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The diffusion metrics of African 
swine fever in wild boar
Hartmut H. K. Lentz *, Hannes Bergmann , Franz J. Conraths , Jana Schulz  & 
Carola Sauter‑Louis 

To control African swine fever (ASF) efficiently, easily interpretable metrics of the outbreak dynamics 
are needed to plan and adapt the required measures. We found that the spread pattern of African 
Swine Fever cases in wild boar follows the mechanics of a diffusion process, at least in the early 
phase, for the cases that occurred in Germany. Following incursion into a previously unaffected area, 
infection disseminates locally within a naive and abundant wild boar population. Using real case data 
for Germany, we derive statistics about the time differences and distances between consecutive case 
reports. With the use of these statistics, we generate an ensemble of random walkers (continuous time 
random walks, CTRW) that resemble the properties of the observed outbreak pattern as one possible 
realization of all possible disease dissemination patterns. The trained random walker ensemble yields 
the diffusion constant, the affected area, and the outbreak velocity of early ASF spread in wild boar. 
These methods are easy to interpret, robust, and may be adapted for different regions. Therefore, 
diffusion metrics can be useful descriptors of early disease dynamics and help facilitate efficient 
control of African Swine Fever.

African swine fever virus (ASFV) causes an internationally spreading haemorrhagic pig disease with a massive 
socio-economic impact1,2. The current African swine fever (ASF) pandemic originated from disease incursion 
of genotype II ASFV in Georgia during 20073. From there, ASF spread northwards into the Caucasus region, 
then further disseminated westwards into Europe, eastwards into Southeast Asia2, and even jumped across the 
Atlantic to threaten the Americas with outbreaks reported in the Dominican Republic and Haiti in 20214. Since 
the start of the pandemic, an estimated quarter of the global domestic pig population has been decimated by 
the disease, causing food insecurity and economic losses on an unprecedented global scale5–7. Particularly dur-
ing the early phases following new ASF incursion, well informed anticipation of disease spread is critical for 
controlling the disease efficiently.

As a consequence of the incursion into Georgia in 2007, ASF (genotype II) reached the territory of the 
European Union (EU) in 2014, when the first ASF cases were reported in wild boar in Lithuania and Poland8–10. 
Since then, and despite ongoing control efforts as well as intensive study of the disease dynamics, ASF has been 
moving predominantly in a western direction, affecting many more EU countries11. Among them was Germany, 
which reported its first ASF cases in 202012. At that time, ASF had entered the country along a wide front on 
its eastern border, with several incursions detected in distinct areas, in which the disease initially continued to 
spread by forming relatively isolated spatial clusters13. Following the early detections of ASF in wild boar, the 
incursion sites were subsequently managed as local circumstances permitted13. Control measures included the 
implementation of zoning, disease surveillance, carcass searches and removal, strategic fencing and wild boar 
density reduction12–14.

In eastern and central Europe, wild boar seem to represent the predominant, disease-sustaining reservoir host 
in the current European ASF scenario. This is based on the spatial extent of cases in this pig type15, as well as their 
critical role in disease transmission through persistence of virus in the environment2,16–18. ASF is characterised by 
a case/fatality ratio of over > 90 %. The carcasses of infected wild boar that succumbed to the disease may harbour 
infectious virus for weeks, if not months, thus contributing to the environmental contamination with ASFV18,19.

Unexpected occurrences of wild boar-ASF cases in locations that are a long distance away from the near-
est previously affected area, such as suspected point incursions into the Czech Republic20, Belgium21, into the 
western part of Poland18, or into Northern Italy4, indicate that ASF can be relocated in association with human 
activities. However, typically ASF spreads in a gradual manner through infections and dissemination of disease 
in wild boar at a local scale. On the one hand, rare long-distance disease jumps are extremely hard to predict 
as they are presumably caused by human activity3. On the other hand, common short distance spread of ASF is 
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mainly driven by wild boar biology, and describing the underlying dynamics or processes is crucial for efficiently 
implementing counter measures.

Whilst ASF outbreaks in domestic pigs appear to be manageable in most countries, the gradual disease spread 
in wild boar is very difficult to control and often persists22–24. Based on historic ASF case reports, average disease 
spread velocities of approximately 1 to 1.5 km per month have been estimated11,25,26. Control measures that effi-
ciently manage ASF dissemination following new incursions require risk-based allocation of limited resources 
and rely on disease spread predictions that are locally applicable to the acute outbreak situation in the field.

Most epidemiological, mechanistic models for African swine fever in wild boar depend on a large number of 
parameters and assumptions (see27 for a comprehensive overview). These mechanistic models often need to be 
complex in order to describe ASF transmission dynamics in exposed wild boar populations that help evaluate 
alternative control strategies or examine risk factors and transmission parametrisation. Due to their complexity, 
it is often difficult to draw practical conclusions from these models. For assessing African swine fever control, 
simple and easily understandable metrics are needed, such as the following: Given a new occurrence of ASF, (1) 
What is the affected area when the disease spreads?, (2) How far does the epidemic reach from the index case 
over time?, and (3) What is the velocity of spread?

In order to answer these questions, we take a perspective that is different from most predictive models: What 
if we leave the unknown contact details of the underlying transmission process implicit, and focus on describing 
the observed spatiotemporal pattern of outbreak points with a suitable simple random process? A random process 
models the random evolution of a system over time, such as the dispersion of disease events. Assuming that a 
random process generates the time gaps and distances between consecutive cases of ASF occurrence, we could 
use the mathematical description of this process to compute all the desired metrics that are described above.

Even though ASF dynamics seem to be complex in general, disease dissemination appears to follow a remark-
ably simple pattern when considered on a local scale. As such, local outbreak areas appear to be growing over 
time with new cases constantly emerging inside and in the near vicinity of the affected area. By contrast, long-
distance disease jumps are only observed as rare and extreme events, indicating a distinct process underlying the 
long distance spread events when compared to localised disease dissemination11. It would therefore be useful to 
generate robust metrics that help quantify the common dynamics of local ASF outbreaks in wild boar to assess 
and manage disease control efforts.

One of the simplest stochastic processes that could model the random dispersion of disease events over time 
and space is diffusion. If we are able to formulate a basic model that captures the fundamental disease spread 
dynamics as a random process, it would be possible to deduct informative metrics that characterise disease 
spread. We therefore follow this idea to describe the epidemic as a pure diffusion process.

Logically, an epidemic is not a pure diffusion process, which typically refers to molecules, but not indi-
vidual animals or epidemiological units during disease outbreaks. Diffusion describes concentration changes of 
molecules and their distribution in space and time. The underlying molecular dispersal process that generates 
diffusion patterns is a random process known as Brownian motion28–30. Nevertheless, the parallels between the 
principles of molecular diffusion and epidemic disease dispersal on a larger spatial scale are clearly apparent. 
Similar to diffusion of molecules, epidemics describe individuals, their interactions, disease states, and resulting 
disease distribution patterns in space and time. In the context of ASF in wild boar, individual cases form a local 
outbreak cluster, which corresponds to the spatial disease pattern that emerges from an underlying random 
process. As such, epidemics can be modelled in an accurate way by resembling diffusion. This allows for the 
description of a suitable random process generating disease events, which can be interpreted mathematically 
in a relatively simple fashion. Once the logic of this random process is understood and calibrated for the data, 
diffusion of disease spread can be extrapolated spatially and over time.

For a purely diffusive process, a similar approach has been used on human mobility data31. In the context of 
ASF, a probabilistic model considering random walks by wild boar with infection dynamics has been proposed 
previously32. In contrast to that model, we consider the process that generates the disease pattern itself as a 
random walk.

Another disease model considers the diffusion around a primary case and includes a habitat-suitability com-
ponent in this work33. The diffusion component in33, however, is not time dependent and therefore the model is 
not suitable for temporal predictions. A predictive model for ASF has been proposed in34. This approach is based 
on a compartment model and is therefore suitable for a prediction. Nevertheless, assumptions are necessary for 
several parameters considered in this model and a spatial component is not included.

Besides epidemiological compartment models, individual based models have also been used to estimate the 
transmission parameters of ASF, based on real outbreak data35. This model contains detailed data, and the move-
ment and infection dynamics are considered explicitly. Contrasting the model proposed in the present paper, 
however, the agent-based model model in35 by design requires a larger number of parameter assumptions. Finally, 
the local wave front velocity of ASF has been modelled for Belgium in36.

All of the mentioned models provide good insights on the dynamics of ASF. However, there have been no 
models yet, that capture the physics behind ASF outbreaks. This would allow us to spatially describe disease 
spread dynamics over time, based on general principles for apparently similar processes in nature. Despite the 
fact that ASF is an infection process, it appears as a pure diffusion process on the map. For this reason, we fit a 
diffusion model to the disease data in order to measure the diffusion parameters of the ASF epidemic directly.

Material and methods
Data.  We use the official ASF case data for Germany covering all cases from 10 September 2020 to 9 July 2021 
from the national animal disease database (Tierseuchennachrichtensystem)37. Due to the early phase of disease 
incursion into Germany, we were able to separate the data into clusters13, as shown in Fig. 1. The clusters of 
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case locations were distinguished through euclidean distance-based, complete agglomerative clustering, imple-
mented with the ‘hclust’ function from the R ‘stats’ package38. The resulting hierarchical tree was cut at a level 
that separated six case clusters, reflecting jurisdiction in the area. For simplicity in this paper, we will analyse 
cluster 1 as a representative cluster in detail. All other clusters show similar microscopic patterns (i.e. case dis-
tribution patterns, see Supplementary Information) and we compare all clusters briefly in the results section.

Each instance in the data set represents a case, i.e. time and coordinates of a detected ASF-positive wild boar. 
To distinguish between real data and data generated by our model, we use the term event for the random walk 
model instead of case. For clarity, we refer to a cluster of ASF-cases in wild boar as an outbreak (which should 
not be confused with occurrence of ASF in domestic pigs).

In order to get a first simple estimate of the outbreak velocity, we calculate the distance from each case to the 
index case over time. This is shown in Fig. 2. Using a linear fit with an intercept that was fixed to zero, we obtain 
a velocity of 0.042 km/day.

As shown, this approach only makes the logical assumption that the relationship of time and distance to the 
index case is linear. Whilst this assumption appears to give a good initial estimate of the spread velocity, it does 
not capture all features of the disease spread dynamics.

Brownian motion.  In the present work we consider the outbreak data as points that are seemingly gener-
ated randomly in space. The only constraint is that new data points are generated in geographical and temporal 
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Figure 1.   African swine fever case data and its separation into clusters. (Map was generated using R (version 
4.2.8), packages maptools (version 1.1-7) and ggplot2 (version 3.4.2))38.
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closeness to existing points. We hereby establish the simple assumption that new data points are somehow 
related to existing data points. If we assume in the first place that every existing data point generates exactly 
one new data point at the next time step, the generating process would be Markovian. On closer consideration, 
however, this assumption is not valid, since waiting times occur between the cases, and thus secondary outbreaks 
can be later in the future.

Random walk processes that consider waiting times are called continuous time random walks (CTRW). Such 
a process works as follows: A random walker is initiated at time t = 0 (time of the first case) at a location, say 
(x0, y0) = (0, 0) (location of the first case). Then it waits for a random time τ1 and makes a jump of random length 
l1 in a random direction. Thereafter, it waits for a random time τ2 and performs another jump of random length l2 
and so forth. We assume that jump lengths and waiting times are uncorrelated. Jump lengths are sampled from a 
distribution φ(l) and the waiting times from a distribution ψ(τ) . In this work, the distributions of φ(l) and ψ(τ) 
are determined from the outbreak data. Hence, we generate synthetic outbreak data that is statistically equivalent 
to the observed data, by implementing the CTRW as follows:

•	 Start at the coordinates of the index case. Set these (x0, y0) = (0, 0).
•	 Sample the waiting time from the waiting-time distribution ψ(τ) and generate a sequence of time points 

(event points) following the sampled waiting times.
•	 For each event point: sample a jump length from the jump-length distribution φ(l) and perform a step in a 

random direction.

The latest event determines the duration T of the random walk. We refer to one realisation of a complete CTRW 
as a trajectory X(t).

Minimum spanning tree.  To derive the jump length and waiting times between cases from the examined 
ASF case cluster and for a deeper understanding of the outbreak pattern, we consider the causal ordering of 
the cases in more detail. It is important to stress that the dataset itself does not contain any causal information 
between the cases.

Indeed, the measured data points represent an underlying – and unknown – infection tree that describes in 
detail which case has caused which other case(s).

Since the exact relationships in this infection tree data are unknown, we estimate causality in the following 
way (a similar idea was used in39): 

1.	 Sort cases by time.
2.	 Generate a directed acyclic graph (DAG) T = (V(t),E) with edge set E = ∅ , where each node v(t) ∈ V(t) is 

a case with time stamp t.
3.	 Connect nodes in T with directed edges from case s to case t as follows: whenever the target case t is after or 

at the same time as the source case s, draw a directed edge (s, t). Thus, the added edges E  = ∅ in T comprise 
all possible causal connections between the cases.

4.	 Weigh all edges with the reciprocal geographical distance between the respective nodes/cases. (Vanishing 
distances are assigned a weight of zero.)

5.	 Finally, compute a minimum spanning tree on the now weighted DAG. For this, we used the Chu-Liu/Edmond 
Algorithm40,41 implemented in42.

This procedure orders the cases in a causal and geographically plausible manner. Using the minimum spanning 
tree, we obtain the distances between the cases and from those distances the jump length distribution. Subse-
quently, we also apply kernel density estimation to this distribution for smoothing. This allows sampling from 
a continuous distance distribution, as the distribution of observed jump lengths in the field data is discrete.

The empirical distribution of waiting times was directly derived from the outbreak data. We sort the cases by 
time and compute the differences between consecutive cases yielding the waiting time distribution.

For the waiting times, sampling is conducted from the empirical data and for jump distances the smoothed, 
kernel density estimations were sampled directly to generate the sequence of timepoints and jump lengths that 
implement the continuous time random walk to generate a random walk trajectory X(t).

Time correction in random walk.  It is important to emphasise that, in contrast to an epidemic process, a 
random walker trajectory can only be at one location at a time. By contrast, an epidemic can be at multiple loca-
tions at the same time, that is, an epidemic can branch out into multiple locations simultaneously. To resolve this 
problem, we correct the time available to the random walker for moving around. If multiple cases are observed 
in one day, but a random walker can only generate one event per day, then the allowed time for the random walk 
has to be increased to allow the random walker to generate the required number of events one after the other. 
We thus use the following idea:

Let the total random walk have a maximum duration of T. In the easiest situation, exactly one case occurs 
per day. Now consider the situation where an average of M cases occur per day. Then the random walker must 
have the ability to generate these cases/events without spending time. We call M the multiplicity of the process. 
As an example, if we have M = 3 cases per day and the maximum duration of the whole random walk is T = 100 
days, then the random walker is given MT = 300 available days for generating the required 300 events in total. 
Finally, in order to return to the original time scale, we rescale the new maximum duration (300 days) back to 
the initial value (100 days). For simplicity, we refer to the time steps taken by the model also as ’days’, although 
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the exact duration of each simulated realisation may vary. The duration of a complete realisation depends on 
the cumulative waiting times randomly drawn from the waiting time distribution. Multiplicity ensures that the 
required number of events is generated, by giving the model the number of time steps needed to do so.

Diffusion coefficient, expected radius, and velocity.  The Brownian motion described above is a sin-
gle realisation of a microscopic random process (movement of molecules). Averaging over a large number of 
random walks yields the macroscopic properties of the process (emerging pattern). Since every random walker 
can walk in a different direction, the expected location is �X(t)� = (x0, y0) = 0 for all times t (the brackets �·� 
refer to the average over all random walkers).

For large times t a single random walker is expected to be located at a great distance from the origin. There-
fore, using variance of random walker displacement as a measure of dispersion, the mean squared displacement 
(MSD) 〈X(t)2〉 increases with time. The detailed form of the MSD has to be determined empirically. In case the 
MSD follows a linear relation, i.e. �X(t)2� ∼ t , the corresponding macroscopic process is called normal diffu-
sion. In that case

and the constant D is the diffusion coefficient. Equation (1) represents the variance of the random walkers’ posi-
tions after time t.

The square root of the MSD is the expected radius, the mean distance by which all random walkers are 
expected to be dispersed from the origin case after time t, i.e.

We identify this quantity with the radius of the affected area or the distance between the index case and the 
wave front.

Finally, the velocity of the wave front v(t) can be defined as the change of the radius with respect to time, thus

Note that r(t) and v(t) are not linear.
Our implementation of the mentioned methods is available online43.

Results
To bring all cases into a plausible order, we first sort the outbreak data by detection time and compute the mini-
mum spanning tree. This tree provides us with the distribution of shortest jump lengths. We then generate the 
waiting time distribution directly from the outbreak data. Both distributions are shown in Fig. 3.

A random walker cannot be in multiple locations at the same time. On the contrary, for epidemic processes 
multiple cases can occur simultaneously. This is exemplified for Cluster 1 in Fig. 4.

On average 3.4 cases occur per day over 300 days in total, i.e. the multiplicity of the process is M = 3.4 . 
Therefore, we multiply the available time for the random walker by M. This yields 1020 time steps which are 
afterwards rescaled to 300 days.

Using the distributions from Fig. 3 and the multiplicity M we generate an ensemble of 10,000 random walkers 
to guarantee statistical stability. In order to get an impression of the microscopic properties of the random walks 
(localisation of individual events), we show one realization in Fig. 5.

This realization appears to show considerable structural similarity to the observed outbreak data, in the sense 
that both sets of points appear to be sampled from a similar distribution. Note that a random walk is an isotropic 
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Figure 3.   Jump length distribution (A) and waiting time distribution (B) derived from the outbreak data 
of Cluster 1. (The jump length distribution is for cases ordered using the minimum spanning tree). The blue 
histogram in (A) shows the observed counts of jump length and the red line a smoothed kernel density estimate 
distribution of this data for sampling in the diffusion model.
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process, which means that all directions are equally likely. It is therefore plausible that the outbreak case data 
and the synthetic event points can be spread out in different directions as long as they have a similar structure.

We now study the macroscopic (diffusion) properties of the random walker ensemble. Figure 6 shows the 
mean squared displacement (MSD) over an ensemble of 10,000 random walkers. The MSD follows a linear form 
indicating that the measured distributions result in a normal diffusion process. Using a linear fit, we obtain a 
diffusion coefficient of D = (0.22± 0.01) km2/day . This value is a median over all realizations and the error is 
the inter-quartile range.
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The radius of the affected area follows the square root shaped relation shown in Fig. 7A. After a steep increase 
in the early phase of the epidemic, the radius grows over time, but the front velocity decreases. Note that these 
features of disease spread dynamics, such as the slowing down of the wave front, cannot be captured by the simple 
linear approach used in Fig. 2. The wave front velocity over time is shown in Fig. 7B. The latter shows a quasi-
constant behavior in the time scale of interest, i.e. roughly 0.04 km/day measured 150 days after the first case.

Comparison between the clusters.  So far, we have only studied one selected cluster. In Fig. 8 we show 
the diffusion coefficients for all clusters. Each value is a median over 10,000 simulations. The error bars represent 
the inter quartile ranges.

The figure demonstrates that even if there are certain differences in the clusters, their diffusion coefficients 
show remarkable similarity. Most diffusion constants lie in a band between 0.2 and 0.5 km2/day.

We provide a detailed description of the diffusion metrics for all clusters in the Supplementary Information.

Discussion
In the present study we have considered the outbreak propagation of African swine fever as a diffusion process. 
Instead of making assumptions on wild boar movements, we focussed on the process that generates the outbreak 
data directly. Although this is an abstract concept, it allows us to measure the physical properties of the observed 
outbreak pattern. This concept is in contrast to previous work by Dellicour and colleagues, who measured the 
outbreak wavefront velocity by tracking the occurrence of new cases at the edge of an ASF cluster in time36. 
Thereby, the observed outbreak pattern and its edge velocity through the given landscape could be characterised, 
but alternative realisations of these spread events were omitted.

Assuming that the outbreak propagation follows a random walk appears drastic, since in contrast to a random 
walk, new cases can appear at multiple locations at the same time. This could be modelled by a branching process, 
where the random walker can reproduce itself and new events would occur simultaneously, as observed in real 
epidemics. Alternatively, more time can be allocated for a random walk to simulate comparable event numbers 
sequentially, whilst the random walker is only in one location at any one time. We implemented both possible 
approaches side by side when developing the model by also running Monte-Carlo simulations that included 
branching. We found that the resulting cluster realisations for branching were indistinguishable from sequential 
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random walks (corrected by multiplicity) regarding their mean square displacement (not shown). This indicated 
that a branching process is not required for epidemic-like case dispersal patterns that generate multiple events 
simultaneously and that both approaches (simultaneous and sequential random dispersal) lead to the same 
outcome, given the condition that random walkers are not restricted in their possible location.

It could also be considered that infected animals that die block further disease spread (back) into the affected 
area, since susceptible individuals are removed from the population. This assumption would restrict the possible 
location of the random walker in our model. This situation could be implemented by using an annihilation pro-
cess, where new random walkers can be restricted in their movement by avoiding closeness to already removed 
(’died’) random walkers. However, in the context of ASF outbreaks during the early phase, infected animals can 
freely move and also return to already infected areas. Therefore and in the context of the localised early outbreak 
phase, no restriction to the possible location of infected wild boar applies. In other words, the disease cannot 
be pushed out of already infected areas. Consequently, we do not consider restrictive random walks through 
annihilation in our model.

Although our results provide simple metrics for the propagation of ASF, the computation of these metrics is 
not trivial in general. On the one hand, estimating the wave front velocity using the simple linear distance to the 
index case has turned out to give a value remarkably similar to that of our model, thus confirming its plausibility. 
On the other hand, this simple approximation only provides an average estimate of spread velocity across the 
entire outbreak period, but does not capture detailed changes of radial velocity, such as the slowing of the wave 
front with time. Through considering the causal infection tree structure of the outbreak data, this level of detail is 
predicted by our model and may contribute valuable insights for the implementation of ASF control measures in 
wild boar. One critical realisation implied by the diffusion model is the initially quick dissemination of detected 
cases following discovery of a new ASF incursion in a previously disease-free area and the subsequent slowing of 
disease spread later in the epidemic (Fig. 7). This observation suggests, that upon first detection the disease may 
have already spread much further than perhaps anticipated, thus requiring adequately spaced counter measures 
to prevent falling behind and maintaining a chance of controlling a new outbreak as early as possible. Likewise, 
the anticipated slowing of disease spread at a later stage as an inherent feature of the dynamic process has to be 
evaluated against the actual effects of control measures.

For the random walk model, besides the needed Monte-Carlo-simulations, finding the distributions for wait-
ing times and jump lengths requires manual adjustments. These could be optimised using a hyper-parameter-
tuning scheme. For the obtained diffusion model results to be most representative of the observed situation in the 
field, constraints in the landscape (rivers, roads, fences, etc.) that potentially influence disease spread dynamics 
should be minimal. If more of these constraints are judged to be present in an examined outbreak cluster, more 
manual adjustment of the modelled process would be required to capture such constraints. Similarly, constraints 
not represented in the modelled diffusion process could originate from biased availability of the considered 
data (e.g. through limited jurisdiction or knowledge of the underlying surveillance effort) or animal popula-
tion structures, rather than being caused by truly occurring geomorphological factors present in the landscape. 
Whilst we do not see this as a limitation of the modelled diffusion process itself, it is important to be aware of 
such constraints when interpreting the results. It would be an interesting and useful expansion of the model to 
explore factors in the landscape, the data or animal biology that may influence the observed ASF spread patterns 
in the field, including directionality.

If directional disease propagation in relation to constraints is of interest, in particular, this could be done 
either on a case by case basis, or by examining the directionality that emerges for each simulated iteration of 
the entire cluster. It should be possible to measure the turning angle of direction between subsequent cases or 
between congruencies of outbreak pattern iterations. Such an expansion of the model would predict the dis-
ease wave front expansion into a certain direction, as implied by the statistical characteristics of the examined 
outbreak cluster.

Regarding the case waiting time data, clear limitations for the underlying dates entered into the model have to 
be considered. Here, the laboratory diagnostic conformation dates were available for all cases and consequently 
interpreted as the time when the observed ASF epidemic process generated a case. This is only an approxima-
tion of reality. In the field, wild boar succumb to ASFV infection, representing the time of death. Time elapses 
until the carcass is found and a sample is taken, the post-mortem interval, then additional time passes until the 
laboratory confirms detection of ASFV in the sample. Variability in post-mortem intervals and time to diag-
nostic confirmation biases the temporal case data. Nevertheless, the random walk approach still appears useful, 
since the temporal effects of ASF management within each disease cluster with regards to carcass searches and 
diagnostic procedures are reasonably expected to be consistent. In future, it would be intriguing to address this 
limitation by applying and accounting for the minimal post-mortem-interval in each case, thus aligning the 
temporal aspect of the model closer with disease dynamics in the field44.

As we have demonstrated in Fig. 8, the properties of some of the clusters are remarkably similar. This seems 
to be reasonable, as the counter measures implemented overall are similar in all of those clusters. Nevertheless, 
Clusters 4 and 6 show higher diffusion coefficients. In the case of Cluster 4, this could be due to the fact that the 
time needed for fences to be erected was longer than in other cluster areas. Moreover, the first cases occurred 
along an extended area of the border without any expansion for the first 80 days. For Cluster 6, a higher diffu-
sion coefficient could have been caused by the fact that the disease occurred in an urban area, which did not 
allow for implementation of the same control measures as in the other clusters. Moreover, the different diffu-
sion coefficients might be caused through cases occurring along an extended area at the German-Polish border, 
thus showing a high degree of constraint in these clusters (see Fig. 1, and Supplementary Information for more 
details) It is important to stress the fact that this constraint is caused primarily by the data availability and not 
by the underlying process. That is, we would expect to get a more consistent picture here, if Polish data would 
have been included in the analysis.
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A key value of the methods presented herein, is the ability to randomly generate synthetic outbreak patterns 
from the causal ordering of an infection tree that logically resembles the observed cluster-specific case pattern 
in the field. This simulation could be useful for many applications, such as the assessment of mechanistic disease 
transmission factors or for testing of disease control measures. Here, we applied the outbreak informed simula-
tions to investigate spread velocity of ASF in wild boar. Consequently, we state that the observed patterns follow a 
general mechanism, at least for the examined date set, representing a particular area in Germany. In conclusion, it 
seems possible to derive a general diffusion law for this kind of setting, which might be helpful for disease control.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able request.

Code availability
The code is available online on https://​github.​com/​hartm​utlen​tz/​Rando​mWalk​er2D.
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