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Abstract: African swine fever virus (ASFV) is a structurally complex, double-stranded DNA virus,
which causes African swine fever (ASF), a contagious disease affecting swine. ASF is currently
affecting pork production in a large geographical region, including Eurasia and the Caribbean.
ASFV has a large genome, which harbors more than 160 genes, but most of these genes’ functions
have not been experimentally characterized. One of these genes is the O174L gene which has been
experimentally shown to function as a small DNA polymerase. Here, we demonstrate that the
deletion of the O174L gene from the genome of the virulent strain ASFV Georgia2010 (ASFV-G) does
not significantly affect virus replication in vitro or in vivo. A recombinant virus, having deleted the
O174L gene, ASFV-G-∆O174L, was developed to study the effect of the O174L protein in replication
in swine macrophages cultures in vitro and disease production when inoculated in pigs. The results
demonstrated that ASFV-G-∆O174L has similar replication kinetics to parental ASFV-G in swine
macrophage cultures. In addition, animals intramuscularly inoculated with 102 HAD50 of ASFV-G-
∆O174L presented a clinical form of the disease that is indistinguishable from that induced by the
parental virulent strain ASFV-G. All animals developed a lethal disease, being euthanized around
day 7 post-infection. Therefore, although O174L is a well-characterized DNA polymerase, its function
is apparently not critical for the process of virus replication, both in vitro and in vivo, or for disease
production in domestic pigs.

Keywords: ASFV; ASF; ASFV; O174L; African swine fever virus; virus virulence; viral replication

1. Introduction

African swine fever, a frequently lethal disease that affects wild and domestic pigs, is
currently present in large parts of Europe, Asia, and more recently the Caribbean area [1].
No commercial vaccines are available outside of Vietnam; therefore, the control of the
disease in most countries is based on culling all infected animals and restricting the mobility
of susceptible animals.

The causative agent of the disease, African swine fever virus (ASFV), is a large and
structurally complex virus, harboring a 180–190 kilobase pairs genome composed of a
double-stranded DNA that encodes more than 160 genes [2,3]. Although several of these
genes have been recently characterized, the role of many of them in critical functions such
as virus replication or disease production remains unknown. The study of gene function
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using recombinant ASFV having deleted individual genes has been a critical tool to identify
the role of particular genes in different aspects of the virus cycle. The deletion of some of
the virus genes produces small or undetectable phenotypic changes in virus replication
or virulence during the infection in pigs (i.e., A859L [4], KP177R [5], MGF110-1L [6],
X69R [7], MGF360-1L [8], and CD2 [9]), while in other cases, the deletion induces dramatic
differences in the phenotype of the parental virus: I177L [10,11], 9GL [12], I226R [13],
A137 [14], I267L [15], MGF505-7R [16], and MGF110-9L [17]. In fact, the discovery of
virus genes implicated in the process of ASFV virulence in pigs was fundamental for the
production of live attenuated vaccine strains that are efficacious in inducing protection
against the infection with the corresponding virulent parental field isolate [10–18].

In this report, we characterize the effect of deleting the O174L gene from the genome of
the highly virulent ASFV isolate Georgia 2010 (ASFV-G) in the process of virus replication
and virus virulence in experimentally infected domestic pigs. The O174L gene has long
been recognized to encode a small DNA polymerase, pol X [19,20]. This protein has been
shown to repair single-nucleotide gapped DNA substrates [19]. A recombinant virus
lacking the O174L gene in the genetic background of the field-isolated BA71 adapted to
grow in Vero cells (BA71V) has been shown to have a significantly decreased replication in
swine macrophages when seeded at a low MOI [20]. The potential importance of O174L
has led to studies on potential targeting for biotherapeutics to inhibit virus replication [21].

We demonstrate here that a recombinant virus harboring a deletion of the O174L
gene from the genome of virulent ASFV-G isolate (ASFV-G-∆O174L), when compared
with the virulent parental, has a similar ability to replicate in swine macrophages cultures;
additionally, when experimentally inoculated in swine, its virulence appears similar to that
of the ASFV-G strain.

2. Materials and Methods
2.1. Viruses and Cells

The parental ASFV strain was isolated in the Republic of Georgia in 2010 (ASFV-G)
and was kindly provided by Dr. Nino Vepkhvadze from the Laboratory of the Ministry of
Agriculture, Tbilisi, Republic of Georgia. Primary macrophage cell cultures were produced
as described previously [22], and in all the experiments performed in this study, they were
seeded at a concentration of 5 × 106 cells/mL. Virus titrations, virus stock production,
as well as transfection/infections were performed using swine macrophage cultures as
described [22]. Comparative growth kinetics between the ASFV-G-∆O174L and ASFV-G
strain were set using an MOI of 0.01 HAD50 as previously described [22] with sample
points obtained at 2, 24, 48, 72, and 96 h post infection and titrated using swine macrophage
cell cultures in 96-well plates. Virus-infected cells were detected through hemadsorption
(HA) and the virus titers calculated using the Reed and Muench method [23].

2.2. Detection of O174L Transcription

The transcriptional kinetics of the O174L gene were assessed using real-time PCR
(qPCR) in cultures of primary swine macrophage, which were infected at an MOI = 10 with
ASFV-G. Two well-studied ASFV genes, the early CP204L (p30) and the late B646L (p72)
genes, were used as a control for transcription kinetics. After infection, RNA was extracted
using an RNeasy Kit (QIAGEN, Hilden, Germany) at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 24 h
post infection. The extracted materials were then treated with 2 units of DNase I (Bio Labs,
Ipswich, MA, USA) and purified with the Monarch® RNA Cleanup Kit (New England Bio-
Labs, Inc., Ipswich, MA, USA). After DNase treatment, the CT value was over 36, indicating
that the DNAase treatment worked. Then, 1 µg of RNA was used to produce the cDNA
using qScript cDNA SuperMix (Quanta bio, Beverly, MA, USA), which was also used for the
qPCR. The primers and probe for the detection of the O174L gene were designed using the
ASFV Georgia 2007/1 strain (GenBank Assession # NC_044959.2). Primers forward: 5′- CT-
GCCCAA CATTCGCATAAAG-3′, reverse: 5′- ACACTTTCGTTCTCCGCAGACTTTTAC
A-3′, and probe: 5′-FAM//MGBNFQ-3′. Primers and probes for the detection of p72, p30,
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and the β-actin gene were previously described [24]. All qPCRs reactions were performed
using the TaqMan Universal PCR Master Mix (Applied Biosystems) under the following
amplification conditions: one step at 55 ◦C for 2 min, followed by one denaturation step at
95 ◦C for 10 min, 40 cycles of denaturation at 95 ◦C for 15 s, and annealing/extension at
65 ◦C for 1 min.

2.3. Construction of the ASFV O174L Deletion Mutant

An ASFV-G virus harboring the deletion of the O174L gene(ASFV-G-∆O174L) was de-
veloped by homologous recombination between the ASFV-G genome and a recombination
transfer vector following procedures previously described [18]. The recombinant transfer
vector (p72mCherry∆O174L) harbors the left and the right flanking genomic regions of
the O174L gene: the left region extends between genomic positions 128,220–129,220 while
the right region is located between genomic positions 129,746–130,746 and also harbors
the reporter gene cassette containing the mCherry fluorescent protein (mCherry) gene
under the control of the ASFV p72 gene promoter [18]. The recombinant transfer vector
was commercially synthesized (Epoch Life Sciences, Sugar Land, TX, USA). This design
produces a 525-nucleotide deletion between nucleotide positions 129,221 and 129,745, com-
pletely deleting the O174L gene. The recombinant ASFV-G-∆O174L was further purified by
limiting dilution based on the detection of the activity of the mCherry. The ASFV-G-∆O174L
stock was full-length sequenced using next-generation sequencing (NGS).

2.4. Next-Generation Sequencing of ASFV

Virus DNA from the infected macrophage cultures that showed 90–100% CPE was
obtained using the Nuclear Extract Kit (Active Motif, Carlsbad, CA, USA). After separation
from the nucleus, the cytoplasmic fraction was used to obtain the viral DNA by following
the manufacturer’s protocol. Briefly: virus-infected cells were harvested and treated with
the hypotonic buffer on ice for 15 min. Then, the fraction containing the nucleus was
separated using centrifugation, the cytoplasmic fraction was collected, and the DNA was
extracted by adding 10% 3 M NaOAc by volume to the sample (Sigma-Aldrich, St. Louis,
MO, USA) and an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) with a pH
of 6.5–6.9 (Sigma-Aldrich). These were then centrifuged at maximum speed in a tabletop
centrifuge. Then, the aqueous phase was precipitated using 2 volumes of 100% ethanol,
washed with the same volume of 70% ethanol, and dried. The obtained pellet of DNA was
then resuspended in sterile water. The DNA library was then used for NGS sequencing
using Nextera XT kit in the NextSeq sequencer (Illumnia, San Diego, CA, USA), strictly
following the manufacturer’s protocol. Sequence analysis was performed using CLC
Genomics Workbench software version 22 (CLCBio, Waltham, MA, USA).

2.5. Evaluation of ASFV-G-∆O174L Virulence in Domestic Pigs

ASFV-G-∆O174L virulence was assessed in domestic pigs. Pigs were procured from
a commercial vendor of swine specifically for experimental use. The animals used were
female Yorkshire pigs vaccinated at the vendor facility for common pathogens of swine;
they weighted 35–40 kg at delivery. After delivery, the pigs were allowed 2 weeks of
acclimation in the facility prior to the start of experiments. Groups of pigs (n = 5) were
intramuscularly (IM) inoculated with 102 HAD50 of either ASFV-G-∆O174L or the virulent
ASFV-G strain. Appearance of clinical signs (such as depression, anorexia, staggering
gait, purple skin discoloration, diarrhea, and cough) as well as changes in body temper-
ature were recorded daily. Blood samples were scheduled to be obtained at days 0, 4, 7,
11, 14, 21, and 28 post-inoculation (pi). All animal experiments were performed under
biosafety level 3 conditions in the animal facilities at Plum Island Animal Disease Center,
strictly following a protocol approved by the Institutional Animal Care and Use Committee
(225.06-19-R_090716, approved on 9 June 2019).
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2.6. Read Mapping and Variant Detection

All steps were performed using CLC Genomics Workbench v23 (QIAGEN, Aarhus,
Denmark). Illumina reads were trimmed for quality (limit = 0.05), ambiguous base pairs
(max = 2), adapters, and size (min = 100 and max = 15) and were mapped against ASFV
Georgia 2007/1 (Genbank accession: FR682468.2) using the “Map Reads to Reference” tool
with the following parameters: Masking Mode = No Masking, match score = 1, mismatch
score = 2, gap cost = linear, insertion and deletion cost = 3, length fraction = 0.5, similarity
fraction = 0.8, global alignment = off, auto-detect paired distances = on, and non-specific
match handling = random. Basic Variant detection was then performed on the read
mappings using the following parameters: Ploidy = 2, ignore positions with coverage over
2,000,000, ignore broke pairs = off, ignore non-specific matches = off, minimum coverage = 1,
minimum count = 1, minimum frequency = 50%, and filters for quality, direction/position,
and technology specifics = off. Single-nucleotide polymorphisms (SNPs) that appeared in
over 50% of reads were considered to be of high confidence in this study; there were no
SNPs observed.

3. Results and Discussion
3.1. Evolution of O174L Gene in Nature

To gain more insights into the evolutionary dynamic of the O174L gene in nature, we
conducted a comprehensive evolutionary analysis as previously described for SARS-CoV-2 [25].
First, to obtain a representation of the genetic diversity of the O174L gene in nature, a blast
analysis was conducted using a version of this gene from the ASFV isolate Georgia 2007/1
as query (GenBank Access FR682468.2). As a result, a total of 25 viral sequences were
retrieved from the GenBank database. These sequences included genotypes I (n = 6), II
(n = 7), III (n = 1), IV (n = 1), VIII (n = 1), IX (n = 3), X (n = 4), XV(n = 1), and XX (n = 1)
(Figure 1). Based on a pairwise analysis, we predicted a nucleotide and amino acid identity
of about 89.98–99.80% (~95.92%) and 88.62–99.40% (~95.80%), respectively, showing the
high levels of conservation of this gene in nature. However, recently, in Poland, ASFV
strains were found carrying a unique phenotype of this protein that included the presence
of a 14-nucleotide insertion [26], introducing a premature stop codon and changing the
amino acid composition close to c-terminus of this protein (Figure 1A). Interestingly, the
presence of this insertion has been useful to track the origin of ASFV strains circulating in
Poland [27]. Phylogenetic reconstruction analysis using the maximum likelihood method
and the Tamura 3-parameter as a substitution model (AIC score = 2792.043) [28] revealed
the existence of two main clusters (A and B) from which diverge at least five distinct
phylogenetic groups (Figure 1B). In this context, despite the relatively high conservation
at the nucleotide and amino acid levels within groups (with levels of amino acid identity
of about 93% between strains comprising groups 1 and 5), it may be possible that there
exists potential functional differences between O174L gene phenotypes in nature. The latter
may be supported based on the amino acid substitutions predicted at residues 13, 73, 93,
and 95, where conservation plot scores of 1, 5, 7, and 6, respectively, reflect changes in the
biological properties (charges) between replacements.
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Figure 1. Diversity of the ASFV O174L protein in nature. (A) Amino acid alignment representing the
diversity of O174L protein of ASFV in the field. Residues in white spots represent changes between
amino acids with different charges. Conservation plot scores reflect the nature of the change in
specific sites. High scores are associated with changes with similar biological properties. Alignment
was produced using the software Jalview version 2.11.1.4. (B) Phylogenetic analysis conducted using
the full-length sequence of O174L. Numbers in parenthesis represent the genotype classification of
different isolates based on P72 gene. Nucleotide (nt) and Amino acid (AA) values of identity were
predicted within diverse phylogenetic groups. Analysis was conducted using the MEGA software
version 10.2.5 [28].

Functionally, the O174L gene of ASFV has been described as a reparative DNA poly-
merase (Pol X), with a potential role in the preservation of viral genetic information during
replication in infected cells [20]. In this sense, critical residues previously determined with
a potential function linked to catalysis and fidelity (Ser-39, Arg-42, Asp-49, Asp-51, Glu-83,
Lys-85 and Asp-100) [29] were found totally conserved among multiple isolates.

The evaluation of the O174L gene sequences using the algorithm fixed effects likelihood
(FEL) [30] indicated that a purifying selection is the main force driving the evolution of this
gene (dN/dS = 0.287). In this sense, the FEL determined a total of 13 codon sites under a
negative selection distributed along the gene (Figure 2A), indicating the potential relevance
of these sites in the functionality of the O174L protein. Interestingly, one of these sites
included the codon encoding the catalytic Asp-51, confirming the relevance of this site
during the evolution of ASFV in nature. Considering the collection date of the isolation
of K49, 1949, it is possible to infer that these sites have remained conserved for more than
70 years. Furthermore, the identification of these sites may represent a framework for
future research intended to identify critical sites in this protein.



Viruses 2023, 15, 2134 6 of 14
Viruses 2021, 13, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 2. Evolutionary dynamics of O174L gene in nature. (A) The graphic represents the dN (rate 

of evolution at non-synonymous sites) dS (rate of evolution at synonymous sites) ratio (dN − dS) at 

specific codon sites in the O174L gene of ASFV. Green asterisks represent codons detected under 

positive selection by the algorithms MEME and FUBAR (cutoff values of p = 0.1, and posterior 

Figure 2. Evolutionary dynamics of O174L gene in nature. (A) The graphic represents the dN (rate
of evolution at non-synonymous sites) dS (rate of evolution at synonymous sites) ratio (dN − dS)
at specific codon sites in the O174L gene of ASFV. Green asterisks represent codons detected under
positive selection by the algorithms MEME and FUBAR (cutoff values of p = 0.1, and posterior
probability = 0.9, respectively). Red asterisks represent codons detected by FEL (cutoff value of
p = 0.1) under negative selection (the amino acids encoded by these codons can be visualized in
Figure 1A) (B) Ancestral reconstruction conducted by the algorithm Single Likelihood Ancestor
Counting (SALC) [29], representing the codons predicted under positive selection using FUBAR
(Codon 13) and MEME (Codon 61) analyses.
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Two different codon sites were predicted under a positive selection (Figure 2B), indicat-
ing that these codons may provide potential adaptative advantages to ASFV. The first codon
(codon 13) was detected using the algorithm Fast Unconstrained Bayesian AppRoximation
(FUBAR) [31]. The selection of this codon among multiple internal nodes and different
phylogenetic groups represents evidence of pervasive positive selection (Figure 2B). Con-
versely, evidence of an episodic positive selection impacting a single ASFV isolate (Malawi
Lil-20/1) was found in codon 61 using the algorithms mixed effects model of evolution
(MEME) [32] (Figure 2B), showing the different modes of positive selection impacting the
evolution of the O174L gene.

No evidence of potential breakpoints was predicted during the evaluation through the
genetic algorithm for recombination detection (GARD) [33], indicating that recombination
is not playing a significant role in the evolution of the O174L gene in nature.

3.2. Detection of O174L Transcription

To assess the time at which the transcription of the O174L gene occurs during the
cycle of replication of ASFV, an experiment was performed in primary swine macrophages
cultures where samples were taken at different times post infection (pi). Macrophages
were infected at an MOI of 10 with ASFV strain Georgia (ASFV-G), and samples were
sequentially taken at 1, 2, 3, 4, 5, 6, 7, 8, 9, and 24 h pi (hpi). The presence of O174L RNA
was detected with the RT-PCR described in the Materials and Methods. The transcription
of the O174L gene was first detected after 4 hpi and increased progressively until 24 hpi
(Figure 3). The pattern of expression of the two well-characterized ASFV genes, the early
gene encoding for p30 (CP204L), and the late gene encoding for p72 (B646L), were included
as a reference for early and late transcriptions, respectively. The results showed that the
O174L gene is expressed as a late gene overlapping the kinetics of the late B646L gene.
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Figure 3. Expression profile of the O174L gene of ASFV during in vitro infection of porcine
macrophages. Reverse transcription followed by qPCR was used to evaluate the expression profile
of the O174L gene during in vitro infection at different time points up to 24 h. As a reference for
this analysis, we used qPCRs to specifically detect the expression of genes encoding ASFV proteins
p30 (early expression) and p72 (late expression). Additionally, the actin gene was used as a control
to evaluate the quality and levels of RNA during the infection at different time points. Values are
represented as Log 10 of relative quantities of mRNA accumulation, estimated by 2∆∆CT. Circles and
bars represent the average and standard deviation between biological replicates from each gene at
specific time points. B-actin was used to normalize the expression of ASFV genes at different time
points. Samples were tested to be DNA negative after DNase treatment.
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3.3. Development of the ASFV-G-∆O174L Deletion Mutant

The conservation of the O174L gene and its tested enzymatic function as X-Pol [20,21]
would support the hypothesis that O174L can play a critical role in several virus processess
such as virus replication and disease production in domestic pigs. To evaluate this hypoth-
esis, a recombinant virus using the ASFV-G strain that harbors a deletion of the O174L
gene was created through genetic manipulation (ASFV-G-∆O174L). The O174L gene was
deleted by replacing the complete amino acid residues encoded by the O174L gene with
the p72mCherry cassette through homologous recombination. An area covering 524 bp be-
tween nucleotide positions 129,221 and 129,745 was eliminated from the genome of ASFV-G,
completely deleting the O174L gene. This deletion was then substituted with a 1226-bp
cassette containing the p72mCherry construct (see Materials and Methods) (Figure 4). The
recombinant ASFV-G-∆O174L stock was purified through successive limiting dilution steps
in primary swine macrophage cell cultures.
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Figure 4. Schematic of the development of ASFV-G-∆O174L. The transfer vector contains the p72
promoter and an mCherry cassette. The gene positions are indicated. The homologous arms were
designed to have flanking ends to both sides of the deletion/insertion cassette. The nucleotide
positions of the area that was deleted in the ASFV-G genome are indicated by the dashed lines. The
resulting ASFV-G-∆O174L virus with the cassette inserted is shown on the bottom.

The accuracy of the genetic modifications introduced into the ASFV-G-∆O174L genome
was evaluated through full genome sequencing obtained via NGS using an Illumina
NextSeq® 500, with an average depth of 848 reads. A comparison between ASFV-G-
∆O174L and ASFV-G genomes showed a deletion of 525 nucleotides and an insertion
of 1226 nucleotides corresponding to the p72-mCherry cassette sequence. No additional
unwanted changes were created during the process of the production and purification of
ASFV-G-∆O174L. Also, the NGS data showed the absence of ASFV-G genome as indicating
the purity of the ASFV-G-∆O174L stock.

3.4. Assessment of Replication of ASFV-G-∆O174L in Swine Macrophages Cultures

To evaluate the potential importance of the O174L gene in the process of ASFV repli-
cation, the ability of the recombinant ASFV-G-∆O174L to replicate in cultures of primary
swine macrophage was compared to that of the parental ASFV-G by plotting a multistep
growth curve. Macrophages were infected at an MOI of 0.01 with either ASFV-G-∆O174L or
ASFV-G. Virus production was evaluated at 2, 24, 48, 72, and 96 h post infection. The results
demonstrated that ASFV-G-∆O174L showed almost indistinguishable kinetics of replica-
tion to the parental ASFV-G. No statistical differences were found in any of the time points
tested (Figure 5). Therefore, the deletion of the O174L gene from the genome of the highly
virulent ASFV-G does not affect its replication in primary swine macrophage cultures.
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Figure 5. In vitro growth kinetics in primary swine macrophage cell cultures for ASFV-G-∆O174L
and parental ASFV-G (MOI = 0.01). Samples were taken from two independent experiments at the
indicated time points and titrated. Data represent means and standard deviations of three replicas.
Sensitivity using this methodology for detecting virus was ≥log10 1.8 HAD50/mL.

3.5. Assessment of ASFV-G-∆O174L Virulence in Swine

To evaluate the effect of the deletion of the O174L gene in the virulence of parental
ASFV-G in swine, the ASFV-G-∆O174L was inoculated IM at a dose of 102 HAD50, in
a group (n = 5) of 35–40 kg domestic pigs. The appearance of clinical signs associated
with ASF was monitored daily for 28 days. A control group of animals, with similar
characteristics, was inoculated IM with 102 HAD50 of the parental virulent ASFV-G. All
animals inoculated with the virulent ASFV-G showed a sharp increase (over 40 ◦C) in
body temperature by day 4–5 pi, developing a full lethal form of clinical disease (anorexia,
depression, diarrhea, staggering gait, and purple skin discoloration) and terminating in all
inoculated animals being euthanized by day 6–7 pi due to the severity of the clinical signs
(Figures 6 and 7).
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Figure 7. Evolution of mortality in animals (5 animals/group) IM infected with 102 HAD50 of either
ASFV-G-∆O174L or parental ASFV-G.

Four of the animals inoculated with ASFV-G-∆O174L showed a sharp peak in body
temperature (over 40 ◦C) on day 6 pi with quick worsening of the clinical disease. By
day 7 pi, all four animals were euthanized due to the severity of the clinical disease. The
fifth remaining animal remained clinically normal until day 10 pi, developing a sharp
increase in body temperature accompanied by a sudden presentation of disease on day 11 pi
and euthanasia by day 12 pi (Figures 6 and 7).

The genome of the infectious virus isolated at the time of the euthanasia of the animals
inoculated with ASFV-G-∆O174L was assessed to ensure that the virulent phenotype
observed in those animals was due to the recombinant virus and was not the result of a
potential presence of the virulent parental virus contaminating the ASFV-G-∆O174L stock.
The results demonstrated that the genome of viruses isolated from all five animals in this
group corresponded to the recombinant ASFV-G-∆O174L.

The replication of recombinant ASFV-G-∆O174L in the experimental infected pigs
was assessed by quantifying viremia titers after inoculation and comparing them to those
detected in animals inoculated with parental ASFV-G. The animals inoculated with ASFV-G
exhibited high virus titers (ranging from 107.55–108.55 HAD50/mL) by day 4 pi, remaining
high until day 7 pi, when all animals were euthanized (Figure 8). Titers of viremia at
4 days pi in animals infected with ASFV-G-∆O174L showed undetectable levels (with
a sensitivity of detection of 101.8 HAD50/mL) in two of them and titers in the range
of 103–105.55 HAD50/mL in the other three remaining animals. The viremia values in
these three animals sharply increased to titers in the range of 107–108.55 HAD50/mL by
day 7 pi, when they were euthanized due to the severity of the disease. In addition, one of
the two animals showing undetectable viremias at day 4 pi also drastically increased by
day 7 (to 107.55 HAD50/mL) and was euthanized. The remaining animal showed a slight
increase in viremia values, detectable by day 7 pi and increasing progressively until titers
of 106 HAD50/mL by day 11 pi, when it was euthanized.

The results reported here demonstrate that the deletion of the O174L gene in the context
of the ASFV-G isolate does not affect virus replication in the natural target cell, swine
macrophages. Although viremia values are clearly lower in the initial phase of the infection
in animals inoculated with the recombinant virus, those differences are minimized by the
time of euthanasia, indicating that the deletion of the O174L gene does not significantly alter
the production of a lethal form of the clinical disease. Only one out of the five inoculated
animals presented a protracted form of the disease with a lethal presentation. This is not a
surprising result since the attenuation of the virulence of highly virulent ASFV-G isolate by
deleting a single gene is not a common event. Only seven individual gene deletions have
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been reported to induce full attenuation of ASFV-G (or its derivative isolates) virulence:
I177L [10], I226R [13], A137 [14], I267L [15], MGF505-7R [16], MGF110-9L [17], and 9GL [18].
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Figure 8. Viremia titers detected in pigs IM inoculated with 102 HAD50 of either ASFV-G-∆O174L or
ASFV-G. Each symbol represents the data of individual animals in each of the groups. Sensitivity of
virus detection: ≥log10 1.8 TCID50/mL.

It has been shown that a recombinant virus lacking the O174L gene in the genetic
background of the field-isolated BA71 adapted to grow in the Vero cell line (BA71V) has a
significantly decreased replication in swine macrophages when seeded at a low MOI [20].
The report shows that while no differences in replication kinetics occur between the parental
BA71V virus and the recombinant virus lacking the O174L gene in Vero cell cultures, the
recombinant virus presents a clearly decreased ability to replicate in swine macrophages
when compared with the parental virus. This result was not confirmed by our experiment,
where we showed that ASFV-G and ASFV-G-∆O174L, seeded at an MOI of 0.01, present
undistinguishable growth kinetics.

As occurred in other cases [34,35] where the effect of gene deletion was evaluated
using ASF viruses adapted to grow in cell lines, these divergences could be ascribed to
the inherent characteristics of the genome of the strain used in each experimental model.
It is known that the adaptation of the BA71V strain to replicate in Vero cells includes
the deletion of large genomic areas in both the left and right variable regions of the virus
genome, producing the deletion of 11 genes belonging to the MGF360/505 gene families [36].
Those severe changes in the genome could produce the elimination of genes that may be
implicated in a partial or complete replacement of the function of the gene under study.
Conversely, the ASFV-G strain used here as the parental virus is a field isolate without
significant genomic alteration. Therefore, the function of the O174L gene may be supplied
by any other virus gene hypothetically having a vicariant function.

The potential importance of O174L in virus replication has led to studies on potential
targeting for biotherapeutics to inhibit virus replication [21]. The results presented here
suggest that targeting O174L expression as a therapeutic approach to prevent or abort
ASFV infection in pigs will not be successful.

In summary, we determined that O174L is a non-essential protein since its deletion
from the ASFV-G genome does not significantly alter virus replication in swine macrophage
cultures, and its deletion from the ASFV-G isolate causes no decrease in virus virulence in
domestic pigs.

The identification of ASFV genes involved in virulence has been shown as essential in
the development of attenuated virus strains. Therefore, their correct characterization and
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genetic manipulation is the first step in designing and producing recombinant ASF, live
attenuated vaccine candidates. The introduction of ASFV strains with an altered O174L
protein into Germany led to the detection of a surprisingly high genetic diversity among
strains of different geographical areas [37]. It remains to be evaluated whether or not O174L
plays a role in mutation rate and thus viral evolution.
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