

HIGH-THROUGHPUT PHENOTYPING OF WATER FUNCTIONING AND CARBON METABOLISM IN GRAPEVINE

Laurine Chir, Romain Boulord, Virgilio Freitas, Gaëlle Rolland, Miguel Thomas, Martin Ecarnot, <u>Charlotte Brault</u>, Angélique Christophe, Benoit Pallas, Thierry Simonneau, Vincent Segura^{*}, Aude Coupel-Ledru^{*}

Presenting author: Charlotte Brault ; email: aude.coupel-ledru@inrae.fr ; vincent.segura@inrae.fr

TRANSPIRATION AND PHOTOSYNTHESIS: KEY TRAITS IN THE FACE OF CLIMATE CHANGE

Grapevine production and wine quality are affected by **climate change**¹. Searching for genotypes that are **more water-efficient** and able to maintain **high photosynthesis** is a key leverage to maintain production and vineyards durability under drought condition². **Phenotyping hundreds of genotypes** in the vineyard is a key requirement to evaluate of the **genetic variability** for these traits.

However, conventional methods for measuring water and carbon related

ANALYSIS OF WATER CONTENT, TRANSPIRATION,

traits are typically expensive, destructive, and not usable at high-throughput. <u>GOAL</u>: developing and testing new high-throughput phenotyping methods, based on the use of NIRS (Near InfraRed Spectroscopy)³ and leaf chlorophyll fluorescence⁴ to study the genetic variability and determinism of functional traits in grapevine.

2. CALIBRATION PHASE

In this phase conducted on a subset of genotypes from the two populations (semi-diallel cross and diversity panel), we combined conventional low-throughput measurements of photosynthesis, stomatal conductance, nitrogen and carbohydrates content, with fast leaf measurements using porometry/fluorimetry and NIRS. We use **PLS (Partial Least Squares) regressions** to build statistical models for the prediction of the traits measured at lowthroughput from the NIRS spectra measured at high throughput.

3. TRAITS PREDICTION

Net assimilation, stomatal conductance Licor 6800

Ψ Pressure chamber

Water content, LMA Weighing

ntent,C, N, metabolites
concentrationsingBiochemical
quantitative analysis€Image: Concentration of the second second

NIRS spectra

MicroNIR,

NeoSpectra, ASD

Chlorophyll SPAD

CONCLUSIONS AND PERSPECTIVES

Analyses were conducted with measurements taken in 2021 on well-watered plants. The results obtained with NIRS show the **sturdiness** of the calibration phase, which is **promising** for future calibration and analyses. In addition, a calibration phase using fluorescence data is underway.

NIRS high-throughput measurements combined to prediction models reveal a

In this phase, high-throughput methods alone are deployed on the whole populations to **predict the traits of interest** using models established in the calibration phase with three repetitions for each genotype.

4. HERITABILITY AND GWAS

Heritabilities and genotypic values (BLUPs) are calculated on the traits estimated from the high-throughput measurements. Genetic determinants of the traits are analysed with Genome Wide Association Study (GWAS), using MM4LMM method⁷ and 90K SNPs. The results show that the traits are heritable, and that the genotypic variability is high. In addition, a genetic region with genes associated with water content and transpiration was identified with GWAS.

strong genotypic variability for the traits related to water use and carbon metabolism. A significant **SNP on chromosome 16 has already been detected for water content and transpiration**. An exploration of the **candidate genes** underlying this association is being conducted.

The experiment is currently being repeated, with a **water deficit** scenario in addition to well-watered conditions. The measurements will be added to the models **to improve** them and assess the genotypic variability for responses to water deficit.

The results are encouraging, especially concerning the **deployment of highthroughput phenotyping in vineyards**.

- 1. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021)
- 2. Cramer, G. R. Abiotic stress and plant responses from the whole vine to the genes. Australian Journal of Grape and Wine Research 16, 86–93 (2010)
- 3. Grzybowski, M., Wijewardane, N. K., Atefi, A., Ge, Y. & Schnable, J. C. Hyperspectral reflectancebased phenotyping for quantitative genetics in crops: Progress and challenges. Plant Communications 2, 100209 (2021)
- 4. Murchie, E. H. & Lawson, T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64, 3983–3998 (2013). 5. Tello, J. et al. A novel high-density grapevine (Vitis vinifera L.) integrated linkage map using GBS in a half-diallel population. Theor Appl Genet 132, 2237–2252 (2019).
- 6. Nicolas, S. D. et al. Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol 16, 74 (2016).
- 7. Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics 44, 825–830 (2012)