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Abstract: Yersinia (Y.) enterocolitica and Y. pseudotuberculosis are important zoonotic agents which
can infect both humans and animals. To combat these pathogens, the application of strictly lytic
phages may be a promising tool. Since only few Yersinia phages have been described yet, some of
which demonstrated a high specificity for certain serotypes, we isolated two phages from game
animals and characterized them in terms of their morphology, host specificity, lytic activity on
two bio-/serotypes and genome composition. The T7-related podovirus vB_YenP_Rambo and the
myovirus vB_YenM_P281, which is very similar to a previously described phage PY100, showed a
broad host range. Together, they lysed all the 62 tested pathogenic Y. enterocolitica strains belonging
to the most important bio-/serotypes in Europe. A cocktail containing these two phages strongly
reduced cultures of a bio-/serotype B4/O:3 and a B2/O:9 strain, even at very low MOIs (multiplicity
of infection) and different temperatures, though, lysis of bio-/serotype B2/O:9 by vB_YenM_P281
and also by the related phage PY100 only occurred at 37 ◦C. Both phages were additionally able to
lyse various Y. pseudotuberculosis strains at 28 ◦C and 37 ◦C, but only when the growth medium was
supplemented with calcium and magnesium cations.

Keywords: Yersinia enterocolitica; phage; genome; application; therapy

1. Introduction

The genus Yersinia is currently composed of 28 species, three of which are known to
be pathogenic for humans (https://lpsn.dsmz.de/genus/yersinia; access date: 22 May
2021). While Yersinia (Y.) pestis is the causative agent of plaque, Y. enterocolitica and Y.
pseudotuberculosis are enteropathogenic species causing diseases termed yersiniosis [1]. In
2019, yersiniosis, which is mainly caused by Y. enterocolitica, was the fourth most commonly
reported foodborne zoonotic disease in the European Union (EU) [2]. Typical symptoms
are diarrhea (often bloody), fever and abdominal pain, which may be confused with appen-
dicitis [3]. In Europe and many other countries, the presence of Y. enterocolitica is clearly
associated with pigs [4,5]. Infections by this species may be caused by the consumption of
raw or insufficiently cooked pork [6]. However, raw milk, water and vegetables like, e.g.,
mixed salad contaminated with Y. enterocolitica have also been reported as possible sources
of infection [7–9]. Indeed, game animals that may contaminate food are known to contain
this agent as well [10,11]. The species Y. enterocolitica is divided into six biotypes (1A, 1B, 2,
3, 4 and 5) and more than 70 serotypes [12]. In most European countries, strains belonging
to bio-/serotype B4/O:3 prevail. Other common pathogenic bio-/serotypes are B2/O:9,
B2/O:5,27 and, to a lesser extent, 1B/O:8. By contrast, biotype 1A strains, which frequently
occur in the environment and food, are regarded as nonpathogenic. Those strains lack
important virulence factors encoded by a chromosome or by a virulence plasmid (pYV)
only existing in the other five biotypes, e.g., Ail (attachment-invasion locus), InvA (invasin)
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or Yersinia outer membrane proteins (Yops), some of which are toxins [13,14]. Even though
Yersinia strains are not known to be resistant to a broad range of antibiotics (i.e., strep-
tomycin, sulfonamide, trimethoprim/sulfamethoxazole, tetracycline, trimethoprim and
chloramphenicol), methods are required to reduce these bacteria along the food chain. Most
practical applications during slaughtering of pigs are intended to avoid contamination of
carcasses, e.g., sealing off the rectum with a plastic bag, thermal inactivation of the bacteria
and splitting of the carcass without the head [15–17]. One alternative approach to treat
bacterial infections or to reduce pathogens in food is the application of virulent (strictly
lytic) phages [18].

Phages are viruses exclusively infecting bacteria. They generally have a narrow host
range and occur everywhere where their hosts live. Moreover, phages are also effective
against multidrug-resistant bacteria and have a self-replicative mode of action. A number of
phages infecting Y. enterocolitica has been described [19–22]. Most of them are podoviruses
and myoviruses. To date, only two Yersinia siphoviruses have been reported, the well-
characterized temperate phage PY54 and the virulent phage phiR2-01, which is similar to
T5 but whose properties have not been thoroughly described yet [23–27]. Most podoviruses
infecting Y. enterocolitica are related to T7 and have a rather narrow range as they mainly
lyse O:3 strains [28–30]. On the other hand, some myoviruses exhibit a broader host range
since they are additionally able to lyse strains of serotypes O:9 and O:5,27 [31,32], though
some of these phages are active only at and below 25 ◦C [33]. One myovirus (fHe-Yen9-01)
lysed 53 out of 81 (65.4%) Y. enterocolitica strains and was used for experiments with raw
pork, ready-to-eat pork, milk and kitchen utensils leading to reductions of bacterial counts
by 1 to 3 logs [31]. The widest host range of all Yersinia phages described thus far possesses
phage PY100 isolated from farm manure in Germany [34]. PY100 not only infects various
bio-/serotypes of Y. enterocolitica, but also Y. pseudotuberculosis, Y. pestis, as well as some
other nonpathogenic Yersinia species. Interestingly, the very similar phage vB_Yen_X1,
which features 99.5% sequence identity and 99% genomic coverage with PY100, was not
able to lyse Y. enterocolitica O:9 strains [35].

In this work, we isolated and characterized two virulent phages from game animals, a
podovirus (vB_YenP_Rambo) and a myovirus (vB_YenM_P281). We show that the phages
revealed a very broad host range within the species Y. enterocolitica and may be well-suited
for applications.

2. Results
2.1. The Phages Isolated from Game Exhibit Podovirus and Myovirus Morphology

Phage vB_YenM_P281 was isolated from a female deer, whereas vB_YenP_Rambo was
isolated from a male wild boar. Transmission electron microscopy (TEM) demonstrated
that the phages are significantly different in terms of their morphology. Both possess an iso-
metric head and a tail and thus belong to the order Caudovirales (Figure 1). However, while
vB_YenP_Rambo has a very short tail and is clearly a podovirus, the tail of vB_YenM_P281
is long and contractile. Therefore, this phage is a myovirus.
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Figure 1. Electron micrographs of the phages vB_YenP_Rambo (A) and vB_YenM_P281 (B). The bar represents the size of
100 nm.

2.2. vB_YenP_Rambo and vB_YenM_P281 Are Related to Known Phages

To determine the relationship with other phages, the whole genome sequences of the
phages were analyzed. The first one, vB_YenP_Rambo, has a linear genome of 40,327 bp
with terminal direct repeats (199 bp), determined by run-off sequencing using primers
binding approximately 200 bp away from the predicted ends of the genome, which is
related to T7-like phages (Supplementary Material Table S1). The strongest similarities
exist with the Escherichia phages JB01 and N30, to which vB_YenP_Rambo is approximately
79% identical over 73% and 75%, respectively, of their genomes (Figure 2). A slightly
lower value was obtained with, e.g., the Y. pestis phage phiA1122 [36]. The majority of
vB_YenP_Rambo gene products (gp), e.g., the RNA polymerase, the major capsid protein
or the terminase (large subunit) are more than 80% identical to their counterparts in
T7-like phages. One of the few gps that are significantly less similar (50% identical) is
the tail fiber protein (TFP). While the first approximately 180 amino acids of the TFPs
(gp17 in T7) of vB_YenP_Rambo, JB01 and phiA1122 are very similar, the downstream
sequences including the region harboring the receptor-binding domain [37] share almost
no sequence homology (Supplementary material Figure S1). This may explain the different
host specificity of the three phages [37], though the vB_YenP_Rambo protein also shows the
same dissimilarity when compared with the TFP of phiYeO3-12, a phage which specifically
infects Y. enterocolitica O:3 strains [38].



Int. J. Mol. Sci. 2021, 22, 11381 4 of 14

Figure 2. Gene map of phage vB_YenP_Rambo and its relationship to other podoviruses. (A) Gene map of the phage and
identity values with other phages. White bars represent regions of high nucleotide similarity (>75%). (B) Phylogenetic
tree (single nucleotide polymorphism (SNP)-based) of the phages. The scale bar represents the number of nucleotide
substitutions per site.

Phage vB_YenM_P281 has a genome of 50,481 bp, which is very closely related to
that of the Yersinia phages PY100 (50,291 bp) and vB_Yen_X1 (48,848 bp), with which it
is more than 99% identical over 98% and 97% of the genomes, respectively (Figure 3).
Indeed, almost all the vB_YenM_P281 predicted gp’s were also identified in the other
two phages. Since the small and large terminases of the phages are nearly identical, the
start of the vB_YenM_P281 genome was chosen in accordance to that of PY100, which
has been reported to pack its DNA by headful packing using a pac site as the initial start
point [34]. Only at the end of the linear genomes there are a few open reading frames
(ORFs) encoding hypothetical proteins or homing endonucleases which are less than 80%
identical (Figure 3, Supplementary Material Table S2). Two vB_YenM_P281 ORFs (ORF07
and ORF90) encoding a hypothetical protein and a homing endonuclease, respectively, are
even missing in vB_Yen_X1. For vB_Yen_X1, it has been reported that this phage lacks six
PY100 ORFs (07, 47, 51, 58, 87, 91), whereas it would contain one ORF (ORF28) that does not
exist in PY100 [35]. However, a closer look at the sequences revealed that this is not the case
since apart from the PY100 ORFs 07 and 91 which correspond to the abovementioned ORFs
07 and 90 of vB_YenM_P281, all other the ORFs are present in the respective phage. The
fact that also the tail fiber proteins of these phages are almost identical suggests that they
have similar host specificities. Figure 3C shows alignment of tail fiber protein 1. Similar
identity values of 98.9% (vB_Yen_X1) and 99% (PY100) over 100% and 92%, respectively, of
the protein sequences were determined for tail fiber protein 2.
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Figure 3. Gene map of phage vB_YenM_P281 and its relationship with PY100 and vB_Yen_X1. (A) Gene map of
vB_YenM_P281 and values of identity with the other two phages. White bars represent regions of high nucleotide similarity
(>75%). (B) Phylogenetic tree of the phages. The scale bar represents the number of nucleotide substitutions per site.
(C) Alignment of tail fiber proteins 1 (ORF 78 (PY100), 78 (P281) and 69 (vB_Yen_X1)). The location of the vB_YenM_P281
tail fiber gene is indicated in the gene map (red box).

2.3. Phage vB_YenP_Rambo and vB_YenM_P281 Exhibited a Broad Host Range

To determine host specificity of the three phages, 62 pathogenic Y. enterocolitica strains
belonging to the bio-/serotypes B4/O:3, B2/O:9, B2/O:5,27 and 1B/O:8, which are mostly
associated with yersiniosis [4], as well as 10 nonpathogenic biotype 1A strains were ex-
amined. The study revealed that the phages vB_YenP_Rambo and vB_YenM_P281 lysed
almost all the B4/O:3 (Figure 4A,C) and B2/O:5,27 strains at 28 ◦C (Table 1). By con-
trast, no B2/O:9 strain was lysed by vB_YenM_P281 (Figure 4B). On the other hand,
vB_YenP_Rambo did not show lytic activity on 1B/O:8. It is worth noting that similarly to
vB_YenM_P281, phage PY100 also did not lyse any B2/O:9 strain at 28 ◦C. To elucidate
whether the temperature may be important for the infection, the experiment was repeated
at 37 ◦C. Table 1 shows that B4/O:3 and B2/O:5,27 strains were lysed by the phages at
both temperatures but that the size of plaques increased significantly at 37 ◦C (in case of
vB_YenP_Rambo, up to 8 mm in diameter, Figure 4D).

Much more importantly, at this temperature, both vB_YenM_P281 and PY100 were
able to lyse 18 out of the 19 B2/O:9 strains (Figure 4B), while the same negative result as
before was achieved with vB_YenP_Rambo and 1B/O:8. In conclusion, it can be stated that
vB_YenP_Rambo lysed 80.6% of the pathogenic strains at 28 ◦C and 87% at 37 ◦C. On the
other hand, 64.4% and 95% of these strains were susceptible to vB_YenM_P281, at 28 ◦C and
37 ◦C, respectively. Both phages together were able to lyse 95% of the pathogenic strains
at 28 ◦C and 100% at 37 ◦C. Similar to the bio-/serotype B2/O:9, a strong lytic activity of
the phages was observed with biotype 1A strains at 37 ◦C. While at this temperature, six
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and all the ten strains were lysed by vB_YenP_Rambo and vB_YenM_P281, respectively; a
significantly lower lytic activity was detected at 28 ◦C (Table 1).

Figure 4. Plaque formation by the phages on lawns of Y. enterocolitica strongly depends on
the temperature.(A) vB_YenM_P281 (O:3), (B) vB_YenM_P281 (O:9) (C) vB_YenP_Rambo (O:3),
(D) vB_YenP_Rambo (O:9).

Table 1. Host range of vB_YenM_P281 and vB_YenP_Rambo on Y. enterocolitica strains using lysates containing approxi-
mately 107 pfu/mL.

Y. enterocolitica vB_YenM_P281
28 ◦C

vB_YenM_P281
37 ◦C

vB_YenP_Rambo
28 ◦C

vB_YenP_Rambo
37 ◦C

B4/O:3 (n = 18) 18 16 16 18
B2/O:9 (n = 19) 0 18 19 19

B2/O:5,27 (n = 17) 15 17 15 17
1B/O:8 (n = 8) 7 8 0 0

Total (n = 62) 40 (62) 59 (62) 50 (62) 54 (62)
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Table 1. Cont.

Y. enterocolitica
(biovar 1A)

vB_YenM_P281
28 ◦C

vB_YenM_P281
37 ◦C

vB_YenP_Rambo
28 ◦C

vB_YenP_Rambo
37 ◦C

O:5 (YE17/18) − +++ − +++
O:5 (YE65/14) ++ +++ + +++
O:5 (YE129/15) − + − −

O:6,31 (YE30/12) ++ +++ − +++
O:7,8 (YE21/12) − +++ − −
O:7,8 (YE29/16) − ++ − −
O:8 (YE03/13) − ++ − −

O:13,17 (YE15/07) − +++ − ++
O:27 (YE80/16) +++ +++ + +++
O:27 (YE83/16) + ++ − +++

Total (n = 10) 4 (10) 10 (10) 2 (10) 6 (10)

Note: +++—strong lytic activity (single plaques obtained with 10−4 and 10−5 dilution), ++—medium lytic activity (single plaques obtained
with 10−2 and 10−3 dilution), +—weak lytic activity (single plaques obtained with 10−1 dilution or an undiluted lysate), −—no lytic activity.

2.4. Lysis of Y. pseudotuberculosis by vB_YenM_P281 and PY100 Depends on the Presence of
Calcium and Magnesium Cations

Phage vB_YenM_P281 is closely related to PY100, which has been reported to have
a broad host range within the genus Yersinia [34]. This fact inspired us to also test and
compare the lytic activity of vB_YenM_P281 and PY100 on the Y. pseudotuberculosis strains
belonging to various serotypes (Table 2), though we did not observe any plaques of the
phages on the 104 tested strains at both temperatures, 28 ◦C and 37 ◦C, in the NZCYM soft
agar routinely used in our laboratory for this kind of experiment. In the study mentioned
above, LB soft agar supplemented with 10 mM CaCl2 and 10 mM MgSO4 was used for
plaque assays, which exclusively were carried out at 37 ◦C. We therefore supplemented
NZCYM soft agar with CaCl2 and MgSO4 (20 mM each) and examined the lytic activity of
the phages at both temperatures on the 55 selected strains representing the most important
serotypes (Table 2). Surprisingly, plaques were obtained with vB_YenM_P281 and PY100
irrespective of the temperature. However, at 37 ◦C, more Y. pseudotuberculosis strains were
lysed than at 28 ◦C (Table 2). On the contrary, phage vB_YenP_Rambo was not able to lyse
Y. pseudotuberculosis, even under these conditions.

Table 2. Lytic activity of vB_YenM_P281 and PY100 on Y. pseudotuberculosis in the presence of calcium
and magnesium cations.

Y. pseudotuberculosis vB_YenM_P281
28 ◦C

vB_YenM_P281
37 ◦C

PY100
28 ◦C

PY100
37 ◦C

O:1a (n = 12) 7 10 8 10
O:1b (n = 8) 3 8 7 8
O:2a (n = 2) 0 0 0 0
O:2b (n = 1) 1 1 1 1
O:3 (n = 2) 1 1 2 2

O:4b (n = 1) 1 1 1 1
O:5a (n = 2) 0 1 0 1
O:6 (n = 4) 1 3 3 3
O:9 (n = 2) 1 2 1 1

Unknown O-type (n = 21) 16 19 18 20

Total (n = 55) 31 (55) 46 (55) 41 (55) 47 (55)

We finally studied the lytic activity of vB_YenM_P281 and vB_YenP_Rambo on ref-
erence strains of the 14 other Yersinia species (Table 3). Lysis by at least one phage was
observed with Y. bercovieri, Y. frederiksenii, Y. kristensenii and Y. wautersii, but only at 37 ◦C.
In some cases, the presence of CaCl2 and MgSO4 was necessary.
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Table 3. Lysis of other Yersinia species by vB_YenP_Rambo and vB_YenM_P281 at 37 ◦C using lysates
containing approximately 107 pfu/mL.

Yersinia Species Strain ID VB_YenP_Rambo VB_YenM_P281

Y. intermedia DSM 18517 − −
Y. frederiksenii DSM 18490 +++ +

Y. bercovieri DSM 18528 +++ +
Y. similis DSM 18211 − −

Y. wautersii DSM 27350 + (S) +++ (S)
Y. aldovae DSM 18303 − −

Y. aleksiciae DSM 14987 − −
Y. pekkanenii DSM 22770 − −

Y. rohdei DSM 18270 − −
Y. masssiliensis DSM 21859 − −
Y. kristensenii DSM 18543 +++ + (S)

Y. nurmii DSM 22297 − −
Y. ruckeri DSM 18506 − −

Y. mollaretii DSM 18520 − −
Total (n = 14) 4 (14) 4 (14)

Note: +++—strong lytic activity (single plaques obtained with 10−4 and 10−5 dilution), +—weak lytic activity
(single plaques obtained with 10−1 dilution or an undiluted lysate), −—no lytic activity, (S)—plaques only
obtained in the presence of calcium and magnesium cations (see text for details).

2.5. The Phages vB_YenP_Rambo and vB_YenM_P281 Show a Strong Lytic Activity

Based on their wide host range, these two phages might be suitable to reduce Y.
enterocolitica along the food chain, e.g., during the production of pork. Therefore, some lytic
properties of a cocktail containing both phages were determined at various temperatures to
determine the threshold at which the phages can be successfully applied since production
may take place at different temperatures. We first studied the reduction of a bio-/serotype
B4/O:3 (YE179) and a B2/O:9 (Y143/17) strain at 28 ◦C using an MOI of 0.2. Figure 5A
shows that the phages significantly lysed both strains after 4–5 h. Indeed, determination
of the cell numbers after approximately six hours of incubation with phages revealed a
reduction of more than six (YE179) and more than four (Y143/17) orders of magnitude
compared to the controls without the phage. Moreover, the optical density of the infected
Y143/17 culture only slightly increased after incubation overnight, whereas the infected
YE179 culture even remained at its level, suggesting a low rate of phage resistance. To
examine the efficacy of lower MOIs, infections were repeated with diluted phage lysates.
This study revealed MOIs down to 0.000001 to be sufficient for the lysis of both strains (OD
of YE179 = 0.6 (control, 1.3), OD of Y143/17 = 0.2 (control, 1.4) after approximately four
hours of incubation), which means a relation of one phage per million bacteria. In the next
experiment, the lytic activity of the phages at lower temperatures was examined, applying
the same conditions as at 28 ◦C. At 20 ◦C, a reduction of more than four (Y143/17) and
three (YE179) orders of magnitude after 4–5 h of incubation was obtained (Figure 5B). To
determine whether the surviving bacteria had become resistant against the phages within
24 h of incubation, the susceptibility of ten colonies isolated from the infected cultures of
YE179 and Y143/17 was tested with each phage. All the twenty isolates were lysed by both
phages indicating that the temperature (20 ◦C) did not induce resistance. The threshold
temperature for efficient cell lysis within hours was 17 ◦C. However, at this temperature, a
significantly better lysis was obtained after adding a tenfold number of phages (MOI 2).
Using this MOI, a reduction of both strains of almost four (YE179) and, respectively, three
(Y143/17) orders of magnitude was achieved (Figure 5D) within 5–6 h, whereas at a MOI
of 0.2, only strain YE179 was reduced by almost two orders of magnitude after incubation
overnight (Figure 5C).
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Figure 5. Reduction of the B4/O:3 strain YE179 and the B2/O:9 strain Y143/17 by a cocktail containing vB_YenP_Rambo
and vB_YenM_P281 at different temperatures. Numbers of colony-forming units (CFU) determined at several timepoints:
(A) CFU on addition of phage, 28 ◦C; (B) CFU at the end of day 1, 20 ◦C; (C) CFU after incubation overnight, 17 ◦C (MOI
0.2); (D) 17 ◦C (MOI 2). n.d., not determined.



Int. J. Mol. Sci. 2021, 22, 11381 10 of 14

3. Discussion

In this study, we isolated and characterized two Y. enterocolitica phages, vB_YenP_Rambo
and vB_YenM_P281, which may be promising candidates for the biocontrol of this species.
While vB_YenP_Rambo is a member of a large group of T7-like phages, to date, only two
relatives of vB_YenM_P281 have been described, PY100 isolated from manure in Germany
and vB_Yen_X1 recovered from sewage in China [34,35]. Remarkably, we isolated 13 very
similar phages from game animals indicating that PY100-related phages are more common
in nature than thought (Supplementary Material Figure S2). Together, vB_YenP_Rambo
and vB_YenM_P281 lysed 95% (at 28 ◦C) and 100% (at 37 ◦C) of the 62 tested Y. enterocolitica
strains belonging to the most important bio-/serotypes B4/O:3, B2/O:9, B2/O:5,27 and
1B/O:8. Moreover, the phages revealed a strong lytic activity and lysed strains under
in vitro conditions even at rather low temperatures and at very low MOIs. Due to its
extended host range, vB_YenP_Rambo differs from most other Y. enterocolitica podoviruses,
which display a marked specificity for serotype O:3 [27]. Indeed, podoviruses are generally
considered to have a narrower host range than myoviruses [39]. Thus, vB_YenP_Rambo
is an exemption from this rule. Since myovirus vB_YenM_P281 is very closely related to
PY100, we expected a similar host specificity. Surprisingly, however, our first studies on
the host range of this phage disclosed significant differences from PY100. This mainly
pertained to the lytic activity on Y. enterocolitica O:9 strains and Y. pseudotuberculosis, which
were reported to be susceptible to PY100 [34], though our experiments showed that both
vB_YenM_P281 and PY100 were only able to lyse Y. enterocolitica O:9 at 37 ◦C, but not at
28 ◦C, which has been suggested to be the optimal temperature for Yersinia [40]. Similarly,
the closely related phage vB_Yen_X1 lysed all the relevant pathogenic serotypes of Y.
enterocolitica, except for serotype O:9 [35]. We do not know at which temperature the cited
study was performed, possibly below 37 ◦C. The host receptor for this group of phages has
not been identified yet. Therefore, it can only be speculated whether the receptor of O:9
strains is exclusively available at 37 ◦C or whether the propagation of the phage is inhibited
at lower temperatures. Regarding Y. pseudotuberculosis, the situation was different because
not the temperature, but the presence of calcium and magnesium cations played the major
role for cell lysis by vB_YenM_P281 and PY100 there, even though the highest lytic activity
was obtained at 37 ◦C. Since NZCYM broth already contains MgSO4 (0.98 g/L), we assume
that particularly the addition of calcium is important for infection. These ions are known
to stimulate the adsorption of some phages [41–43]. Hence, adequate temperature and a
sufficient amount of the cations should be considered when phages of the PY100 group
are intended for the biocontrol of Y. enterocolitica O:9 and Y. pseudotuberculosis, respectively.
Nevertheless, the combination of vB_YenM_P281 and vB_YenP_Rambo in a cocktail for the
reduction of Y. enterocolitica is ideal because they complement each other excellently. While
vB_YenP_Rambo lysed all the B2/O:9 strains, the same applied to vB_YenM_P281 and the
bio-/serotype 1B/O:8. Our in vitro experiments also revealed that vB_YenP_Rambo is able
to significantly reduce the cell number of a B2/O:9 culture at the temperatures at which
vB_YenM_P281 is not active, even though a MOI of 2 was necessary at 17 ◦C. Comparison
with the B4/O:3 strain suggests that the two phages act in concert so that a higher number
of vB_YenP_Rambo is required to compensate for the inactivity of vB_YenM_P281 on
B2/O:9 at this temperature. It would, of course, be advisable to supplement a cocktail by a
phage like He-Yen9-, a T4-related myovirus that also exhibited a rather broad host range
lysing 53/81 (65.4%) Y. enterocolitica strains, even though it was not active on bio-/serotype
1B/O:8 [31].

4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions

All the bacterial strains of this study originate from the culture collection of the
Consiliary Laboratory for Yersinia (KL Yersinia) hosted at the German Federal Institute for
Risk Assessment (BfR), Berlin, Germany. If not otherwise indicated, Yersinia spp. bacteria
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were cultivated in/on lysogeny broth (LB)-based media at 28 ◦C. Cultivation in a liquid
medium was conducted under continuous shaking at 200–225 rpm [44].

4.2. Isolation, Propagation and Purification of Phages

Yersinia phages described here originated from fecal samples from a deer and a wild
boar hunted in northeast Germany. At KL Yersinia, 5 mL of SM buffer [45] was added
to suspend the samples overnight at 4 ◦C. Afterwards, the material was subjected to
centrifugation for 20 min at 8000 rpm and 10 ◦C. The supernatants were passed through
0.45 µm pore size filters (VWR International, Darmstadt, Germany) and stored until further
processing at 4 ◦C. Determination of lytic activity was performed by spotting 10 µL of
serial dilutions of each sample onto a lawn of Y. enterocolitica indicator strains belonging
to various serotypes. After incubation overnight at 28 ◦C and room temperature (RT), the
plaques were visually inspected and counted. Individual phages were purified by threefold
recovery of single plaques. High-titer lysates of the phages were obtained by infecting
200 mL cultures of the indicator strain (OD588 = 0.5) with phages at a MOI of 0.01–0.1 or by
preparing 10–20 agar plates with confluent lysis of the host bacteria. In this case, soft agar
was harvested by scraping. Sixteen to eighteen hours after phage application, the lysates
were centrifuged for 20 min at 10,000× g to remove the agar and debris and then filtered
(see above). Phages were concentrated by ultracentrifugation and purified using CsCl step
gradients as previously described [46].

4.3. Host Range Determination

The host range of purified phages was determined by spot activity assays. The respec-
tive indicator strain in the amount of 100 µL was mixed with 6 mL prewarmed NZCYM
(VWR International, Darmstadt, Germany) soft agar (0.6%) and poured onto an LB agar
plate [45]. Ten microliters of serial dilutions of each lysate (adjusted to ~1× 107 pfu/mL)
were spotted onto the overlay agar and visually inspected after an overnight incubation at
RT, 28 ◦C or 37 ◦C.

4.4. Transmission Electron Microscopy (TEM)

The CsCl-purified phages were investigated by means of TEM using the negative
staining procedure with uranyl acetate (VWR International, Darmstadt, Germany) as
previously described [46]. The specimens were examined by means of TEM using JEM-
1010 (JEOL, Tokyo, Japan) at 80 kV acceleration voltage.

4.5. Phage DNA Preparation, Sequencing and Genome Annotation

For short-read, paired-end whole genome sequencing, phage DNA was extracted
from concentrated virions by proteinase K/SDS treatment at 56 ◦C for 2 h followed by
phenol chloroform extractions [45]. DNA sequencing libraries were prepared with a
Nextera Flex DNA Sample Preparation Kit (Illumina, San Diego, CA, USA) according
to the manufacturer’s protocol. Short-read paired-end sequencing was performed in
2 × 251 cycles on the Illumina MiSeq benchtop using a MiSeq Reagent v3 600-cycle Kit
(Illumina). Raw reads were trimmed and de novo assembled using the in-house developed
Aquamis pipeline, in which fastp and shovill (SPAdes-based) are included for trimming and
assembly, respectively. Furthermore, it also includes mash (version 2.1) and quast (version
5.0.2) for reference search and quality control of the assemblies. Illumina sequencing
resulted in single contigs consisting of 47,815 (10.9 Mb, sequencing depth > 250) and
54,736 reads (12.8 Mb, sequencing depth > 200) of vB_YenP_Rambo and vB_YenM_P281,
respectively. For the prediction of putative coding sequences (CDS), the annotation tool of
the PATRIC database was used. Further bioinformatics analysis (i.e., sequence comparison)
was conducted using the blast suite (blastn, blastx, blastp; https://blast.ncbi.nlm.nih.gov/
Blast.cgi; access date: 6 October 2021) of the National Center for Biotechnology Information
(NCBI). Prediction of the potential transcription terminators was conducted using ARNold
(http://rssf.i2bc.paris-saclay.fr/toolbox/arnold/; access date: 6 October 2021) [47,48]. The

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://rssf.i2bc.paris-saclay.fr/toolbox/arnold/
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phage genomes were analyzed with ARAGORN (http://www.ansikte.se/ARAGORN/;
accessed on 6 October 2021) and tRNAscan-SE 1.21 (http://lowelab.ucsc.edu/tRNAscan-
SE/; accessed on 6 October 2021), but tRNA sequences could be identified neither in
vB_YenMP281 nor in vB_YenP-Rambo. Phylogenetic analyses were performed using the
CSI Phylogeny tool (version 1.4; https://cge.cbs.dtu.dk/services/CSIPhylogeny/; accessed
on 6 October 2021) of the Center for Genomic Epidemiology [49]. If not otherwise indicated,
default settings were used for the analyses. Dot plot illustrations were conducted using
DS Gene (version 2.5; Accelrys Inc., San Diego, CA, USA) with parameters specified in the
legends of the illustrations.

4.6. Nucleotide Sequencing Data

The nucleotide sequences of the phages were deposited in GenBank under the acces-
sion numbers OK042080 (vB_YenP_Rambo) and MT366944 (vB_YenM_P281).

5. Conclusions

Phages can be a promising tool to reduce important pathogens like Y. enterocolitica
along the food chain. Virulent Y. enterocolitica phages have yet been mostly isolated from
pigs or pork. This study showed that game animals may also be a valuable source of
new Yersinia phages. Besides a large number of other phages, we isolated the podovirus
vB_YenP_Rambo and the PY100-like myovirus vB_YenM_P281, both of which exhibited a
wide host range and strong lytic activity. The study also suggests that Yersinia species are
widespread in game animals, who therefore may form a reservoir for these bacteria. This
assumption is corroborated by the fact that some phages were isolated from tonsils that are
known to be highly populated by Y. enterocolitica, particularly in pigs. We will therefore
continue our work to isolate phages from game animals, which can be used for various
applications or might have other interesting properties.
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