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Abstract: Wheat dwarf virus (WDV) causes an important vector transmitted virus disease, which
leads to significant yield losses in barley production. Due to the fact that, at the moment, no plant
protection products are approved to combat the vector Psammotettix alienus, and this disease cannot
be controlled by chemical means, the use of WDV-resistant or -tolerant genotypes is the most efficient
method to control and reduce the negative effects of WDV on barley growth and production. In this
study, a set of 480 barley genotypes were screened to identify genotypic differences in response to
WDV, and five traits were assessed under infected and noninfected conditions. In total, 32 genotypes
showed resistance or tolerance to WDV. Subsequently, phenotypic data of 191 out of 480 genotypes
combined with 34,408 single-nucleotide polymorphisms (SNPs) were used for a genome-wide associ-
ation study to identify quantitative trait loci (QTLs) and markers linked to resistance/tolerance to
WDV. Genomic regions significantly associated with WDV resistance/tolerance in barley were identi-
fied on chromosomes 3H, 4H, 5H, and 7H for traits such as relative virus titer, relative performance
of total grain weight, plant height, number of ears per plant, and thousand grain weight.

Keywords: barley; Hordeum vulgare ssp. vulgare; Wheat dwarf virus (WDV); leafhoppers; resistance;
tolerance; single-nucleotide polymorphism (SNP); marker; QTL

1. Introduction

Adapting barley cultivars to a changing production environment is a contemporary
task of barley breeding. Barley ranks as the fourth most important crop for food and feed
worldwide [1], and its cultivation is threatened by abiotic and biotic stresses. Changes in
climate conditions, especially those associated with increasing temperatures, will promote
the occurrence and development of insect and virus populations [2]. In detail, it is described
that longer periods of high temperatures during autumn and winter lead to an increased
occurrence of insect-transmitted virus disease, i.e., the aphid-transmitted Barley yellow
dwarf virus (BYDV) and the leafhopper-transmitted Wheat dwarf virus (WDV) [2]. Wheat
dwarf virus (WDV) is known as an important cereal pathogen [3], which is transmitted
by the leafhopper Psammotettix alienus (Cicadelliae family). WDV belongs to the family
Geminiviridae and the genus Mastrevirus. WDV has a monopartite genome (genome size
2.7 kb) with single-stranded circular DNA [4]. The virus causes severe symptoms in
barley such as dwarfing, tufting, streaks of leaf chlorosis, reduced spike number, and yield
losses [3,5,6]. Negative effects of virus infection on yield were described for nearly all of
Europe, as well as for parts of Africa and Asia [3]. The presence of WDV in Europe was first
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reported by Vacke [7] in the former Czechoslovakia. Later, the occurrence of the virus was
also reported for other European countries, i.e., Sweden, Hungary, France, and Germany [8],
and some parts of Africa and Asia [3]. WDV is able to infect different species of the Poaceae
family such as Hordeum vulgare, Triticum aestivum, Avena sativa, Secale cereal, Zea mays, and
many wild grasses. Therefore, it might be considered as a grass generalist pathogen [3].
Due to the lack of insecticides, and with regard to the goal of reducing pesticide application
according to the farm to fork strategy within the European Green Deal, direct control of
P. alienus with insecticides is currently not possible and will most likely not be feasible in
the future. Therefore, identifying virus-resistant or -tolerant barley genotypes is the most
appropriate way to avoid negative effects of WDV in the future.

Today, next-generation sequencing (NGS) or array-based technologies enable geno-
typing of diverse genotype collections in a short time and with high accuracy [9]. High-
density SNP markers make it possible to identify marker–trait associations (MTAs) and
quantitative trait loci (QTLs) through mapping studies or genome-wide association studies
(GWASs) [10]. Several software programs are available to conduct GWAS, e.g., TASSEL [11],
PLINK [12], and R ((GAPIT [13]) and FARMCPU [14])). Several QTL regions associated
with quantitative traits such as yield, seed quality, disease-related traits [15], (e.g., spot
blotch resistance [16,17]), or abiotic stresses (e.g., drought stress [18–20]) have already been
identified in barley using GWAS. So far, however, no QTL regions associated with tolerance
or resistance to WDV have been identified in barley, but some were recently discovered
for wheat [21]. Identification of QTL regions and the development of diagnostic markers
associated with tolerance or resistance to WDV are important and will be helpful for future
barley breeding programs. Furthermore, the identification of QTL regions and molecular
markers associated with WDV will help to better understand the defense mechanisms in
barley and to develop more effective control strategies. In this context, de Ronde et al. [22]
reported on different plant defense mechanisms against viruses. For example, some plants
show a response to all viruses, and this response may be part of the innate immune system.
However, the response of other plants is virus-specific and based on a specific resistance
gene. Resistance can be quantitative, where a reduction in viral replication with a reduced
viral titer is observed, or qualitative, where a resistance gene prevents viral infection.
Paudel and Sanfacon [23] explained that plant fitness is maintained by preventing virus
accumulation in resistant interactions. In contrast, in a tolerant interaction, virus fitness
is reduced by preventing excessive accumulation of virus RNAs or by minimizing the
concentration or activity of viral proteins involved in virulence. In the tolerant interaction,
no significant loss of host vigor or fitness is observed. Tolerance does not necessarily lead
to a reduction in virus titer and is characterized by the absence or significant reduction in
infestation symptoms. Tolerance is genetically more complex and usually involves several
genes. Resistance and tolerance are both based on interactions between plant and virus [23].

Since both mechanisms might be of interest for plant breeding, the present study
focused on the identification of QTL regions, associated with tolerance or resistance to
WDV in barley. To achieve this, we tested a diverse collection of winter barley genotypes
(the primary gene pool of barley) for WDV tolerance and conducted a GWAS to identify
quantitative trait loci (QTL) for WDV tolerance.

2. Materials and Methods
2.1. Plant Material

A set of 480 barley genotypes was selected for the study. Seeds of all genotypes were
kindly provided by the gene banks of the Leibniz Institute of Plant Genetics and Crop Plant
Research (IPK), Germany, and the National Plant Germplasm System (NPGS), United States
of America. Selected genotypes originated from four different continents and 22 countries.
The majority of genotypes under investigation originated from the Fertile Crescent (Middle
East) area, which is considered as a diversity center for barley. The two barley genotypes
“Rubina” and “Post” were used as susceptible and tolerant [2] standard genotypes in
all evaluations.
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Phenotyping

The resistance test of the entire set of 480 barley genotypes was performed in two
successive years. The virus isolate with accession number HF968650, which was isolated
from a WDV positive tested barley plant from Germany (Schwerz) in 2007 [24], was used for
resistance tests. A subset of 240 genotypes was sown in September 2016, and the remaining
genotypes were tested in the following year in three gauze houses. In addition, a set of
50 promising tolerant/resistant genotypes from the first year were tested in the second
year. Genotypes which indicated extinction values below the cutoff [21] were excluded
from further analysis, and a set of 250 out of 480 tested genotypes were genotyped using
the 50K iSelect chip [25]. Ultimately, on the basis of the availability of phenotypic and
genotypic data, a subset of 191 barley genotypes was considered for conducting GWAS and
further analysis.

The resistance tests were carried out in three neighboring gauze houses located on the
field of the experimental station of the Julius Kuehn Institute in Quedlinburg, Germany
(51◦46′20.7′′ N 11◦08′46.5′′ E). The collection of 480 barley genotypes was phenotyped
under infected (I-variant) and noninfected control (C-variant) conditions. Ten to 15 seeds
per genotype and variant were sown in a row. The WDV inoculation was conducted at
BBCH 11–12, i.e., the one- to two-leaf stage. To increase the infection pressure of WDV, a
single WDV-infected (WDV transmitting leafhoppers) barley plant was placed in a short
distance between each row of the infected variant [2]. Before the infestation of plants
by leafhoppers, all plants were covered by additional gauze tunnels. The virus-bearing
leafhoppers were distributed at a stocking density of approximately one insect/plant [2].
Insecticides were applied 4 weeks after the inoculation, and gauze tunnels were subse-
quently removed.

First, phenotyping was performed at BBCH 23-30. Leaf samples of all plants grown
under infected conditions were taken, and 50 mg of leaf material was used to detect a
WDV infection using a double-antibody sandwich enzyme-linked immunosorbent as-
say (DAS-ELISA) [26], where the extinction value is an indicator for relative virus titer
(ELISA-60). The second phenotyping was carried out visually (symptom scoring scale 1–9:
1 = free of symptoms, 9 = dead plant; Figure 1) at BBCH 59 [2]. The scoring values were also
used to discriminate resistant, tolerant, and susceptible genotypes. For instance, genotypes
with a scoring value of 1 and low WDV infection rate were considered resistant (Figure 1).
Genotypes with a scoring value of 2–4 and low infection rate were considered tolerant
(Figure 1). Genotypes with a scoring value of 5–9 and high infection rate were grouped as
susceptible genotypes (Figure 1).
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Figure 1. Symptom scoring scale 1–9: 1, free of symptoms; 2, minimally dwarfed; 3, weak growth
reduction; 4, weak growth reduction and reduced number of ears per plant; 5, moderately dwarfed
and reduction in tillers and ears (it is not shown); 6, moderately to severely dwarfed and few ears;
7, severely dwarfed; 8, heavily dwarfed; 9, dead plant and no yield.
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At the end of each experiment (at BBCH 99); total grain weight (ToGW); plant height
(HEI), number of ears per plant (NEP), and thousand grain weight (TGW) (Table 1) were
measured in the I-variant and C-variant.

Table 1. List of evaluated traits under two different variants.

Trait Abbreviation Method of Measurement Unit

Relative virus titer ELISA-60 Extinction value of a double antibody sandwich
enzyme-linked immunosorbent assay (DAS-ELISA)

Total grain weight ToGW Weight all harvested seeds per plant g

Plant height HEI Measure plant length from basis to top of the head cm

Number of ears per plant NEP Count number of ears after harvesting

Thousand grain weight TGW Weigh 1000 grains after threshing g

The relative performance was determined for each trait by applying the following
formula:

Relative performace =
Gi
Gc

where Gi and Gc are the mean trait performances of a barley genotype under infected
conditions and noninfected conditions, respectively. The relative performance of each trait
was used as phenotypic input for GWAS.

2.2. Statistical Analysis

The analysis of phenotypic data was conducted by using the SAS 7.1 (SAS Institute
Inc., Cary, NC, USA). A quality check of raw data was carried out to exclude outliers, i.e.,
a value lower or higher than two standard deviations. The Shapiro–Wilk test to evaluate
normality of data was performed. The procedure PROC MIXED was used for analysis of
variance (ANOVA). Two mixed models were calculated: model 1 was applied to total grain
weight, plant height, number of ears per plant, and thousand grain weight, and model 2
was applied to ELISA-60 values:

Model 1: Yijklm = µ + Ti+ Gj + Ti × Gj + Yk + Yk × Hl(rowm) + eijklm,

Model 2: Yjklm = µ + Gj + Yk + Yk × Hl(rowm) + ejklm,

Yijklm is the phenotypic value of the j-th genotype in the i-th treatment in the k-th year in
the l-th gauze houses and m-th row, Yjklm is the phenotypic value of the j-th genotype in
the k-th year in the l-th gauze houses and m-th row, µ is the general mean, Ti is the fixed
effect of the i-th treatment, Gj is the fixed effect of the j-th genotype, Ti × Gj is the fixed
interaction effect between the i-th treatment and j-th genotype, Yk and Yk × Hl(rowm) are
the random effects of the k-th year and the l-th gauze house, nested in the m-th row, and e
is the random error term.

2.3. Genotyping

Genomic DNA was extracted using a modified CTAB method based on Doyle and
Doyle [27]. Genotyping was carried out by TraitGenetics (SGS Institute Fresenius GmbH,
Gatersleben, Germany) using the 50K iSelect chip (Illumina Inc., San Diego, CA, USA),
which resulted in 44,040 single-nucleotide polymorphism (SNP) markers. The reference
genome of the barley cultivar Morex (Morex V2) [28] was used for mapping flanking marker
sequences. All mapped markers were filtered for monomorphic markers and≥30% missing
values. In a third step, SNP imputation was carried out using the software package Beagle
version 4.1 [29,30]. The imputed marker dataset was filtered for minor allele frequency
(MAF) ≥5% and heterozygosity ≤12.5%. Finally, a set of 34,408 SNP markers was used for
further analyses.
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2.3.1. Population Structure

In total, 191 out of 480 genotypes were used for GWAS analysis, due to the availability
of phenotypic and genotypic data for all five measured traits. A set of 3117 highly informa-
tive markers was used to calculate genetic distances and determine population structure.
This set of markers consisted of independent markers in linkage equilibrium (LE) and was
selected using Plink software [12].

Rogers distances (RDs) were estimated for pairwise genotype–genotype combina-
tions [31] and transformed in a similarity matrix. This matrix was used as kinship matrix.
Population structure was determined using Bayesian cluster analysis implemented in the
Structure software package version 2.3.4 [32] and principal coordinate analysis (PCoA)
implemented in the DARwin 6 software [33]. The number of clusters (k) was set at 1–10.
Structure was started with 10 independent runs for each k. The burn-in time and Markov
chain Monte Carlo (MCMC) iterations were set to 100,000. The optimal number of sub-
populations was determined by using the Evanno method (∆K method) implemented in
the Structure Harvester software (http://taylor0.biology.ucla.edu/structureHarvester [34],
accessed on 13 October 2011).

2.3.2. Genome -Wide Association Study (GWAS)

In total, 34,408 SNP markers and phenotypic data for five traits (data online at OpenA-
grar: https://doi.org/10.5073/20230616-101640-0, accessed on 29 June 2023) were used
to perform GWAS. Three different programs, i.e., Tassel, GAPIT, and FARM CPU, were
used independently. The following models were used to identify significant marker trait
associations: (1) mixed linear model (MLM) in TASSEL 5.0 [11], which included a K-matrix
and Q-matrix as corrections for relatedness and population structure, (2) compressed mixed
linear model (CMLM) in GAPIT [13], which included a K-matrix and Q-matrix as correc-
tions for relatedness and population structure, and (3) fixed and random model circulating
probability unification (FARMCPU [14]), which included a Q-matrix. In addition, MLM
and CMLM models were applied only with a K matrix.

The significance threshold was set to LOD > 3 or a p-value < 0.001. Markers, which
were significantly associated with the trait of interest in at least two of the three analyses,
were defined as reliable markers. All these markers were assigned to QTL regions on the
basis of the estimated LD decay. LD decay was estimated using the software package
R [35] (packages “genetics” and “LDheatmap”) [36,37]. The LD was calculated as the
squared allelic correlation (r2) between all pairs of markers within a chromosome. The
genetic distances between markers in base pairs were plotted against the estimated r2. The
r2 values were set to 0.2 [38]. To estimate the LD decay, a locally weighted polynomial
regression (LOESS) curve was fitted [39]. Lasty, the intersection of the LOESS curve and the
critical r2 value were used to determine the LD decay [39,40]. The LD decay was separately
calculated for each single chromosome and across all seven barley chromosomes. Lastly,
the identified common markers were screened for candidate genes according to published
functional gene annotations of Morex V2 [28].

3. Results
3.1. Phenotypic Data

Barley genotypes showed different phenotypic reactions in response to a WDV in-
fection (I-variant). Trait performances of all 480 tested genotypes are shown in Table S1.
Below, trait performances and ANOVA result of studied traits are presented for the subset
of 191 genotypes. A lower mean value under the I-variant was observed for all four tested
traits (ToGW, HEI, NEP, and TGW) (Table 2, Figure 2).

The mean value was reduced by 92.8% under the I-variant for ToGW. The lowest and
highest values for ToGW were between 0 g and 287.4 g under the I-variant, and between
2.2 g and 781.7 g under the C-variant, respectively. The standard deviation (SD) was higher
under the C-variant (102.6) compared to the I-variant (31.7), while the coefficient of variance
(CV) showed the lower value under the C-variant (65.7%) relative to the I-variant (280.7%).

http://taylor0.biology.ucla.edu/structureHarvester
https://doi.org/10.5073/20230616-101640-0
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The mean value was decreased by 46.4% for HEI under the I-variant. The 1 cm and 49 cm
as minimum and 159 cm and 224 cm as maximum values could be observed for HEI under
the I-variant and C-variant, respectively. In addition, a lower value for SD (20.3) and CV
(17.2%) was observed for this trait under the C-variant compared to the I-variant. The mean
value of NEP was reduced by 62.6% under the I-variant. The minimum value was 0 and 1
under the I-variant and C-variant, respectively. The maximum value for this trait under
the I-variant and C-variant was 52 and 117, respectively. The value of SD was higher for
NEP under C-variant (12.1) relative to the I-variant (8.2). However, CV was lower under
the C-variant (65.8%) for this trait. The higher mean value (58.6%) was observed for TGW
under the C-variant relative to the I-variant. The minimum value by 5 g and 25.37 g was
observed for TGW under the I-variant and C-variant, respectively. Furthermore, 48.3 g
and 64.8 g were found as maximum values for this trait under the I-variant and C-variant,
respectively. The lower value of SD (7.8) and CV (17.9%) was estimated in the C-variant for
TGW. The Shapiro–Wilk result indicated that the phenotypic data of all four traits under
both variants significantly deviated from the normal distribution.

Table 2. Trait performance of 191 investigated barley genotypes.

Trait Treatment a N b Mean c Minimum d Maximum d Sd e CV f

Relative virus titer I-variant 1866 0.3 −0.03 1.84 0.6 179.7

Total grain weight
I-variant 209 11.3 0 287.4 31.7 280.7

C-variant 229 156.3 2.2 781.7 102.6 65.7

Plant height
I-variant 520 62.9 1 159 40.4 64.2

C-variant 1163 117.5 49 224 20.3 17.2

Number of ears per plant
I-variant 524 6.9 0 52 8.2 118.3

C-variant 1160 18.4 1 117 12.1 65.8

Thousand grain weight
I-variant 208 25.5 5 48.3 8.7 34.1

C-variant 229 43.5 25.37 64.8 7.8 17.9

a Treatment: infected (I-variant) and control (C-variant). b Number of observations. c Mean value. d Maximum
and minimum. e Standard deviation. f Coefficient of variation (in %).
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Significant genotype effects (p < 0.001) were observed for HEI and TGW. In addition,
significant (p < 0.001) treatment effects between the I-variant and C-variant for ToGW, HEI,
NEP, and TGW were observed. The genotype-by-treatment interaction was significant
(p < 0.001) for HEI (DF = 186), NEP (DF = 186), and TGW (DF = 184, Table 3). A significant
genotype effect was observed for ELISA-60.

Table 3. ANOVA result of all five measured traits for 191 investigated wheat genotypes.

Trait Effect Degrees of Freedom F-Value Pr > F

Relative virus titer Genotype (G) 190 2.26 <0.0001

Total grain weight

Genotype (G) 190 1.05 0.49

Treatment (T) 1 364.08 <0.0001

G × T 184 0.84 0.74

Plant height

Genotype (G) 190 5.43 <0.0001

Treatment (T) 1 3651.82 <0.0001

G × T 186 9.26 <0.0001

Number of ears per plant

Genotype (G) 190 1.04 0.50

Treatment (T) 1 443.86 <0.0001

G × T 186 1.83 <0.0001

Thousand grain weight

Genotype (G) 190 3.05 <0.0001

Treatment (T) 1 1233.26 <0.0001

G × T 184 2.19 <0.0001

3.2. Genotyping

Genotyping of the 191 genotypes resulted in a raw marker set of 44,040 SNP markers.
In total, 9632 markers were excluded from the marker set, because of missing values,
MAF < 5%, heterozygosity > 12.5%, or their location on an unknown chromosome. The
number of markers per chromosome ranged between 3886 and 6335. The minimum and
maximum number of markers were found on chromosomes 4H and 5H, respectively
(Figure 3). Based on LD prune, a set of 3117 markers was selected equally distributed
across all seven barley chromosomes. The set of informative markers was used to calculate
genetic distance and to determine population structure.
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3.2.1. Population structure

The conducted Bayesian cluster analysis revealed a number of K = 2 subpopulations
(Figure S1). Genotypes with a membership coefficient ≥0.7 to one of the Structure groups,
were assigned to the corresponding group. Genotypes with a membership coefficient <0.7
were considered as admixed. A total of 90, 77, and 24 genotypes were assigned to structure
groups 1 or 2 or the admixed group, respectively. Additionally, to visualize the results
of the Bayesian cluster analysis, the structure grouping was projected on the results of
PCoA (Figure 4). PCo1 and PCo2 explained 11.0% and 5.7% of the whole variation. In
addition, genotypes were assigned to groups on the basis of origin and row type (two and
six rows) to define a clear connection between genotypes within a cluster. However, we
could not identify a relationship between genotypes based on the mentioned parameters
within clusters. For instance, genotypes with two rows were distributed across K1, K2, and
the admixture cluster. Furthermore, the distribution of resistant and tolerant genotypes is
shown in Figure 4. Resistant genotypes were clustered in K2, while the majority of tolerant
genotypes (53%) were clustered in K1, and the remaining genotypes (41% and 6%) were
clustered in K2 and admixture clusters, respectively (Figure 4).
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3.2.2. Genome-Wide Association Study (GWAS)

To identify markers significantly associated with WDV, three different programs,
i.e., TASEEL, GAPIT, and FARMCPU, were used to conduct GWAS with three different
models. The LOD value ≥ 3 was considered as a significant threshold. Only markers that
were identified by all three programs were considered as significant associations for the
respective trait. In total, nine significantly associated markers with LOD≥ 3 were identified,
which were partly distributed differently among the traits relative virus titer (one), relative
performance of ToGW (three), HEI (two), NEP (two), and TGW (one), respectively (Table 4
and Figure 5) on the basis of relative trait values.

An increased number of markers for relative virus titer were identified using the
three programs TASSEL (596), GAPIT (26), and FARMCPU (41), located on all barley
chromosomes. Chromosomes 2H and 4H indicated the highest and lowest number of
significant markers for relative virus titer. The phenotypic variance explained varied
between 6.9% (JHI-Hv50k-2016-92202; on chromosome 2H) and 12.2% (JHI-Hv50k-2016-
377967; on chromosome 6H). GAPIT identified 26 significantly associated markers for the
relative virus titer on all barley chromosomes. Chromosome 2H indicated the highest
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number of significantly associated markers (11 markers), of which three were also found
by TASSEL. The 41 identified markers, identified by FARMCPU, were located on all barley
chromosomes with five and three overlapping common markers with TASSEL and GAPIT,
respectively. The marker “JHI-Hv50k-2016-202912” at a physical position of 562,758,917 bp
on chromosome 3H was identified as common marker among all three methods. Common
markers that were identified by two or three different methods are shown in Figure S2
and Table S2.

Table 4. List of commonly identified significant associated trait markers through three different
used methods.

Trait Marker Name Chr a Pos b
p Value

Identified Genes in QTL Region
Gapit c Tassel c FarmCPU

Relative virus titer JHI−Hv50k−2016−202912 3H 562,758,917 3.3× 10−4 2.6× 10−4 2.2× 10−4

Relative total grain weight JHI−Hv50k−2016−196649 3H 534,052,013 6.8× 10−5 7.7× 10−4 2.8× 10−6

Relative total grain weight BOPA1_2955−452 4H 552,300,974 9.5× 10−4 2.4× 10−5 9.4× 10−5 Cysteine proteinase inhibitor

Relative total grain weight BOPA2_12_10333 5H 554,416,618 3.4× 10−4 1.1× 10−4 1.7× 10−4

Relative plant height BOPA2_12_21049 2H 31,329,721 3.3× 10−5 3.5× 10−5 6.6× 10−4 Dihydrofolate reductase

Relative plant height JHI−Hv50k−2016−435708 7H 1,402,273 1.5× 10−5 7.4× 10−5 1.1× 10−6

Relative number of ears
per plant JHI−Hv50k−2016−123144 2H 631,278,948 1.8× 10−4 8 × 10−4 2.7× 10−6 NBS−LRR disease resistance

protein

Relative number of ears
per plant JHI−Hv50k−2016−142550 2H 666,139,797 6.4× 10−5 1.0× 10−4 1.7× 10−7 Dihydroflavonol 4−reductase

Relative thousand
grain weight JHI−Hv50k−2016−435708 7H 1402273 4.8× 10−6 1.7× 10−5 8.7× 10−9

a Chromosome. b Position. c CMLM was applied in GAPIT and TASSEL.

For relative total grain number, 1184, 17, and 17 markers were identified on chromo-
somes 1H, 2H, 3H, 4H, 5H, and 7H with TASSEL, GAPIT, and FARMCPU, respectively.
The 1184 markers identified with TASSEL were located on all barley chromosomes. Chro-
mosomes 7H and 4H indicated the highest and lowest numbers of significantly identified
markers with 254 and 127 markers for relative total grain number, respectively. The pheno-
typic variation explained varied between 6.6% (JHI-Hv50k-2016-338274; on chromosome
5H) and 24% (JHI-Hv50k-2016-486135; on chromosome 7H). GAPIT identified 17 markers
for relative total grain number on chromosomes 2H, 3H, 4H, 5H, and 7H. Five common
markers were identified by GAPIT and TASSEL on chromosomes 3H, 4H, and 5H. The
same number of common markers was identified by GAPIT and FARMCPU. Three markers
“JHI-Hv50k-2016-196649”, “BOPA1_2955-452”, and “BOPA2_12_10333” on chromosomes
3H (at a physical position of 534,052,013 bp), 4H (at a physical position of 552,300,974 bp),
and 5H (at a physical position of 554,416,618 bp) were detected by all three methods. In
addition, five significant markers were identified by two methods.

For relative plant height, 14, 46, and 14 markers on chromosomes 1H, 2H, 3, 4H, 5H,
and 7H were identified by TASSEL, GAPIT, and FARMCPU, respectively. GAPIT identified
a high number of significant markers for relative plant height compared to TASSEL and
FARMCPU. The markers identified by GAPIT were distributed on all seven barley chromo-
somes. Chromosomes 2H and 5H revealed the highest and lowest number of markers (10
and one markers) for this trait. GAPIT showed 11 common markers with TASSEL on chro-
mosomes 1H, 2H, 3H, 4H, and 7H, while three out of 46 identified markers were common
between GAPIT and FARMCPU on chromosomes 1H, 2H, 5H, and 7H. TASSEL identi-
fied 14 significant markers on chromosomes 1H, 2H, 3H, 4H, and 7H, with the explained
phenotypic variance ranging from 7.44% (on chromosome 2H) to 14.18% (on chromosome
4H). FARMCPU identified 14 significant markers on all barley chromosomes with one
exception (chromosome 6H). FARMCPU indicated two common markers with TASSEL on
chromosome 2H and 7H. In total, 12 markers were identified by two methods, and two out
of these, “BOPA2_12_21049”and “JHI-Hv50k-2016-435708“, were also identified by all three
methods. These markers are located at physical positions of 31,329,721 bp and 1,402,273 bp
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on chromosomes 2H and 7H, respectively. The marker “JHI-Hv50k-2016-435708” revealed
the highest LOD value compared to other identified markers (Table S2).
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In total, eight, 12 and 26 markers were significantly associated with the relative
number of ears per plant using TASSEL, GAPIT, and FARMCPU, respectively. TASSEL
detected eight markers on four barley chromosomes (1H, 2H, 3H, and 7H) which explained
a phenotypic variance of 6.9% and 10.9% on chromosomes 7H (JHI-Hv50k-2016-439186)
and 3H (JHI-Hv50k-2016-224192), respectively. GAPIT identified 12 markers significantly
associated with the relative number of ears per plant, while three (on chromosome 2H
and 7H) and four (on chromosome 2H, 5H, and 7H) common markers were detected by
TASSEL and FARMCPU, respectively. A set of 26 significant markers was identified using
FARMCPU for the relative number of ears per plant, out of which three were also identified
by TASSEL on chromosome 1H and 2H. Two markers, “JHI-Hv50k-2016-123144” and “JHI-
Hv50k-2016-142550”, at physical positions of 631,278,948 and 666,139,797 on chromosome
2H were identified as common markers by all three methods used.

A total of 19, 18, and 12 significant markers were identified using MLM (in TASSEL),
CMLM (in GAPIT), and FARMCPU for relative thousand-grain weight, respectively. The
19 significant markers for relative thousand-grain weight were distributed on all barley
chromosomes with the exception of chromosome 2H. The markers “SCRI_RS_174419 “
and “JHI-Hv50k-2016-435708 “revealed the highest (12.7%) and lowest (6.1%) phenotypic
variation on chromosome 1H and 2H, respectively. Eight common markers were detected
by TASSEL and GAPIT on chromosome 3H, 4H, 6H, and 7H. Only one common marker
was identified by TASSEL and FARMCPU on chromosome 7H. GAPIT and FARMCPU
showed three common markers for relative thousand-grain weight on chromosomes 3H
and 7H. One significantly associated marker (JHI-Hv50k-2016-435708) on chromosome 7H
was detected by all used methods. The marker “JHI-Hv50k-2016-435708” was significantly
associated with relative plant height and relative thousand grain weight at a physical
position of 1,402,273 bp on chromosome 7H.

Lastly, all identified significantly associated markers (Table 4) were screened to identify
potential genes of interest, which were located within a distance of ±1 million base pairs
of the identified significant marker as a function of the calculated LD decay across all
chromosomes. Three genes, a dihydrofolate reductase, an NBS-LRR disease resistance protein,
and a dihydroflavonol 4-reductase, were identified at chromosome 2H. Furthermore, a gene
coding for a “cysteine proteinase inhibitor” was identified at a distance of 374 bp from
“BOPA1_2955-452” on chromosome 4H.

4. Discussion

The rising temperature, e.g., in many parts of Europe, has led to environmental
conditions that promote the spread of pests such as the leafhopper species Psammotettix
alienus, which acts as a vector for Wheat dwarf virus (WDV). WDV is a generalist cereal
pathogen and to date no resistance resources have been described for barley, except the
cultivar “Post” [2]. Phenotyping of genotypes to identify resistant/tolerant genotypes based
on work including insects and viruses is labor-intensive, time-consuming, and subject to
environmental fluctuations in case it involves field tests. Hence, the availability of molecular
markers would enable rapid and reliable discrimination between resistant/tolerant and
susceptible genotypes [41]. Only little knowledge of genetic factors controlling WDV
and resistance sources in barley is present, and only cv. “Post” has been identified as
resistant [2]. In contrast, information about genetic markers associated with WDV for
wheat was reported recently by Buerstmayr and Buerstmayr [42] and Pfrieme et al. [21].

As described by Nygren et al. [3], WDV causes symptoms such as dwarfing, tufting,
streaks of leaf chlorosis, and reduced spike numbers. Together with the relative virus titer,
these traits were used for phenotyping in the present study. We identified 32 genotypes
that show tolerance or resistance to WDV. With regard to the expression of resistance [43]
we identified genotypes with quantitative resistance that reduces or delays disease devel-
opment and genotypes with qualitative resistance, preventing plant infection. Three out of
these genotypes (“Res1”, “Res2”, and “Res3”) did not show any virus titer accompanied
by the absence of virus symptoms, indicating a qualitative resistance. These genotypes



Viruses 2023, 15, 1568 12 of 15

originated from Afghanistan and Iran and are considered favorable sources for improving
resistance to WDV in barley.

Considering the problems of phenotyping such as the lack of repeated tests in different
years due to the challenging phenotyping method, different GWAS models were used in
parallel to increase the probability to exclude false-positive associations and to confirm
detected markers in order to achieve reliable marker trait associations. TASSEL and GAPIT
are MLM based models, which are considered single-locus models. These models contain a
one-dimensional genome scan, which tests one marker at a time, iteratively for each marker
in a dataset. These methods cannot match the real genetic model of complex traits which
are controlled by multiple loci simultaneously [44]. To overcome this problem and reduce
false-positive associations that are caused by kinship and population structure from single-
locus models, multilocus association mapping models are recommended [44]. FARMCPU,
as a multilocus model, eliminates confounding factors by testing associated markers as
covariates through a fixed effect model (FEM) and optimization on the associated covariate
markers using a random effect model (REM) [14]. Furthermore, FARMCPU reduces false-
positive associations using both fixed and random effect models [14]. In the present study,
MLM and CMLM as single-locus models and FARMCPU as a multilocus model were used
to identify significant associated markers and QTLs. Among these tested models, GAPIT
performed better than FARMCPU and TASSEL when considering the obtained QQ plot
based on p-values (Figure S3).

Nine common markers for all three methods for five measured traits were identified
in the present study. No common markers for the three methods were identified on
chromosomes 1H and 6H. In the present study, the marker “JHI-Hv50k-2016-435708” was
associated with relative plant height and relative thousand-grain weight on chromosome
7H. These two traits are controlled by several genes and are positively correlated [41].
He et al. [45] reported eight markers on barley chromosomes 2H and 5H that are associated
with plant height and thousand-grain weight.

The identified common markers (among all three methods, Table 4) were screened for
candidate genes according to published functional gene annotations of Morex V2 [28], lead-
ing to the identification of three high-confidence genes on chromosome 2H (BOPA2_12_21049,
JHI-Hv50k-2016-123144, and JHI-Hv50k-2016-142550) and one high-confidence gene on
chromosome 4H (BOPA1_2955-452), respectively. As a potential candidate resistance gene,
the Dihydrofolate reductase (DHFR) gene on chromosome 2H was found to be colocalized
with the “BOPA2_12_21049” marker, which was associated with relative plant height. This
gene plays several important roles in cell metabolism, catalyzes the conversion of dihydro-
folate to tetrahydrofolates (synthesis of 5,6,7,8-tetrahydrofolate) [46,47], and may lead to
tolerance through compensation of virus-induced metabolic changes in its host. A second
high-confidence gene “NBS-LRR disease resistance” was identified on chromosome 2H and
was co-located with the identified marker “JHI-Hv50k-2016-123144” that is associated
with the relative number of ears per plant. This gene belongs to a large group of disease
resistance genes (R genes), which are involved exclusively in a non-membrane-bound
form in qualitative resistance to different viruses in various host plants [48]. In addition
to the two identified candidate genes on chromosome 2H, Dihydroflavonol 4-reductase was
identified as a third gene at 491 bp distance from marker “JHI-Hv50k-2016-142550”. This
gene plays a role in flavonoid metabolism. It is involved in the production of anthocyanins
and proanthocyanidins [49]. Flavonoids have been shown to have antiviral activity [50].
The identified marker on chromosome 4H corresponds to a gene coding for a cysteine
proteinase inhibitor located at a distance of 374 bp from the “BOPA1_2955-452” marker.
Cysteine proteinase inhibitors were reported to increase plant resistance against pathogens
and insects [51–54]. The increase in resistance to potyviruses using cysteine proteinase
inhibitors in transgenic tobacco plants was reported by Gutierrez-Campos and Torres-
Acosta [48]. Furthermore, Carrillo et al. [54] indicated that the barley cysteine-proteinase
inhibitor reduced the performance of two aphid species in artificial diets and transgenic
Arabidopsis thaliana plants.
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The identification of WDV-resistant or -tolerant genotypes, as well as an understanding
of the genetic background of plants, is a prerequisite to reduce the negative effects of this
virus on plant production. In this context, identified markers or QTLs not only provide a
relevant genetic basis for breeding but also enhance our knowledge about genomic regions,
which control WDV resistance in barley.

5. Conclusions

We present a first GWAS study using the 50K iSelect chip for barley to identify as-
sociated markers for resistance/tolerance to WDV. In this study, three different statistical
models (MLM, CMLM, and FARM CPU) were used to validate the results and identify
significant marker–trait associations. On the basis of phenotypic data, three genotypes
were defined as resistant, and 29 genotypes were defined as tolerant. GWAS revealed nine
markers significantly associated with resistance/tolerance to WDV. The development of
KASP markers (Kompetitive Allele Specific PCR) based on the obtained common significant
markers could be a valuable tool for plant breeding and replace the classical screening
method including vector insects and viruses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15071568/s1, Table S1: Trait performance of all investigated
barley genotypes; Table S2: List of all common identified significant (LOD > 3) markers among two
or three used methods for all measured traits; Figure S1: DeltaK plot: Number of optimal detected
clusters (K = 3) according Bayesian clustering approach; Figure S2: venn plot indicates number of
identified markers (LOD ≥ 3) with different methods for (a) relative virus titer, (b) relative total grain
weight (c) relative plant height, (d) relative number of ears per plant, (e) relative thousand grain
weight; Figure S3: QQ-plots visualize the false positives of three used models based on observed and
the expected p values of the GWAS models for (a) relative virus titer, (b) relative total grain weight (c)
relative plant height, (d) relative number of ears per plant, (e) relative thousand grain weight.
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