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Abstract: Mergibacter septicus (M. septicus), previously known as Bisgaard Taxon 40, is a recently
described species within the Pasteurellaceae family. In this study, we present a M. septicus strain
isolated from a common tern (Sterna hirundo) chick that died just after fledging from the Banter See in
Wilhelmshaven, Germany. The recovered M. septicus strain underwent microbiological phenotypic
characterization, followed by whole genome sequencing on Illumina and Nanopore platforms.
Phenotypically, M. septicus 19Y0039 demonstrated resistance to colistin, cephalexin, clindamycin,
oxacillin, and penicillin G. The genome analysis revealed a circular 1.8 Mbp chromosome without
any extrachromosomal elements, containing 1690 coding DNA sequences. The majority of these
coding genes were associated with translation, ribosomal structure and biogenesis, followed by RNA
processing and modification, and transcription. Genetic analyses revealed that the German M. septicus
strain 19Y0039 is related to the American strain M. septicus A25201T. Through BLAST alignment,
twelve putative virulence genes previously identified in the M. septicus type strain A25201T were
also found in the German strain. Additionally, 84 putative virulence genes distributed across nine
categories, including immune modulation, effector delivery system, nutrition/metabolic factors,
regulation, stress survival, adherence, biofilm, exotoxin, and motility, were also identified.

Keywords: Mergibacter septicus; common tern; bird; Germany; genome; taxonomy; Pasteurella

1. Introduction

Migratory birds can carry and disperse emerging (zoonotic) pathogens and establish
new endemic foci at great distances from the origin of infection [1,2]. Among these emerging
pathogens are West Nile virus (WNV), avian influenza (AI), Newcastle disease virus (ND),
and tick-borne encephalitis virus (TBE). Further emerging bacterial, fungal, and protozoan
pathogens include, among others, several enteropathogens, such as Salmonella spp. and
Campylobacter (C.) jejuni as well as the causative agents of avian botulism (Clostridium (C.)
botulinum), avian cholera (Pasteurella (P.) multocida), aspergillosis (Aspergillus spp.), and
avian malaria (Plasmodium spp.). These pathogens pose a particular threat to endangered
species. Monitoring of dead birds has become an increasingly important factor within the
context of nature conservation and thus the preservation of these animals [1,2].

Common terns (Sterna hirundo) are relatively long-lived, piscivorous, migratory seabirds
in the order of Charadriiformes and family Laridae and members of the genus Sterna. Terns
inhabit coastal areas and inland waters and can be found almost worldwide. They frequently
form large nesting colonies and play a key role as an indicator species reflecting the state of
the marine environment and the overall condition of coastal habitats. Common tern popula-
tions face numerous mortality challenges including infectious diseases [3,4], environmental
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stressors, chemical compounds, and habitat changes that affect nesting success and overall
health [5]. In Germany, common terns are listed as “severely endangered” in the Red List
of Endangered Species [6]. A large breeding colony of common terns with approximately
650 breeding pairs is located at the Banter See in Wilhelmshaven, Germany. This colony
has been under constant surveillance of the Institute of Avian Research in Wilhelmshaven
since 1992 [7].

The Pasteurellaceae family comprises a large collection of Gram-negative bacteria
commonly found in numerous mammal and bird species; they can cause severe disease
in humans and animals. Haemophilus influenzae, for example, is associated with various
respiratory tract infections, such as pneumonia, bronchitis, and sinusitis, and may lead to
invasive disease, e.g., meningitis in young children. Pasteurella multocida is pathogenic to
numerous animal species, including cats, dogs, and birds, whereas Mannheimia haemolytica
affects cattle and other ruminants. In recent years, the taxonomy of the Pasteurellaceae family
has undergone major revisions and advancements, leading to the discovery of novel genera
and species [8].

Mergibacter septicus is a bacterium of the Pasteurellaceae family, previously known
as Bisgaard Taxon 40. Although little is known regarding its ecological habitat, trans-
mission, and pathogenicity, it has been associated with multi-species mortality events in
seabirds, including common and sandwich terns, as well as Rhinoceros Auklets (Cerorhinca
monocerata) [9,10]. Affected birds presented with pneumonia, neurological signs, and
septicaemia [9–11]. To date, reports on M. septicus have been sporadic and largely geo-
graphically confined to the USA (Florida; Washington) despite affecting migratory avian
species. To our knowledge, this is the first report on the isolation of M. septicus in Germany,
possibly Europe.

2. Materials and Methods
2.1. Clinical Case Description, Post-Mortem Examinations, and Histologic Examinations

Between 30 June and 18 July 2019, 22 adult common terns breeding at the Banter
See colony as well as chicks of various ages were found dead. One adult and 8 chicks
were sent to the Lower Saxony State Office for Consumer Protection and Food Safety for
investigation. Exemplary post-mortem examinations were performed on two juveniles,
one of which was in poor body condition, whereas the other was emaciated. Significant
gross findings included alveolar edema, alveolar emphysema, and congestion of the lungs
and liver. Histologic examination of lung sections showed vascular congestion in both
birds and alveolar histiocytosis as well as multifocal basophilic bacterial structures in one.
Routine bacterial cultures were performed on selected tissues (intestine, liver, and lung) on
Columbia blood agar plates containing 5% sheep blood incubated at 37 ◦C. Among others,
Pasteurella-like organisms were isolated from the lung tissue of one of the juveniles and
sent to the Institute of Bacterial Infections and Zoonoses at the Friedrich-Loeffler-Institut in
Jena for further analyses.

2.2. Cultivation and Identification of M. septicus 19Y0039

The isolate was cultivated on Columbia blood agar containing 5% sheep blood and
incubated at 37 ◦C. Matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF)
mass spectrometry analysis (UltrafleXtreme, Bruker Daltonics Inc., Billerica, MA, USA)
was used according to the manufacturer’s instructions for presumptive genus and species
identification. Biochemical profiles and carbon source utilisation were assessed by means of
Analytical Profile Index (API) test strips 20E, API50 CH, and APIZYM (all from Biomerieux
GmbH, Nürtingen, Germany) according to the manufacturer’s instructions.

2.3. Antimicrobial Susceptibility Testing of M. septicus 19Y0039

The minimum inhibitory concentration (MIC) was determined by broth microdilution
using the automated MICRONAUT-S system (Micronaut-S MDR-MRGN Screening and
Micronaut-S small animal, MERLIN Diagnostics GmbH, Bornheim-Hersel, Germany) ac-
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cording to the manufacturer’s instructions. The results were evaluated automatically with
MICRONAUT-S software as susceptible, intermediate, or resistant (Supplementary Table S1).
The MIC values were interpreted according to the Clinical and Laboratory Standards In-
stitute (CLSI) break point guidelines available for Pasteurella spp. The reference strains
Escherichia (E.) coli ATCC 25922, E. coli NCTC 13846, and Pseudomonas (P.) aeruginosa ATCC
27853 were used for quality control. Colistin MIC values were additionally determined by
ETEST® (BioMerieux GmbH) on Mueller Hinton agar containing 5% sheep blood according
to the manufacturer’s instructions.

2.4. Genome Sequencing of M. septicus Isolate 19Y0039

Genomic DNA was extracted using the QIAGEN® Genomic-tip 100/G kit and the
Genomic DNA Buffer Set (QIAGEN GmbH, Hilden, Germany) according to the manu-
facturer’s instructions. The DNA purity was assessed with a Colibri spectrophotometer
(Thermo Fisher Scientific, Schwerte, Germany) and was quantified using a Qubit 3 Flu-
orometer with the QubitTM double-stranded DNA (dsDNA) high-sensitivity (HS) Assay
Kit (InvitrogenTM, Schwerte, Germany). The paired-end genome sequencing library was
generated with the Nextera XT DNA Library Preparation Kit (Illumina Inc., San Diego,
CA, USA) followed by whole genome sequencing using an Illumina MiSeq instrument to
generate reads 300 bp in length according to the manufacturer’s instructions.

Additionally, genome sequencing was performed on MinION (Oxford Nanopore Tech-
nology, Oxford, UK) using the ONT 1D Ligation Sequencing Kit (SQK-LSK109) according
to the manufacturer’s instructions. The final DNA library containing 225 ng DNA was
loaded onto an R9.4.1 flow cell (FLO-MIN106) with 1442 available pores for sequencing.

2.5. Genomic Characterisation of M. septicus

The genome assembly of M. septicus 19Y0039 was performed by using ONT long
reads followed by polishing with the Illumina data. Processing of the ONT data generated
with the MinION sequencer was performed as follows: base calling of the raw FAST5
data was performed using the ONT Guppy base calling software (v6.1.5+446c35524) with
the config file for super accurate base calling model (dna_r9.4.1_450bps_sup.cfg). The
base called ONT FASTQ reads were filtered and trimmed using the porechop (v0.2.4;
https://github.com/rrwick/Porechop; Accessed on 22 August 2023) and filtlong (v0.2.1;
https://github.com/rrwick/Filtlong; Accessed on 22 August 2023) tools, respectively.
Nanoq (v0.9.0) was used to report summary statistics of the obtained FASTQ nanopore
data [12]. Next, long-read-only assembly was performed with Flye (v2.9) [13] using the
following parameters: “--nano-hq and flye_polishing_iterartions = 2”. Assembly polishing
with the long reads was performed with four rounds of Racon (v1.5.0) [14] in combination
with minimap2 (v2.24-r1122) and, finally, one round of polishing with Medaka (v1.6.1.).
Polypolish (v0.5.0) in combination with bwa (v0.7.17) was then used to correct the ONT-
based assembly with Illumina reads using standard settings [15,16]. Genome statistics
encompassing genome length and total number of assembled contigs was obtained with
SeqKit (v2.3.0) [17].

The taxonomic identification of M. septicus 19Y0039 was performed by initially ex-
tracting the 16S rRNA sequences using barrnap (v0.93; available at https://github.com/
tseemann/barrnap; Accessed on 22 August 2023). Additionally, 16S rRNA gene sequences
from further members of the Pasteurellaceae family (n = 71) were included for comparison.
All extracted 16S rRNA genes were aligned with mafft (v7.307) [18] followed by phyloge-
netic analysis by constructing a maximum likelihood tree with the FastTree program [19].
Subsequently, Average Nucleotide Identity (ANI) was calculated using pyani (v0.2.3) in
the Mummer module (ANIm) [20]. PhyloPhlAn (v0.43) was also used for phylogenetic
taxonomic analysis [21]. PhyloPhlAn utilized an optimized reference set of marker genes
and employed a phylogenetic approach to accurately assign taxonomy to an investigated
sample set [21].

https://github.com/rrwick/Porechop
https://github.com/rrwick/Filtlong
https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
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For genome annotation, Bakta software (v1.5.1) with Bakta database (v4.0) was used
in default settings [22]. Core genome-based phylogeny was performed using Parsnp (v1.2)
within the Harvest suite with default settings [23].

2.6. Antibiotic Resistance and Virulence-Related Genes

The presence of known antibiotic resistance genes was investigated in public databases
using ABRicate (v1.0.1; https://github.com/tseemann/abricate; Accessed on 22 August
2023). Abricate uses the BLAST+ algorithm and searches for AMR genes in NCBI, Res-
Finder [24], CARD [25], and ARG-ANNOT [26]. All databases were updated on 10 January
2023. In addition, the AMRfinderplus tool (v3.10.42) with database (v2022-10-11.2) was
used with default settings to search for resistance genes [27].

Putative virulence genes previously reported by De Luca et al. [11] including a capsular
gene, genes encoding for outer membrane proteins (ompA, ompH), a superoxide dismutase
(sodA), a cytolethal distending toxin (cdt), as well as genes involved in lipooligosaccharide
(LOS) synthesis (galU, galE, lpxA, lpxC, and kdsA) and iron metabolism (fur and exbD)
were searched for with BLASTN v 2.2.9 in M. septicus 19Y0039. The Fasta sequences
of the putative virulence genes were kindly provided by Dr. De Luca and colleagues
upon request.

Finally, a BLAST analysis of protein sequences (BLASTp) was performed against the
full set of genes present in the virulence factor database for a more extensive search of
virulence-related genes [28,29]. Thresholds were set for e-value < 1 × 10−20. The results of
the BLASTP analysis were filtered to limit BLAST hits to a query sequence identity above
50% and the query coverage above 80%. Annotations of the identified genes were then
extracted from the Bakta annotation results of the strain [22].

3. Results and Discussion
3.1. Phenotypic Characteristics of M. septicus 19Y0039

M. septicus 19Y0039 grows aerobically on blood agar at 28 ◦C, 37 ◦C, and 42 ◦C with ß-
haemolysis. Colonies are small, round, and shiny with a whitish-cream colony morphology,
and Gram-negative rods can be seen under the microscope, in agreement with the findings
of De Luca et al. [11]. No growth was observed on MacConkey agar. M. septicus 19Y0039
is catalase- and oxidase-positive, but urease and indole tests are negative. Acid is formed
from D-glucose, D-mannose, and D-sorbitol. Enzymatic activity was observed for C4
esterase, leucine arylamidase, acid phosphatase, and naphtol-AS-BI-phosphohydrolase at
37 ◦C and 42 ◦C. No bacterial identification was obtained by MALDI-TOF analysis.

3.2. Antimicrobial Susceptibility Testing of M. septicus 19Y0039

The antimicrobial resistance phenotype of M. septicus 19Y0039 was evaluated after
incubation at 37 ◦C and 42 ◦C, respectively (Supplementary Table S1). In contrast to the
findings of De Luca et al. (2021) [11] with regard to antibiotic susceptibility of the isolates
used to describe the newly proposed genus and species Mergibacter septicus, the automated
MICRONAUT-S system found M. septicus 19Y0039 to be resistant to colistin, cephalexin,
clindamycin, oxacillin, and penicillin G. ETEST® (BioMerieux GmbH) determined the
Colistin MIC value to be at 2 µg/mL.

Migratory birds are not only sentinels and reservoirs for antibiotic resistance but also
play a pivotal role in the dissemination of resistant bacteria [30,31]. Although no genetic
determinants for resistance were found in M. septicus 19Y0039, it displayed resistance to sev-
eral antibiotics in vitro. Resistance to oxacillin, cephalexin, erythromycin, and clindamycin
has been described previously for Pasteurella spp. [32–34]. The impact of the observed
colistin resistance remains elusive, as no cut-off values for colistin in Pasteurella spp. exist
to date. However, not further determined colistin resistant bacterial species have been
isolated from numerous migrating avian species, such as Arctic tern, white stork, lesser
black-backed gull, and European herring gull [31,35–37].

https://github.com/tseemann/abricate
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3.3. Genome Description of M. septicus 19Y0039

Table 1 shows the sequencing metrics of M. septicus 19Y0039 generated with Illumina
and Oxford Nanopore sequencing. Genome assembly resulted in one circular chromosome
without extrachromosomal elements. The total length of the chromosome was 1,889,691.
The GC content was 35.9%. Genome annotation resulted in a total of 59 tRNAs, 19 rRNAs,
seven ncRNAs, 11 ncRNA regions, and one CRISPR array. The coding density of the
genome was estimated to be 90% with a total of 1689 coding DNA sequences (CDSs),
including 102 genes encoding for hypothetical proteins. Three pseudogenes were predicted
in the genome. The genomic features of the sequenced strain agree with those recently
described for Mergibacter septicus gen. and sp. nov. in terms of genome size and content. A
total of 89.82% (1518/1690) of the sequences were classified into COG functional categories
(Figure 1). The majority of genes belonged to the category translation, ribosomal structure,
and biogenesis, followed by RNA processing and modification, then transcription. In total,
82 genes belonged to the “defense mechanisms” category.

Table 1. Genome characteristics of strain M. septicus 19Y0039.

Isolation source
Host of isolation Common tern (Sterna hirundo)
Year of isolation 2019

Geography Germany

Illumina sequencing

Total number of nucleotides 510,359,003
Total number of reads 2,111,510
Mean read length (bp) 241 (forward), 242 (reverse)

Q30 bases 439,668,245 (86.1%)
Mean sequencing depth 270×

Nanopore sequencing

Total number of nucleotides 2,499,984,591
Total number of reads 499,799
N50 read length (bp) 8602

Mean read length (bp) 5001
Mean sequencing depth 1268 ± 121×

Assembly and annotation
Total number of contigs 1
Chromosome size (Mb) 1,889,691/(1,887,770) *

G + C content (%) 35.91%/(36.4%) *

Total number of coding
sequences 1690/(1693) *

Total number of rRNA
operons 6

Total number of tRNA 58/(58) *

* Values in brackets denote the reported metrics for M. septicus A25201T (accession# CP022010).

3.4. Taxonomic Classification of M. septicus 19Y0039 from Germany

The 16S rRNA gene analysis of the German strain revealed near complete conformity
with the American Mergibacter septicus spec. nov. A25201T (CP022010), CP022011, and
CP022013 strains, but 12 SNPs were detected between the German strain and the American
strain CP022012. For all other members belonging to the Pasteurellaceae group, a mini-
mum of 76 SNPs were detected in the 16S rRNA gene. The pairwise genomic average
nucleotide identity was estimated to be between 98.1% and 99.9% compared to the M. septi-
cus genomes (CP022010, CP022011, CP022013, and CP022012; Figure 2A), demonstrating
that all genomes belonged to the same species. The results of phylophlan confirmed the
species assignment of the German strain to the recently described genus Mergibacter gen.
nov., with one amino acid difference found between the German isolate and the American
isolates CP022013 and CP022011, 18 amino acid differences to the type strain CP022010,
and 43 to the isolate CP022012. This calculation was based on a concatenated alignment
of 35,489 amino acid positions of up to 400 universally conserved bacterial proteins as
reported with the phylophlan software.
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Despite genetic analyses revealing that the German M. septicus strain 19Y0039 is related
to the American strain M. septicus A25201T, the origin of infection in the birds investigated
in the present study could not be determined. The majority of German Common Terns
breed in the Wadden Sea and along the Baltic coast; however, some birds can also be found
in inland colonies along rivers and lakes. The majority of birds breeding in the Wadden
Sea as well as those breeding in the western and southern German inland spend the winter
along the western African coasts [38], whereas those from the Baltic coast and the eastern
German are inland along the southern African coasts [39]. American Common Terns, on the



Pathogens 2023, 12, 1096 7 of 10

other hand, spend the winter in South America or along the coast of Central America [40].
How M. septicus spreads between continents and which putative vectors are involved are
currently unknown and need further research.

3.5. Virulence Genes in M. septicus

BLAST alignment resulted in the identification of twelve putative virulence genes
previously discovered in the M. septicus type strain A25201T. The sequences of the virulence
genes were highly conserved between the strains (>98% sequence similarity and 100%
sequence coverage compared to the type of strain). The genes involved in lipooligosac-
charide synthesis and toxin production displayed more non-synonymous SNPs in com-
parison to the genes involved in iron metabolism and outer membrane protein synthesis
(Supplementary Table S2).

Next, we assessed the extent of virulence gene homologues in the M. septicus strain
19Y0039 by retrieving all virulence genes in the VFDB. BLAST analysis of the protein
sequences against the VFDB predicted 84 putative virulence genes distributed in nine cate-
gories, i.e., immune modulation, effector delivery system, nutrition/metabolic factor, regu-
lation, stress survival, adherence, biofilm, exotoxin, and motility (Supplementary Table S3).
Among these were 47 genes with high amino acid sequence identity to virulence markers
of the genus Haemophilus. These included genes involved in iron metabolism, such as heme
biosynthesis genes (hemA, hemB, hemC, hemD, hemE, hemG, hemH, hemL, hemN, hemN, and
hemY) and hitABC genes. The latter three genes were arranged in a gene cluster, which
may indicate an operon structure. Similarly, the sitABCD gene cluster (involving four
genes) was found to resemble the sitABCD of the avian pathogenic Escherichia coli (APEC)
strain χ7122, which mediated iron and manganese transport and resistance to hydrogen
peroxide [41]. In addition, M. septicus strain 19Y0039 was found to possess type IV pili
genes (pilB, ppdD, vfr, and comE/pilQ) that played a role in cell adhesion, colonisation,
and motility of Gram-negative bacteria. Moreover, a set of 23 lipo-oligosaccharide related
genes have been identified that show high similarity to the lipooligosaccharide (LOS) genes
of different Haemophilus species. LOS is an important virulence element in Haemophilus
spp., responsible for adherence of the bacterial strain to the host substrate and resistance
to complement and other host antimicrobial factors. Four more gene homologues were
discovered that may have been involved in exopolysaccharide production. The genes
have been detected previously in Haemophilus somnus and are thought to contribute to
colonisation during early natural infection [42]. Despite the presence of putative virulence
genes, the real pathogenic potential of M. septicus cannot be currently determined. Further
studies from recognised clinical cases or from experimental infections are necessary to
determine its pathogenic potential.

4. Conclusions

Migratory birds are exposed to a plethora of pathogens that can cause severe dis-
ease and ultimately death. The detection of these pathogens can be difficult due to the
logistical challenges encountered when monitoring and investigating mortality events in
the wild. Additionally, pathogen isolation can be severely hampered by overgrowth of,
or growth suppression through, colonising bacteria. Despite genetic similarities to the
American strain M. septicus A25201T, the origin of the German M. septicus 19Y0039 strain
remains elusive. The in-depth analysis of M. septicus 19Y0039, however, has demonstrated
the importance of combining phenotypic and genetic analyses with regard to antibiotic
resistance, as it was not possible to link the observed resistance in vitro with currently
known genetic determinants in silico. Other causes leading to antibiotic resistance such as
mutations in, e.g., metabolic genes, are still difficult to identify, as they are time consuming
to induce, and extensive databases with conclusive information on metabolic networks are
missing. Nonetheless, this study was able to determine further putative virulence genes
corroborating the observed pathogenicity of M. septicus in seabirds. Further studies are
required to determine the routes of transmission and possible zoonotic potential.
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