germany; 9Lehmann &
Voss & Co. KG, Hamburg, Germany; 10Del Lago Bentonite, Castiglioni Pes y Cıá., Buenos Aires, Argentina.
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diets in brackish water (T2) and two weeks following transfer into

seawater (T3; Figure 1). At each sampling nine fish per treatment

(three per tank) were randomly sampled. The fish were quickly

netted from the experimental tanks and euthanized by an overdose

of buffered MS-222 (0.3 mg/L). For each fish total length and total

weight was recorded. 2 ml of blood was collected in heparinized

syringes by caudal vein puncture. The blood was transferred into 2

ml Eppendorf tubes and centrifuged at 4000 g for 8 min. Aliquots of

the plasma were flash-frozen on dry ice and stored at −80°C for the

determination of plasma metabolites, total carotenoid content, and

enzyme activities.

The liver and spleen were carefully removed and weighed for

the calculation of organ specific indices. At the end of the brackish

water phase (T2) a piece of the liver, anterior intestine and the

spleen was placed in an RNase free tube and flash frozen in liquid

nitrogen for gene expression analysis. In addition, after two (T1)

and eight weeks (T2) of feeding the experimental diets a piece of the

liver was flash-frozen on dry ice for later protein analysis using

western blots.

At T0, T2 and T3 both fillets from every fish were taken, de-

skinned, homogenized by means of a knife-mill (Grindomix

GM200, Retsch GmbH, Haan, Germany) and stored at −40°C for

later analysis of proximate composition, fatty acid profile, as well as

carotenoid content. At T0 and T2 three additional fish per tank

were sampled and pooled for the analysis of whole-body

proximate composition.
2.4 Proximate composition of whole body
and diets

Proximate composition was analyzed in microalgae

(Supplementary Table 2), diets (Table 2) and whole-body
Frontiers in Marine Science 04
homogenates in duplicates using the same methods. Whole body

samples were freeze-dried (Alpha 1-2 LD plus and Alpha 1-4 LSC,

Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am

Harz, Germany) until a stable weight was achieved and

homogenized using a knife mill (GM 200, Retsch GmbH).

Nutrients and gross energy were analyzed according to EU

guideline (EC) 152/2009. Dry matter content was determined

following drying of samples at 103°C in a drying oven for 4 h

(ED 53, Binder GmbH, Tuttlingen, Germany). Ash content was

determined after combustion in a combustion oven at 550°C (P300,

Nabertherm, Lilienthal, Germany). Crude protein content was

analyzed following the Kjeldahl method (InKjel 1225M, WD30,

Behr, Düsseldorf, Germany). Crude lipid content was extracted with

petroleum ether in a Soxhlet extraction system (Soxtherm,

Hydrotherm, Gerhardt Königswinter, Germany) and quantified

gravimetrically. Gross energy was determined using a bomb

calorimeter (C 200, IKA, Staufen, Germany).
2.5 Diet and microalgae fatty
acid composition

To physically break down the material, 10 g of each diet and

microalgae (Supplementary Table 3) was ground with a mortar,

mixed with 20 ml of distilled water and homogenised for 2 min with

an Ultra-Turrax disperser (IKA). The slurry was lyophilised and

mortared again. To determine the fatty acid composition, 20 mg

sample (weighed to the nearest 0.1 mg) was then subjected to direct

transesterification according to Griffiths et al. (2010). However,

boron trifluoride-methanol was replaced by 3 M methanolic HCl

(Sigma-Aldrich, Taufkirchen, Germany) and distilled water by 1 M

aqueous NaCl (Merck, Germany). All other reagents were from

Sigma-Aldrich. Each diet was transesterified in triplicate and the
FIGURE 1

Experimental design of feeding trial with microalgae enriched diets. Atlantic salmon were first reared in brackish water and after eight weeks
transferred to seawater (SW transfer) for additional two weeks. Throughout the trial the fish received six different experimental diets: control (CD),
Chlorella vulgaris intact (CVI), Chlorella vulgaris broken (CVB), Tetraselmis chuii (TC), Arthrospira platensis (AP) and Schizochytrium limacinum (SL) at
an inclusion level of 8%. Atlantic salmon image was created with BioRender.com.
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TABLE 2 Crude composition (percent dry matter) as well as fatty acid composition (mg/100g dry matter) and pigment composition (µg/100g dry
matter) of the experimental diets given as mean of two and pigment concentrations as mean of four replicate analyses.

Chemical composition (% DM) CD CVI CVB TC AP SL

Dry matter (%) 90.03 91.52 91.59 92.90 92.08 93.02

Crude protein (%) 51.04 51.26 51.00 50.93 51.11 51.38

Fat (%) 16.18 16.38 16.60 16.87 16.19 15.11

Ash (%) 7.47 8.15 8.28 8.61 8.07 7.72

Crude energy (MJ/kg) 22.72 22.71 22.68 22.72 22.69 22.70

Fatty acids (mg/100 g DM)

C14:0 321 317 320 320 312 336

C15:0 30 37 40 40 36 34

C16:0 1570 1600 1601 1645 1672 1943

C17:0 26 27 29 28 26 28

C18:0 335 335 339 347 333 317

C20:0 57 55 56 59 56 47

C22:0 30 30 29 30 26 25

C24:0 28 30 25 27 27 26

total SFA 2397 2431 2438 2496 2488 2757

C16:1n11 21 30 24 21 20 20

C16:1n9 21 32 37 27 27 21

C16:1n7 332 342 367 336 346 337

C16:1n5 18 18 17 17 18 18

C16:1n3 13 13 14 13 14 14

C17:1n8 21 23 24 22 25 19

C18:1n9 5128 5014 5011 5490 5000 3543

C18:1n7 395 402 443 448 390 331

C18:1n5 21 20 20 20 21 21

C20:1n9 550 538 537 560 531 513

C20:1n7 32 29 33 33 33 29

C22:1n11 687 679 678 689 668 688

C22:1n9 83 76 74 85 73 71

C24:1n9 58 56 57 58 56 55

total MUFA 7380 7272 7337 7817 7222 5677

C16:2n6 n.d. 37 51 13 11 11

C18:2n6 2409 2360 2371 2409 2307 1836

C18:3n6 11 11 11 23 93 13

C20:2n6 41 40 39 42 40 39

C20:3n6 13 13 12 14 14 18

C20:4n6 41 40 41 43 41 45

C22:5n6 22 22 21 22 21 401

total n6 PUFA 2537 2524 2545 2567 2527 2362

(Continued)
F
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fatty acid methyl ester (FAME) extracts used for separate gas

chromatography (GC) analysis. Fatty acid contents were

calculated as mg FAME/100 g dry matter (Table 2). For GC

conditions, see the section on muscle proximate and fatty

acid composition.
2.6 Proximate and fatty acid composition
of muscle

Moisture and ash content were determined by drying samples

of around 5 g for 12 h at 105°C, followed by ashing at 550°C. The

nitrogen content was measured by Dumas using a LECO TruSpecN

(Leco Instruments GmbH, Mönchengladbach, Germany). Lipids

were extracted according to Smedes (1999) using cyclohexane and

2-propanol (VWR, Darmstadt, Germany) with modifications by

Karl et al. (2012). For GC analysis of fatty acids, lipids were obtained

in a separate extraction without final drying at 105°C and

transesterified into FAME using methanolic potassium hydroxide

(ISO-IDF, 2002).

Fatty acid analysis was performed using a 7890A gas

chromatograph (Agilent Technologies, Santa Clara, CA, USA)

equipped with a 7683B autosampler, a split injection port (injection

volume 1 µL, split 1:100), flame ionisation detection and a 100 m x

0.25 mm i.d. x 0.20 µm - CP-Sil 88 column (Agilent Technologies).
Frontiers in Marine Science 06
Hydrogen was used as the carrier gas with a constant flow of 1.6 mL

min-1. Two min after injection, the initial oven temperature of 175°C

was increased by 1°C per minute to 190°C, held constant for 1 min,

then increased by 5°C per minute to 225°C, held constant for 7 min,

and finally increased by 1°C per minute to 237°C (1 min constant).

Chromatograms were evaluated using EZChrom Elite 3.3.2 (Agilent

Technologies). Identification of individual FAME was achieved by

comparison to known standards (Supelco™ 37 Component FAME

mix, PUFA No. 1, PUFA No. 3; all obtained from Sigma-Aldrich) in

the range fromC14:0 to C22:6n3. Fatty acid contents for fillet samples

were calculated as weight percentage (g FA/100 g FA) and are given

as means of duplicate analyses.
2.7 Carotenoid content

Carotenoids were extracted from the diets and microalgae with

methanol using an Ultra-Turrax (IKA) at 24,000 rpm for two cycles

of 45 s (Schüler et al., 2020). Samples were centrifuged and the

supernatants of three repetitions were combined. During extraction

the samples were kept on ice. The extraction of the fish fillet

homogenate was done according to Ostermeyer and Schmidt

(2004). After an initial evaluation of carotenoids in individual fish

samples (n = 18), muscle samples were pooled on a tank level

(n = 3).
TABLE 2 Continued

Fatty acids (mg/100 g DM) CD CVI CVB TC AP SL

C16:3n3 n.d. 71 96 n.d. n.d. n.d.

C16:4n3 n.d. n.d. 12 89 n.d. n.d.

C18:3n3 ALA 622 727 792 747 627 452

C18:4n3 SDA 143 144 146 178 142 154

C20:3n3 18 19 20 18 19 19

C20:4n3 48 47 50 49 48 70

C20:5n3 EPA 415 410 414 441 410 440

C22:5n3 86 84 86 88 85 89

C22:6n3 DHA 613 604 609 614 607 2518

total n3 PUFA 1946 2107 2226 2223 1939 3742

C16:2n4 24 24 28 24 26 26

C16:3n4 53 52 51 54 51 54

total PUFA 4560 4706 4850 4868 4543 6184

n3 HUFA 1181 1165 1180 1209 1169 3136

Carotenoids (µg/100 g DM)

Lutein 29.8 3887 13251 3346 n.d. 36.9

Violaxanthin n.d. n.d. n.d. 2186 n.d. n.d.

Neoxanthin n.d. 406 1548 4277 n.d. n.d.

Zeaxanthin n.d. 133 358 n.d. 3339 n.d.
n.d, not detected; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; HUFA, highly unsaturated fatty acids with 20 or more carbon atoms and 3
or more double bonds; ALA, a-Linolenic acid; SDA, stearidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.
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For the quantitative determination of the carotenoids an aliquot

of the extract was evaporated and the residue dissolved in mobile

phase. HPLC was carried out using a C30 analytical column (5 µm,

250 x 4.6 mm i.d., YMC Europe, Dinslaken, Germany) preceding by

a C30 guard column (5 µm, 10 x 4.0 mm i.d.) and a gradient of

methyl tert-butyl ether, methanol with a small amount of an

ammonium acetate buffer (pH 4.6), similar to (Rasmussen et al.,

2012). A flow rate of 1.0 mL min-1 at 25°C with an injection volume

of 100 µL was used. The detection was performed with a photodiode

array detector (UV 6000 LP; Thermo Finnigan, San Jose, CA, USA)

at 450 nm and 470 nm. Peaks were identified by comparison of the

retention times and the absorption spectra (between 380 nm and

700 nm) with those of synthetic standards. The carotenoids were

quantified using an external standard containing lutein,

fucoxanthin, violaxanthin, neoxanthin, astaxanthin, zeaxanthin

and canthaxanthin (ChromaDex, Irvine, CA, USA; Sigma-

Aldrich; Dr. Ehrenstorfer, Augsburg, Germany).
2.8 Plasma metabolites and
enzyme activities

Plasma glucose, triglycerides, total protein, alkaline phosphatase

(ALP), aspartate aminotransferase (AST) and alanine amino-

transferase (ALT) activity were measured on a Fuji Dry Chem

NX500i (Fujifilm, Ratingen, Germany) using commercial kits and

following the manufacturer´s instructions.

Total carotenoid content in plasma samples (Supplementary

Figure 1) was measured after Donaldson (2012) with slight

modifications. Briefly, 100 µL of plasma was mixed with 100 µL

of 70% ethanol in a 1.5 mL reaction tube wrapped with aluminium

foil and vortexed for one minute to precipitate the proteins. Then

300 µL of n-heptane (Roth, Karlsruhe, Germany) was added and the

mixture was vortexed for four minutes at maximum speed. The

mixture was centrifuged at 2000 g for two minutes. Following

separation of both layers 290 µL of the heptane layer including

the dissolved carotenoids were decanted and added to a 10 mm

quartz cuvette (type 104-QS, Hellma, Müllheim, Germany) and

further diluted with 410 µL of heptane. The absorbance was

measured at 448 nm using a spectrophotometer (SPECORD210,

Analytik Jena GmbH, Jena, Germany). The carotenoid content was

then calculated according to Donaldson (2012). Spectral profiles of

every sample (300 – 600 nm) confirmed the presence of a

carotenoid peak at ~ 448 nm (Supplementary Figure 1B).

Preparation of extracts and measurements were performed under

reduced light conditions to minimize pigment degradation in

the samples.
2.9 Western blots of liver proteins

Total protein from liver samples (n = 3 pool per tank) was

extracted with Radioimmunoprecipitation (RIPA) lysis buffer

according to the manufacturer’s protocol (RIPA Lysis Buffer

System, Santa Cruz Biotechnology, Dallas, Texas, USA). The

pro te in s Cu , Zn superox ide d i smutase (Sod1) and
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myeloperoxidase (Mpo) were analyzed in the salmon liver per

SDS-PAGE and Western Blot. The protein ß-actin served as

loading control. A no template control and one positive control

per antibody were included, Danio rerio liver for Mpo, Bovine liver

for Sod1 and HEK-293 cells for ß-actin. 20 µg total protein was

processed in reducing conditions with SDS sample and reducing

buffer (both TruPAGE, Sigma-Aldrich, Schnelldorf, Germany) at

70°C for 10 min. SDS-PAGE was performed in a Xcell SureLock

Mini-Cell (Thermo Fisher Scientific, Waltham, Massachusetts,

USA) using precast 4-12% gradient gels, TruPAGE running buffer

and antioxidant (Sigma-Aldrich). Proteins were electro-transferred

to a PVDF membrane. For parallel protein detection of Mpo and

Sod1 the membrane was horizontally cut. Primary antibody

incubation, with Mpo antibody (ab210563, Abcam, Cambridge.,

UK) in 1:5000 dilution in PBS-T containing 2.5% skim milk and

Sod1 antibody (NBP2-24915, Novus Biologicals, Bio-Techne Ltd.,

Abingdon, UK) in 1:500 dilution in PBS-T containing 2.5% skim

milk, was performed at 4°C overnight. Secondary antibody anti-

rabbit IgG conjugated HRP (sc-2357, Santa Cruz Biotechnology)

was incubated in a 1:5000 dilution for 90 min at room temperature.

Detection was performed using ECL detection reagents

(Amersham, Global Life Sciences Solutions USA LLC,

Marlborough, MA, USA) and chemiluminescence fi lm

(Amersham, GE Healthcare Ltd, Little Chalfont, UK) with 40 sec

exposure time for both Mpo and Sod1. For the subsequent detection

of ß-actin the antibodies were stripped using 100 mM Glycin buffer

(pH 2.5). The membrane was incubated in 1:5000 dilution of b-
actin antibody (NB600-503, Novus Biologicals, Bio-Techne Ltd.,

Abingdon, UK) at 4°C overnight. Quantification of protein

expression was done following densitometric analysis of the

protein bands using GIMP and normalized to housekeeping (ß-

actin) protein expression.
2.10 Gene expression in liver, spleen
and intestine

Total RNA was extracted using TRIzol (ThermoFisher

Scientific, Waltham, MA, USA) and further purified with the

ISOLATE II RNA Micro Kit (Meridian Bioscience Inc.,

Cincinnati, OH, USA). The concentration and integrity of the

extracted RNA was measured by NanoDrop One (Thermo Fisher

Scientific). Subsequently, cDNA synthesis was performed using

Reverse Transcription Master Mix (Fluidigm, San Francisco, CA,

USA). The samples were preamplified by the PreAmp Master Mix

(Fluidigm) and at last treated with exonuclease I (New England

BioLabs, Frankfurt/Main, Germany). All steps have been carried out

according to the manufacturer’s instructions.

45 genes with tissue specific regulation were selected from an

established gene set composed of key immune and stress regulated

genes in Atlantic salmon (Krasnov et al., 2020; Lund et al., 2022;

Supplementary Table 4). We extended this set by three

immunogene-specific primers derived for hamp, saa5 and sod1

(Supplementary Table 4). The same 48 genes (45 target and 3

reference genes) were measured in the tissue anterior intestine, liver

and spleen.
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The 48.48 gene expression biochips were primed in the MX IFC

Controller (Standard BioTools, San Francisco, CA, USA). The pre-

amplified cDNA samples were pipetted to the sample inlets and the

primers were loaded on the assay and finally, analyzed with the

Biomark HD using the manufacturer’s thermal protocol “GE Fast

48 × 48 PCR+Melt v2.pcl” (application type: gene expression;

passive reference: ROX; assay: single probe).

The raw qPCR Ct values were obtained using the Fluidigm real-

time PCR analysis software v. 3.0.2 (Munich, Germany). Relative

expression was calculated based on DDCt where three reference

genes coding for b-actin, ribosomal protein L4 and ribosomal

protein S20 (actb, rpl4, rps20) were used as internal normalisers.

The mean Ct per gene for all samples was used as a calibrator during

the calculation. Relative expression values were log2 transformed

prior to statistical analysis. Four individuals with abnormal

phenotypic signs and subsequently abnormally high gene

expression profiles were removed from the dataset. The genes

cxcl8 and il1b in the liver and cxcl8 in the spleen were removed

from the dataset, as to many missing values hampered analysis of

the data.
2.11 Statistical analysis

Statistical analysis and data visualization were conducted using the

software R (R version 4.1.0) in the environment RStudio. For all test a
= 0.05 was used as the level of significance. Data is presented as mean ±

standard error of mean (SEM). For the performance parameters,

protein concentrations in the liver as well as carotenoid

concentrations in the muscle an appropriate statistical model based

on generalized least squares was defined (Carroll and Ruppert, 1988)

which included the factor diet as well as timepoint for the latter two.

The residuals were assumed to be normally distributed and to be

heteroscedastic, which was based on a graphical residual analysis.

Analysis of variance (ANOVA) was conducted, followed by multiple

contrast tests for heteroscedastic data (Hasler and Hothorn, 2008) in

order to compare the several diets with the control diet. For plasma

parameters, proximate and fatty acid composition of themuscle, as well

as gene expression data, mixed effect models (Laird and Ware, 1982;

Carroll and Ruppert, 1988; Pinheiro and Bates, 2000) were used. The

model included diet, timepoint and their interaction as fixed factors

and tank as a random factor. The residuals were assumed to be

normally distributed and to be heteroscedastic. Based on this model,

a Pseudo R2 was calculated (Nakagawa and Schielzeth, 2013) and an

ANOVAwas conducted, followed by multiple contrast tests in order to

compare the several diets with the control diet, and the timepoints,

respectively. If the factors diet and timepoint had no significant

interaction, then corresponding multiple contrast tests were pooled

over the levels of the remaining factor. Spearman correlation analysis

was employed to relate muscle lutein and plasma carotenoid

concentrations, since muscle lutein concentrations were not normally

distributed. Pearson correlation analysis was applied to relate the

increase in DHA with a decrease in fat content in the muscle.
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3 Results

3.1 Fish performance and proximate
body composition

Feeding the experimental diets for eight weeks to the salmon in

brackish water revealed no difference in growth and feed intake

among groups (Table 3). Feed conversion ratio (FCR) was highest

in the control group (CD), and including broken C. vulgaris (CVB)

in the feed significantly improved the feed conversion ratio (p =

0.03). Furthermore, feeding CVB slightly improved the protein

efficiency ratio (p = 0.11) but reduced body condition (p = 0.01).

Hepatosomatic index and spleen somatic index were not affected by

the diet (Table 3). Mortality was low and not different among diet

groups. Furthermore, the diet did not affect proximate whole-body

composition of the salmon (Table 4) but feeding CVB slightly

increased ash content (p = 0.06). After the fish were transferred to

full strength seawater voluntary feed intake decreased to one third

of the levels prior transfer but was not different among

groups (Table 3).
3.2 Proximate and fatty acid composition
of muscle

The diet did not affect protein, water and ash content of the

muscle in brackish water (T2) and following transfer to seawater

(T3; Tables 5; S5). Fat content was significantly reduced in brackish

water in fish fed A. platensis (AP; 12% reduction) and S. limacinum

(SL; 13.5% reduction) compared to CD (Table 5). Fat content

decreased on average by 29% after transfer to seawater across all

groups (Table 5). It decreased most in groups receiving intact and

broken C. vulgaris, CVI (38%) and CVB (32.9%), but markedly less

in fish fed AP (18.5%).

Generally, fatty acid composition in the muscle lipids reflected

that of the diet (Table 5; Table 2). Both diet and timepoint

significantly influenced the fatty acid composition, however, an

interaction of both factors was absent in most cases (Tables 5; S5).

Alpha-linolenic acid (LA) was significantly enriched in muscle

lipids of CVB, CVI and T. chuii (TC) fed fish in brackish water

and in CVB and CVI fed fish after transfer to seawater (Table 5).

Steraidonic acid (SDA) content was higher in TC compared to CD

at both timepoints. Eicosapentaenoic acid (EPA) levels were affected

by an interaction of diet and timepoint and levels increased in CD

by 11.3%, CVB by 16.2% and CVI 18.1% following transfer to

seawater (Tables 5; S5). Docosahexaenoic acid (DHA) levels were

significantly increased in SL compared to CD fed fish at both

timepoints and relative levels increased following transfer to

seawater in all groups by 23.8% (Figure 2A, Table 5). A

significant negative correlation between the relative reduction in

total fat content in the muscle and the relative increase in DHA

based on diet group means was detected (R = 0.89, p <

0.001; Figure 2B).
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3.3 Muscle and plasma carotenoid content

Lutein was the main carotenoid present in all groups and

significantly enriched in the muscle at both timepoints of fish fed

CVI, CVB and TC (Table 5) reflecting the content of lutein in the

respective algae (Supplementary Table 3). Lutein content in fish fed

CVB was more than two times higher than in fish fed CVI and TC.

Zeaxanthin was detected in muscle of fish fed AP and TC and

violaxanthin was only detected in fish fed TC (Table 5).

The total carotenoid content in plasma of CVB fed fish was two

times higher than in fish fed CVI (p = 0.08) and TC (p = 0.05;

Figure 3A), which was also visible when comparing plasma samples

of the respective groups directly (Supplementary Figure 1A). No

carotenoid content was detectable in groups fed CD and SL

(Supplementary Figures 1A, B), while values for AP were below

the calculated standard curve and were subsequently excluded from
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further analysis. Muscle lutein concentrations significantly

correlated with total carotenoid concentration in plasma samples

(Spearman R = 0.52, p = 0.03; Figure 3B).
3.4 Plasma metabolites and
enzyme activities

CVI inclusion significantly lowered aspartate aminotransferase

and alanine aminotransferase activity in microalgae fed groups

compared to CD (p ≤ 0.046; Figures 4A, B). Furthermore, SL

lowered aspartate aminotransferase activity (p = 0.06; Figure 4A).

The highest variance in aspartate aminotransferase and alanine

aminotransferase activity was found among fish fed CD, while it

was lowest among fish fed CVI. Total plasma protein and alkaline

phosphatase activity were not influenced by the diet but showed an
TABLE 3 Growth performance and organ specific indices of Atlantic salmon after eight weeks of feeding the experimental diets in brackish water and
feed intake for the period of two weeks in seawater.

CD CVI CVB TC AP SL ANOVA

IBW [g] 81.9 ± 0.5 80.6 ± 0.7 83.6 ± 0.6 80.6 ± 1.2 82.5 ± 0.5 81.6 ± 0.8 ns

FBW [g] 149.0 ± 2.1 149.4 ± 4.9 156.0 ± 2.3 147.7 ± 5.6 153.3 ± 1.8 147.9 ± 2.6 ns

WG [g] 67.1 ± 1.6 68.8 ± 4.6 72.5 ± 1.9 67.1 ± 6.1 70.7 ± 1.3 66.3 ± 1.8 ns

SGR 1.07 ± 0.01 1.1 ± 0.05 1.11 ± 0.02 1.08 ± 0.08 1.11 ± 0.01 1.06 ± 0.01 ns

DFI 1.18 ± 0.02 1.14 ± 0.08 1.14 ± 0.03 1.11 ± 0.05 1.19 ± 0.07 1.15 ± 0.03 ns

FCR 1.11 ± 0.01 1.03 ± 0.03 1.03 ± 0.01* 1.04 ± 0.03 1.08 ± 0.06 1.08 ± 0.04 0.01

PER 1.96 ± 0.02 2.07 ± 0.07 2.09 ± 0.02 2.05 ± 0.06 1.99 ± 0.11 1.94 ± 0.08 0.05

PRE 38.1 ± 0.1 40.3 ± 1.4 39.8 ± 0.6 39.0 ± 1.0 37.4 ± 1.7 37.0 ± 0.9 ns

CF 0.96 ± 0.01 0.90 ± 0.02 0.86 ± 0.01* 0.97 ± 0.02 0.95 ± 0.02 0.90 ± 0.02 0.01

HSI [%] 1.46 ± 0.10 1.42 ± 0.08 1.25 ± 0.04 1.35 ± 0.08 1.45 ± 0.09 1.28 ± 0.07 ns

SSI [%] 0.09 ± 0.00 0.09 ± 0.00 0.1 ± 0.01 0.1 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 ns

Survival [%] 100 ± 0.0 97.6 ± 1.0 96.4 ± 1.7 95.2 ± 2.6 98.8 ± 1.0 95.2 ± 1.0 ns

DFI SW 0.44 ± 0.04 0.31 ± 0.04 0.39 ± 0.01 0.40 ± 0.05 0.53 ± 0.07 0.52 ± 0.04 ns
fro
Data is presented as mean ± SEM, with n = 3 tanks per treatment for performance parameters and n = 9 individuals for organ specific indices. A significant difference (p < 0.05) compared to the
control diet (CD) was assessed by Dunnett’s multiple comparisons and indicated with a *; ns, not significant. Note that presented ANOVA results do not fully agree with results from multiple
comparisons due to heteroscedasticity. IBW (initial body weight); FBW (final body weight); WG (weight gain); SGR (specific growth rate) = (ln (FBW) – ln (IBW))/experimental days * 100; DFI
(daily feed intake) = daily feed intake in % body weight; FCR (feed conversion ratio) = total feed intake (g)/weight gain (g); PER (protein efficiency ratio) = weight gain (g)/crude protein intake (g);
PRE (protein retention efficiency) = crude protein gained (g)/crude protein intake (g) * 100; CF (Fulton´s condition factor) = weight/fish length3 *100; HSI (hepatosomatic index) = liver weight
(g)/fish weight * 100; SSI (spleen somatic index) = spleen weight (g)/fish weight (g) * 100; SW seawater.
TABLE 4 Proximate body composition (percent OS) of Atlantic salmon after eight weeks of feeding the experimental diets.

[%] OS CD CVI CVB TC AP SL ANOVA

Moisture 70.41 ± 0.44 70.23 ± 0.23 70.47 ± 0.04 70.38 ± 0.17 70.54 ± 0.13 70.60 ± 0.08 ns

Ash 2.33 ± 0.01 2.47 ± 0.05 2.54 ± 0.03(*) 2.22 ± 0.05 2.34 ± 0.07 2.39 ± 0.04 0.004

Crude protein 18.23 ± 0.10 18.3 ± 0.17 18.11 ± 0.07 18.09 ± 0.01 18 ± 0.06 18.11 ± 0.11 ns

Crude lipid 9.04 ± 0.37 9.00 ± 0.27 8.88 ± 0.06 9.31 ± 0.14 9.12 ± 0.13 8.90 ± 0.22 ns

Energy[MJ/kg] 7.88 ± 0.16 7.82 ± 0.09 7.71 ± 0.02 7.90 ± 0.04 7.82 ± 0.04 7.77 ± 0.06 ns
Data is presented as mean ± SEM as original substance (OS), with n = 3 tanks per treatment. A trend (p < 0.1) compared to the control diet (CD) was assessed by Dunnett’s multiple comparisons
and indicated with (*); ns, not significant. Note that presented ANOVA results do not fully agree with results from multiple comparisons due to heteroscedasticity.
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overall increase between T1 and T2 (p < 0.001; Supplementary

Figure 2). Total cholesterol increased significantly between the first

two samplings for fish fed CVI, CVB and TC (p < 0.05;

Supplementary Figure 2). Glucose furthermore increased over

time only in fish fed SL (p = 0.02; Supplementary Figure 2).
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3.5 Liver proteins

Abundance of myeloperoxidase (Mpo) in the liver of Atlantic

salmon fed a microalgae-enriched diet was lower in most cases at

both timepoints compared to CD (Figure 5A). This effect was
TABLE 5 Proximate, fatty acid and carotenoid composition of Atlantic salmon muscle fed microalgae enriched diets eight weeks in brackish water
(T2) and two weeks following seawater transfer (T3).

Timepoint T2 T3

Diet CD AP CVB SL CVI TC CD AP CVB SL CVI TC

Proximate composition [% OS]

protein [%]
19.93 ±
0.19

20.41 ±
0.10

19.86 ±
0.23

20.21 ±
0.17

19.73 ±
0.14

20.28 ±
0.09

20.90 ±
0.35

20.68 ±
0.17

20.60 ±
0.15

20.43 ±
0.21

20.57 ±
0.18 b

20.71 ±
0.13

water [%]
74.71 ±
0.22

74.99 ±
0.24

75.11 ±
0.27

75.31 ±
0.22

75.10 ±
0.21

74.43 ±
0.19

75.65 ±
0.35

75.97 ±
0.18

76.32 ±
0.16

76.48 ±
0.33

76.49 ±
0.27 b

75.89 ±
0.12

ash [%]
1.46 ±
0.03

1.46 ±
0.04

1.54 ±
0.05

1.43 ±
0.02

1.38 ±
0.02

1.39 ±
0.02

1.49 ±
0.02

1.44 ±
0.01

1.46 ±
0.01

1.46 ±
0.02

1.48 ±
0.01

1.48 ±
0.01

fat [%]
4.66 ±
0.12

4.1 ±
0.06 a

4.29 ±
0.19

4.03 ±
0.14 a

4.60 ±
0.26

4.68 ±
0.26

3.24 ±
0.15 b

3.34 ±
0.12 b

2.88 ±
0.17 b

2.97 ±
0.12 b

2.85 ±
0.16 b

3.48 ±
0.15 b

[% Fatty Acids]

total SFA
17.87 ±
0.16

17.82 ±
0.27

17.11 ±
0.07 a

18.12 ±
0.21

17.76 ±
0.21

17.8 ±
0.24

17.67 ±
0.24

17.53 ±
0.32

17.23 ±
0.23

18.74 ±
0.23

17.06 ±
0.08

17.69 ±
0.22

total MUFA
49.25 ±
0.27

48.31 ±
0.12

48.51 ±
0.32

42.16 ±
0.45 a

48.71 ±
0.28

49.29 ±
0.21

47.71 ±
0.39 b

47.27 ±
0.24 b

46.3 ±
0.55 b

39.89 ±
0.41 a, b

46.33 ±
0.53 b

47.93 ±
0.43

LA
11.99 ±
0.07

11.9 ±
0.09

12.26 ±
0.04

10.8 ±
0.12 a

12.15 ±
0.12

11.9 ±
0.06

11.67 ±
0.11 b

11.65 ±
0.13

11.53 ±
0.03 b

10.02 ±
0.11 a, b

11.65 ±
0.09 b

11.49 ±
0.11 b

total n6 PUFA
14.86 ±
0.07

14.99 ±
0.06

15.15 ±
0.05 a

14.41 ±
0.10 a

14.98 ±
0.12

14.69 ±
0.07

14.77 ±
0.11

14.9 ±
0.12

14.56 ±
0.04 b

13.99 ±
0.09 a

14.75 ±
0.07

14.46 ±
0.08

ALA
2.66 ±
0.05

2.79 ±
0.04

3.16 ±
0.06 a

2.54 ±
0.06

3.04 ±
0.04 a

2.97 ±
0.02 a

2.57 ±
0.06

2.72 ±
0.06

2.96 ±
0.03 a

2.26 ±
0.05 a, b

2.81 ±
0.03 b

2.73 ±
0.04 b

EPA
1.59 ±
0.03

1.63 ±
0.03

1.67 ±
0.03

1.7 ±
0.04

1.6 ±
0.04

1.59 ±
0.03

1.77 ±
0.05 b

1.74 ±
0.04

1.94 ±
0.05 b

1.75 ±
0.03

1.89 ±
0.06 b

1.79 ±
0.07

DHA
8.65 ±
0.22

9.32 ±
0.18

9.16 ±
0.19

16.08 ±
0.34 a

8.69 ±
0.27

8.28 ±
0.29

10.58 ±
41 b

10.83 ±
0.36 b

11.98 ±
0.67 b

18.76 ±
0.45 a, b

12.14 ±
0.51 b

10.23 ±
0.42 b

total n3 PUFA
15.36 ±
0.28

16.26 ±
0.23

16.63 ±
0.27

22.83 ±
0.35

15.86 ±
0.35

15.43 ±
0.35

17.36 ±
0.52 b

17.8 ±
0.45

19.54 ±
0.72b

25.16 ±
0.43 a, b

19.43 ±
0.56 b

17.31 ±
0.51

total PUFA
30.96 ±
0.29

31.96 ±
0.26

32.49 ±
0.29

37.91 ±
0.31 a

31.53 ±
0.43

30.81 ±
0.39

32.83 ±
0.53

33.38 ±
0.54

34.74 ±
0.71

39.8 ±
0.43 a, b

34.84 ±
0.51 b

32.46 ±
0.51

n3 HUFA
11.97 ±
0.26

12.73 ±
0.20

12.73 ±
0.21

19.64 ±
0.40 a

12.1 ±
0.32

11.6 ±
0.35

14.16 ±
0.47 b

14.42 ±
0.44 b

15.92 ±
0.73 b

22.34 ±
0.47 a, b

15.96 ±
0.57 b

13.81 ±
0.51 b

[ng/g muscle]

Lutein
11.1 ±
0.3

13.8 ±
1.6

670.6 ±
101.0

11.6 ±
0.4

315.2 ±
3.7 a

229.2 ±
29.8 a

15.4 ±
1.3

15.3 ±
0.7

743.1 ±
64.9 a 15.9 ± 1.7

282.4 ±
17.9 a

203.1 ±
7.6 a

Violaxanthin
n.d. n.d. n.d. n.d. n.d.

86.0 ±
14.9

n.d. n.d. n.d. n.d. n.d.
88.8 ±
5.0

Zeaxanthin
n.d.

68.9 ±
7.5

n.d. n.d. n.d.
14.8 ±
2.2

n.d.
98.2 ±
14.6

n.d. n.d. n.d.
14.9 ±
1.2
fron
Data is presented as mean ± SEM, with n = 9 individuals per treatment for proximate and fatty acid composition and n = 3 (pooled on tank level) for carotenoids. Two-way ANOVA was used to
assess the effect of diet and timepoint, as well as their interaction on the response variable. For ANOVA results see Supplementary Table 5. A significant difference (p < 0.05) compared to the
control diet (CD) within one timepoint was assessed by Dunnett’s multiple comparisons and indicated in bold with a, while differences between timepoints within one diet were assessed by
Tukey´s multiple comparison test and indicated with b; ns, not significant, n.d. not detected. Note that presented ANOVA results do not fully agree with results frommultiple comparisons due to
heteroscedasticity.
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however only significant for fish fed AP at T1 (p = 0.049) with a 35%

reduction compared to CD due to a large within group variation

(Figure 5A). Though, AP at both timepoints showed the lowest

variation. Sod1 protein level was induced by 3-fold in SL at T1

compared to CD (p = 0.10; Figure 5B).
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3.6 Gene expression

Only few genes were significantly differentially expressed

between microalgae fed groups compared to CD fish, due to a

large overall variability in expression (Figures 6–8) although some
BA

FIGURE 2

(A) Boxplot of docosahexaenoic acid (DHA) concentration in g/100g fatty acids (FA) of Atlantic salmon muscle fat following feeding the experimental
diets for eight weeks in brackish water (T2) and transferred to seawater for two weeks (T3), n = 9. The fish received six different experimental diets:
control (CD), Chlorella vulgaris intact (CVI), Chlorella vulgaris broken (CVB), Tetraselmis chuii (TC), Arthrospira platensis (AP) and Schizochytrium
limacinum (SL) at an inclusion level of 8%. A significant difference (p < 0.05) compared to the control diet (CD) was assessed by Dunnett’s multiple
comparisons and indicated with a * (B) Linear relationship between the relative increase in muscle lipid DHA content in % in relation to the relative
decrease (%) of muscle fat content following transfer to seawater (T3). Note that for Pearson´s correlation analysis group means per diet were used
(n = 6) and diet groups are indicated next to each datapoint.
BA

FIGURE 3

(A) Boxplot of carotenoid concentration in plasma of Atlantic salmon after eight weeks of feeding experimental diets enriched with C. vulgaris intact
(CVI), broken (CVB) or T. chuii (TC) and (B) spearman correlation among plasma total carotenoid concentration and muscle lutein concentration
after eight weeks of feeding experimental diets for fish where both parameters were measured on an individual level (n = 18).
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large fold-changes were evident (Supplementary Figure 3). In the

anterior intestine, increased drtp1-transcript levels were found in

CVI- (2.8-fold, p = 0.065; Figure 6A) and CVB-fed salmon (7-fold;

p = 0.023; Figure 6A). isg15 transcript levels were induced in all

microalgae fed groups except for CVI (Figure 6B), although not

statistically significant. il1r2 transcript levels were reduced by 2.7-
Frontiers in Marine Science 12
fold in fish fed CVI (p = 0.039; Figure 6C) and il10rb levels were

reduced in fish fed CVI (p = 0.028; Figure 6D) and TC (p = 0.039).

In the liver, the transcript levels of the acute-phase gene saa5

were significantly reduced in fish fed CVB (0.37-fold; p = 0.016;

Figure 7A) and SL (0.29-fold; p = 0.012, Figure 7A). c1ql2

transcripts were significantly induced in fish fed CVI (p = 0.032)
BA

FIGURE 4

Boxplot of aspartate aminotransferase (AST) activity (A) and alanine aminotransferase (ALT) activity (B) in plasma of Atlantic salmon fed microalgae
enriched diets for eight weeks (T2, n = 18). The fish received six different experimental diets: control (CD), Chlorella vulgaris intact (CVI), Chlorella
vulgaris broken (CVB), Tetraselmis chuii (TC), Arthrospira platensis (AP) and Schizochytrium limacinum (SL) at an inclusion level of 8%. A significant
difference (p < 0.05) compared to the control diet (CD) was assessed by Dunnett’s multiple comparisons and indicated with a *.
BA

FIGURE 5

Protein expression of myeloperoxidase (A) and superoxide dismutase 1 (B) in liver tissue of Atlantic salmon following feeding the microalgae
enriched diets for two weeks (T1) and eight weeks (T2) in brackish water. The fish received six different experimental diets: control (CD), Chlorella
vulgaris intact (CVI), Chlorella vulgaris broken (CVB), Tetraselmis chuii (TC), Arthrospira platensis (AP) and Schizochytrium limacinum (SL) at an
inclusion level of 8%. Data is presented as mean + SEM, n = 3 (pooled on tank level). A significant difference (p < 0.05) compared to the control diet
(CD) was assessed by Dunnett’s multiple comparisons and indicated with a *.
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and SL (p = 0.03; Figure 7B). hamp transcripts were 2.2-fold higher

concentrated in the liver of fish fed CVB (p = 0.066; Figure 7C) and

lyzc2 transcripts were even 12-fold increased in fish fed TC (p =

0.04; Figure 7D) compared to the control group.

In the spleen, c1ql2 transcripts were slightly 1.5-fold induced in

fish fed CVB (p = 0.095) and TC (p = 0.097; Figure 8A). ikba

transcripts were 0.59-fold reduced in the spleen of fish fed CVI (p =

0.06; Figure 8B). Furthermore, transcript abundance of saa5 was

2.1-fold increased in fish fed CVI (p = 0.034; Figure 8C). The

transcript level of cd209d was reduced across all microalgae-fed fish,

although not statistically significant (Figure 8D).

Since the levels of plasma markers and selected transcripts

varied largely, we conducted a correlation analysis to identify

connections and validate the overall utility of the used health

parameters. However only alkaline phosphatase (ALP) activity in

plasma significantly correlated with clra (R = 0.46, p = 0.008;

Supplementary Figure 4A) and c4b transcript levels in the liver

(R = 0.45, p = 0.008; Supplementary Figure 4B).
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4 Discussion

Microalgae are gaining attention as a sustainable ingredient to

replace fishmeal or oil in aquaculture diets (Shah et al., 2018;

Kousoulaki et al., 2020; Sarker et al., 2020a; Sarker et al., 2020b)

and further as a functional supplement, prebiotic and

immunostimulant for farmed fish (Reyes-Becerril et al., 2013;

Rahimnejad et al., 2017; Messina et al., 2019; Sun et al., 2019;

Teimouri et al., 2019). In this study microalgae inclusion did not

negatively affect performance of Atlantic salmon reared in

recirculating aquaculture systems. However, we found that health,

immunity as well as fatty acid and pigment deposition were

influenced in an algae specific manner.

Inclusion of microalgae in fish feed has been shown to affect the

growth performance via increasing feed intake or improving feed

conversion in a variety of fish species (Table 6). Including 5%

Chlorella sorokiniana in the diet increased feed intake and thus

growth in rainbow trout (Chen et al., 2021) and including Chlorella
BA

C D

FIGURE 6

Boxplot of the gene expression in the anterior intestine of drtp1 (A), isg15 (B), il1r2 (C) and il10rb (D) of fish fed microalgae enriched diets for eight
weeks. The fish received six different experimental diets: control (CD), Chlorella vulgaris intact (CVI), Chlorella vulgaris broken (CVB), Tetraselmis
chuii (TC), Arthrospira platensis (AP) and Schizochytrium limacinum (SL) at an inclusion level of 8%. Expression values were normalized relative to the
mean expression of all samples and log2 transformed (n = 5 – 7). A significant difference (p < 0.05) compared to the control diet (CD) was assessed
by Dunnett’s multiple comparisons and indicated with a *.
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vulgaris at levels of 10 to 15% improved feed intake and conversion

in olive flounder (Rahimnejad et al., 2017). In this line including

broken C. vulgaris in our study improved feed conversion efficiency

but not feed intake in Atlantic salmon. Nevertheless at 8% inclusion

level the palatability of the feeds in our study was not negatively

affected, likely because these microalgae do not contain high

amounts of anti-nutritional factors, as observed for other plant-

based ingredients (Nagel et al., 2012; von Danwitz and Schulz,

2020). Voluntary feed intake decreases in many fish species in

response to stress (Kulczykowska & Sánchez Vázquez, 2010).

Transferring the salmon into seawater reduced appetite as

previously described (Usher et al., 1991). Although microalgae

were shown to increase feed intake in many species (Table 6) and

mitigate acute stress (de Mattos et al., 2019), we found no

indications that microalgae could increase feed intake during the

critical time period of the first weeks in seawater. In contrast, a diet

enriched with the feeding stimulant squid extract was able to

improve feed intake of Atlantic salmon in this time period

(Toften et al., 2003) and other ingredients which act as feed

attractants might be explored in the future. The overall lower
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growth performance compared to other studies (Kousoulaki et al.,

2020; Ytrestøyl et al., 2020) is likely attributed to the use of

pelletized feeds (Kiron et al., 2012), as compared to high

performance extruded feeds.

Many microalgae species such as Chlorella and Tetraselmis

contain a rigid cell wall, with a rigid cell wall fraction build of

chitin- or chitosan-like polysaccharides (Domozych et al., 2012;

Weber et al., 2022), which can reduce nutrient digestibility.

Digestibility was reduced in Atlantic salmon fed with Chlorella

vulgaris already at 6% inclusion (Tibbetts et al., 2017), but pre-

extruded Nanochloropsis included at 10% improved dry matter

digestibility and did not change protein digestibility in Atlantic

salmon (Gong et al., 2020). The improved FCR found for fish fed

broken C. vulgaris in our study, a species with a particularly rigid

cell wall, is probably related to the destructed cell wall (Weber et al.,

2022). The actual mechanism for improvements in feed conversion

efficiency by microalgae is however not well understood, but seems

to be related to promoting growth of beneficial intestinal bacteria

(Ma et al., 2022), as well as improving intestinal health and nutrient

uptake (Perera et al., 2020; Molina-Roque et al., 2022). Although
BA

C D

FIGURE 7

Boxplot of the gene expression in the liver of saa5 (A), c1ql2 (B), hamp (C) and lyzc2 (D) of fish fed microalgae enriched diets for eight weeks. The
fish received six different experimental diets: control (CD), Chlorella vulgaris intact (CVI), Chlorella vulgaris broken (CVB), Tetraselmis chuii (TC),
Arthrospira platensis (AP) and Schizochytrium limacinum (SL) at an inclusion level of 8%. Expression values were normalized relative to the mean
expression of all samples and log2 transformed (n = 5 – 7). A significant difference (p < 0.05) compared to the control diet (CD) was assessed by
Dunnett’s multiple comparisons and indicated with a *.
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inclusion levels of microalgae in diets vary greatly (Table 6) there

seems to be a threshold at 10 – 15% inclusion for carnivorous fish,

upon where growth performance is negatively affected likely

because of reduced digestibility.

Besides its direct effects on growth, microalgae as a functional

feed additive can influence body proximate composition and

somatic indices by modulating energy metabolism. Low inclusion

levels of microalgae derived nutraceuticals increased body

proximate protein content, hepatosomatic index and glucose

uptake capacity of the liver of gilthead sea bream, Sparus aurata

(Perera et al., 2020). C. vulgaris in the diet was found to influence

lipid metabolism in rats given a high fat diet, where it was able to

lower triglycerides, total cholesterol and LDL cholesterol (Cherng

and Shih, 2005). Similar results have been found in a study with

humans (Ebrahimi-Mameghani et al., 2014). Reduced condition,

hepatosomatic index and whole-body fat content in salmon fed

diets containing broken C. vulgaris in our study also indicates

interference with the lipid metabolism. It is however unclear

whether increased metabolization or decreased deposition of lipid

and glycogen took place as a response to the diet. However, in
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contrast to the above-mentioned studies, total cholesterol levels in

plasma were unaffected.

Microalgae supplementation had a clear effect on the fatty acid

profile of the fish muscle and levels found in the muscle of the

salmon mirrored levels in the diets (Bell et al., 2001; Caballero et al.,

2002). Increased levels of alpha-linolenic acid in the muscle of fish

fed C. vulgaris (intact and broken) and T. chuii, as well as higher

levels of DHA in fish fed S. limacinum resulted from higher

contents of these specific fatty acids in the respective microalgae.

This was evident although the experimental period of eight plus two

weeks was rather short compared to other studies (Bell et al., 1993;

Ruyter et al., 2000; Sissener et al., 2016). Atlantic salmon need to

take up essential fatty acids via the diet and dietary requirements for

EPA + DHA for Atlantic salmon post-smolts have been found to be

~ 0.5% of dry matter (Bou et al., 2017). All diets contained sufficient

EPA and DHA, but high levels of DHA (2.5% of DM) in the diet

containing S. limacinum were not reflected to the same degree in the

muscle of the fish. The results must, however, be interpreted

carefully, as preferential retention of specific fatty acids can

influence the results in the muscle (Bell et al., 2003). Retention
BA
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FIGURE 8

Boxplot of the gene expression in the spleen of c1ql2 (A), ikba (B), saa5 (C) and lyzc2 (D) of fish fed microalgae enriched diets for eight weeks.
The fish received six different experimental diets: control (CD), Chlorella vulgaris intact (CVI), Chlorella vulgaris broken (CVB), Tetraselmis chuii
(TC), Arthrospira platensis (AP) and Schizochytrium limacinum (SL) at an inclusion level of 8%. Expression values were normalized relative to the
mean expression of all samples and log2 transformed (n = 5 – 7). A significant difference (p < 0.05) compared to the control diet (CD) was assessed
by Dunnett’s multiple comparisons and indicated with a *.
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TABLE 6 Growth and immune effects of microalgae species incorporated in the diet and fed to different fish species.

ntibacterial
ctivity

Immune
signaling

Source

Abdel-Tawwab and Ahmad,
2009

de Mattos et al., 2019

Khalil et al., 2017

Raji et al., 2018

Teimouri et al., 2019

Yeganeh et al., 2015

↓ Grammes et al., 2013

↑ Luo et al., 2018

Mahmoud et al., 2020

Raji et al., 2018

Zhang et al., 2014

↓ Chen et al., 2021

↑ Fan et al., 2022

↑ Fan et al., 2022

↑ Nayak et al., 2020

Cerezuela et al., 2012b

↑ Sørensen et al., 2017

Reyes-Becerril et al., 2014

↑ Reyes-Becerril et al., 2013

Cerezuela et al., 2013

↑ Cerezuela et al., 2012b

↑ Cerezuela et al., 2012b

↑ Fan et al., 2022
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Microalgae
species

Fish
species

Days
Inclusion
rate [%]

SGR FCR DFI
Antioxidant
activity

Immune
cells
and markers

A. platensis O. niloticus 84 0.125 - 1 ↑ ↓ ↑ ↑ ↑↓

A. platensis S. aurata 30 42.6 ↓ ↑

A. platensis C. carpio 40 1 ↑

A. platensis
C.
gariepinus

84 12.5 -18.75 ↑ ↓ ↑ ↑

A. platensis O. mykiss 70 2.5 -10.0 ↓ ↑ ↓ ↑ ↓

A. platensis O. mykiss 70 2.5 -10.0 ↑

C. vulgaris S. salar 28 20

Chlorella sp. C. auratus 56 1.0 - 4.0 ↑ ↓ ↑ ↑

C. vulgaris O. niloticus 60 5 ↑ ↓ ↑ ↑

C. vulgaris
C.
gariepinus

84
12.5 -
18.75

↑ ↓ ↑ ↑

Chlorella sp C. auratus 60 0.4 - 2.0 ↑ ↑

C. sorokiniana O. mykiss 90 0 - 10 ↑ ↓↑ ↑

D. salina D. rerio 30 15

I. galbana D. rerio 30 15 ↑

L. incisa D. rerio 30 7.50 -15.0 ↑

N. gaditana S. aurata 28 5.0 -10.0 ↓

N. gaditana S. salar 84 10.0 - 20.0 ↓ ↑ ↑ ↑

Navicula sp. L. peru
28/
56

10 ↑ ↑

Navicula sp. S. aurata
14/
28

10

P. tricornutum S. aurata 28 10 ↓

P. tricornutum S. aurata
14/
28

10 ↑ ↑

P. tricornutum S. aurata 28 5.0 - 10.0 ↓ ↑ ↑

P. tricornutum D. rerio 30 15 ↑
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TABLE 6 Continued

FCR DFI
Antioxidant
activity

Immune
cells
and markers

Antibacterial
activity

Immune
signaling

Source

↑ ↑ Garcıá-Márquez et al., 2020

↑ – ↑ ↑ ↑ Abdel-Tawwab et al., 2022

↑↓ ↓↑ ↑ Habte-Tsion et al., 2020

↓ de Souza et al., 2020

↓ ↓ ↑ ↓ ↓ ↑ Kousoulaki et al., 2020

↑ ↑ Sun et al., 2019

↓ ↑ ↓ Xie et al., 2019

↓ Cerezuela et al., 2013

↑ ↑ ↑ ↑ Cerezuela et al., 2012b

↑ ↑ Cerezuela et al., 2012b

↑ Messina et al., 2019

↑ ↑ ↓↑ ↑ Chen et al., 2021

performance parameters. Responses marked with arrows are shown when at least one inclusion level caused a significant increase or decrease. In case different inclusion
ily feed intake; FCR, feed conversion ratio.
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Microalgae
species

Fish
species

Days
Inclusion
rate [%]

SGR

S. almeriensis O. niloticus 30 25 –

S. almeriensis O. niloticus 60 5.0 - 22.0 ↑

Schizochytrium sp.
M.
salmoides

84 5.7 - 14.1

Schizochytrium sp. O. niloticus 105 1.2

S. limacinum S. salar 330 2.62 - 6.25

S. limacinum C. altivelis 30 1 ↑

S. limacinum T. ovatus 56 3 ↑

T. chuii S. aurata 28 10

T. chuii S. aurata
14/
28

10

T. chuii S. aurata 28 5.0 - 10.0 ↓

T.suecica & T. lutea D. labrax 105 6.0 - 18.0

T. ultriculosum O. mykiss 90 5.0 -10.0 ↑

Note that only studies were included which reported effects on immunity and were not solely based on
levels or diets caused divergent responses both arrows are shown. SGR, specific growth rate; DFI, d
a
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efficiency of DHA was indicated to be dose dependent (Glencross

et al., 2014; Emery et al., 2016) and high dietary DHA in the S.

limacinum diet could have reduced the need for an efficient

retention of DHA in the muscle. Furthermore diets rich in

saturated fatty acids (SFA) and monounsaturated fatty acids

(MUFA) improve long-chain polyunsaturated fatty acid (LC-

PUFA) metabolism efficiency (Xu et al., 2014; Emery et al., 2016).

The diet enriched with S. limacinum had a lower MUFA content

due to reduced inclusion of canola oil. Together with a lower

digestibility of palmitic acid, which is present in high

concentrations in Schizochytrium (Kousoulaki et al., 2020; Hart

et al., 2021), this could have led to an overall lower fat content in the

muscle of fish fed with this microalgae. Although palmitic acid was

enriched in the diet containing S. limacinum, it was only slightly

increased in the muscle at the end of the trial and its metabolic fate

requires more attention in future studies. Muscle fat content was

also reduced in salmon fed A. platensis for eight weeks in our study

and Arthrospira platensis has been found to reduce hyperlipidaemia

in the rat model (Hua et al., 2018; Li et al., 2019). However, no effect

was detected in our study on cholesterol levels in plasma, which has

been described by Hua et al. (2018).

Seawater transfer results in increased energy demands and

coupled with reduced feed intake caused a significant reduction in

the muscle fat content, primarily in the relative abundance of

specific fatty acids of salmon smolts (Woo et al., 1978; Sheridan,

1989; Usher et al., 1991). Since monounsaturated fatty acids are

preferentially used as metabolic fuel (Henderson, 1996)

polyunsaturated fatty acids such as DHA were protected from

being metabolized and not oxidized during the early time window

in seawater. Hence, relative abundance of DHA in the muscle of all

groups increased significantly after transfer to seawater and was

linearly related to the decrease in total fat content of the muscle.

Besides polyunsaturated fatty acids also pigments are important

in maintaining health and immune function in fish (de Carvalho &

Caramujo, 2017). Lutein, the dominating pigment present in all

muscle samples, was found to improve growth and antioxidant

status of whiteleg shrimp Litopenaeus vannamei (Fang et al., 2021)

and improve survival of goldfish Carassius auratus (Besen et al.,

2019). Differences in the carotenoid profile among the diet groups

were directly related to its feed origin, with lutein found in highest

concentrations in fish fed broken C. vulgaris, followed by intact C.

vulgaris and T. chuii. Sørensen et al. (2023) also found high

concentrations of lutein in the muscle of salmon fed T. chuii

biomass, but in contrast to their study, we did not detect any

astaxanthin in the muscle samples. This could be explained by the

lower inclusion of fishmeal in our diet, which is a natural source of

astaxanthin (Lim et al., 2018) and further by a difference in the

pigment profile of the used microalgae products. Lutein

concentrations in the muscle of the salmon in our study were

linearly related to total carotenoid concentration found in plasma

samples, which could be caused by a dynamic equilibrium of

carotenoids between the bloodstream and muscle. However, it

could also imply that fish that accumulated more carotenoids

over the entire trial also ingested more during the days before

sampling. Aside from lutein, the xanthophylls zeaxanthin and

violaxanthin were present in the muscle of fish fed A. platensis
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and T. chuii respectively. All detected carotenoids have important

functions in maintaining eye-health in mammals (Giordano and

Quadro, 2018) and could be investigated for the prevention of eye

health disorders such as cataract in fish, a common problem in

salmonid aquaculture (Waagbø et al., 2003; Bjerkås and

Sveier, 2004).

While several studies have investigated health and immune effects

of microalgae in fish, detected responses seem to depend on both

microalgae species as well as fish species investigated (Table 6). We

detected microalgae specific influences on health and immunity in

Atlantic salmon at both local (intestine) and systemic (plasma, liver,

spleen) scales. Adding broken C. vulgaris to the diet in this study

lowered aspartate aminotransferase and alanine aminotransferase

activity levels in the salmon plasma which may indicate improved

liver health. Activity of these two enzymes is primarily considered an

indicator of liver damage, as higher levels result from destructed or

damaged liver cells (Huang et al., 2006). A meta-analysis on the effect

of Chlorella supplementation on liver health in humans found an

overall reduction of aspartate aminotransferase levels, while no effect

was detected on alanine aminotransferase serum levels

(Yarmohammadi et al., 2021).

Oxidative stress resulting from the increased formation of

reactive oxygen species was shown to be reduced by the dietary

intake of antioxidants in various fish species (reviewed by

Hoseinifar et al., 2021). Superoxide dismutase 1, which catalyses

the breakdown of superoxide radicals (Fukai and Ushio-Fukai,

2011), was induced in salmon fed S. limacinum after two weeks

of feeding the diets. High amounts of DHA from S. limacinum are

prone to peroxidation resulting in the formation of 4-

hydroxyhexenal (4-HHE) which in turn can activate the Nrf2

antioxidant pathway inducing expression of sod (Yang et al.,

2019). Several studies with mammalian cell lines have indicated

that DHA is able to increase GSH content (Arab et al., 2006) as well

as intracellular Sod and Gpx concentrations (Clementi et al., 2019).

Our results indicate an early effect of the diet; however, protein

levels after eight weeks were similar to the control diet. This

suggests that beneficial effects of a functional diet may change

over administration time and the potential temporal “habituation

effect” requires more attention in future studies. Myeloperoxidase is

a characteristic enzyme of neutrophil granulocytes which is

involved in the oxidative burst response, where it catalyses the

oxidation of chloride ions (Klebanoff, 1999; Frijhoff et al., 2015). It

has been further associated with inflammatory processes and

various diseases in humans (Davies & Hawkins, 2020). Reduced

protein concentrations in the liver of salmon fed A. platensis could

be caused by a lower abundance of neutrophil granulocytes in the

liver, indicating no acute inflammatory response of the liver.

Granulocytes in the blood of Nile tilapia Oreochromis niloticus

fed diets containing different levels of A. platensis decreased

strongly after 12 weeks of feeding (Abdel-Tawwab and Ahmad,

2009), but no inferences about the concentration or activity of Mpo

has been made in this study.

The liver furthermore produces acute phase proteins and levels

of transcripts encoding the acute phase protein serum amyloid A

(saa5) were downregulated in fish fed broken C. vulgaris and S.

limacinum. This highlights the potential anti-inflammatory role of
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these microalgae with described effects of their main chemical

components in the literature; lutein in case of C. vulgaris (Chung

et al., 2017; Demmig-Adams et al., 2020) and DHA in case of S.

limacinum (Li et al., 2005; Mullen et al., 2010).

However, microalgae addition increased the expression of c1ql2

in the liver and spleen. C1ql2 is closely related to the first

subcomponent of the complement system and might be therefore

involved in the response to a variety of environmental conditions in

Atlantic salmon (Krasnov et al., 2020; Beemelmanns et al., 2021).

The precise function of c1ql2 is still unknown (Lao et al., 2008;

Köbis et al., 2017). In addition to c1ql2, the upregulated levels of

transcripts coding for the anti-microbial peptide hepcidin (hamp)

and lysozyme (lyzc2) in the liver indicate a potentially enhanced

anti-microbial defense by microalgae-enriched diets (Messina et al.,

2019; Garcıá-Márquez et al., 2020).

Functional feed additives are thought to modulate the local

immune response in the intestine and several of the investigated

genes in the anterior intestine were modulated by the diet. The

increased expression of drtp1 in all microalgae supplemented

groups may be linked to a general response of the intestine

towards novel antigens in the diet, but was also found to be

induced after an acute phase response (Martin et al., 2006; Talbot

et al., 2009). Interferon-stimulated gene 15 (isg15) was upregulated

in the anterior intestine in response to the microalgae diets. This

gene is induced by type 1 interferon and acts like a cytokine (Perng

& Lenschow, 2018). Interestingly, other cytokine receptors, namely

interleukin 1 receptor (il1r2) as well as interleukin 10 receptor

(il10rb) were downregulated in most microalgae diets. This may

indicate a reduced sensitivity of the intestine towards pro-

inflammatory signals or a general reduction of pro-inflammatory

signals present in the intestine. Grammes et al. (2013) showed that

including Chlorella vulgaris in the diet had anti-inflammatory

action and protected Atlantic salmon from developing a soybean

meal-induced enteritis (SBMIE). In zebrafish Danio rerio feeding

diets with PUFA-rich microalgae increased the expression of the

anti-inflammatory cytokine il10 (Nayak et al., 2020). Interference of

the diet with pro-inflammatory signaling was also detected in the

spleen where expression of NFKB inhibitor alpha (ikba; Wang et al.,

2009) was reduced in fish fed intact C. vulgaris.

The future of using microalgae as a functional feed ingredient

largely depends on its production cost and economic benefits when

incorporated into diets for Atlantic salmon. Although we investigated

microalgae which are already cultivated at commercial scale, the

current price (~20 – 30€ per kg) permits its use at higher inclusion

levels only in restricted time periods. These might be during the

production of juveniles, where feed costs are generally lower or in the

final stage of production. Enhancing the product quality before

slaughtering by increasing the fillet DHA and carotenoid content,

with known benefits for human health can represent an economically

viable strategy which should be further explored.
Conclusion

Our study revealed that microalgae addition of 8% to the diet

could have positive effects on the health of Atlantic salmon reared in
Frontiers in Marine Science 19
RAS without affecting its growth performance. We confirmed the

transfer of important functional components of microalgae

(polyunsaturated fatty acids and pigments) into the fish muscle,

but the role and function of many of the functional compounds

present in microalgae remains elusive and needs further

investigation. Our results further indicate that microalgae

enriched diets induce a local anti-inflammatory response in the

intestine, improve oxidative stress response and stimulate

complement and antibacterial responses in liver and spleen. Based

on our comprehensive data, we encourage future studies to provide

a holistic view on the health status of fish when evaluating

functional feeds in aquaculture and investigate the use of

microalgae enriched diets in other economically important

production phases.
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