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Abstract: Spatiotemporally accurate estimates of crop traits are essential for both scientific modeling
and practical decision making in sustainable agricultural management. Besides efficient and concise
methods to derive these traits, site- and crop-specific reference data are needed to develop and
validate retrieval methods. To address this shortcoming, this study first includes the establishment
of ’MISPEL’, a comprehensive spectral library (SpecLib) containing hyperspectral measurements
and reference data for six key traits of ten widely grown crops. Secondly, crop-specific statistical
leaf area index (LAI) models for winter wheat are developed based on a hyperspectral (MISPELFR)
and a simulated Sentinel-2 (MISPELS2) SpecLib applying four nonparametric methods. Finally,
an independent Sentinel-2 model evaluation at the DEMMIN test site in Germany is conducted,
including a comparison with the commonly used SNAP-LAI product. To date, MISPEL comprises
a set of 1411 spectra of ten crops and more than 6800 associated reference measurements. Cross-
validations of winter wheat LAI models revealed that Elastic-net generalized linear model (GLMNET)
and Gaussian process (GP) regressions outperformed partial least squares (PLS) and random forest
(RF) regressions, showing RSQ values up to 0.86 and a minimal NRMSE of 0.21 using MISPELFR.
GLMNET and GP models based on MISPELS2 further outperformed SNAP-based LAI estimates
derived for the external validation site. Thus, it is concluded that the presented SpecLib ’MISPEL’
and applied methodology have a very high potential for deriving diverse crop traits of multiple crops
in view of most recent and future multi-, super-, and hyperspectral satellite missions.

Keywords: MISPEL; spectral library; crop monitoring; crop traits; hyperspectral remote sensing;
Sentinel-2; machine learning; leaf area index (LAI); SNAP; winter wheat

1. Introduction

Space-borne observation of crop traits delivers important parameters to monitor crop
health and model crop growth, supporting decision making processes towards sustainable
agriculture [1]. Among key traits describing the current biophysical crop status are leaf
area index (LAI) [2–12], biomass [2,6,13,14], chlorophyll content [3,5,9,10,12,15], nitrogen
content [13,15–17], and carbon content [5,14].

Many studies have focused on the remotely sensed retrieval of winter wheat
traits [5–7,9,12,18,19]. Wheat, especially the high yielding winter wheat, is an important
cereal crop to ensure food security [20]. Germany is among the large grain producing
countries in the world [21]. In 2020, winter wheat has been cultivated on 23.7% of the total
arable land, accounting for the largest share among all crops being produced [22].

Hyperspectral sensors hold a high potential for monitoring crop traits as they exploit
features with great spectral resolution using a high number of wavebands [19]. Most
recent and upcoming hyperspectral missions such as the research missions EnMAP [23],
HyspIRI [24], and PRISMA [25] provide data at an unprecedented spectral resolution and
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are hence predestined for monitoring crop traits. The planned hyperspectral Copernicus
mission CHIME will deliver routine hyperspectral data at a high revisit frequency [26].
Multispectral satellite missions such as Sentinel-2 (S2) [27] are equipped with fewer but
specific spectral bands to detect crop characteristics. They are better suited for practical
and large-scale applications because of their high spatiotemporal resolution.

Robust ground truth data are required to derive crop traits from optical earth observa-
tion (EO) sensors [28]. The systematic collection of spectroscopic measurements accompa-
nied by reference measurements of in situ traits to construct spectral libraries (SpecLibs)
has therefore played an important role for many sub-disciplines of remote sensing [29–37].
SpecLibs provide an excellent foundation for both multi- and hyperspectral model de-
velopment because they allow the simulation of arbitrary optical sensor configurations
through spectral resampling [6,17,19]. In previous studies, SpecLibs were primarily used
for classification purposes of, e.g., shrubland species [35], wetland species [32], rocks [36],
urban materials [34], and crops [29,33,37]. Only [17,19] explored SpecLibs for crop nitrogen,
grain nitrogen, and yield retrieval. However, methods are not applied to satellite image
data in these studies. For the accurate retrieval of crop traits, a particularly extensive in
situ database consisting of multi-annual crop spectra and references for key biophysical
parameters over the entire phenologiocal cycle is required. Such a basis of data has not
been provided by existing SpecLibs so far.

The variety of parameter derivation approaches is frequently distinguished into para-
metric, nonparametric, physical, and hybrid methods. They are comprehensively re-
viewed for LAI estimation based on S2 imagery [8,38] and trait retrieval from spectroscopic
data [39]. Parametric methods assume explicit relationships between spectral data and
biophysical properties. Thus, vegetation indices (VIs) are directly related to a biophysical
property [11,40]. In contrast, nonparametric methods have emerged as a more powerful
tool—they fit a data-driven, non-explicit regression function that is able to exploit existing
relationships between spectral data and the associated parameter [41]. Nonparametric
approaches can be further divided into linear and nonlinear methods. The most common
linear methods are principal component analysis [42] and partial least squares (PLS) re-
gression [43]. Both are known for their fast performance and ease of application in the
presence of collinearity of spectroscopic data by dimensionality reduction, whereas PLS
regression can be considered an advancement in terms of regression [39]. PLS regres-
sion was used in a variety of studies to derive traits from, in particular, hyperspectral
data [6,13,18,44–47]. Fewer studies, which received little attention, applied Ridge [48] and
Lasso [49] regression, although they outperformed other methods in some studies [50,51].
With the emergence of nonlinear nonparametric methods, also referred to as machine
learning (ML) methods, linear methods have been outperformed in many cases as they do
not account for nonlinear relationships. They include decision-tree-based methods such
as random forest (RF), kernel-based methods, and artificial neural networks (ANNs). In
terms of kernel-based methods, which solve regression problems by transferring data to
a higher-dimensional space, Gaussian process (GP) regression in particular proved to be
the best performing method surpassing its relatives, support vector regression (SVR) and
kernel ridge regression [52]. Increasingly, the special form of variational heteroscedastic
GP regression (VHGP) [53] is used, which is additionally able to output the uncertainty of
estimates. ANNs are known for their enormous versatility [54,55] but require sophisticated
design and a lot of training time to incorporate many bands. Additionally, collinearity
inherent to hyperspectral data renders applying ANNs rather difficult and requires pre-
liminary feature selection. Unlike nonparametric methods, physical models are built on
physical laws and mechanistic variable relationships. This type of model is predominantly
based on the inversion of radiative transfer models (RTMs), enabling generalizability of
the retrieval. However, the inversion is generally difficult because the models are mostly
inadequately defined and ill-posed, limiting the applicability of RTMs [56,57]. Furthermore,
RTMs typically need more powerful computational resources than statistical approaches
to perform quickly and require expert knowledge of parameterization and inversion to
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achieve good results [58]. Optimization techniques, lookup tables, and the hybrid use of
RTMs and ML approaches are employed to enhance the inversion process [9,59,60]. The
common LAI product of the Sentinel Application Platform (SNAP) is likewise based on a
hybrid approach by training an ANN using RTM-simulated crop spectra [61]. Similar to
other LAI products, underlying models have not been calibrated crop-specifically.

Against the backdrop of an insufficient database for crop-specific trait retrieval, this
study encompasses three objectives: First, MISPEL, a multi-crop SpecLib is introduced.
MISPEL contains reference measurements and spectra of ten crops for six traits that are
highly relevant for monitoring the biophysical crop state. Second, four nonparametric
models are deployed and cross-validated, demonstrating the potential of the SpecLib to
estimate LAI for 10 individual crop types. LAI has been chosen for its broad application
as a trait that characterizes crop states over time and because of its extensive use in the
context of crop growth modeling. In a two-step approach, deployed models are trained
and cross-validated using (i) MISPEL’s original full range SpecLib (MISPELFR) and (ii)
resampled spectra of MISPEL simulating the S2 band configuration (MISPELS2). Third,
an independent validation is conducted to assess the transferability of the methodology
applied. During this validation procedure, the four nonparametric LAI models trained
using MISPELS2 (objective two) are compared against independent field measurements
and the widely used SNAP-LAI product, focusing on winter wheat alone. Winter wheat
has been chosen due to the crop’s importance in the German agricultural sector and in
terms of the crop’s role in ensuring the global food supply.

2. Materials and Methods
2.1. Methodology

Figure 1 shows a flowchart of the methodology applied in this study. Sampling and
validation sites, where data were collected to set up MISPELFR and MISPELS2 and to
validate the respective S2 LAI models developed, are shown and described in Figure 2
in Section 2.2. Sections 2.2.1 and 2.2.2 contain a detailed description of the resulting
datasets. Section 2.3 elaborates on the preprocessing of hyperspectral field measurements to
construct the SpecLib using obtained reference data. The procedure of selection, generation,
and accuracy assessment of S2 crop trait models is summarized in Section 2.4. Section 2.5
describes the subsequent application of these models to S2 imagery from the Durable
Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site
and the retrieval of LAI using the SNAP toolbox, which are finally validated and compared
as described in Section 2.7.

MISPELFR MISPELS2 Sentinel-2 crop trait models

Hyperspectral field measurements

Crop trait reference measurements

Processed spectra Sentinel-2 winter wheat LAI estimates

Independent validation DEMMIN in situ LAI measurements

Figure 1. Flowchart of the methodology applied to establish the multi-crop SpecLib MISPEL and
crop-specific Sentinel-2 (S2) trait models and to validate leaf area index (LAI) estimates of winter
wheat derived from S2 imagery.

2.2. Data Collection

Figure 2 shows an overview of the sites in Germany where hyperspectral field mea-
surements and corresponding crop trait measurements were collected to establish the
multi-crop SpecLib. An additional independent set of in situ LAI measurements to validate
remote-sensing-based estimations was gathered on four winter wheat test fields at the
DEMMIN site in 2021 and 2022 (site 6). The DEMMIN test site is located near the town of
Demmin in northeastern Germany and is part of the joint experiment for crop assessment
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and monitoring (JECAM) as well as the terrestrial environmental observatories network
(TERENO-NE) [62,63]. The sampling design for the independent validation was composed
of elementary sampling units (ESUs), each of which consisted of 13 secondary sampling
units (SSUs). At each of the SSUs, a 0.25 m2 sampling frame, in which the samples were
taken, was positioned.

Figure 2. (A) Sites in Germany where hyperspectral field measurements and in situ references
were obtained to establish the multi-crop spectral library MISPEL. (B,C) Depiction of winter wheat
test fields and elementary sampling units (ESUs) at the DEMMIN test site where an additional
independent set of in situ leaf area index (LAI) measurements was obtained in 2021 and 2022 and
used for independent model validation. (D) Sampling design consisting of 13 secondary sampling
units (SSUs) per ESU. Sentinel-2 (S2) color-infrared (CIR) false-color composites are shown in the
background.

2.2.1. Hyperspectral Measurements and Reference Data Acquisition

Between 2011 and 2021, a total of 1411 field spectra of ten crops (Table 1) were recorded
using an SVC HR-1024 (Spectra Vista Corporation, Poughkeepsie, NY, USA) and an ASD
FieldSpec® 4 (ASD, Malvern Panalytical, Malvern, UK) spectrometer with a spectral range
of 350 to 2500 nm.

Measurements were conducted using a white reference and in fivefold repetition in a
0.25 m2 sampling unit. Within the same plots, LAI was nondestructively gathered using an
LI-COR LAI-2200C Plant Canopy Analyzer (LI-COR Biosciences, Lincoln, NE, USA) and a
SunScan Canopy Analysis System SS1-Com-R4 (Delta-T Devices, Burwell, Cambridge, UK).
Phenology was determined according to the BBCH system of unified coding of phenological
growth stages [64]. Height was gathered by threefold repeated and averaged measurements
using a ruler from the ground to the plant top. Fresh above-ground biomass was determined
by destructive harvest of the entire above-ground biomass present in the 0.25 m2 area
enclosed within the sampling frame and recorded in units of t/ha. The fresh above-ground
biomass was dried at 60 °C for at least 24 h to obtain dry biomass and water content. The



Remote Sens. 2023, 15, 3664 5 of 20

biomass samples were further used to determine nitrogen content by combustion [65,66]
using a vario MAX cube (Elementar Analysesysteme, Langenselbold, Germany).

Table 1. Sample size (N) of gathered hyperspectral field measurements per crop.

Crop Botanical Name Abbreviation N

Broad bean Vicia faba BB 49
Oat Avena sativa OA 39

Potato Solanum tuberosum PT 54
Spring barley Hordeum vulgare SBA 75

Sugar beet Beta vulgaris SBE 106
Triticale xTriticosecale TR 66

Winter barley Hordeum vulgare WB 33
Winter rapeseed Brassica napus WRA 426

Winter rye Secale cereale WRY 157
Winter wheat Triticum aestivum WW 406

2.2.2. Independent Validation Data

An independent validation dataset of winter wheat LAI measurements was collected
within the Federal Ministry of Food and Agriculture (BMEL)-funded AgriSens DEMMIN 4.0
project in 2021 and 2022 and retrieved from the digital in situ data collection provided
by [28]. Between April and July, sampling was conducted on an approximately biweekly
basis in a 0.25 m2 sampling frame close to each secondary sampling unit (SSU) according
to the sampling design depicted in Figure 2. LAI was collected by means of LI-COR
LAI-2200C Plant Canopy Analyzers in a quadruple-repeated ABBBB sequence, where A
corresponds to a reference reading above the canopy and B corresponds to a reading below
the canopy. The LAI measurements were scatter-corrected using the FV2200 Software [67].

2.3. Spectral Library Establishment

The automated preprocessing of crop spectra was performed using the R language and
environment of statistical computing [68], including the hsdar package for hyperspectral
data analysis [69] and tidyverse [70] functions. The fivefold measurement was averaged
per plot, resampled to 1 nm spectral resolution, and corrected by white standard reflectance.
Water absorption bands in the wavelength regions of 1355–1425 nm and 1785–1999 nm were
omitted and linearly interpolated. A Savitzky–Golay smoothing with 65 nm window size
and 4th order polynomial was applied. For S2 models, spectra were resampled according
to S2 sensor characteristics, abandoning channels 1, 9, and 10 designated for atmospheric
correction. Prior to model development, MISPELFR and MISPELS2 were normalized by
unit vector normalization (UVN, Equation (1)) according to [6].

xnorm
i = xi/

√
n

∑
i=1

x2
i , (1)

where xi corresponds to a single value of the spectrum.

2.4. Model Selection, Implementation, and Accuracy Assessment

The model selection process was informed by criteria such as suitability in terms of
handling multicollinearity inherent to spectral data, proven performance in comparable
applications as depicted in Section 1, and the ability for describing potential nonlinear
relationships. The selection process resulted in choosing four nonparametric regression
approaches: Elastic-net regularized generalized linear model (GLMNET), Gaussian process
(GP) regression, partial least squares (PLS) regression, and random forest (RF) regression.

The GLMNET algorithm linearly combines L1 (Lasso) and L2 (Ridge) regularization
penalties in a multiple linear regression model. GLMNET was applied using the glmnet
package [71] as the engine. The critical hyperparameters of GLMNET are the total amount
of regularization (penalty) and the mixture of Lasso and Ridge penalty (mixture). Gaussian
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process (GP) regression is a kernel-based method that can solve nonlinear regression tasks
by projecting data to a higher-dimensional space using a kernel function [72]. GP was imple-
mented using the kernlab package [73], choosing a linear kernel without tuning parameters
after evaluating different kernels. PLS is an ideal model if responses can be predicted using
a linear regression. PLS models the data by maximizing the variance of predictors that
are explained by unobserved latent variables. Simultaneously, PLS tries to maximize the
correlation between those latent variables and the outcomes and therefore approaches the
greatest possible variance of predictors and outcomes. PLS regression was implemented
using the pls package [74]. The optimal number of components was determined during
the hyperparameter tuning process. RF is a well-established and robust ensemble learning
algorithm for classification and regression. It constructs a variety of decision or regression
trees based on a randomly chosen subset of the data and a randomly chosen subset of
features for each of the trees built. In regression, the prediction corresponds to the average
prediction of all regression trees [75]. Due to its structure of uncorrelated decision trees, RF
is an algorithm that can map nonlinear relationships. The ranger package [76] was used
as the RF engine. The tuned hyperparameters were the minimal node size, the number of
variables randomly sampled as candidates at each tree split, and the splitting rule.

All models were implemented using the caret framework [77]. Model implementation
and accuracy assessment were conducted across all 10 crops and crop-wise for MISPELFR,
which served as a hyperspectral best-case scenario in terms of spectral resolution and the
simulated S2 dataset MISPELS2 described in Section 2.2.1. The latter is required to derive
crop traits such as LAI from S2 imagery. Prior to model building, predictors were centered
and scaled. Optimal sets of hyperparameters were determined by fivefold cross-validated
grid search tuning. Final model accuracy metrics were averaged over a fivefold cross-
validation. The accuracy metrics used for model evaluation were root mean square error
(RMSE, Equation (2)), normalized root mean square error (NRMSE, Equation (3)), and
the coefficient of determination (RSQ, Equation (4)). The NRMSE relates the RMSE to the
observed range of the variable. It therefore facilitates the comparison of model errors with
different scales or variable ranges as they occur between different crop types, but also
different studies. In addition, the BIAS was used for external model validation to assess
systematic prediction errors (Equation (5)).

RMSE =

√
∑n

i=1(yi − xi)2

n
, (2)

NRMSE =
RMSE

x̄
, (3)

RSQ = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x̄)2 , (4)

BIAS =
∑n

i=1(yi − xi)

n
, (5)

xi corresponds to in situ gained LAI; x̄ is the average value of in situ LAI; yi is the
estimated value of LAI; and n is the number of observations.

2.5. Model Application to Sentinel-2 Data

S2 L2A imagery for test fields at the DEMMIN test site was retrieved from the CODE-
DE cloud computing platform [78]. The imagery was processed using the terra package [79].
The 20 m bands (B5, B6, B7, B8A, B11, B12) were bilinearly resampled to a 10 m spatial
resolution. All 60 m bands (B1, B9, B10) were disregarded, keeping consistency with the
spectral configuration of MISPELS2 (see Section 2.3). The resulting raster stacks were cloud-
masked using the scene classification layer provided by S2 L2A scenes and normalized by
UVN according to Equation (1). Models trained as described in Section 2.4 were applied to
preprocessed S2 scenes using terra’s predict function.
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2.6. SNAP-Based Sentinel-2 LAI Retrieval

The Sentinel Application Platform (SNAP, v.9.0.0) developed by the European Space
Agency (ESA) was used to compute SNAP-based LAI estimates utilizing its integrated
biophysical processor. SNAP estimates LAI values based on a pretrained ANN. The ANN
was trained for S2A and B individually using a comprehensive database with reflectance
and crop traits obtained from ground measurements and RTM [61]. Eight S2 top of canopy
reflectance bands (B3, B4, B5, B6, B7, B8A, B11, and B12), viewing zenith, solar zenith,
and relative azimuth angles were taken as inputs in order to spatially predict LAI using
S2 scenes. Prior to scene-wise LAI calculation, the spatial resolution of all inputs was
harmonized by resampling them to 10 m. Areas covered by clouds and cloud shadows
were masked using scene classification information being part of each S2 L2A scene.

2.7. Independent Model Validation

The S2-based LAI estimates predicted by four developed models and SNAP were
extracted for each SSU, shown in Figure 2, using terra’s extract function. Subsequently,
extracted LAI values were assigned to independent LAI measurements obtained from
the DEMMIN test site by inexact acquisition date matching using the fuzzyjoin pack-
age [80] with a maximum time difference of 3 days. In situ measurements for which no
satellite-based estimates were available in these intervals were discarded. Accuracy metrics
described in Section 2.4 were used for external validation.

3. Results
3.1. Multi-Crop Spectral Library MISPEL and Model Establishment

Figures 3 and 4 give a descriptive overview of collected hyperspectral field measure-
ments and reference measurements for six crop traits, respectively. These measurements
were collected to establish the introduced MISPEL. MISPEL comprises 1411 spectra of
10 crops with the number of measurements varying by crop between 33 and 426 (Figure 3).
To date, a particularly comprehensive database is available for winter rapeseed, winter
wheat, winter rye, and sugar beet. The means, ranges, and standard deviations of re-
flectance spectra differed considerably depending on the crop. Reference measurements
covered a set of 6837 individual in situ observations of six traits for 10 crops (Figure 4). Like
the spectra, the traits collected showed a high crop-specific variability.

N = 49

N = 66

N = 39

N = 33

N = 54

N = 426

N = 75

N = 157

N = 106

N = 406

Triticale Winter barley Winter rapeseed Winter rye Winter wheat

Broad bean Oat Potato Spring barley Sugar beet
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Figure 3. Sample size (N), mean, range, and standard deviation of hyperspectral field measure-
ments per crop after preprocessing that, in conjunction with biophysical crop parameter reference
measurements shown in Figure 4, form the introduced multi-crop spectral library MISPEL.
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N = 49 39 39 75 106 66 32 426 157 405

49 39 54 75 106 66 33 426 157 406

37 27 42 53 92 57 30 271 71 290

19 23 39 27 81 38 18 193 11 266

49 39 54 75 106 66 33 421 157 378

37 27 42 53 92 57 30 270 71 290

LAI [m²/m²] Nitrogen content [%] Water content [%]

BBCH Biomass dry [t/ha] Height [cm]

BB OA PT SBA SBE TR WB WRA WRY WW BB OA PT SBA SBE TR WB WRA WRY WW BB OA PT SBA SBE TR WB WRA WRY WW

BB OA PT SBA SBE TR WB WRA WRY WW BB OA PT SBA SBE TR WB WRA WRY WW BB OA PT SBA SBE TR WB WRA WRY WW
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Figure 4. Boxplots and density distributions of crop trait reference measurements accompanying
hyperspectral field measurements in Figure 3 for spectral library (SpecLib) establishment per trait and
crop. BB = broad bean, OA = oat, PT = potato, SBA = spring barley, SBE = sugar beet, TR = triticale,
WB = winter barley, WRA = winter rapeseed, WRY = winter rye, WW = winter wheat. Note that num-
bers vary as not each hyperspectral measurement comes with an entire set of reference measurements.

As illustrated by the plot of phenological development stages (BBCH), a wide range
of phenological stages is covered by the reference measurements for all crops. However,
the density distributions currently reveal non-uniform sampling distribution across pheno-
logical development stages for most of the crops included, as strong weather dependence
of hyperspectral field measurements limits the ability to measure crop traits in the field.
Winter wheat, for instance, shows a bimodal distribution of reference measurements with
peaks at shooting (BBCH ≈ 30) and emergence (BBCH ≈ 50). The distributions of dry
biomass references show typical ranges of values corresponding to the considered crops.
Here, the winter crops triticale, winter barley, winter rapeseed, winter rye, and winter
wheat showed much wider ranges compared to broad bean, oat, potato, spring barley
and sugar beet. Note that sugar beet measurements do not exceed a BBCH stage of 39,
as this corresponds to the end of rosette growth of above-ground vegetative parts in the
first year of cultivation of sugar beet. The highest values of dry biomass were reached by
winter rapeseed with outliers of more than 30 t/ha. Plant height is typically also strongly
crop-specific. Compared to the cereals, potato and sugar beet showed an expected reduced
height with mean values of 47 and 42 cm. Broad bean height varied between 11 and 124 cm.
The cereals showed a range from 5 to 115 cm. Merely winter rye reached up to 160 cm of
plant height. Again, winter rapeseed was partly grown in small plot trials in different trial
sites and years with a wide range of genotypes, resulting in differences in growth habit
and biomass development; it showed the widest range of values with 7 to 170 cm of height.
The expression of LAI exhibited a fairly even distribution for all crops and ranged from
0.062 to 8.2 m2/m2. The mean values of oat, potato, spring barley, sugar beet, and winter
rye were lower than those of broad bean, triticale, winter barley, winter rapeseed, and
winter wheat. Nitrogen contents are highly crop-specific and characterized by a generally
reduced number of samples because only a subset of biomass samples are further analyzed
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by combustion, as described in Section 2.2.1. Broad bean, oat, winter barley, and winter rye
showed small value ranges with means of 3.15, 1.75, 1.41, and 1.37%. Average values ranges
are shown by spring barley, and sugar beet with mean values of 2.44 and 2.97%. Potato,
triticale, winter rapeseed, and winter wheat showed the widest ranges of nitrogen content
with mean values of 3.70, 2.01, 3.82, and 2.42%. What is striking is the differentiation of
crops into two groups regarding water content. While broad bean, potato, sugar beet, and
winter rapeseed showed consistently high values with means of 84.1, 88.0, 87.6, and 85.2%,
the cereal crops of oat, spring barley, triticale, winter barley, winter rye, and winter wheat
generally showed lower means (71.2, 71.5, 70.7, 70.9, 74.0, and 76.4%) and wider ranges of
water content.

Validation results for LAI models established based on MISPELFR and MISPELS2
are summarized in Table 2, focusing on winter wheat. Individual accuracy metrics
for all remaining crops are included in Appendix A. Generally, the MISPELFR models
yielded slightly higher goodness of fits (RSQ = 0.81 to 0.86) and marginally lower errors
(NRMSE = 0.20 to 0.23) than the MISPELS2 models (RSQ = 0.82 to 0.83, NRMSE = 0.22 to
0.23). Overall, GP obtained the best result (RSQ = 0.86, NRMSE = 0.20) using MISPELFR,
followed by RF, GLMNET, and PLS. Based on MISPELS2, GLMNET performed best
(RSQ = 0.83, NRMSE = 0.22), closely followed by GP, RF, and PLS.

Table 2. Accuracy metrics averaged over fivefold cross-validated predictions for winter wheat leaf
area index (LAI) based on four presented statistical approaches using the two datasets MISPELFR

and MISPELS2. A comprehensive overview of LAI model accuracy metrics for all crops is provided
in Appendix A.

MISPEL Model NRMSE RMSE RSQ N

FR GLMNET 0.22 0.78 0.83 406
FR GP 0.20 0.70 0.86 406
FR PLS 0.23 0.82 0.81 406
FR RF 0.22 0.77 0.83 406

S2 GLMNET 0.22 0.79 0.83 406
S2 GP 0.23 0.79 0.83 406
S2 PLS 0.23 0.81 0.82 406
S2 RF 0.23 0.79 0.83 406

3.2. Crop-Specific S2 LAI Model Accuracies

As the GP LAI model turned out to be the top performing model in independent
validation, Figure 5 shows the fivefold cross-validated accuracy metrics for GP LAI models
trained on MISPELS2. The entirety of accuracy metrics for all model and SpecLib combina-
tions are provided in Appendix A. The general GP model, trained on all LAI measurements,
yielded an RSQ of 0.65, an NRMSE of 0.30, and an RMSE of 1.10. The best crop-specific
model fits in terms of RSQ were obtained for triticale, winter rye, and winter wheat, reach-
ing RSQ values ranging between 0.83 and 0.84. The corresponding NRMSEs varied from
0.21 to 0.24 (RMSE = 0.62–0.79). Slightly lower accuracy values were achieved for the winter
barley, broad bean, winter rapeseed, and oat models. Models showing moderate accuracy
were established for potato, sugar beet, and spring barley. The scatterplot including all
crops shows the largest overall deviation of estimated values from the ideal line. Also for
winter rapeseed, estimates are widely scattered as it was planted in a small plot trial with a
wide range of genotypes, resulting in differences in growth habit and biomass development.
In general, high LAI reference values tend to be underestimated in model predictions. This
is particularly evident from some of the outliers present in scatterplots for broad bean,
potato, spring barley, and the general model.
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Figure 5. Crop-specific fivefold cross-validated Gaussian process (GP) predictions of leaf area index
(LAI) versus in situ LAI measurements and accuracy metrics based on MISPELS2. Dashed lines
indicate and ideal (1:1) relationship. The entirety of accuracy metrics for all model and SpecLib
combinations are provided in Appendix A.

3.3. Independent Model Validation at the DEMMIN Test Site

The results of independent model evaluation of winter wheat LAI estimates for the
four models developed and SNAP at the DEMMIN site are shown in Figure 6. For the
evaluation, 395 pairs of in situ measurements and S2-based estimates were available. With
the exception of PLS regression, all MISPELS2-based models outperformed the prediction
of SNAP-based LAI estimation. The best estimate was obtained by GP regression, which
achieved an RSQ value of 0.63, an NRMSE of 0.32, an RMSE of 1.16, and a BIAS of 0.49.
An approximately good estimate was achieved by GLMNET. RF achieved inferior results
and, in particular, a very low BIAS. SNAP revealed an RSQ of 0.57, an NRMSE of 0.38,
an RMSE of 1.41, and the overall lowest BIAS value of 0.47. The PLS method showed the
lowest accuracy values. In general, estimates of orange and reddish dots representing late
recording times tended to be too low compared to actual measured values. A detailed
examination of the most negatively deviated estimates revealed that artifacts of inadequate
cloud masking were present in all corresponding S2 scenes. What is particularly striking
is an overall underestimation of LAI present in the case of the RF model, where estimates
do not exceed a value of 5.5. Some particularly large overestimates of LAI occurred in the
SNAP estimate at DOY 158 on field 234-00.

Figure 7 shows a map series of S2-derived winter wheat LAI estimates for one of the
test fields at the DEMMIN site predicted by GP regression. Maps showing LAI estimates
at a high spatiotemporal resolution provide timely insights into the differences in crop
development. Here, a strong site-specific plant development is evident from high spatial
variability in LAI estimates; this is particularly seen in the observed phenological phases of
stem elongation in late April and May and heading in early June.
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Figure 6. Independent validation results for winter wheat leaf area index (LAI) derived from Sentinel-
2 (S2) imagery. Model accuracy metrics of the four established statistical models and SNAP versus
in situ measurements from field campaigns at the DEMMIN test site in 2021 and 2022. Point colour
represents the day of the year (DOY) when in situ sampling was conducted. Dashed lines indicate an
ideal (1:1) relationship.

Figure 7. Sentinel-2 (S2) winter wheat leaf area index (LAI) estimate series of test field 311-01 at
the DEMMIN test site at eight dates in 2022 modeled using MISPELS2 and Gaussian process (GP)
regression. All available cloud-free S2 scenes from March to end of July were considered. Earlier
estimates were discarded due to strong soil influence and associated unrealistic estimates. Points
depict the location of secondary sampling units (SSUs).



Remote Sens. 2023, 15, 3664 12 of 20

4. Discussion
4.1. Multi-Crop Spectral Library MISPEL and Model Establishment

The introduced multi-crop spectral library MISPEL represents a comprehensive and
consistently sampled in situ data collection of 10 widely grown crops. Crop-specific
reference measurements of BBCH, biomass, height, LAI, nitrogen content, water content,
and associated hyperspectral measurements from multiple growing seasons and regions
of Germany provide a solid foundation for remote-sensing-based retrieval of key crop
traits. Due to the SpecLib’s hyperspectral resolution, arbitrary sensor configuration from
the multispectral to the hyperspectral domain can be simulated through resampling of
spectra to exploit the library for crop trait derivation. For this, any sensor with bands
detecting light within the range of MISPEL’s spectra, i.e., between 350 and 2500 nm, can be
taken into consideration. Compared to the SpecLibs of [17,19,29,33,37], MISPEL stands out
with a particularly extensive in situ database regarding crop-related traits over the entire
phenological cycle. The large scope of MISPEL regarding covered crop types and traits,
multi-annual spectral and reference measurements along phenological cycles, and spectral
resolution enables the creation of robust crop-specific trait models.

The results in Section 3.1 demonstrate that crop-specific models lead to a significant
increase in performance compared to the overall crop model. The comprehensive list of
crops covered by MISPEL represents the greatest strength of the presented methodology
compared to generic approaches such as SNAP, which do not incorporate crop differentia-
tion [61].

4.2. Model Validation

Subsequently, we discuss model validation results obtained in light of the recent
literature. In addition to comparing model validation metrics, attention is being paid to
contextualizing performed validation procedures, i.e., how validations have been carried
out (e.g., cross-validation, external validation), putting our results into perspective.

A similar study aiming at developing statistical LAI models for winter wheat based
on hyperspectral field measurements was conducted by [7]. Here, the best model reached
an RSQ of 0.94 and an RMSE of 0.32. This quality of fit surpasses the best model shown
in Table 2 (MISPELFR with GP). However, considering that Siegmann’s result is based on
a leave-one-out cross-validation using 124 LAI measurements from two years and two
phenological stages only, caution must be taken regarding model transferability. In fact,
Siegmann’s model performance deteriorated to an RSQ of 0.77 to 0.91 and an RMSE of 0.40
to 0.65 when the model was further validated based on a threefold cross-validation across
both years. The study of [81] compared the retrieval of herbaceous plant traits from canopy
spectra through RTM inversion and statistical modeling based on hyperspectral field
measurements. Fivefold cross-validated LAI PLS regression repeated ten times revealed an
RSQ of 0.57, an NRMSE of 0.16 and an RMSE of 1.00. RTM inversion approaches yielded
RSQs of 0.33 to 0.52, NRMSEs of 0.26 to 0.29, and RMSEs of 1.58 to 1.79. Phenology had
a significant impact on LAI predictability. When flowering canopies were included into
cross-validation, the LAI prediction accuracy decreased to RSQ = 0.41, NRMSE = 0.17,
and RMSE = 1.20 for PLS regression and RSQ = 0.01 to 0.06, NRMSE = 0.28 to 0.34 and
RMSE = 1.91 to 2.37 for inverted RTM approaches. Generally, given the cross-validated results
of the presented hyperspectral MISPEL LAI models over multiple phenological phases, years,
and regions, the model is assumed to perform reasonably well and is equally transferable.

Many studies have investigated the use of multispectral S2 imagery for LAI retrieval.
A series of VIs for parametric winter wheat trait LAI retrieval was evaluated by [11].
The capability of VIs for deriving LAI was obtained by fitting linear and exponential
regression models to LAI field measurements. A simple ratio index from the S2 bands
of B7 and B6 turned out to be the best-performing VI for LAI estimation, resulting in an
NRMSE of 0.45 and an RMSE of 1.00. Thus, the relative error is higher than for estimations
using MISPEL and GP regression (NRMSE = 0.32), with a slightly lower RMSE than the
MISPEL approach (RMSE = 1.16). VIs, a physical approach, and a hybrid approach for
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LAI retrieval were compared against SNAP by [10]. The best VI was validated against
in situ LAI measurements in a leave-one-out cross-validation procedure revealing an
RSQ of 0.68 and an RMSE of 0.94. The physical and hybrid approaches showed inferior
results (RSQ = 0.50, RMSE = 1.60 and RSQ = 0.50, RMSE = 1.35). SNAP estimates yielded
an accuracy of RSQ = 0.62 and RMSE = 1.53. Compared to these results, the MISPEL
approach does not perform quite as well as the empirical approach, but performs better
than the physical and hybrid approaches. Highly accurate validation results (RSQ = 0.92,
RMSE = 0.43), exceeding those of the empirical approach with MISPEL, were achieved by
the hybrid approach focusing on winter wheat trait retrieval of [12]. The same applies to
the hybrid approach of eight different crop types using GP and VHGP regressions and
RTM simulations; S2 top-of-atmosphere data were assessed by [82], where estimates were
validated against independent LAI measurements, with GP (RSQ = 0.78, NRMSE = 0.11,
RMSE = 0.61) and VHGP (RSQ = 0.80, NRMSE = 0.11, RMSE = 0.57) showing the best
performances across all eight crops. As in this study, an additional validation of retrieved
LAI maps against SNAP LAI was performed and revealed overestimation of LAI in dense
vegetation. The hybrid approach of [9] was validated with an RSQ of 0.78, an NRMSE of
0.19, and an RMSE of 0.68. The extent to which these results are comparable with MISPEL’s
independent validation is, however, limited, since the studies often include validation
data into the actual model calibration process. This holds equally true for the studies of,
e.g., [10–12]. Given the fully independent validation of trained LAI models by applying
them in a spatiotemporally separated fashion presented in this study suggests that the
modeling approach using MISPEL data shows a considerable degree of transferability.

The MISPELFR LAI models showed only slightly higher accuracy values compared
to the MISPELS2 models. Therefore, it is assumed that the considered LAI trait can in fact
be well described by the high specificity of S2 bands [27] compared to MISPELFR models.
Through resampling, MISPEL is adjustable and flexible for crop monitoring applications
relying on versatile multispectral optical EO satellites besides the S2 flotilla. Assuming that
the traits covered by MISPEL can be adequately described by multispectral sensing, there
is further high exploitation potential from spatiotemporal fusion of different EO missions,
e.g., S2 and Landsat-8 [83] or S2 and Sentinel-3 [84].

The particular good performance of the GP method in terms of model accuracy in
independent validation (Section 3.3) supports the findings of [39,52], highlighting the
superior accuracy of kernel-based GP regression towards other ML algorithms for crop trait
retrieval. Still, GP regression did not exclusively produce the best results during model
calibration of the remaining crops covered by MISPEL (Appendix A). Interestingly, the
linear GLMNET method that couples Ridge and Lasso regression as promoted by [50,51,85]
yielded only slightly lower accuracy results compared to GP when applying the GLMNET
model to S2 imagery. The independent validation further reveals that three of the developed
models, namely GP, GLMNET, and PLS, using MISPEL outperformed SNAP in estimating
LAIs of winter wheat (Figure 6). The main difference of the presented methodology is
that the three models were trained crop-specifically using MISPEL’s distinct hyperspectral
field and reference measurements, whereas SNAP’s underlying ANN has been pre-trained
using PROSAIL-simulated spectra, and LAI measurements did not take into account crop
identity [61]. In some cases, SNAP estimates deviated strongly from LAI values measured
in situ. The fact that SNAP’s ANN lacked goodness of fit could result from large variability
inherent to the underlying training data. In contrast, the low BIAS of SNAP estimates
can be interpreted as an indication of the ANN’s capability to generalize reasonably well.
The approach presented in this study is therefore judged to be particularly suited for trait
retrieval applications ranging from local to regional or even supra-regional scales focusing
on the 10 crops covered by MISPEL.

A close examination of outliers present in Figure 6 revealed that the remaining cloud
artifacts resulting from insufficient S2 L2A scene classification affected S2-based LAI esti-
mates, leading to an increase in model prediction errors. Thus, implausible value ranges
of the satellite input data contaminated by cloud remnants may impact overall the model
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performance. PLS regression turned out to be most sensitive in this regard. Consequently,
a more conservative cloud masking through the use of alternative atmospheric correction
algorithms such as the Framework for Operational Radiometric Correction for Environmen-
tal monitoring (FORCE) [86] should positively affect the quality of trait estimates regardless
of the model used, yet may reduce observational density of S2 time series. The striking
limitation of RF regression to predict high in situ LAI values could be attributed to the
tree-based algorithm’s susceptibility with regard to covariate shifts described by [87].

4.3. Practical Use

Information on current crop trait development potentially provides an added value
for farmers, supporting them in making targeted management decisions towards more
sustainable precision farming, improved resource efficiency, and cost–benefit ratios. For
instance, crop trait maps may aid in determining site- and time-specific requirements for
fertilizer and plant protection applications, rather than using blanket approaches [88]. LAI
maps as provided in Section 3.3 reveal site heterogeneities during critical phenological phases,
which can be taken into account when planning the application of agricultural resources such
as fertilizers. Crop traits such as LAI and biomass derived from EO satellites further play a
role as input variables for crop growth models that estimate crop yields at high resolutions,
taking into account site-specific variability [89]. As described in Section 4.1, the approach
presented in this study provides the flexibility to fit models based on spectral data adjusted
to arbitrary optical sensor configurations and even integrated EO products such as Landsat
and S2 imagery fused by applying FORCE [86]. Fused EO products ensure condensation of
the time series, which provides regular data availability despite eventual cloud cover.

In terms of model applicability, an advantage of linear nonparametric approaches such
as PLSR and GLMNET is their simple output structure in the form of linear regression
coefficients for each of the spectral bands involved. They can be easily applied to external
satellite imagery without the need for pre-trained models or re-training these models with
only slightly reduced performance. The ability to transfer the models by a linear combina-
tion of model coefficients and satellite data renders an application of these models to be
very comfortable.

4.4. Caveats

Despite the collection of SpecLib measurements in multiple seasons and regions, the
transferability of the presented approach remains limited to the crops covered by MISPEL.
MISPEL still shows gaps in data collection along the phenological cycle for some crops such
as oat, potato, and winter barley. Increasingly, these gaps need to be closed during future
sampling in order to allow precise trait retrieval at the corresponding developmental stages.

Generally, physical approaches are considered to be more transferable than empirical
approaches because of their mechanistic structure. The nature of the SpecLib presented here
is that the data acquisition is performed in different environments over several years and
the entire phenological cycle. This, however, inheres great potential for the transferability
in a larger geographical context. Yet, this remains to be explored in greater depth.

Many machine learning methods suffer from spectral collinearity of hyperspectral in-
puts. Given the simplicity of the approach presented here, no dimensionality reduction was
performed prior to model building based on MISPELFR. A combination of ML algorithms
and dimension reduction techniques could further improve estimation in hyperspectral
applications [39,90]. Other than RTM-based approaches, statistical retrieval methods do
not account for anisotropies such as the bidirectional reflectance distribution function [60].

4.5. Outlook

With steady expansion of the introduced multi-crop SpecLib MISPEL, phenology-
specific modeling becomes possible. Taking into account phenological crop development,
the specificity of this approach will further increase by modeling stage-dependent crop trait
estimates along phenological cycles. Apart from estimating LAI, MISPEL and the applied
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methodology enable the mapping of further crop traits. Given MISPEL’s consistent data
collection, the use of a multi-trait model that accounts for trait covariance, as provided
by [91], is promising. Furthermore, the use of MISPEL to derive crop traits from hyperspec-
tral missions such as EnMAP [23] and CHIME [26], but also from fused sensor products
from S2, Landsat, and Sentinel-3, will be pursued. According to the statistical nature of the
presented approach, spatial transferability remains to be evaluated in greater spatial and
temporal contexts to prove its validity in other regions. Large-scale crop maps [92–94] can
serve as a foundation for this. Following the proof of MISPEL’s usability for large-scale
use cases, a data publication is considered, making the spectral library openly available.
Using MISPEL in a hybrid approach, including inversion methods of an RTM such as
PROSAIL [57], seems particularly promising to increase transferability. Here, crop-specific
parameterization and the creation of LUTs based on SpecLib references can be applied.
A hybrid use would further pave the way for the integration of soil spectra into model-
ing and thus improve early season trait retrieval. Further, the assimilation of remotely
sensed crop traits into crop growth models facilitates seamless crop monitoring and yield
forecasting [1,95,96]. As the model validation revealed, S2-based crop trait estimates are
strongly influenced by cloud artifacts of the L2A scene classification. The impact of more
conservative cloud masks as provided by FORCE data available on the CODE-DE platform
on the quality of trait estimates remains to be investigated.

5. Conclusions

In this study, MISPEL, a SpecLib that addresses the deficiency of in situ data for
establishing crop-specific models to derive key crop traits from satellite imagery, was intro-
duced. To date, MISPEL covers a set of 1411 spectra of 10 crops and more than 6800 related
reference measurements of six crop traits. Based on MISPEL, four nonparametric S2 models
were trained to explore their capability for LAI retrieval of winter wheat, one of the most
important crops cultivated in Germany. GP regression turned out to be the best-performing
model based on MISPELFR (RSQ = 0.86, NRMSE = 0.20, RMSE = 0.70). Using MISPELS2,
GLMNET regression performed best (RSQ = 0.83, NRMSE = 0.22, RMSE = 0.79). The
models were independently validated and compared with the hybrid SNAP-LAI product
using in situ measurements gathered during field campaigns at the DEMMIN test site in
Germany. The evaluation revealed that three models developed superseded SNAP in terms
of LAI estimation accuracy. GP and GLMNET performed particularly well at this task. We
therefore conclude that MISPEL and the straightforward modeling methodology applied
enable the mapping of crop-specific traits, leveraging the use of EO data provided, e.g., by
S2 satellites in support of resource-efficient and sustainable agriculture.
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Appendix A. Fivefold Cross-Validated Crop-Specific Leaf Area Index (LAI) Model
Metrics Based on MISPEL

Crop Abbreviation MISPEL Model NRMSE RMSE RSQ N

All ALL FR GLMNET 0.28 1.02 0.7 1411
All ALL FR GP 0.25 0.9 0.76 1411
All ALL FR PLS 0.29 1.06 0.67 1411
All ALL FR RF 0.25 0.89 0.77 1411
All ALL S2 GLMNET 0.3 1.1 0.65 1411
All ALL S2 GP 0.3 1.1 0.65 1411
All ALL S2 PLS 0.31 1.12 0.63 1411
All ALL S2 RF 0.26 0.92 0.75 1411
Broad bean BB FR GLMNET 0.24 0.9 0.78 49
Broad bean BB FR GP 0.26 0.99 0.76 49
Broad bean BB FR PLS 0.25 0.95 0.76 49
Broad bean BB FR RF 0.22 0.85 0.8 49
Broad bean BB S2 GLMNET 0.22 0.82 0.82 49
Broad bean BB S2 GP 0.24 0.91 0.78 49
Broad bean BB S2 PLS 0.24 0.92 0.79 49
Broad bean BB S2 RF 0.22 0.84 0.8 49
Oat OA FR GLMNET 0.17 0.5 0.76 39
Oat OA FR GP 0.19 0.56 0.73 39
Oat OA FR PLS 0.19 0.57 0.73 39
Oat OA FR RF 0.22 0.66 0.59 39
Oat OA S2 GLMNET 0.19 0.57 0.71 39
Oat OA S2 GP 0.19 0.57 0.71 39
Oat OA S2 PLS 0.19 0.57 0.72 39
Oat OA S2 RF 0.2 0.6 0.67 39
Potato PT FR GLMNET 0.32 0.93 0.68 54
Potato PT FR GP 0.41 1.2 0.52 54
Potato PT FR PLS 0.35 1.02 0.63 54
Potato PT FR RF 0.32 0.94 0.7 54
Potato PT S2 GLMNET 0.36 1.04 0.58 54
Potato PT S2 GP 0.36 1.06 0.59 54
Potato PT S2 PLS 0.36 1.06 0.59 54
Potato PT S2 RF 0.32 0.92 0.72 54
Spring barley SBA FR GLMNET 0.24 0.77 0.66 75
Spring barley SBA FR GP 0.23 0.75 0.66 75
Spring barley SBA FR PLS 0.27 0.89 0.53 75
Spring barley SBA FR RF 0.19 0.6 0.81 75
Spring barley SBA S2 GLMNET 0.26 0.85 0.52 75
Spring barley SBA S2 GP 0.27 0.89 0.47 75
Spring barley SBA S2 PLS 0.27 0.89 0.5 75
Spring barley SBA S2 RF 0.22 0.71 0.72 75
Sugar beet SBE FR GLMNET 0.25 0.76 0.6 106
Sugar beet SBE FR GP 0.3 0.91 0.5 106
Sugar beet SBE FR PLS 0.26 0.77 0.59 106
Sugar beet SBE FR RF 0.27 0.81 0.55 106
Sugar beet SBE S2 GLMNET 0.26 0.77 0.59 106
Sugar beet SBE S2 GP 0.26 0.78 0.57 106
Sugar beet SBE S2 PLS 0.27 0.81 0.56 106
Sugar beet SBE S2 RF 0.26 0.78 0.57 106
Triticale TR FR GLMNET 0.24 0.8 0.82 66
Triticale TR FR GP 0.28 0.92 0.78 66
Triticale TR FR PLS 0.25 0.84 0.8 66
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Triticale TR FR RF 0.27 0.89 0.78 66
Triticale TR S2 GLMNET 0.23 0.78 0.83 66
Triticale TR S2 GP 0.24 0.79 0.83 66
Triticale TR S2 PLS 0.24 0.79 0.82 66
Triticale TR S2 RF 0.25 0.84 0.81 66
Winter barley WB FR GLMNET 0.2 0.8 0.77 33
Winter barley WB FR GP 0.22 0.86 0.75 33
Winter barley WB FR PLS 0.2 0.81 0.75 33
Winter barley WB FR RF 0.21 0.83 0.76 33
Winter barley WB S2 GLMNET 0.18 0.74 0.83 33
Winter barley WB S2 GP 0.19 0.75 0.79 33
Winter barley WB S2 PLS 0.19 0.75 0.79 33
Winter barley WB S2 RF 0.22 0.87 0.7 33
Winter rapeseed WRA FR GLMNET 0.22 0.97 0.76 426
Winter rapeseed WRA FR GP 0.2 0.88 0.81 426
Winter rapeseed WRA FR PLS 0.25 1.07 0.71 426
Winter rapeseed WRA FR RF 0.21 0.92 0.79 426
Winter rapeseed WRA S2 GLMNET 0.23 0.99 0.75 426
Winter rapeseed WRA S2 GP 0.23 0.99 0.75 426
Winter rapeseed WRA S2 PLS 0.24 1.03 0.73 426
Winter rapeseed WRA S2 RF 0.22 0.96 0.77 426
Winter rye WRY FR GLMNET 0.22 0.63 0.83 157
Winter rye WRY FR GP 0.17 0.5 0.9 157
Winter rye WRY FR PLS 0.22 0.64 0.82 157
Winter rye WRY FR RF 0.17 0.49 0.9 157
Winter rye WRY S2 GLMNET 0.19 0.54 0.87 157
Winter rye WRY S2 GP 0.21 0.62 0.84 157
Winter rye WRY S2 PLS 0.22 0.63 0.83 157
Winter rye WRY S2 RF 0.18 0.51 0.89 157
Winter wheat WW FR GLMNET 0.22 0.78 0.83 406
Winter wheat WW FR GP 0.2 0.7 0.86 406
Winter wheat WW FR PLS 0.23 0.82 0.81 406
Winter wheat WW FR RF 0.22 0.77 0.83 406
Winter wheat WW S2 GLMNET 0.22 0.79 0.83 406
Winter wheat WW S2 GP 0.23 0.79 0.83 406
Winter wheat WW S2 PLS 0.23 0.81 0.82 406
Winter wheat WW S2 RF 0.23 0.79 0.83 406
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