
Citation: Rivas, J.; Dubois, A.;

Blanquer, A.; Gérardy, M.; Ziegler, U.;

Groschup, M.H.; Grobet, L.;

Garigliany, M.-M. Tendon-Derived

Mesenchymal Stem Cells (TDSCs) as

an In Vitro Model for Virological

Studies in Wild Birds. Viruses 2023,

15, 1455. https://doi.org/10.3390/

v15071455

Academic Editor: Jason Mackenzie

Received: 31 May 2023

Revised: 23 June 2023

Accepted: 26 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Tendon-Derived Mesenchymal Stem Cells (TDSCs) as an
In Vitro Model for Virological Studies in Wild Birds
José Rivas 1, Axel Dubois 2, Aude Blanquer 1, Mazarine Gérardy 1, Ute Ziegler 3 , Martin H. Groschup 3 ,
Luc Grobet 2 and Mutien-Marie Garigliany 1,*

1 Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Pathology, Faculty of
Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; jfarivas@uliege.be (J.R.);
aude.blanquer@uliege.be (A.B.); mazarine.gerardy@uliege.be (M.G.)

2 Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Embryology,
Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium;
axel.dubois@uliege.be (A.D.); lgrobet@uliege.be (L.G.)

3 Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10,
17493 Greifswald-Insel Riems, Germany; ute.ziegler@fli.de (U.Z.); martin.groschup@fli.de (M.H.G.)

* Correspondence: mmgarigliany@uliege.be

Abstract: The use of wild animals in research is complicated due to the capture and housing condi-
tions, as well as to legal aspects, making it difficult to develop in vivo and in vitro models for the
study of pathologies that affect these species. Here we validate an in vitro model of tendon-derived
mesenchymal cells (TDSC) from Eurasian blackbird (Turdus merula) cadaveric samples. Through the
expression of surface markers and the ability to differentiate into multiple lineages, the nature of
the cells was confirmed. We then evaluated Mesenchymal Stem Cells (MSCs) as an infection model
for the Usutu Flavivirus. To this aim, blackbird TDSCs were compared to Vero E6 cells, commonly
used in Flavivirus studies. Both cells showed permissiveness to USUV infection as confirmed by
immunocytochemistry. Moreover, TDSCs exhibited replication kinetics similar to, although slightly
lower than, Vero E6, confirming these cells as a pertinent study model for the study of the patho-
genesis of USUV. In this work, we isolated and characterized tendon-derived mesenchymal stem
cells, which represent an interesting and convenient in vitro model for the study of wildlife species
in laboratories.

Keywords: cadaveric stem cells; in vitro model; wild bird; Turdus merula; Usutu virus

1. Introduction

Research projects exploring for instance a trait specific to a wild animal species can
hardly be performed using conventional laboratory animals [1]. Working with wild animals
in the laboratory presents complications related to their capture, housing, and legal restric-
tions due to their protection status, making their use as in vivo models more difficult [2,3].
The use of in vitro models can address this problem, although they have several limitations
and do not always replicate in vivo scenarios [4,5]. Still, in vitro models present certain
advantages as they are easy to implement, require less maintenance, are cost-effective,
and provide a highly controlled environment, by the way removing the ethical issues
owing to using live animals [4,6]. They can also be used in screening in pharmacology and
toxicology; studies in genomics, proteomics and metabolomics; and studies of biomarkers
in diseases for example [5]. However, the isolation of primary cells from animals usually
requires fresh samples, which are hardly available for wild animals.

Over the last decade, several studies reported the successful isolation of Mesenchymal
Stem Cells (MSCs) from cadaveric tissues, addressing the ethical problems due to the use
of live animals and thus facilitating access to in vitro models [7]. MSCs are undifferen-
tiated, self-renewing cells that form populations displaying multilineage differentiation
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potential [8]. These cells can be isolated from various tissues including bone marrow,
subcutaneous adipose tissue, spinal cord, and tendon [7]. From the latter, tendon-derived
stem cells (TDSCs) can be easily isolated from tendons obtained from biopsies or from
cadavers between 48–72 h post-mortem by digestion with collagenase type I [9,10]. The
cells present colony formation, rapid proliferation, and a high potential for multilineage
differentiation, being an interesting source of MSCs [11,12]. Stem cells are known for
their therapeutic role in tissue regeneration, especially in applications such as skeletal
muscle tissue engineering, for which their use has been described successfully [13–15].
In recent years, they have been reported as options for cancer treatment [16] and also, to
understand the pathogenesis of infections by viral agents such as severe acute respiratory
syndrome-coronavirus-2 (SARS-CoV-2) [17] or Flaviviruses [18]

Usutu virus (USUV) is an emerging mosquito-borne virus belonging to the genus Fla-
vivirus, family Flaviviridae, with a single-stranded RNA of positive polarity. The Flavivirus
genus includes zoonotic arboviruses such as Zika virus (ZIKV), Dengue virus (DENV), Yel-
low Fever virus (YFV), and West Nile virus (WNV) among others, which are responsible for
hemorrhagic diseases and/or viral encephalitis in humans and several animal species [19].
USUV is transmitted to a wide variety of avian hosts via mosquito bites, which may result
in different clinical forms depending on the species infected, ranging from asymptomatic
infections to severe neurological disease and death. Among the most susceptible species are
members of the Strigidae family and many Passeriformes, including the Eurasian blackbird
(Turdus merula) [20]. At the moment, no in vitro models have been described to study the
pathogenesis of USUV in wild avian species susceptible to infection [21].

Skin is the first site of replication of mosquito-borne Flaviviruses [22]. Among the
target cells are the dermal fibroblasts, which are the most abundant cells in the skin and
fulfill sentinel and structural functions [22,23]. It has been shown in co-cultures during
DENV infections that human dermal fibroblasts (HDFs) have a crosstalk via soluble factors
with human dermal microvascular endothelial cells (HDMEC) and dendritic cells (DCs).
This increases the secretion of cytokines that decrease DENV replication [24,25]. It also
modulates the activation and maturation of DCs that are responsible for the activation of
the adaptive immune response [24]. These observations suggest that the role of fibrob-
lasts is fundamental for the early control of infection by Flaviviruses [23]. Isolation of
fibroblasts from wild birds is complex due to the difficulty in accessing fresh carcasses, by
contrast with MSCs which can be isolated several days post-mortem [7]. Both cell types
share a mesenchymal origin, similar membrane receptors, and in vitro immune response
mechanisms [26]. Therefore, MSCs can be an interesting surrogate for fibroblasts.

The aim of this work was to isolate and characterize TDSCs and to assess these cells as
an in vitro model of viral infection. The cells were isolated from cadaveric blackbird tendon
tissue at least two days after death. The nature of the cells was confirmed by the expression
of specific markers and their ability to differentiate into other mesenchymal lineages was
assessed. Then, the permissivity of these cells to the infection by USUV was compared with
Vero E6 cells by immunocytochemistry and the kinetics of viral replication by RT-qPCR,
with similar results between both cells. This validates TDSCs as the first in vitro model of
USUV infection in susceptible wild avian species.

2. Materials and Methods
2.1. Isolation of TDSCs

Cells were isolated from a found dead female blackbird, which was kept refrigerated
for 2 days before being dissected. Briefly, both legs were removed under aseptic conditions.
They were immersed in 10% povidone-iodine for 1 min and rinsed 2 times with phosphate-
buffered saline (PBS). Flexor tendons of the tibia-tarsal joint were removed and cleaned
of residual muscle. Then TDSCs were isolated as previously described by Shikh Alsook
et al., 2015 [9]. Briefly, the cells obtained were seeded at a density of 4 × 104 cells/cm2 into
24-well plates previously coated with 0.1% Gelatin from porcine skin (Sigma-Aldrich, St.
Louis, MI, USA). The cells were incubated at 37 ◦C with 500 µL of Dulbecco’s Modified
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Eagle’s Medium (DMEM) low glucose (1 g/L), with Sodium Pyruvate (Gibco, London, UK),
supplemented with 10% heat-inactivated fetal bovine serum (FBS; Biowest, Nuaillé, France),
2% chicken serum (Gibco, UK), 1% Antibiotic-Antimycotic (Gibco, UK) and MEM Non-
Essential Amino Acid Solution (Lonza, Morristown, NJ, USA), adapted from [27]. Half
of the medium was changed every 3 days for each well. When cells reached 80–90%
confluence, they were detached using TrypLE Express Enzyme (1×) (Gibco, UK). Then
cells were harvested and placed in a 75 cm2 flask to amplify the cell population. When
cells reached 80% confluence, they were harvested and stored in liquid nitrogen using
a cryopreservation medium consisting of DMEM supplemented with 20% FBS and 10%
dimethyl sulfoxide for cell culture (AppliChem, Darmstadt, Germany), using Nalgene
Mr. Frosty™ Freezing Container (Thermo Scientific, Bremen, Germany).

2.2. Characterization of TDSCs

To confirm the identity of the isolated cells, primers were designed to amplify the
mRNAs of the positive markers CD29, CD44, CD71, CD73, CD90, CD105, and the negative
markers CD14, CD34, CD45, regularly used for the characterization of mesenchymal
cells [28,29]. Due to the absence of validated PCR primers or gene information on useful
markers in blackbirds in the literature, they had to be predicted. For this purpose, the
desired mRNA sequences were mapped from raw data from a transcriptomic analysis
in blackbirds [30] using as reference the mRNAs of Swainson’s thrush [31], a species
genetically close to the blackbird [32]. All bioinformatic analyses were performed using
Geneious 10.2.3 software (Biomatters, Auckland, New Zealand). From the predicted
mRNA sequences primers were designed using Primer3 [33]. Endpoint RT-PCR was
performed using the Luna Universal Probe One-Step RT-qPCR Kit (New England BioLabs,
Ipswich, MA, USA). Total RNA extracted from passage 3 TDSCs using the TANBead
Nucleic Acid Extraction Kit (Taiwan Advanced Nanotech, Taoyuan City, Taiwan) was used
as a template. The amplification conditions were as follows: retrotranscription at 55 ◦C
for 15 min; denaturation at 95 ◦C for 10 min; followed by target amplification for 45 cycles
(95 ◦C for 30 s, 57 ◦C for 30 s, 72 ◦C for 60 s); final extension at 72 ◦C for 2 min.

2.3. Multilineage Differentiation of TDSCs

The multilineage differentiation capability of blackbird TDSCs was assessed us-
ing osteogenesis, adipogenesis, and chondrogenesis StemPro Differentiation kits (Gibco,
London, UK). Briefly, for osteogenic and adipogenic differentiation, cells were seeded into
12-well plates at a density of 5 × 103 cells/cm2 and 1 × 104 cells/cm2, and incubated for
24 h before the culture medium was replaced by differentiation media. For chondrogenic
differentiation, a micro mass culture method was employed. Droplets (5 µL) of a solution
containing 1.5 × 107 viable cells/mL were seeded into 12-well plates and incubated for 2 h
under high humidity conditions before the addition of the differentiation medium. Differen-
tiation media were changed every three days. Non-induced cells were cultured in a growth
medium as a control. Osteogenic, adipogenic, and chondrogenic differentiation were as-
sessed by Alizarin Red S staining (Sigma-Aldrich, St. Louis, MI, USA), Oil Red O staining
(Sigma-Aldrich, USA), and Alcian Blue staining (Sigma-Aldrich, USA), respectively.

2.4. Permissivity Assays

The permissivity of blackbird TDSCs was compared with that of Vero E6 cells, a cell line
commonly used as a reference in Flavivirus amplification due to their high permissivity [4].
Both cells were seeded on coverslips in 24-well plates 18 h before infection at a concentration
of 0.1 × 106 cells per well using DMEM with 2% FBS. Then the medium was removed,
and the cells were infected with USU-BE-Seraing/2017, a Europe 3 lineage Usutu virus
strain (Genbank: MK230892) [34] at an MOI of 10. After 2 h the inoculum was removed and
replaced by DMEM with 2% FBS. After 18 h, the cells were fixed with Paraformaldehyde
(PAF) 4% and permeabilized with 0.05% Triton diluted in PBS. Then the presence of viral
particles was evidenced by immunocytochemical (ICC) staining using a rabbit polyclonal



Viruses 2023, 15, 1455 4 of 12

anti-USUV antibody U433 [35] and an anti-rabbit secondary antibody conjugated with
a Horseradish Peroxidase (HRP)-labeled polymer (EnVision + System-HRP from Dako,
Santa Clara, CA, USA).

2.5. Replication Kinetics

Blackbird MSCs and Vero E6 cells were seeded in 6-well plates at a concentration of
0.3 × 106 cells per well using DMEM with 2% FBS. Cells were then infected in triplicate at a
MOI of 1; 0.1; 0.01 or 0.001 under the same conditions as mentioned above. For each sample,
200 µL of supernatant were collected at 12, 24, 48, 72 hpi. Total RNA was extracted from
the supernatant samples as described above. Viral RNA copy number was determined by
absolute quantification by RT-qPCR, using primers described by [36] and Luna Universal
Probe One-Step RT-qPCR Kit (New England BioLabs, USA). RT-qPCR conditions were:
retrotranscription at 55 ◦C for 10 min; then initial denaturation at 95 ◦C for 1 min; followed
by 45 amplification cycles (95 ◦C for 10 s, 48 ◦C for 20 s, 72 ◦C for 20 s). The viral RNA
copy number was calculated using a standard curve, as described previously [37]. The
logarithmic conversion was performed to normalize the distribution of the data revealed as
non-parametric. The data were then analyzed using ANOVA implemented in Jamovi [38].

3. Results
3.1. Isolation of TDSCs

After 48 h of culture, the cells began to adhere to the culture plates and elongate. At
5 days, the cells gradually proliferated and presented a typical spindle-shaped fibroblastic
morphology (Figure 1A). After two weeks in culture, the cells presented 90% confluency,
so the cells were trypsinized, establishing the initial passage (P0). When subculturing
the cells in a 75 cm2 flask, they exhibited a homogeneous fibroblast-like morphology
and wave-shaped growth (Figure 1B). When the cells reached 80% confluence, they were
harvested and resuspended in a cryopreservation medium to later be stored in liquid
nitrogen. Subsequently, when the cells were thawed, they reached 90% confluence after
5 days of culture. The cells maintained the same characteristic morphology until passage
11, where they began to show signs of senescence, as described previously in fibroblast-like
cells [39]. These included a decrease in the number of cells attached to the flask when
seeded, a slower growth of the cells, which did not exceed 60% confluence, a reduction in
the harvest density, changes in cell morphology, an increase in cell and nuclear size and
vacuolized cytoplasm.
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3.2. Molecular Characterization of TDSCs

From raw data of a Eurasian blackbird’s transcriptomic analysis [30] we deduced
the mRNA sequences from the positive TDSCs markers CD29, CD44, CD71, CD73, CD90,
CD105, and the negative markers CD14, CD34, and CD45. From these mRNA sequences,
we designed the primers presented in Table 1.

Table 1. Primer sequences used in the RT-PCR characterization of blackbird TDSCs.

mRNA Accession Number Primer Primer Sequence Amplicon Size (bp)

CD29 In process CD29F CATTCCCATTGTAGCCGGTG
151CD29R TTCACCCGTATCCCACTTGG

CD44
CD44F CCTTCTGGGTGCTGACAAAC

158CD44R ATTTCCCCTGGTGTGGATCA

CD71
CD71F AGATGACTCCTACTGCGTCG

200CD71R GGCAGCGTTCTCATCTTCAG

CD73
CD73F CCCATTGATGAGCAGAGCAC

211CD73R CTGGGGCTTTGGAGAGATCA

CD90
CD90F TCTCCGAGAACATCTACCGC

221CD90R CCACGAGGTGTTCTGGATCA

CD105
CD105F GCTGACTTCAAGGCACAACA

245CD105R ATGGTGTAGGTGAAGCGGAA

CD14
CD14F GTCGCCAGCTCAGTACCA

224CD14R GGACACCAAGCACAGGGA

CD34
CD34F GGCAGGAATTTGGGTGTGAG

233CD34R TCATGTCCCTGCTCATCCTG

CD45
CD45F TGACACCATTGCCAGTACCT

156CD45R GTTTTCTCTGGCTGTGGTGG

GAPDH
GAPDH_F TCTCTGTTGTGGACCTGACC

169GAPDH_R TCAAAGGTGGAGGAATGGCT

The isolated cells expressed the mRNA of all positive markers mentioned above
(Figure 2). In the case of the negative markers, with the notable exception of CD45, none of
them was amplified. All the amplicons obtained were confirmed by Sanger sequencing.
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Figure 2. Expression of surface markers of TDSCs detected by end-point RT-PCR. Passage 3 TDSCs
were positive for the expression of CD29, CD44, CD45, CD71, CD73, CD90, CD105 and negative for
CD14 and CD34. GAPDH served as control.

3.3. Differentiation of TDSCs

To confirm the cell phenotype, the in vitro ability to differentiate into multiple lineages
was assessed. TDSCs proved positive for differentiation into osteocytes, for which calcium
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deposits in the extracellular matrix were observed, as confirmed by Alizarin Red-S staining
(Figure 3A). In the case of differentiation into adipocytes, the lipid droplets in the cytoplasm
were identified using the Oil Red-O stain (Figure 3B). Finally, the differentiation into
chondrocytes was evidenced by an extracellular proteoglycan-rich matrix, which was
confirmed using Alcian Blue staining (Figure 3C).
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3.4. Validation of TDSCs as a Model of USUV Infection

Cytopathic effects (CPE) were observed in both blackbird TDSCs and control (Vero E6)
cells after the Usutu virus infection. CPE was evidenced by the appearance of retractile,
round cells, followed by cell death and destruction of the cell monolayer after 18 h of
infection (Figure 4B,D). Through ICC staining, the viral antigen signal was evidenced in
the cytoplasm and membrane of the cells that remained in the well (Figure 4).
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To compare the viral replication kinetics in both cell types, the USUV genome was
quantified by RT-qPCR from the supernatant of blackbird TDSCs and Vero E6 with various
multiplicities of infection. Both cells successfully amplified USUV, the largest differences
were observed at an MOI of 0.01, starting at 24 hpi, and reaching the replication peak at
72 hpi (p < 0.001). Although TDSCs had slightly lower viral loads than Vero E6 cells, they
were capable of efficiently replicating USUV (Figure 5).
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4. Discussion

In this work, we successfully isolated TDSCs from Eurasian blackbird cadaveric tissues.
In different species, including humans, MSCs have been isolated from different cadaveric
tissues such as bone marrow, fatty subcutaneous tissue, skeletal muscle, spinal cord, and
brain [7]. In the case of the tendon, TDSCs have been isolated from horse cadavers up to 72 h
post-mortem [9]. It is postulated that the viability of the cells after the death of the animal is
due to dormancy or long-term quiescence, which is a mechanism of resistance to stress that
is an attribute of stem cells in adult tissue [9,40]. In addition, the post-mortem stress process
where the cell suffers hypoxia, lack of nutrients, and tissue dehydration/rehydration could
contribute to the selection of more robust and undifferentiated stem cells compared to the
more differentiated cells from living donors [41].

The characterization of these cells was based on the Minimal Criteria for Defining
Multipotent Mesenchymal Stromal Cells [8]. Since antibodies reacting with specific cell
markers are not available for Eurasian blackbirds, the characterization was performed
based on morphological characteristics, mRNA expression of key markers, and the ability
to differentiate into multiple lineages. Blackbird TDSCs expressed the positive markers
CD29, CD44, CD71, CD73, CD90, and CD105 and lacked the expression of the negative
markers CD14 and CD34, as described in other MSCs of avian origin [12,28,29].

Unexpectedly, the cells expressed CD45, a marker typical of hematopoietic cells and
used as a pan-leukocyte marker and whose expression is not expected for MSCs [8]. In adult
MSCs, the expression of CD45 has however been described in muscle regeneration [42].
Furthermore, it was shown that MSCs derived from bone marrow that express CD45
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preserve their differentiation potential in multilineages and fibroblast-like morphology,
similar to MSCs that do not express this marker [43].

The multipotency of blackbird MSCs was confirmed by differentiation into three dif-
ferent lineages, which is the biological property that most uniquely characterizes MSCs [8].
In this work, we differentiated TDSCs from blackbirds in vitro under the action of specific
induction factors into osteogenic, adipogenic, and chondrogenic lineages. The differentia-
tion was assessed using specific staining procedures, i.e., Alizarin Red S staining, Oil Red
O staining, and Alcian Blue staining, respectively, as validated in other MSCs models of
avian origin [12,28,29,44].

The use of wild animals as in vivo models presents several limitations due to the
complications in their capture, accommodation, high levels of distress, and alteration of the
welfare and survival. This in turn can affect the reproducibility of the experiments, making
it difficult to use in vivo models with wild animals [3]. In addition, wild animals are pro-
tected by European legislation, allowing in vivo experiments only in exceptional cases [45],
complicating their use as experimental models. In vitro models, thus present an advantage
by addressing the ethical issues associated with the use of wild animals in research [4].
Owing to their simplicity and the fact that they provide a highly controlled environment,
in vitro models allow the study of key processes of viral pathogenesis, and represent a
cost-effective method for the validation of antiviral drugs and other applications [5].

Therefore, TDSCs can be an interesting model for the study of the pathogenesis of
viruses that affect wildlife, such as USUV. This Flavivirus emerged in Europe around 1996
in Italy causing mass mortalities in birds, particularly in species of the Passeriformes order,
among which the Eurasian blackbird was the most affected [46]. The arrival of USUV
generated a significant negative impact on the population of this bird. For instance, in
Germany, the population decline was estimated at 15.7% compared to the areas not affected
by USUV [47].

For the study of the pathogenesis of Flaviviruses, several in vitro models based on
primary cell cultures have been described focusing on the main organs affected by viral
infection [4]. Those include peripheral blood mononuclear cells (PBMC), for the study
of the immune response [48–50], and cells of the central nervous system for the study
of neuropathogenesis [51,52].

Another important organ involved in the pathogenesis of Flaviviruses is the skin,
this organ is the main route of infection and the first replication site from where the virus
spreads to the rest of the organism [23]. Several in vitro models have been developed
from this organ, mainly keratinocytes, melanocytes, and dermal fibroblasts [23]. The
latter is one of the most abundant cells of the skin that fulfills a structural and sentinel
function [25]. It has been shown that DENV-infected human dermal fibroblasts in co-culture
with human dermal microvascular endothelial cells (HDMEC) show a crosstalk through
soluble factors that increase IFNb secretion, thus decreasing DENV replication [25]. In
addition to facilitating leukocyte migration through the HDMEC monolayer, this suggests
that it might help in the early control of DENV at the site of infection [25]. Another
important function of fibroblasts is the activation of dendritic cells (DCs) of the skin, which
are the main link between innate and adaptive immune responses [53]. This activation
results in the maturation of DCs and the subsequent activation of T cells [53]. In vitro, it
has been observed that soluble factors of DC and fibroblasts infected by DENV modulate
the activation and maturation of these cells, promoting the control of the infection and
the activation of the adaptive immune response [24]. This makes fibroblasts a key cell in
the early control of Flavivirus infection and a potential key player in the differences of
susceptibility/resistance to the infection observed in vivo.

Currently, no in vitro models have been described in susceptible wild avian species
to study USUV. The replication of USUV has however, been described in fibroblast ob-
tained from clinically resistant species, i.e., chicken (Gallus gallus domesticus) and goose
(Anser anser f. domestica) [21]. These species have been confirmed experimentally to be
highly resistant to USUV infection [54,55]. Due to the in vitro characteristics of TDSCs,



Viruses 2023, 15, 1455 9 of 12

they can be a surrogate for fibroblasts since they have the same mesenchymal origin, mor-
phology, and expression pattern, including during immune reactions [26]. Additionally,
stem cells have previously been used for in vitro studies of the pathogenesis and immune
response to Flavivirus infections, including ZIKV [18,56,57], DENV, YFV, and WNV [18].

In order to validate blackbird TDSCs as in vitro models to study the pathogenesis of
USUV, these cells were compared with Vero E6, considered as a reference for the culture of
Flaviviruses [21]. To this aim, we compared the permissivity of both cell types to USUV
infection. The USU-BE-Seraing/2017 strain was chosen since in previous studies it pre-
sented the highest replication in primary cell models [58]. By immunocytochemistry a large
number of viral antigens was observed in the cytoplasm of the cells, thus confirming that
blackbird TDSCs are permissive to USUV. When comparing replication kinetics, blackbird
TDSCs exhibited similar, albeit slightly less efficient, replicative behavior as Vero E6 cells.
Although TDSCs have lower viral loads, these cells were able to efficiently replicate USUV.
This replication difference may be due to the fact that Vero E6 cells do not express IFNa and
IFNb [59]. In addition, it could be the consequence of the fact that the viral stock has been
passaged 7 times in Vero E6 cells after isolation from a wild bird. Finally, we cannot exclude
that different results might have been obtained if the intracellular (instead of extracellular)
viral RNA concentrations had been compared between both cell types.

5. Conclusions

In this work, TDSCs were isolated from Eurasian blackbirds. This is a promising
in vitro tool for research on wild birds, which due to protection regulations and complex
capture and housing are difficult to study in the laboratory. Here we validated TDSCs as the
first in vitro model to study the pathogenesis of the USUV virus in susceptible wild avian
species. Further studies are needed to determine if TDSCs are a good model for isolating
viruses freshly collected from birds and if this in vitro model replicates the susceptible and
resistant phenotypes observed after USUV infection in avian species in vivo.
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