suggest that *Wolbachia* may interfere with the establishment and transmission of this important DNA virus (SGHV), which represents a major hurdle for the application of SIT strategies for the control of tsetse flies and trypanosomosis in sub-Saharan Africa.

Contributed paper. Thursday, 8:15. 216-STU

Mechanisms of tree-top disease induced by the specialist baculovirus SeMNPV

Yue Han, Stineke van Houte, Vera I.D. Ros, Just M. Vlak and Monique M. van Oers

Laboratory of Virology, Wageningen University, Netherlands. Address for Correspondence: yue.han@wur.nl

Many parasites alter host behavior to enhance their transmission or survival. An intriguing example is the altered behavior of insect larvae infected by a baculovirus, e.g. their movement to elevated positions. This phenomenon (tree top disease or Wipfelkrankheit) is already known for over a century. However, the underlying mechanisms leading to this behavioral adaptation are still largely enigmatic. Here we studied tree-top disease induced by the baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) in S. exigua larvae. We show that infected S. exigua caterpillars all climb to elevated positions prior to death. Furthermore, we investigate the role of the ecdysteroid UDPglucosyl transferase (egt) gene from SeMNPV in tree-top disease. This gene is known to be important in tree-top disease in another baculovirus-host system, although the mechanism by which it exerts this effect is unknown. We hypothesize that the SeMNPV egt gene may directly trigger tree-top disease or induce this phenomenon indirectly by prolonging the larval time to death.

Contributed paper. Thursday, 8:30. 217

Temporal proteomics to study virus infection and function in the host cell

<u>Ikbal Agah Ince</u>¹; Sjef Boeren², Just Vlak³, Monique van Oers³ ¹ Department of Medical Microbiology, Acıbadem University, School of Medicine, Istanbul, Turkey; ² Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands; ³ Laboratory of Virology, Wageningen University, Wageningen, The Netherlands

Address for Correspondence: agah.ince@acibadem.edu.tr

Invertebrate iridescent virus 6 (IIV-6) is a nucleocytoplasmic virus with a 212 kb-long linear double-stranded DNA genome that encodes 215 putative open reading frames. The IIV-6 virion proteome consists of at least 54 virally-encoded proteins. One of our previous findings showed that most of these proteins are encoded by genes from the early transcriptional class. This indicates that these structural proteins may not only function in the formation of the virion, but also in the initial stage of viral infection. In the current study, we followed the protein expression profile of IIV-6 over time in Drosophila S2 cells by label-free quantitation using nanoLC-FTMS. A total of 95 viral encoded proteins were detected in infected cells, of which 37 are virion proteins. The expressed IIV-6 virion proteins could be categorized into three main clusters based on their expression profiles. These clusters were: 1) proteins with stably low or 2) exponentially increased expression levels during infection, and 3) proteins that were initially highly abundant, and then showed slightly reduced levels after 48 hours (h) post infection (p.i.). The study supported that temporal expression patterns did not share direct correlation with protein expression classes

phenomena, suggesting that both proteomic and transcriptomic approaches will be required to obtain a detailed understanding of the viral expressomics (infectome). Here, we provide novel information on the kinetics of virion and infected cell-specific protein levels that assists in understanding gene regulation in this lesser known DNA virus model.

Contributed paper. Thursday, 8:45. 218

Characterization of an atypical fast-killing ascovirus: Spodoptera frigiperda ascovirus 1d (SfAV-1d) Eiko Arai¹; Shiori Sagawa¹; Yasumasa Saito¹; Xiao-Wen Cheng²; Dennis Bideshi^{3,4}; Maki Inoue¹; Yasuhisa Kunimi¹; Brian Federici³; <u>Madoka Nakai¹</u> ¹Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan; ²Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, Ohio 45056, USA; ³Department of Entomology, University of California, Riverside, Riverside, California 92521, USA; ⁴California Baptist University, Riverside California 92405 Address for Correspondence: madoka@cc.tuat.ac.jp

Ascoviruses (AVs) are large double-stranded DNA viruses that attack lepidopterans, mainly noctuid larvae. One of the unusual features of AVs is their mode of transmission via parasitoid wasps. AVs are poorly infectious per os compared to other insect viruses such as baculoviruses and cypoviruses. Additionally, AV infection results in production of a characteristic milky-white hemolymph due to accumulation of virion-containing vesicles produced by a modified apoptotic response in infected cells. Virtually all ascoviruses cause a chronic disease wherein larvae survive for as long as 28 days after infection, which enables an extended period of transmission among larvae by wasps. Here, we report characterization of Spodoptera frugiperda ascovirus 1d (SfAV-1d) isolated from a S. frugiperda larva. SfAV-1d killed S. litura 4th instar larvae within 3 days when compared to another AV (SfAV-N), which took as long as 23 days to kill larvae. Larvae infected with SfAV-1d contained the characteristic white hemolymph. Electron microscopy revealed that both SfAV-1d and SfAV-N infected the fat body but not the tracheal matrix or other tissues. Interestingly, despite the difference in the rate at which SfAV-1d and SfAV-N killed larvae, there was no apparent difference in the kinetics of viral DNA replication. The primary difference between these two isolates was that SfAV-1d formed and accumulated virion-containing vesicles in the hemolymph much more rapidly than SfAV-N. Our future studies will focus on characterizing the genetic differences between these viruses to identify determinants that influence their pathobiology, particularly as it relates to rate of kill.

Contributed paper. Thursday, 9:00. 219-STU

Two nucleopolyhedroviruses isolated from the genus Adoxophyes inhibit juvenile hormone (JH) esterase activity but not JH epoxide hydrolase activity

Yasumasa Saito^{1,2}; Shizuo G. Kamita²; Bruce D. Hammock²; Yasuhisa Kunimi¹; Maki N. Inoue¹; Madoka Nakai¹ ¹Laboratory of Biological Control, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; ²Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA Address for Corrspondence: madoka@cc.tuat.ac.jp

Insect metamorphosis is predominantly regulated by two hormones, juvenile hormone (JH) and ecdysone. During the final instar, a dramatic decrease in JH titer is required for the induction of pupation. JH is metabolized by two enzymes, JH