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Abstract: Influenza viruses belong to the family Orthomyxoviridae with a negative-sense, single-
stranded segmented RNA genome. They infect a wide range of animals, including humans. From
1918 to 2009, there were four influenza pandemics, which caused millions of casualties. Frequent
spillover of animal influenza viruses to humans with or without intermediate hosts poses a serious
zoonotic and pandemic threat. The current SARS-CoV-2 pandemic overshadowed the high risk raised
by animal influenza viruses, but highlighted the role of wildlife as a reservoir for pandemic viruses. In
this review, we summarize the occurrence of animal influenza virus in humans and describe potential
mixing vessel or intermediate hosts for zoonotic influenza viruses. While several animal influenza
viruses possess a high zoonotic risk (e.g., avian and swine influenza viruses), others are of low to
negligible zoonotic potential (e.g., equine, canine, bat and bovine influenza viruses). Transmission
can occur directly from animals, particularly poultry and swine, to humans or through reassortant
viruses in “mixing vessel” hosts. To date, there are less than 3000 confirmed human infections with
avian-origin viruses and less than 7000 subclinical infections documented. Likewise, only a few
hundreds of confirmed human cases caused by swine influenza viruses have been reported. Pigs are
the historic mixing vessel host for the generation of zoonotic influenza viruses due to the expression
of both avian-type and human-type receptors. Nevertheless, there are a number of hosts which carry
both types of receptors and can act as a potential mixing vessel host. High vigilance is warranted to
prevent the next pandemic caused by animal influenza viruses.

Keywords: pandemic; animal influenza; interspecies transmission; zoonoses; public health; avian
influenza; swine influenza; mixing vessel hosts

1. Influenza Viruses
1.1. Classification and Structure

The virus family Orthomyxoviridae, a member of the Order Articulavirales in the Phylum
Negarnaviricota [1], contains four genera of influenza virus, designated as Alphainfluen-
zavirus, Betainfluenzavirus, Deltainfluenzavirus, and Gammainfluenzavirus. For each of
these four genera, only one type of species is known, and these are named Influenza A virus
(IAV), Influenza B virus (IBV), Influenza C virus (ICV), and Influenza D virus (IDV) [1].
IAV can be further divided according to the host of origin into, e.g., human influenza virus
(hIAV), swine influenza virus (swIAV), avian influenza virus (AIV), equine influenza virus
(EIV), canine influenza virus (CIV), and bat influenza virus [2]. According to the antigenic
variations of the surface glycoproteins, hemagglutinin (HA or H), and neuraminidase (NA
or N), IAVs are divided into distinct 18 HA (H1-H18) and 11 NA (N1-N9) subtypes. hIAVs
contain mostly H1, H2, H3 and N1, N2 subtypes, AIVs contain H1 to H16 and N1 to N9
subtypes, while H17N10 and H18N11 are so far only detected in bats [2,3].
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IAV and IBV have a pleomorphic shape typically with a length of 80 to 120 nm. Few
IAV and IBV look filamentous with variable lengths. They contain a lipid-bilayer envelope
obtained from the host cell plasma membrane during virus budding. The genome is
composed of eight single-stranded RNA segments with negative polarity (segments one
to eight) and are named after the main encoding proteins [4]. The eight segments of IAVs
encode at least ten viral proteins. Nine proteins are included in the virion: PB2, PB1, PA,
HA, NP, NA, M1, M2, and NEP, while the non-structural protein NS1 is expressed only
in host cells after infection. Structural proteins are differentiated into surface and internal
proteins. On the viral envelope, there are the three surface proteins HA, NA, and the less
abundant ion-channel matrix-2 (M2) protein. They are imbedded in the viral envelope
by transmembrane domains [5,6]. Beneath the virus envelope, the nuclear export protein
(NEP) is bound to the matrix-1 (M1) protein, which interacts with the C-terminal endo-
domains of HA, NA, and M2. All RNA segments are connected by the polymerase subunits
(polymerase basic PB2 and PB1, polymerase acidic PA) and wrapped into a nucleoprotein
NP coat to form the ribonucleoprotein complex (RNP). The RNPs are the main replication
units of IAV [7].

IBV has a similar structure but specifies four envelope proteins HA, NA, and, instead
of M2, NB and BM2. Influenza C and D viruses contain only seven gene segments. They
possess one major surface glycoprotein, the hemagglutinin-esterase-fusion (HEF) protein,
which corresponds functionally to the HA and NA of IAV and IBV, and one minor envelope
protein, CM2, which is similar to the M2 of IAV [7,8]. Only IAV and, to a lesser extent,
IDV infect a broad range of mammalian species (Figure 1). Therefore, we will focus in this
review on IAV and will shortly describe the importance of IDV.
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Figure 1. Influenza A, B, C, and D schematic structure and host range. The genome of Influenza
A and B is composed of 8 gene segments, while that of influenza C and D is composed of 7 gene
segments. Influenza C and D encode hemagglutinin esterase (HEF) protein, which is equivalent to the
HA and NA proteins of Influenza A and B. Influenza A infects a wide range of mammals (including
humans) and all bird species. The figure was created with BioRender.

1.2. Virus Evolution (Shift and Drift)

Despite the relatively small genome, IAVs developed many strategies to ensure suc-
cessful evolution and to expand their host spectrum. Unlike the majority of RNA viruses,
IAV replication occurs in the nucleus [9]. To overcome the limited genome coding capacity,
IAV encodes several non-structural proteins (e.g., NS1, PB1-F2, and PA-x) through methods
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such as splicing, alternative translational initiation, or frameshift. These proteins play
diverse roles in, e.g., interferon antagonism, virus replication, or interspecies transmis-
sion [10,11]. Swapping gene segments (also known as reassortment) of two influenza
viruses infecting the same host cell is a major evolutionary route for the generation of
reassortant viruses with phenotypic properties different from their ancestors. For example,
several influenza pandemics were caused by human (seasonal) influenza viruses carrying
gene segments from AIV and/or swIAV. Compared to the parental human, avian and/or
swine viruses, the pandemic influenza viruses had severe clinical outcomes in humans [12].
Another very important property is that IAV polymerase lacks proof-reading ability, and
error-prone changes evolve de novo, generating a highly diverse quasispecies of viruses
with different mutations. Some of these mutations can be deleterious for virus replication
and will be eliminated from the quasispecies, while others can be fixed and confer efficient
replication and perpetuation in different hosts and niches. Some mutations can result in
antigenic drift, particularly after transmission to a new host or vaccination [13,14].

2. Host Range of (Zoonotic) Influenza A Virus
2.1. Birds
2.1.1. Wild Birds

Wild birds are the natural reservoir for all subtypes of avian influenza viruses. AIV
have been reported in at least 100 species in 12 out of 50 avian orders [15]. Aquatic birds and
shorebirds of the orders Anseriformes (e.g., Mallard ducks) and Charadriiformes (e.g., gulls,
terns) are the most common reservoirs of AIV [16,17]. Generally, wild birds have not not
shown any clinical signs after infection with AIV, with a few exceptions [16,18]. The central
dogma is that the replication of AIV in these wild bird species is predominantly in the
intestinal tract and viruses are excreted in the fecal matter and remain infectious for weeks
in the water or wet fecal matters [19]. This facilitates the fecal–oral transmission among
different wild bird species and mediates the intercontinental spread of AIV through bird
migration [20–22]. In wild birds, AIVs are generally of low pathogenicity (LP). However, the
incursion of high pathogenicity (HP) AIV H5Nx into wild birds is a game-changer. Many
wild bird species have succumbed to unusual high mortality and H5Nx-induced mass die-
offs threaten the wildlife-ecosystem balance. Moreover, the virus can be transported over
long distances by migratory birds, become enzootic in resident bird populations, exhibit
high virulence in domestic birds, have zoonotic potential, and infect several mammalian
species worldwide [23–26].

2.1.2. Domestic Birds

Poultry production is a major source for meat protein. Its drastic increase in past
decades led to a change in the natural epidemiology of AIV. AIVs have been identified in
all domestic and caged bird species (e.g., chickens, turkeys, waterfowls, ostrich, pigeons,
quails, pet birds, gamebirds, zoo birds) [27]. While viruses of H12 to H16 subtypes are less
or have not been isolated from poultry so far (except for a single historic H13N2 isolated
from turkeys), viruses of H1 to H11 subtype are more frequently detected. Indeed, some
AIV subtypes are enzootic in poultry in some countries, e.g., H5Nx in Asia and Africa;
H6N2 in South Africa, China, and Korea; H7N3 in Mexico; H7N9 in China; and H9N2
worldwide [28–30]. Direct contact of poultry with wild birds or contaminated fomites are
the main pathways for the primary introduction of AIV into poultry. The movement of
vehicles and humans, for example, are important sources for secondary spread [30]. The
transmission of some AIVs from poultry to wild birds has also been reported [31].

Virulence and transmissibility of AIVs in poultry vary considerably according to
factors related to the virus (e.g., subtype, pathotype, route of infection, inoculation dose),
host (e.g., species, breed, age) and environment (e.g., hygiene, humidity, temperature, wind).
AIV infection in poultry ranges from asymptomatic to 100% morbidity and mortality [30].
All AIV subtypes in poultry are of LP and do not cause overt clinical signs or induce mild
respiratory symptoms and a reduction in meat and egg production [27]. However, the
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transmission of LPAIV H5 and H7 to poultry may result in a transition from a LP to a
HP phenotype. HPAIV H5 and H7 can lead to 100% morbidity and mortality in poultry,
mainly chickens and turkeys, within a few days. Remarkably, all AIVs that are HP in
ducks are also HP in chickens, but not vice versa. In ducks, the majority of HPAIV H5/H7
are avirulent in contrast to chickens and turkeys [32–34]. Moreover, duck species vary in
their response to infection with different HPAIV, mainly H5N1 [35]. Mallard ducks are
considered the major reservoir of AIV. They are usually resistant to AIV-induced morbidity
and mortality. However, several H5N1 and H5N8 viruses are also highly virulent in
mallards [36]. Several studies have shown that Muscovy ducks were more sensitive than
Pekin ducks [35,37,38]. Furthermore, young ducklings succumbed with high morbidity and
mortality after infection with some HPAIV compared to older ducks [35,39], indicating an
age-dependent response. Interestingly, the virulence determinants for the transition of LP
H5/H7 to HP can be different for different poultry species [40,41]. Therefore, LP H5, and H7
viruses are notifiable to the World Organization for Animal Health (WOAH), and affected
flocks should be culled to prevent the transition to a HP phenotype. Conversely, the current
regulations do not mandate the eradication of poultry in case of non-H5/H7 viruses [30].
The circulation of these non-notifiable low virulent viruses affects poultry production and
endangers human health per se or after reassortment with other IAV. Vaccination has been
used in different developing countries to limit the losses caused by LP and HP AIV [42].

2.2. Mammals
2.2.1. Humans

Seasonal influenza in humans is caused by subtypes H1, H2, H3 and N1 and N2,
which are antigenically and genetically distinct from swIAV (reviewed in [43]). H1N1,
H3N2, and H1N2 are the current predominant subtypes circulating the human population.
Seasonal epidemics, mostly in colder seasons, are usually caused by H1N1 and H3N2,
the latter exhibiting a more rapid antigenic drift than H1N1. The H1N2 subtype is a
human/swine IAV reassortant of the circulating H1N1 and H3N2. It evolved in the
early 2000s and is still circulating, although at lower rates than H1N1 and H3N2. H2N2
was circulating in humans from 1957 to 1968 and was replaced by H3N2 [44]. Direct
person-to-person infection via the respiratory tract is the main route of transmission. The
severity of influenza infections in humans range from asymptomatic to serious with the
affection of both, the upper (URT) and lower respiratory tract (LRT) [43]. Fever, chills,
headache, sore throat, myalgias, malaise, anorexia, and pneumonia are common symptoms.
Immunocompromised patients and people > 65 years have a higher case fatality rate
(CFR). The virus replicates mainly in the LRT and URT [45]. Small amounts of infectious
virus were found in the blood, viscera, brain, and cerebrospinal fluid in only a few rare
and mostly fatal cases. Virus-induced pneumonia or secondary bacterial superinfection
are typically the reason for severe illness and/or fatality in patients with influenza virus
infection. Strong pro-inflammatory reactions, known as a “cytokine storm”, together with
high viral replication rates in the LRT, are characteristics of primary viral pneumonia [46].
Due to the seasonal spread of hIAV in cold months, viruses in the Northern and Southern
hemispheres can be genetically and antigenically different. This has implications for the
selection of vaccine strains, which are regularly updated to improve vaccine efficacy to
protect against antigenic-drift viruses [47]. The use of antivirals targeting the neuraminidase
(e.g., oseltamivir), polymerase (e.g., peramivir), or to a lesser extent, M2 (e.g., adamantane
HCL) are options for controlling hIAV infections. However, the evolution of resistant
variants (particularly amantadine resistant and, less frequently, oseltamivir-resistant) is a
challenge in the treatment of influenza [48].
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2.2.2. Pigs

swIAV of the three subtypes H1N1, H1N2, and H3N2 circulate in pigs globally (re-
viewed in [49–51]), causing high economic losses in pig husbandry. The simultaneous
detection of multiple swIAV subtypes is common in pigs. Pig-to-pig transmission usu-
ally occurs through close contact and possibly via contaminated objects moving between
infected and uninfected pigs. swIAV cause an acute respiratory infection ranging from
asymptomatic to mild fever, depression, respiratory disorders (e.g., coughing, sneezing,
nasal and ocular discharges, dyspnoea), and body weight loss. Virus replication is usually
restricted to the epithelial cells of the entire respiratory tract, notably the nasal mucosa,
tonsils, trachea, and lungs. Virus isolation from extra-pulmonary tissues is very rare. The
virus induces low mortality and recovery occurs generally within 7–10 days. Biosecurity
measures and vaccination are commonly used to control IAVs in pigs. The majority of
swIAV are reassortants, combining genes from swine, avian, and human viruses. This
supports the main dogma that pigs can act as a “mixing vessel” between human and avian
influenza viruses.

2.2.3. Other Mammals

Several mammalian species succumb to sporadic infections with different influenza
viruses. These spill-over events usually go unnoticed, but can sometimes be fatal, par-
ticularly when combined with bacterial or viral co-infections [52,53]. Nevertheless, and
rarely, some AIVs have become endemic in different livestock and companion animals after
interspecies spill-over [54]. For instance, the H3N8 EIV seems to have emerged from an
AIV that spread to horses and then onto dogs. Similarly, canine H3N2 influenza viruses
originated wholly from avian ancestors in the 1990s [54–56]. Likewise, the endemic IDV in
cattle (discovered in 2011) showed a high degree of genetic similarity to the human ICV.
This suggests a common ancestor for both viruses [8]. Infected horses, dogs, and cattle
exhibit a mild respiratory disease similar to flu-like illness caused by hIAV and swIAV.
Commercial vaccines are used in horses and dogs to mitigate the outcome of IAV infections
or to limit transmission [57].

3. Zoonotic Influenza Viruses

Humans are generally partially immunized against severe influenza symptoms due to
previous infections or (annual) vaccination against hIAV. However, the lack of pre-existing
immunity to antigenically novel HA/NA in the human population may result in high
levels of virus replication and transmission [58]. In addition, severe immune responses
to the novel virus may trigger a “cytokine storm” and subsequently severe symptoms
and high CFR [46]. The regular sporadic human infections with animal influenza viruses
represent a continuous risk for public health. We classified these zoonotic viruses into
two groups based on the available data on the frequency of animal-to-human transmission.
While bovine, equine, canine, and bat influenza viruses pose a low zoonotic risk to humans,
avian and swine influenza viruses pose a high zoonotic risk.

3.1. Animal Influenza A Viruses with High Zoonotic Potentials
3.1.1. Zoonotic Avian Influenza A Virus
Confirmed Human Infections

AIV infects a broad range of mammals (Figure 2) [59–62]. For instance, H5N1 has
been naturally isolated from cats, dogs, foxes, seals, leopards, Mustelidae (minks and
otters), skunks, tigers, lions, pikas, otters, polecats, porpoises, raccoons, raccoon dogs, pigs,
Virginia opossums, civets, badgers, bears, dolphins, stone/beech martens, coyotes, and
fishes [26,62]. H9N2 has been reported naturally in pigs, dogs, horses, minks, otters, pikas,
bats, and Asian badgers [63–65].
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In humans, a number of AIVs succeeded to cross the species barriers and establish
productive infections, including H3N8, H5N1, H5N6, H5N8, H6N1, H7N2, H7N3, H7N4,
H7N7, H7N9, H9N2, H10N3, H10N7, and H10N8 subtypes (Table 1). The infections
ranged from asymptomatic to mild to fatal. The infections were mostly commonly acquired
through direct contact with infected poultry or contaminated environment. Major sources
of infection are live bird markets (LBM), backyard birds, slaughterhouses, and the culling
of farmed poultry [66,67]. To a lesser extent, humans have been infected via hunting
or contact with wild birds [68,69]. Cultural and occupational aspects play a major role
in human infections with zoonotic influenza viruses. In some countries, the prevalence
of AIVs was higher in women, children, and toddlers than in men [70,71]. Likewise,
immunosuppression and chronic diseases facilitate the development of severe influenza
symptoms. Aerosol transmission during slaughter, evisceration, and defeathering of live
poultry are among the main sources of infection. Humans acquire infection via respiratory
droplets through the nostrils or through the conjunctiva. Fine aerosols may deliver virus
particles to the LRT, triggering severe illness. Virus replication is usually restricted to the
respiratory tract, but extra pulmonary virus replication, including in the brain, has also
been reported [72,73].

Flu-like illness limited to sneezing, runny nose, and fever has been reported. These
mild infections are usually self-limiting. However, the number of hospitalizations can be
high in the case of immunosuppressed patients or in the case of the infection with more
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pathogenic viruses such as H7N9 and to a lesser extent H5N1 [74,75]. Importantly, there
is no correlation between high virulence in chickens and humans. For example, H7N9
in chickens was LP, causing no or only mild clinical signs, while in humans it produced
severe or even fatal infections [76]. Based on the number of reported laboratory-confirmed
cases, the CFR for H5 and H7 AIV in humans is relatively high (~53%; 457/868 for H5N1
and ~39%; 616/1568 for H7N9) [77,78]. It is worth noting that the pandemic H1N1 in 1918,
H2N2 in 1957, and H3N2 in 1968 were most likely of avian origin, and the pandemic H1N1
in 2009 (designated hereafter as pdmH1N1) contained genes from AIV [79].

Table 1. Reported human infections with AIV from 1959 to 2023.

Subtype
Year of First

Human
Identification

Year of Last
Human

Identification

Number (Fatal
Cases) Country References

H3N8 2022 2022 2 China [80,81]

H5N1

1997 1997 18 (6) Hong Kong [82]

2003 2023 868 (457) Many * [80,83]

2022 2023 5 UK, USA, Spain, Ecuador [84–86]

H5N6 2014 2021 83 (33) China [83]

H5N8 2020 2020 7 Russia [87]

H6N1 2013 2013 1 Taiwan [88]

H7N2 2002 2016 8 UK, USA [88]

H7N3 2004 2012 5 Canada, Mexico, UK [88,89]

H7N4 2018 2018 1 China [83]

H7N7 1959 2013 96 (1) USA, Australia,
Netherlands, Italy, UK [88,90]

H7N9 2013 2017 1568 (616) China, Taiwan [83]

H9N2
1998 2014 19 China, Bangladesh, Hong

Kong [65]

2015 2022 85 (2) China, Cambodia, Egypt [80,83]

H10N3 2021 2022 2 China [80]

H10N7 2004 2010 4 Egypt, Australia [88]

H10N8 2013 2014 3 (2) China [88]

Total From 1959 to 2023 2775 (1117)
* As of 07-03-2023, from 2003 to 26 February 2023, 21 countries reported 868 confirmed H5N1-human infections
with a CFR of 53% (457/868) [80,84,88]. In the table, the number of infected humans includes the number of fatal
cases (between parenthesis).

Limited Human-to-Human Transmission of AIV

Fortunately, human-to-human transmission of AIV is still rare. Limited human-to-
human transmission has been reported following infection with H5N1 and H7N9 in a
few family clusters and healthcare workers in several Asian countries [91–96]. Similarly,
human-to-human transmission of H7N7 from poultry workers to a few household contacts
was described in the Netherlands in 2003 [97,98].

Subclinical Infection with AIV Is More Prevalent Than Laboratory Confirmed Infections

Subclinical AIV infection, as determined by the presence of antibodies, has been
described in a number of serosurveys from different countries, yielding approximately
6639 positive cases out of 138,730 individuals tested (Table 2). Earlier systematic and
meta-analysis reviews have been consulted [99–106]. The majority of these cases were
detected in exposed individuals in LBM, backyards, or commercial farms and in healthcare
workers. However, in some cases, antibodies have been detected in non-occupationally
non-exposed individuals [96]. Interestingly, some of the sub-clinically infected individuals
had antibodies against seasonal hIAV and AIV [107]. The prevalence of anti-IAV antibodies
in humans has been related to several factors, including sampling time, testing method,
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gender, and other demographic factors [104]. Some studies showed antibodies in humans
against AIV H1–H13 subtypes [103,108–116], while most of the studies described antibodies
against H5N1, H7N9, and H9N2 (Table 2), probably because these are the most widespread
AIVs in poultry. There is a special attention to H9N2 virus. Serological evidence for this
virus in humans has been reported from Asia (China, Cambodia, Thailand, India, Mongolia,
Pakistan, Iran, Lebanon), Africa (Egypt, Nigeria), Europe (Romania), and North America
(USA) [102]. In a recent meta-analysis of 45 studies conducted in China from the 1990s to
2018, including a total of 59,590 patients, the overall H9N2 seroprevalence was estimated
to be 5.56% (i.e., approximately 3313 infections) [104].

Table 2. Examples for potential subclinical human infections with AIV H5, H7, and H9 subtypes.

Subtype Virus/Strain Total Number of
Tested Individuals

Positive
Individuals (%) Country Year Reference

H5

H5N1 22 7 (32%) China 2013–2014 [117]

H5N1 110 1 (0.9) China 2006 [118]

H5N1 87 2 (2.3%) China 2005–2008 [119]

H5N1 306 8 (2.6%) China 2010 [120]

H5N1 249 5 (2.0%) China 2010 [121]

H5N1 501 4 (0.8%) China 2013 [122]

H5N1 652 6 (0.9) China 2014–2016 [112]

H5N1 2310 18 (0.8%) China 2014 [123]

H5N1 964 18 (1.9%) China 2013–2016 [124]

H5N1 2124 75 (3.5%) China 2014–2016 [112]

H5N1 35159 862 (2.45%) China 1997–2018 [99] *

H5N1 2512 9 (0.4%) South Korea 2003–2004 [125]

H5N1 200 6 (3%) Vietnam 2001 [126]

H5N1 747 37 (5%) Vietnam 2008–2009 [127]

H5N1 607 37 (6.1%) Vietnam 2011 [128]

H5N1 111 5 (4.5%) Cambodia 2013 [129]

H5N1 3594 37 (1.0%) Cambodia 2006–2014 [130–133]

H5N1 800 45 (5.6%) Thailand 2008 [109]

H5N1 101 63 (62%) Indonesia 2012–2014 [111]

H5N1 376 1 (0.3%) Turkey 2006 [134]

H5N1 316 3 (0.9%) Nigeria 2008–2011 [110]

H5N1 369 1 (0.3%) Nigeria 2009 [135]

H5N1 708 15 (2.1%) Egypt 2010–2012 [136]

H5N1 2397 9 (0.4%) Egypt 2015–2019 [137]

H5N2 1247 18 (1.4%) Taiwan 2012 [138]

H5N2 369 2 (0.5%) Nigeria 2009 [135]

H5N2 310 13 (4.2%) § South Africa 2011–2012 [139]

H5N2 42 5 (11.9%) USA 2002–2004 [140]
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Table 2. Cont.

Subtype Virus/Strain Total Number of
Tested Individuals

Positive
Individuals (%) Country Year Reference

H7

H7N1 310 6 (1.9%) § South Africa 2011–2012 [139]

H7N2 787 34 (4.3%) USA 2004 [113]

H7N2 80 1 (1.3%) USA 2002 [141]

H7N2 42 6 (14.3%) USA 2002–2004 [140]

H7N3 1247 7 (0.6%) Taiwan 2012 [138]

H7N3 185 7 (3.8%) Italy 2003 [142]

H7N3/H7N1 188 6 (3.2%) Italy 2008–2010 [143]

H7N3 157 1 (0.6%) USA 2009–2010 [144]

H7N7 1214 1 (0.1) China 2004 [145]

H7N7 354 75 (21.2%) § Pakistan 2010–2011 [146]

H7N7 490 Not clear Pakistan 2013 [147]

H7N7 56 33 (58.9%) Netherlands 2003 [97]

H7N7 649 14 (2.2%) Egypt 2012–2013 [148]

H7N9 27 1 (3.7%) China 2013 [149]

H7N9 96 52 (54.2%) China 2013 [122]

H7N9 396 25 (6.3%) China 2013 [107]

H7N9 361 3 (0.8%) China 2013–2014 [150]

H7N9 10 1 (10%) China 2013–2014 [117]

H7N9 12 1 (8.3%) China 2013–2014 [117]

H7N9 1056 4 (0.4%) China 2014 [123]

H7N9 35 5 (14.3%) China 2014 [151]

H7N9 964 9 (0.9%) China 2013–2016 [124]

H7N9 225 22 (9.8%) China 2013–2016 [95]

H7N9 2124 82 (3.9%) China 2014–2016 [112]

H9

H9Nx 400 7 (1.8%) Vietnam 2001 [126]

H9N2 59590 3313 (5.6%) China 1990s–2018 [104] *

H9N2 111 2 (1.8%) Cambodia 2013 [129]

H9N2 777 21 (2.7%) Cambodia 2008 [152]

H9N2 768 21 (2.7%) Thailand 2008 [153]

H9N2 784 40 (5.1%) Thailand 2008 [153]

H9N2 338 21 (6.2%) India 2012 [154]

H9N2 347 4 (1.2%) Mongolia 2008–2011 [155]

H9N2 490 421 (86%) Pakistan 2013 [147]

H9N2 332 167 (50.3%) Pakistan 2016–2017 [156]

H9N2 354 169 (47.7%) § Pakistan 2010–2011 [146]

H9N2 435 § 238 (54.7%) Pakistan n.a. [157]

H9N2 161 25 (15.5%) Pakistan 2015–2016 [158]

H9N2 127 48 (37.7%) Iran 2006 [159]

H9N2 182 21 (11.5%) Iran 2010–2011 [160]

H9N2 200 20 (10%) Iran 2012 [161]

H9N2 34 11 (32.3%) Lebanon 2005 [162]

H9N2 363 33 (9.1%) Romania 2009–2010 [163]
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Table 2. Cont.

Subtype Virus/Strain Total Number of
Tested Individuals

Positive
Individuals (%) Country Year Reference

H9N2 Not mentioned 1 Romania 2010 [164]

H9N2 682 51 (7.5%) Egypt 2010–2012 [136]

H9N2 2397 266 (11.1%) Egypt 2015–2019 [137]

H9N2 369 4 (1.1%) Nigeria 2009 [135]

H9N2 42 4 (9.5%) USA 2002–2004 [140]

H9N2 91 4 (4.4%) USA 2007–2008 [116]

H9N2 157 1 (0.6%) USA 2009–2010 [144]

H9N2 787 15 (1.9%) USA 2004 [113]

H9N8 57 3 (5.3%) Italy 2005–2006 [114]

Total ~138,730 ~6639

* these references [99,104] are a meta-analysis for >45 studies in China conducted between 1990s and 2018. We
did not check all original data in this review. §, this was calculated by the authors from the data provided by the
original authors of the indicated studies.

3.1.2. Zoonotic Swine Influenza A Virus (swIAV)

Human infection with swIAV occurs through close contact between pigs and humans,
particularly in pig holdings or slaughterhouses. Interestingly, pig-to-human IAV transmis-
sion has been regularly reported, but the number of human infections is lower than for
AIV. From 1959 to 2014, only 396 swIAV-confirmed human infections were reported world-
wide [89]. From 2010 to 2021, fewer than 700 confirmed cases were reported worldwide,
with the majority occurring in young individuals or immunocompromised patients [51].
However, several studies have shown subclinical infections in farm workers and abattoir
workers ranging from 15% to 40% [103]. In contrast to AIV H5/H7, the CFR in humans
infected with swIAV from 1959 to 2005 is low (up to 14%) [165]. pdmH1N1 possessed gene
segments from swIAV in addition to segments from avian and human IAV [79,166,167].
The anthropozoonotic transmission of seasonal and pandemic hIAV to pigs resulted in the
establishment of a long-term reservoir in pigs for zoonotic IAVs [168,169]. Of note, several
AIVs, including H5, H7, and H9 viruses, have been reported in pigs [51]. Transmission of
swIAV to poultry, mainly turkeys, has also been reported [170–172].

3.2. Animal Influenza A Viruses with Low Zoonotic Potential
3.2.1. Bovine Influenza D Virus

IDV was detected in pigs in the USA in 2011, although cattle are the primary reser-
voir [173]. In addition to North America, IDV has been isolated in Europe, Asia, Africa, and
South America [174,175]. IDV has the ability to expand its mammalian-host spectrum to
small ruminants (sheep, goats), horses, and camelids under natural conditions, and infects
mice, ferrets, and guinea pigs under experimental conditions [176]. In addition, IDV RNA
was detected in the nasal wash of a pig farm worker in Malaysia in 2017 [177]. Recent
studies have shown the presence of anti-IDV-antibodies in up to 46% of serologically tested
individuals in Italy, the USA, and Canada [178,179], and the virus was able to replicate in
human airway cell culture in vitro [180]. Therefore, special attention should be given to
this virus.

3.2.2. Equine Influenza A Virus (EIV)

Although the etiology is unknown, the first well-documented influenza-like epizootic
in horses was reported in the USA in 1872, but earlier outbreaks in equids have likely
occurred [181]. Since the 1930s, only two main subtypes of EIVs have been identified in
diseased horses: H7N7 (aka A/equi-1) and H3N8 (aka A/equi-2). H7N7 viruses have not
been isolated since the late 1970s, while H3N8 viruses continue to cause sporadic outbreaks
in horses worldwide [53,182,183]. Other IAV subtypes have been rarely reported in horses,
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such as H1N8, H5N1, H7N1, and H9N2 [182]. There are few reports of limited transmissions
of H3N8 to other mammals, i.e., dogs, cats, pigs, and camels [184–187]. Isolation of equine
H3N8 in humans has never been confirmed [53,183,185]. However, serological evidence
for equine–human transmission has been obtained in the Ukraine in 1959, in Canada 1963,
the USA in the 1960s, 2005, and 2015, the UK in 1965, the Netherlands in 1966, Mongolia in
2008–2013, and Australia in 2014, indicating subclinical infection [155,182]. Seroconversion
and mild illness (e.g., fever, flu-like illness) have been described in volunteers after nasal
or oropharyngeal infection with EIV H3N8 in the USA in the 1960s in three independent
challenge studies [188–190].

3.2.3. Canine Influenza A Virus

Generally, dogs have not been considered a natural host for IAVs. However, since
the 2000s, two major subtypes, H3N8 and H3N2, have been isolated from or become
enzootic in dogs in some countries. The first outbreak of H3N8 CIV, closely related to
equine H3N8, was reported in 2002 in English foxhounds in the UK [191]. Thereafter,
similar outbreaks caused by equine H3N8 were reported in different regions of the USA
and in Australia [192–194]. H3N2 CIV of avian origin was isolated from dogs in 2004–2005
in China and South Korea, and spread to the USA in 2015 [56,194]. Interestingly, dogs
naturally transmitted H3N2 to cats [195]. Experimental infections have shown that H3N2
CIV infected a wide range of mammals, including ferrets, guinea pigs, and cats, but not
pigs [196,197]. There is no strong evidence of the transmission of H3N2 or H3N8 CIV to
humans, and the risk of human infection is considered low [198].

3.2.4. Bat Influenza A Virus

In 2009–2011, two new IAVs were isolated from bats in Bolivia and Guatemala [199].
The H18N11 viruses did not cause any disease in ferrets (the standard animal model for
assessing the zoonotic potential of influenza viruses) and were not transmitted between
them. However, there is some evidence that the new bat-origin influenza A virus may
be able to enter and replicate in human cells [200–205]. Therefore, the risk of potential
zoonotic spillover of the various bat IAVs should not be neglected.

4. Potential “Mixing Vessel” Hosts

Mixing vessel hosts are those in which co-infection of two (or more) IAVs can occur
simultaneously, leading to the potential for reassortment and generation of new IAV
genotypes/phenotypes. They act as intermediate hosts for the spread of IAV between/to
mammals, including humans. Although several host factors are incriminated in the ability
of animal influenza to replicate in human cells, virus receptors on the cells are a major
determinant of host susceptibility to influenza viruses and thus play an important role in
infection and virulence. Sialic acid (SA) α-linked at C2 to galactose of a cellular glycoprotein
or glycolipid is the most common receptor for influenza viruses. hIAV typically prefers
binding to an α2,6-linked SA (galactose C6, designated hereafter as α2-6-SA) and avian
IAV to an α2,3-linked (galactose C3, α2,3-SA) [206]. α2,6-SA in the respiratory tract is
commonly referred to as the “human receptor” and α2,3-SA is found in the intestinal tract
of birds and is referred to as the “avian receptor”. It was originally thought that humans
exclusively express α2,6-SA, birds only express α2,3-SA, and pigs have both avian and
human receptor types. Therefore, they play a role as a mixing vessel for the generation
of different avian and human reassortants. New studies have changed this paradigm of
species and tissue distribution of SA. Many mammalian and avian species possess both
types of SA receptors with variable abundance, are susceptible to hIAV and AIV infection,
and can play a role as mixing vessels, similar to pigs (Figure 3). As different methods have
been used to identify SA receptors in understudied species, a direct comparison is not
possible. Here, we summarized potential “mixing vessel” based on the distribution of avian
and human SA receptors, the number of animal-to-human IAV transmission events, the
number of IAV subtypes, the number of animal populations, and the direct and long contact
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with humans, and the severity of the disease (not dead end hosts) to “high probability”,
including humans, pigs, minks, ferrets, seals, dogs, cats, and birds, particularly turkeys,
chickens, quails, and ducks; “medium probability” mixing vessel hosts are non-human
primates, raccoons, camels, pikas, horses, and zoo animals, including tigers and lions. The
“low probability” hosts are foxes, bats, and whales (Figure 3).
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Figure 3. Potential “mixing vessel” hosts for the generation of zoonotic animal influenza viruses.
Potential mixing vessel hosts according to the frequency of infection, close contact with humans, the
high number of populations, and the distribution of avian- and human-type receptors. Humans, pigs,
minks, ferrets, seals, dogs, cats, and birds, particularly turkeys, chickens, quails, and ducks, are the
“high probability” mixing vessel hosts; “medium probability” mixing vessel hosts are non-human
primates, raccoons, camels, pikas, zoo animals, including tigers and lions, and horses. The “low
probability” hosts for the generation of zoonotic animal IAV are foxes, bats, and whales.

4.1. Humans

As shown in Tables 1 and 2, several AIVs can infect humans directly without the need
for an intermediate host. Volunteers challenged with different AIV H4N8, H6N1, and
H10N7 shed virus and developed mild clinical symptoms [207]. Similarly, without prior
adaptation to mammalian hosts, AIVs can bind to α2,6-SA, even more than binding to
avian α2,3-SA [208–211]. hIAVs have been detected naturally in turkeys and a wide-range
of mammals, including pigs, ferrets, minks, seals, dogs, cats, horses, yaks, skunks, and
captive and zoo mammals (Figure 4) [51,168,212]. Several studies have shown that the
human respiratory tract contains α2,3-SA (avian receptors) [213]. Interestingly, mixtures
of α2,3-SA and α2,6-SA were found in the human lung and bronchus, and the expression
of α2,3-SA in the bronchus was more abundant than α2,6-SA, particularly in pediatric
bronchus compared to the adult bronchus [213,214]. A recent study showed that both
α2,3-SA and α2,6-SA were detected in adult human alveolar N-glycans with a higher
molar ratio of α2,3-SA to α2,6-SA [215]. In the human nasal cavity, both α2,3-SA and
α2,6-SA receptors have been detected on ciliated epithelial cells and mucus-secreting goblet
cells [214,216,217]. α2,3-SA has also been found in the colon epithelium, on the vascular
endothelial cells, and on inflammatory cells [218]. Therefore, humans can act as a mixing
vessel host.



Viruses 2023, 15, 980 13 of 37

Viruses 2023, 15, 980 12 of 36 
 

 

human primates, raccoons, camels, pikas, zoo animals, including tigers and lions, and horses. The 
“low probability” hosts for the generation of zoonotic animal IAV are foxes, bats, and whales. 

4.1. Humans 
As shown in Tables 1 and 2, several AIVs can infect humans directly without the need 

for an intermediate host. Volunteers challenged with different AIV H4N8, H6N1, and 
H10N7 shed virus and developed mild clinical symptoms [207]. Similarly, without prior 
adaptation to mammalian hosts, AIVs can bind to α2,6-SA, even more than binding to 
avian α2,3-SA [208–211]. hIAVs have been detected naturally in turkeys and a wide-range 
of mammals, including pigs, ferrets, minks, seals, dogs, cats, horses, yaks, skunks, and 
captive and zoo mammals (Figure 4) [51,168,212]. Several studies have shown that the 
human respiratory tract contains α2,3-SA (avian receptors) [213]. Interestingly, mixtures 
of α2,3-SA and α2,6-SA were found in the human lung and bronchus, and the expression 
of α2,3-SA in the bronchus was more abundant than α2,6-SA, particularly in pediatric 
bronchus compared to the adult bronchus [213,214]. A recent study showed that both 
α2,3-SA and α2,6-SA were detected in adult human alveolar N-glycans with a higher mo-
lar ratio of α2,3-SA to α2,6-SA [215]. In the human nasal cavity, both α2,3-SA and α2,6-SA 
receptors have been detected on ciliated epithelial cells and mucus-secreting goblet cells 
[214,216,217]. α2,3-SA has also been found in the colon epithelium, on the vascular endo-
thelial cells, and on inflammatory cells [218]. Therefore, humans can act as a mixing vessel 
host. 

 
Figure 4. Transmission of human influenza viruses to animals (reverse zoonoses). 

4.2. Pigs 
Pigs are the historical and best known mixing vessel for the generation of reassortant 

human–swine–avian influenza viruses. pdmH1N1 originated from swIAV and AIV after 
reassortment with hIAV. However, solid evidence on the role of pigs as a mixing vessel 
host for other pandemic influenza viruses is largely lacking [166,219]. Pigs are known to 
have both avian-type and human-type receptors and to be infected with avian and human 
influenza viruses. The distribution of both SA receptors in the pig respiratory tract was 
similar to that in the human respiratory tract [220]. The distribution of α2,6-SA in the up-
per airways (trachea and bronchus) was higher than α2,3-SA and both receptors were 

Figure 4. Transmission of human influenza viruses to animals (reverse zoonoses).

4.2. Pigs

Pigs are the historical and best known mixing vessel for the generation of reassortant
human–swine–avian influenza viruses. pdmH1N1 originated from swIAV and AIV after
reassortment with hIAV. However, solid evidence on the role of pigs as a mixing vessel
host for other pandemic influenza viruses is largely lacking [166,219]. Pigs are known to
have both avian-type and human-type receptors and to be infected with avian and human
influenza viruses. The distribution of both SA receptors in the pig respiratory tract was
similar to that in the human respiratory tract [220]. The distribution of α2,6-SA in the upper
airways (trachea and bronchus) was higher than α2,3-SA and both receptors were equally
expressed in the lower airways (bronchiole and alveolar region) [220–222]. The lamina
propria of the airway mucosa was dominated by α2,3-SA [220]. Another study showed that
α2,6-SA was expressed on the epithelial cells along the whole respiratory tract, whereas
smaller amounts of α2,3-SA were found in bronchioles and alveoli [221]. Moreover, both
receptors have also been found in the liver, kidney, spleen, heart, skeletal muscle, cerebrum,
small intestine, and colon [220].

4.3. Ferrets

Ferrets are the standard model for studying the zoonotic potential, virulence, transmis-
sion, pathogenesis, and vaccine efficacy of influenza viruses. Pet and colony ferrets have
been naturally infected with swine H1N1 [223], swine H3N2 [224], pdmH1N1 [225–227],
and avian H5N1 AIV (Van Borm et al., unpublished). The infection was mostly asymp-
tomatic or mild and only rarely fatal [228] (Van Borm et al., unpublished). Experiments
using AIV from wild and domestic birds showed efficient replication and transmissibility
by direct contact and aerosol routes in ferrets without prior adaptation [229–233]. Several
in vivo studies have shown that ferrets generate reassortant viruses after co-infection with
two different hIAVs [234,235], even though the reassortment rate may vary according to,
e.g., virus strain, inoculation route, infection dose, and time post-infection [12]. Interest-
ingly, reassortment was found to be less frequent in swine than in ferrets in vivo [236].
Similar studies in ferrets found that reassortment of H5N1 AIV and H3N2 or H1N1 human
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viruses readily occurred in vivo [237,238]. Compared to the LRT, more reassortants were
detected in the ferret nasal tract [234,236–238], where the airborne transmission of IAV
occurs [234]. Several studies have shown that the distribution of SA receptors in the ferret
respiratory tract is much more similar to the human airway than to the pig or mouse
airway [239–241]. Both avian and human-type receptors are expressed in the alveoli. Abun-
dant amounts of α2,6-SA have been detected in ciliated cells and submucosal glands of the
ferret trachea and bronchi, whereas α2,3-SA is present in the lamina propria [239,240]. The
role of ferrets as a potential mixing vessel or intermediary host for zoonotic influenza is
well justified.

4.4. Minks

Similar to ferrets, minks are members of the Mustelidae family. In contrast to ferrets,
however, mink could not be domesticated as pets, but are kept in large numbers for the
production of fur. The mink industry for fur production is growing in Asia, Europe,
and America [242]. Farmed minks eat raw poultry and pork by-products, and they have
direct and indirect contact with wild birds, pigs, and farm workers [243–248], making
them a perfect mixing vessel host [249]. Several studies have shown that farmed minks
were naturally or experimentally infected with various avian, human, equine, and swine
IAVs with clinical signs ranging from asymptomatic to severe. They are able to transmit
virus from mink-to-mink via direct contact or aerosol [249–252]. AIV H10N4 of wild-
bird origin was isolated during respiratory epizootics in farmed minks in Sweden in
1984 [243,253–258]. Several mutations were observed in the HA, particularly in the receptor-
binding domain, which were thought to be responsible for efficient multi-cycle replication
and transmission of H10N4 virus in minks [243,253,259,260]. Interestingly, this H10N4 virus
of mink origin was not able to replicate in chickens [259], suggesting progressive adaptation
to mammals. Several H9N2 viruses were isolated from minks in different territories in China
from 2013 to 2020, indicating a high prevalence rate in asymptomatically infected farmed
minks [244,261,262]. Compared to the avian ancestors, a Chinese mink-derived H9N2 has
acquired HA mutations in or adjacent to the receptor-binding domain, which is known to
enhance AIV adaptation to mammals [244]. Recently, several AIVs have been isolated from
clinically healthy or sick minks, including H5N1 in Spain, China, Sweden [248,262–264],
and H5N6 in China [249]. Mink have also been infected with porcine triple reassortant
H3N2 in Canada in 2007 [247], porcine H1N1 in China in 2017 [246], and porcine H1N2
in the Midwest United States in 2010 [245]. An outbreak of respiratory disease in farmed
American mink caused by the pdmH1N1 was described in Norway in 2011 [265] and in
the USA in 2019 [266]. Interestingly, a novel H3N2 reassortant carrying gene segments
from swine H3N2 and pdmH1N1 viruses was isolated from minks in Canada in 2010 [267].
Furthermore, there is evidence of human-to-mink transmission of hIAV and co-infections
with AIV. A serological surveillance conducted in 2016–2019 in 34 mink farms in China
revealed that minks were commonly infected with human (H3N2 and pdmH1N1) and
avian (H7N9, H5N6, and H9N2) IAVs [249]. Experimental infections have shown that
minks are susceptible to human (H3N2 and pdmH1N1) and avian (H7N9, H5N6, and
H9N2) IAVs and virus excretion was determined in infected minks [244,249]. In the mink
respiratory tract, both receptors were found in the trachea, bronchiole, and alveoli; however,
SA α2,6-Gal was more predominant [244]. Both receptors were also found in the cardiac
muscles, mesenteric lymph node, and different cells in the intestine [244]. Therefore, minks
can be a perfect host for the generation of zoonotic IAVs.

4.5. Seals

While extensive human contact with seals is difficult to imagine, seals in rehabili-
tation centers, parks, zoos, etc., actually do come into close contact with humans. Fre-
quent infection of seals with human seasonal and pandemic influenza viruses has been
reported [268–271] (Table 3). Importantly, seals have succumbed to morbidity and mortality
after infection with different AIVs, including H4N5, H10N4, and H10N7 [272–274]. Seal-
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to-seal transmission has been observed in H5N1 infection in USA [275] and probably in
an H10N7 outbreak in seals in Europe [272]. Conversely, the transmission of seal-H7N7 to
humans developing conjunctivitis has been reported in 1979, in Massachusetts, USA [276].
Some seal viruses exhibited increased virulence in mice, rats, ferrets, and pigs without
causing disease in experimental birds [277,278]. The distribution of SA in seals revealed
the co-existence of α2,3-SA and α2,6-SA receptors in the respiratory tract [279]. α2,6-SA
expression was predominant on bronchiole and alveolar epithelial cells and on endothe-
lial cells, while the expression of α2,3-SA was scarce and limited to bronchiole luminal
and alveolar epithelia [279]. Moreover, there is evidence that some AIVs displayed dual
or increasing affinity to human-type receptors after acquiring de novo HA mutations in
seals [280–282]. Likewise, mutations in the polymerase linked to mammal adaptation have
also been observed after the infections of seals [274,279]. Therefore, the risk posed by seals
to generate human-adapted AIVs should not be underestimated.

Table 3. Confirmed infections of seals with different influenza viruses from 1979 to 2023.

Subtype Year Example Country Reference

pdmH1N1 2010 A/elephant seal/California/2/2010 USA [268]

H3N3 1992 A/seal/Massachusetts/3911/1992 USA [283]

H3N8 2011 A/harbor seal/New Hampshire/179629/2011 USA [282]

H3N8 2011 A/harbor seal/Massachusetts/1/2011 USA [279]

H3N8 2017 A/grey seal/England/027661/2017 UK [284]

H4N5 1982 A/seal/Massachusetts/133/1982 USA [279]

H4N6 2002 A/Caspian seal/Russia/1884/2002 Russia [285]

H4N6 2012 A/Caspian seal/Russia/T1/2012 Russia [286]

H5N1 2022 A/harbor seal/Maine/22-020455-001-original/2022 USA [275]

H5N1 2022 Harbor seal Canada [287]

H5N1 2022–2023 Grey and harbor seals UK [288,289]

H5N8 2016 A/grey seal/361-10/BalticPL/2016 Poland [290]

H5N8 2020 A/seal/England/AVP-031141/2020 UK [291]

H5N8 2021 A/seal/Germany-SH/AI05373/2021 Germany [292]

H5N8 2021 A/seal/Sweden/2021 Sweden [292]

H5N8 2021 A/harbor seal/Denmark/521-2/2021 Denmark [287]

H7N7 1980 A/seal/Massachusetts/1/1980 USA [276,293]

H10N7 2021 A/harbor seal/British Colombia/OTH-52-1/2021 Canada [274]

H10N7 2014 A/harbor seal/Germany/1/2014 Europe * [272]

pdmH1N1 = pandemic H1N1 in 2009, * = Germany, Sweden, Netherlands, and Denmark

4.6. Dogs

Although it is difficult to have an accurate estimation of the global dog population,
the number of domesticated dogs is estimated to be approximately 900 million [193]. Dogs
as companion animals are in close contact to humans. In addition to the established
lineages of canine H3N2 and H3N8 influenza viruses, the isolation of different human
seasonal and pandemic H1N1 as well as human H3N2 in addition to a number of AIVs
(e.g., H5N1, H5N2, H6N1, H7N9, H9N2, and H10N8) in dogs have been described in the
last few decades [193,294–296]. The isolation of different CIV H3N2 reassortants carrying
gene segments from pdmH1N1 has been reported from dogs in South Korea [297,298].
In 2022, an AIV H3N8 infected a human in China. The viral RNA was detected in the
nasopharyngeal swab of an apparently healthy dog in the patient’s house [299]. Dogs
inoculated with human H3N2 viruses displayed no clinical signs, although virus shedding
from the throat and seroconversion were evident [300]. Dogs possessed antibodies against
hIAV, H3N2 and H1N1, and AIV (e.g., H5N1 and H9N2) as shown in several serological
surveys in different countries [193,295,301–303]. It is worth mentioning that dogs carry
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both α2,3-SA and α2,6-SA receptors in their respiratory tract, particularly in goblet cells and
sub-epithelial regions of nasal mucosa and trachea [304]. Both receptors were also detected
in the large intestine, although α2,3-SA receptors were more abundant [304]. Given the
high susceptibility of dogs to animal and human IAVs and their close contact to humans,
the potential of dogs as a mixing vessel could be considered as high.

4.7. Cats

Similar to dogs, cats are one of the most common companion animals and are in close
contact to humans. The global population of domestic cats was estimated to be about
600 million [193]. Unlike dogs, IAVs have been sporadically reported in cats. However, cats
are naturally susceptible to a number of IAVs, including human seasonal and pandemic
influenza viruses as well AIV H5N1, H5N6, H7N2, and H9N2 [192,305–308]. Cats inocu-
lated with a human H3N2 virus showed no clinical signs; however, virus excretion from
the throat and seroconversion were detected [300]. Several serological surveys worldwide
have shown that cats have antibodies against hIAV H3N2 and H1N1 [193,295,301,302]. Cat-
to-human transmission of AIV H7N2 has been reported in a veterinarian and in an animal
shelter worker in the USA in 2016 [309,310]. Cats express both avian-type and human-type
receptors in the respiratory tract, including the ciliated pseudostratified columnar epithelial
cells and goblet cells in the trachea and alveoli epithelial cells [311,312]. Therefore, cats as
pets who roam freely among birds and humans and are susceptible to avian and human
influenza viruses must be considered as a potential mixing vessel for zoonotic IAV.

4.8. Non-Human Primates (NHPs)

There are many contexts in which humans may come into contact with NHPs, includ-
ing urban settings, temples, pet NHPs, monkey performances, ecotourism, and bushmeat
hunting. Under experimental conditions, NHPs are used as models to study IAV infection,
pathogenesis, and immunology [313,314]. However, a number of NHPs have been infected
with hIAV under natural conditions in different Asian countries [315–317]. Likewise, ba-
boons in Kenya have been infected with human-like H1 and H3 viruses, most likely due to
human-to-animal transmission [318]. Moreover, serological surveillance indicated the pres-
ence of antibodies to seasonal and pandemic hIAV H1, H2, and H3 in different monkeys,
macaques, chimpanzees, gorillas, and orangutans in Africa, Asia, and Europe [319,320].
Studies have shown that some NHPs, including chimpanzees, gorillas, and orangutans,
express an abundant amount of α2,6-SA in goblet cells but lack their expression on the
epithelial cells of the trachea and the lung [218,321]. African green monkeys have a similar
pattern to that of humans for the distribution of α2,3-SA and α2,6-SA receptors in the
respiratory tract [322].

4.9. Raccoons (Procyon Lotor)

Raccoons belong to the Carnivora and are usually kept as pets or roam freely [323].
Raccoons were found infected with H5N1 in the USA in 2022 [26] and antibodies were
detected in feral raccoons in Japan during 2005–2009 [323]. Several studies have shown
that raccoons can be symptomatic or asymptomatic carriers of several AIVs or hIAVs,
according to serosurveys and experimental infections. Some viruses were shed for several
days and spread to other raccoons by aerosol. In some cases, raccoons have been infected
simultaneously with several subtypes of IAVs [324–329]. Raccoons express both α2,3-SA
and α2,6-SA receptors in the respiratory tract. α2,6-SA is predominant in the upper trachea
epithelium and is equally expressed to α2,3-SA in the lungs [328].

4.10. Camels

Camels have been infected with equine H3N8 in Mongolia in 2012 [185], human
H1N1 in Mongolia in 1978–1983 [330,331], pdmH1N1 in Nigeria in 2015–2017 [332], and
avian H7N9 in China in 2020 [333]. Human/swine-like H1N1 was detected in camels
imported from Djibouti and Sudan into Saudi Arabia in 2017–2018 [334]. After experimental



Viruses 2023, 15, 980 17 of 37

infection with human H1N1, camels developed flu-like illness and excreted viruses between
3 and 6 dpi [330]. In 2013–2014, zoo camels in Thailand showed antibodies against the
pdmH1N1 [335]. Antibodies against pdmH1N1 and H3N2 were also detected in camels
in Nigeria in 2015–2017 [332]. Several serosurvey studies in camels in African countries
confirmed the presence of antibodies against influenza A, B, C, and D [336–340]. α2,3-SA
are abundant in the camel nasal respiratory epithelium and in the sub-epithelial regions,
in the secretory goblet cells of the nasal epithelium, and in alveolar epithelial cells [341].
Camel erythrocytes carry high amounts of sialic acid [342]. No information is available
on the expression patterns of α2,6-SA receptors in the camel respiratory tract, although
both α2,3-SA and α2,6-SA have been detected in camel serum samples [343], the oviduct
epithelium [344], and spermatozoa [345].

4.11. Plateau Pika (Ochotona Curzoniae)

The pika is a small herbivorous rabbit-like mammal and a natural resident of the
Qinghai–Tibetan Plateau. Pikas have been naturally infected with AIV (e.g., H5N1, H7N2,
H9N2) [346–349] and up to 32% and 13.4% seroconversion rates against H9N2 and H5N1,
respectively, have been reported in wild pikas in China [348,349]. Experimental infections
showed that pikas are susceptible to hIAV H1N1 and H3N2 and AIV H5N1 [350]. Lectin
staining indicated that α2,6-SA are widely expressed in the lung, kidney, liver, spleen,
duodenum, ileum, rectum, and heart, whereas α2,3-SA receptors are strongly expressed in
the trachea and lung [350]. Therefore, the pika may play a role as an intermediate host for
the generation of zoonotic IAVs.

4.12. Foxes

Several studies have shown that foxes (wild or captive) are susceptible to AIVs
(e.g., H9N2, H5N1) under natural and experimental conditions [26,351–355]. Human-
adaptation markers developed after the infection of red foxes with H5N1 [353]. Studies
showed the co-expression of both α2,6-SA and α2,3-SA receptors, including in the respira-
tory tract [355,356]. Foxes are known to feed frequently on dead birds and to prey on small
animals and poultry. They play an important role in the transmission of some viral and
parasitic diseases to humans [357,358]. There is therefore a risk of direct transmission of
IAV from foxes to humans.

4.13. Bats

There exists a large number of diverse bat species. They are the natural reservoir for
several zoonotic viruses. Recently, two distinct H17N10 and H18N11 IAV were detected
in the yellow-shouldered bat (Sturnira lilium) and a fruit-eating bat (Artibeus planirostris)
in Guatemala and Bolivia, respectively [199]. Moreover, H9N2 viruses, closely related
to AIV H9N2, have also been isolated from Egyptian fruit bats (Rousettus aegyptiacus) in
Egypt [359], and H9-antibodies were detected in 30% of straw-colored fruit bats (Eidolon
helvum) sampled in 2009/10 in Ghana [360]. In contrast to H17N10 and H18N11, which
recognize MHCII as a receptor [199], the avian-like bat H9N2 was able to bind to α2,3-SA
at higher levels than to human-like α2,6-SA receptors [359]. H18N11 virus was able to
infect mice and ferrets without causing any signs of disease [203]. However, infection
of mammalian cell lines and animal models with H18N11 virus revealed that this virus
can acquire mammal-adapting mutations that may increase its zoonotic potential [201]. A
study demonstrated the SA expression in some bat species with a predominant expression
of α2,3-SA in the trachea and α2,6-SA receptors in the trachea, bronchi, and lung. Both
receptors were expressed in the intestine [361]. The current data suggest that bat IAVs pose
a low zoonotic potential and that bats are less likely to be an intermediate for reassortment
of AIV, swIAV, and hIAV.
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4.14. Horses

Currently, there are ~60 million kept horses worldwide [362]. They are in close contact
with humans. No confirmed virus isolation of EIVs from humans has been reported so far,
but subclinical infections were evident by testing serum samples from humans [155,182].
Moreover, IAV subtypes, e.g., H1N8, H5N1, H7N1, and H9N2 strains, have been detected in
horses, although rarely [182]. There are few reports with regard to the limited transmission
of H3N8 to other mammals, i.e., dogs, cats, pigs, and camels [184–187]. Both α2,3-SA
and α2,6-SA receptors were found in the respiratory tract of horses from nasal mucosa,
trachea, and bronchus [363,364]. α2,3-SA was predominantly expressed on the surface of
ciliated epithelial cells, whereas α2,6-SA was confined to the goblet cells [363]. However,
another study showed the lack of α2,6-SA in the trachea of horses and found that horses
express mainly α2,3-SA [365]. Equine IAVs are highly adapted to α2,3-SA receptors, but
few mutations in the receptor-binding domain of equine IAV could facilitate the infection
of other hosts (e.g., dogs, poultry) [366,367].

4.15. Other Mammals

There are several reports that zoo animals (e.g., tigers, leopards, lions) were infected
with AIV [368]. Tigers possess both avian-type and human-type receptors in the respiratory
tract [312]. Guinea pigs, hamsters, and mice possess both receptors in the respiratory
tract and they are susceptible to infection and the generation of reassortant viruses with
a wide-range of human and animal IAVs [369–374]. However, we did not find data on
natural infection with IAV, although antibodies against IAVs were detected in guinea pigs
raised as livestock in Ecuador [375]. Whales have also been found to be infected with
IAV [376–379]. Mathematical models predicted that AIV transmission by whales via faecal
matter along the Atlantic Coast was several times greater than that by migratory birds [380].
No information is available so far on the distribution of α2,3-SA and α2,6-SA in these giant
marine mammals.

4.16. Birds

Poultry species or even breeds vary in the distribution of influenza virus receptors
in different organs. All four major influenza pandemics were triggered by AIV either via
reassortment in humans, or other yet to be identified, intermediary mammal hosts [166].
During the last three decades, frequent direct transmission of AIV from birds to humans
indicate that no intermediary host is required. Moreover, birds display both avian and
human-type receptors and therefore adaptation of AIV to humans can occur in bird species
before transmission to humans (or other mammals).

4.16.1. Chickens

Worldwide production of chickens is estimated at 25.8 billion [362]. Chickens are
infected with a wide range of AIVs [30]. In chickens, α2,3-SA is expressed in the nasal
cavity [381]. Surprisingly, most studies showed that α2,6-SA dominates in the trachea
of chickens over α2,3-SA [382–386]. Conversely, few studies reported that the epithelial
cells in chicken trachea carry more α2,3-SA than α2,6-SA [387,388]. Likewise, α2,6-SA is
expressed more than α2,3-SA in the lungs of chickens [385,386,389]. Both α2,3-SA and
α2,6-SA are present on epithelial cells in chicken intestine as well as in kidneys and the
esophagus [384,385,388,390]. Studies have shown that receptor distribution in chickens
is more similar to the spectrum of receptors in the respiratory epithelia of African green
monkeys than to that in the epithelial tissues of ducks [382]. Interestingly, different chicken
breeds vary in the distribution of SA. For instance, white leghorn (WL) chickens and
silky fowl possessed both α2,3-SA and α2,6-SA receptors in the lung and gastrointestinal
(GIT) [391]. In trachea, WL had both receptors where silky fowl did not express α2,6-SA
in the mucosa and lamina propria of the trachea [391]. In the GIT, both receptors were
expressed in WL and silky fowl in the mucosal epithelial cells, glandular cells, and cells
in the lamina propria of the gizzard-proventriculus and intestines of both breeds. In the
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cecum of silky fowl, the amount of cells carrying α2,3-SA and α2,6-SA were significantly
lower than those in the cecum of WL [391]. In the reproductive tract of hens, except for
infundibulum, both types of receptors exist particularly in the magnum, isthmus, uterus,
and vagina, where the α2,3-SA was more abundant than the α2,6-SA, particularly in the
columnar epithelium cells [392].

4.16.2. Turkeys

There are about 300 million domestic turkeys worldwide [362]. Turkeys have been
found to be naturally susceptible to pdmH1N1, triple reassortant H3N2 viruses, and all
AIVs. They are considered a bridging host for the adaptation of wild-bird AIV to infect
poultry [393]. In turkeys, generally, more avian-type receptors are expressed, but human-
type receptors have increased by age [381,394]. In the nasal cavity, lung, kidney, esophagus,
and intestine, both receptors were found, whereas in the trachea only an avian-type receptor
was found [381,388].

4.16.3. Guinea Fowls

Guinea fowls are one of the minor poultry species that are typically raised for meat.
They are highly susceptible to different AIVs [395]. The lungs and trachea of guinea fowls
showed a significant amount of both SA receptors, while in the large intestine only α2,3-SA
was observed [394].

4.16.4. Quails

Similar to Guinea fowls, quails are a minor poultry species farmed for meat and egg
consumption. They are susceptible to avian, human, and swine IAVs [395]. Quails have
been shown to possess both avian and human-type receptors. In the trachea, α2,6-SA is
predominant than α2,3-SA. It is predominantly on the surface of ciliated cells and α2,3-SA
is primarily in non-ciliated cells. In the colon, both types of receptors were found on
epithelial cells as well as in crypts [387,389,390].

4.16.5. Pheasants

Pheasants are a minor poultry species, mainly kept for meat or hunting [395]. They
are highly susceptible to almost all AIV subtypes and can excrete the virus for 45 days
post-infection [396]. Both types of receptors are abundant throughout the respiratory and
intestinal tracts and a high expression of α2,6-SA was reported in the lungs [381,389].

4.16.6. Ducks and Geese

There are about 1.1 billion and 370 million domestic ducks and geese worldwide,
respectively [362]. Ducks and geese belong to the Anseriformes, the primary reservoir of
all AIVs [395], and they are a source for zoonotic AIV [397,398]. In ducks, both types of
receptors were found in the kidneys, esophagus, trachea, bronchi, and/or alveoli of Pekin
and mallard ducks [381,384,388], although at lower levels than in chickens [389]. In geese,
α2,3-SA was expressed throughout the respiratory tract with very low levels of α2,6-SA
only in the colon [394].

4.16.7. Pigeons

Pigeons, as a minor poultry species, are kept for meat production, racing, and as pets.
There is evidence that they may play a role in the transmission of zoonotic AIV to humans
without showing severe clinical signs [399]. In pigeons, abundant α2,6-SA with little or no
α2,3-SA was found on the epithelium of the respiratory tract, and a similar distribution
was found in the intestine, except in the rectum where only α2,3-SA existed [400,401].

4.16.8. Emus

After ostrich, the emu is the second-tallest living bird. They are kept for meat, feather,
and leather production. Emus are susceptible to AIVs and pandemic influenza viruses [402].
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A widespread expression of both α2,3-SA and α2,6-SA receptors was found in the respira-
tory mucosa of emus, including larynx, trachea, bronchi, and alveoli in lungs. Comparable
expression levels of α2,3-SA and α2,6-SA were observed in the ciliated epithelial cells, gob-
let cells, and non-ciliated epithelial cells, while a higher α2,6-SA expression was detected in
the submucosa of the respiratory tract [403]. Moreover, both receptors were detected in the
kidneys, cecal tonsils, lymphoid organs, spleen, and cardiac endothelial cells and α2,6-SA
was dominant in the epithelial cells of the proventriculus and duodenum [402].

4.16.9. Partridges

Chukar Partridges are gamebirds native to the Middle East and South Asia. Several
studies have shown that partridges are less susceptible to infection with AIVs and pandemic
influenza virus than, for example, pheasants or quails [395,396]. However, virus excretion
was reported for 7 days after infection with some zoonotic and human IAVs [396,404]. Both
types of receptors have also been detected in the respiratory tract of red-legged partridges.
The olfactory epithelial cells expressed moderate amounts of α2,3-SA and α-2,6-SA. α2,3-SA
was expressed mainly in ciliated epithelial cells and less signals were found in respiratory
non-ciliated epithelial cells and tracheal ciliated epithelial cells. Likewise, the expression
of α2,6-SA receptors was low on the respiratory epithelium, and negative on tracheal
epithelial cells. No SA receptors were detected in the epithelial cells in the lungs. Both
receptors were also detectable in the duodenum, cecum, and colon [381].

4.16.10. Wild Birds

According to a recent study, there are approximately 9700 bird species worldwide [405].
Wild birds vary in their susceptibility to AIVs. Mallards and gulls are the major reservoir
for all AIV subtypes. Human infections can be acquired by visiting LBM, where wild
birds are sold, or by hunting, although rarely [68,69]. In 37 wild bird species representing
11 different taxonomic orders, both SA receptors have been detected in the endothelial cells
and renal tubular epithelial cells and the endocardium and cardiac endothelial cells [406].
Another study confirmed the existence of human-type receptors in the trachea of several
wild birds [401].

5. Summary and Concluding Remarks

Zoonotic pathogens are responsible for more than 60% of human infectious dis-
eases [407]. Although several zoonotic viruses caused severe human casualties, including
the current SARS-CoV2; influenza viruses were responsible for at least four confirmed
pandemics in less than a century [408]. IAVs infect a wide range of host species. Avian and
swine influenza viruses are of high zoonotic potential, while influenza viruses of bovine,
equine, canine, and bat origin are of low zoonotic risk. Animal influenza viruses can trans-
mit directly to humans without intermediate mammal hosts. Beyond pigs, there are several
potential mixing vessel hosts for the generation of zoonotic animal influenza viruses, in-
cluding humans, minks, seals, dogs, cats, zoo animals, camels, and several species of birds.
Given the extensive number of wild birds, poultry, swine, and companion animals (dogs
and cats) and their close contact to an ever-increasing human population currently standing
at eight billion, animal influenza viruses will remain a serious threat for public health.
Migratory birds are the highly mobile reservoir for AIVs. Unlike the control of rabies in
foxes, there is currently no technology to vaccinate or control IAV infection in the wild-bird
reservoir. However, it is possible to limit the infections in domestic reservoirs through
improved biosecurity measures, cost-effective culling strategies, and development and
use of effective vaccines. Measures are needed to protect non-human mammals (e.g., pigs,
minks) from infection with hIAV and AIV and prevent the spread of AIV from and to wild
birds. The recent incursion of zoonotic HPAIV H5Nx in wild birds is a game-changer [409].
The virus was transmitted over a long distance by migratory birds from Eurasia via Iceland
to the American continent, reaching for the first time, South America [287]. This virus is
highly virulent for domestic birds and is able to infect a wide-range of mammals, includ-
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ing humans. Thus, enhanced vigilance is required to monitor the spread and biological
alterations of this virus which could develop into a new pandemic pathogen.
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