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i Executive summary 

The Working Group on Multispecies Assessment Methods (WGSAM) aims to advance the oper-
ational use of knowledge on predator-prey interactions for advice on fisheries and ecosystem 
management.  

This report presents an update of the multispecies SMS keyrun model for the Baltic Sea including 
its review by the working group, and the review of three modelling frameworks for the Georges 
Bank marine ecosystem. The Baltic Sea keyrun provides updated estimates of cod predation mor-
tality for the Baltic Sea sprat and central Baltic herring stocks. The model integrates fishery and 
survey data on the two clupeids and makes extensive use of the cod stomach data (i.e. 64 000 
stomachs are used as input to the model). Estimations of predation mortality are consistent with 
previous estimates and suitable for inclusion in the stock assessment of the two clupeid stocks. 
Predation remains low on all ages for both herring and sprat as a result of the low cod stock size. 
The large modelling framework for the Georges Bank comprises a multispecies production 
model, a multispecies length-based model and a mass-balanced ecosystem model. While none 
of the three models was at that stage to be evaluated as a keyrun, with further development they 
could complementarily and in conjunction contribute to the EBFM of the Georges Bank. 
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1 Baltic Sea SMS key-run review 

1.1 SMS model 

1.1.1 Is the model appropriate for the problem? 

The SMS model will be used to provide natural mortality estimates by age and year as input to 
single species assessments of Eastern Baltic herring (Subdivisions 25–29 and 32 (excluding Gulf 
of Riga)) and Baltic sprat (Subdivisions 22–32). Natural mortality estimates are only used as input 
for the historic part and no forecast is needed. M estimates by age and quarter are a direct output 
of the model. However, an assumption is needed for residual mortalities M1 while the predation 
mortalities M2 are estimated (M = M1+M2). The model is able to provide estimates for the years 
1974 to 2021. 

The eastern Baltic cod occurs in the SD24–32 with largest abundances in SD25–29, and the west-
ern Baltic cod is found in the SD22–24. The distribution of the eastern Baltic stock overlaps en-
tirely with the distribution of the central Baltic herring stock (SD25–29,32), while only to a large 
extent with the distribution of Baltic sprat which occurs throughout the SD22–32. The Baltic SMS 
key run includes the eastern Baltic cod but not the western Baltic stock, hence what referred to 
cod predation in the model is in fact limited to predation by the eastern Baltic stock.  

Cod is the only predator in the model, feeding on herring sprat, and an ‘other food’ component. 
Cod is a constant predator in the SMS model due to age reading problems with the stock. For 
some years, only length-based input such as catch at length have been provided for the assess-
ment of the cod stock. Such input cannot be handled in SMS. Therefore, numbers at age derived 
from the Eastern Baltic cod assessment are used as known input without error since the 2019 key 
run.  

Overall, the model is appropriate to provide information on natural mortalities as input for the 
assessments of central Baltic herring and Baltic sprat. However, results depend to a larger extent 
on the input from the Eastern Baltic cod assessment. Since these are assumed to be known with-
out error, SMS uncertainty estimates around M are likely underestimated and cannot be consid-
ered informative. 

1.1.2 Is the scientific basis of the model sound? 

The SMS model is an established and reviewed model that has previously been applied in the 
Baltic Sea to provide inputs for assessments of commercially exploited stocks (Baltic sprat and 
herring). It is also applied for the North Sea foodweb (ICES WGSAM 2014, 2017, 2020) to pro-
vide input natural mortalities for the assessments of many commercially exploited stocks in the 
North Sea (e.g., North Sea cod and herring). The Baltic SMS model has been reviewed by ICES 
in several occasions (ICES 2012a, 2012b, 2019). 

1.1.3 Is the input data quality and parameterization sufficient for the 
problem? 

Model setup 

For herring and sprat, the data (1974–2021), in quarterly time steps, used as input to SMS consists 
of: catch at age, proportion landed, mean weight at age in the catch and the stock, proportion 
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mature, proportion mortality before spawning, natural mortality at age, survey effort and survey 
catch at age (Lewy and Vinther, 2004). For cod, the data used as input to SMS consists of: cod 
numbers and mean weight per 2-cm length class from the ICES WGBFAS, Stock-Synthesis 3 (SS3) 
assessment from 1974–2021 and Latvian cod stomach data from 1974–2014. SMS is fitted to the 
Cod stomach data and the catch at age and survey indices for herring and sprat. SMS estimates 
values for F, SSB, recruitment and M2 (i.e., cod predation mortality) for herring and sprat. In 
total, 300+ parameter values are estimated by the model. 

Data quality 

SMS uses the same data as used for input to the single species assessments of herring and sprat 
in the Baltic Sea (catch at age, mean weights, proportion mature, survey indices). These data have 
been benchmarked and therefore no further review on these data has been carried out. However, 
while single species assessments start with age 1 as recruits, SMS starts with age 0. Given that 
predation mortalities are important for age 0, this is understandable. But e.g., the mean weight 
at age is highly uncertain for the 0 group. WGBFAS assumes that mean weight at age in the sea 
is the same as mean weight at age in the catch.  In general, the assumption that mean fish weight 
in the catch equals the mean fish weight in the stock is a major assumption that can have an 
influence on model results. SMS uses smoothed quarterly values as input for the age 0 (Q3 & Q4) 
and age 1 (Q1 & Q2). Even though there is a large uncertainty around the input values for weight 
at age in the sea, especially for the youngest ages. 

In addition to the data that is used for the single species assessments, SMS relies on cod stomach 
data. A new stomach data set for cod became available in recent years. Due to the better quality 
of the new stomach contents data, this data sets were applied as default in the key run of 2019 
(ICES WGSAM, 2019). The stomachs have been collected mainly by the Latvian institute and 
provide detailed information based on individual stomachs. The dataset provides information 
for the period 1974–2014, stomach data from more recent years is not available. Overall, data 
from 64 000 stomachs were used as input for SMS. Stomach data are reported per individual cod 
with predator size classes in mm or cm. Although in general the eastern Baltic is well covered, 
sampling focuses around the Latvian coast and there are some gaps in space, especially in the 
1990s. The main distribution areas for cod are the SD 25, 26 and 28 and stomachs from these areas 
are used for SMS both in this as in previous key runs. The three subdivisions have not simulta-
neously been sampled in all years.  

The compilation procedure followed to parameterise stomach contents in the 2022 key-run was 
performed via the ‘FishStomach’ R package (https://github.com/MortenVinther/FishStomachs). 
This introduced some differences in terms of relative stomach contents (Annex 2, section 2.3.2) 
compared to the beta version of FishStomach used for the 2019 key-run, although these are min-
imal. 

Consumption rates are calculated based on the cylinder gastric evacuation rate model from An-
dersen and Beyer (2005a, b). In order to consider recent changes in cod consumption rate, the 
relationship between average quarterly consumption rate and total length (a priori parametrized 
as C=aLb with C the average quarterly consumption rate and L total length) was estimated sep-
arately for three different periods (1974–1989, 1990–1999, 2000–2014). 

Overall, the data quality is considered decent input to the model. That the model uses key input 
from the single species assessments can be seen as a strength because these data were already 
scrutinized during a full ICES benchmark process. It is a positive development that the stomach 
data compilation process has been documented in an R package, this should facilitate the repro-
ducibility of the stomach data compilation process in the future, and avoid discrepancies in stom-
ach data used in subsequent key runs.  

https://github.com/MortenVinther/FishStomachs
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Assumptions and parameterization 

The parameterization of the diet selection sub-model is based on several assumptions. First, there 
is only one vulnerability parameter per interaction for the full model time-series. The assumption 
of constant vulnerability may be violated if e.g. the spatial predator-prey overlap changes. Given 
an assumed constant overlap, the implied Holling type II functional feeding response as used in 
SMS is well known to lead to instability when prey items become low in abundance and makes 
them vulnerable to extinction in the model. However, this is mainly an issue for forecasts when 
trying to make predictions outside the range of observations.           

Another important assumption is a time constant biomass pool of “Other Food” that for the east-
ern Baltic cod includes a considerable proportion of benthic preys. If the availability of important 
Other Food prey items changes over time, this can lead to biased predictions of relative stomach 
contents and therefore predation mortalities. As shown in Figures 7 and 8 in the section 1.1.4 
below, this could be an issue for this key-run. The current SMS key run is based on a log-normal 
size selection of the predators (see Annex 2).  

Overall, the parameterization and assumptions are consistent with recent scientific knowledge. 
However, some of the assumptions regarding constant vulnerabilities and constant Other Food 
availability may be relaxed in future key-runs and further investigations are needed to fully uti-
lize the extensive time-series of stomach data (also in relation to spatial patterns) to optimise the 
parameterisation of the diet selection sub-model. 

1.1.4 Does model output compare well with observations? 

The SMS key-run was able to estimate total catch over time sufficiently well for herring and sprat 
(Figure 1), and the main features of the time-series are well covered by the model. For herring, 
the catch-at-age residual plots by quarter do not show any discernible pattern (Figure 2). For 
sprat however, there are clear clusters of positive and negative residuals, except for the oldest 
age classes all show more positive residuals in the earlier part of the time-series, especially for 
Q3 (Figure 3). Catch-at-age residuals for sprat are also larger overall than for herring. 
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Figure 1. Comparison between predicted and observed catch time-series. 
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Figure 2. Herring catch observations Residuals, log(Survey observed CPUE) - log(expected CPUE). Red is positive, White 
is negative. Q:9 means annual data. The yellow circle illustrates the size of the largest value as a reference.  
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Figure 3. Sprat catch observations Residuals, log(Survey observed CPUE) - log(expected CPUE). Red is positive, White is 
negative. Q:9 means annual data. The yellow circle illustrates the size of the largest value as a reference.  

 

The fit to survey data captures the main trends reasonably well for both herring (Figure 4) and 
sprat (Figure 5), with the exception of age 1 herring in the BIAS survey and age 1 sprat in the 
LAT RUS acoustic survey. There are clear “year effects” (consistent under- or overestimation in 
a given year), seen in the May acoustic surveys for both herring and sprat (and in the LAT RUS 
acoustic survey for sprat). However, both the BIAS survey for herring and the October acoustic 
survey for sprat do not show any discernible pattern (Figure 6). Overall, no sign of overfitting to 
a particular data source is apparent. 
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Figure 4. Herring surveys observation residuals (log scale). The red dots are the observed values, the blue lines are the 
prediction. 
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Figure 5. Sprat surveys observation residuals (log scale). The red dots are the observed values, the blue lines are the 
prediction. 

 



ICES | WGSAM   2023 | 9 
 

 

 

Figure 6. Survey observations Residuals, log(Survey observed CPUE) - log(expected CPUE). Red is positive, white is nega-
tive. The yellow circle illustrates the largest value for reference.  

The fit to stomach data reveals residual patterns, where there is a consistent over- or underesti-
mation (cluster of residuals switching from positive to negative and vice-versa) of other food, 
sprat and herring in certain time periods (Figure 7). The box plots of residuals also show a clear 
switch towards positive residuals in the 1990s for cod eating herring, and a clear declining trend 
for cod eating other (Figure 8). This suggest possible (non-constant) trends in processes such as 
prey vulnerabilities or availability of other food, which are so far not captured by the model. 
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Figure 7. Cod stomach observation residuals (raw = (observed proportion) - (expected proportion)). For residual plots, 
white is positive, green is negative. 

 

Figure 8. Box plots of cod stomach observation residuals by year. 

1.1.5 Uncertainty 

The uncertainty of any one selected output variable in SMS is estimated using the Hessian matrix 
and the Delta method approximation (see Annex 2). However, we note that these do not include 
possible error in the input variables, and are thus likely an underestimation of the uncertainties 
in the model estimates. For example, the stock numbers for cod (a so-called ‘other predator’ 
within the model) are assumed to be known without errors while considerable uncertainty is 
associated to the stock assessment estimates. The uncertainty estimates of the model are for this 
reason considered uninformative and are not presented in detail in the stock annex (see Annex 
2) or used further.  

Predation mortality (M2) decreases in general by prey size (age) as expected (Figure 9); however 
for sprat, M (M2 + constant M1) is estimated to be highest for age 1, as was the case in the last 
key run. This pattern might be explained by a lower spatial overlap between the very small sprat 
and cod, or may be an effect of the rather uncertain mean weight at age applied for the 0-group. 
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WGBFAS assumes that mean weight at age in the sea is the same as mean weight at age in the 
catch. This assumption could be violated for the age 0 individuals, as the representation of age 0 
individuals in the catches and surveys are likely the largest individuals in their cohorts. The age 
0 individuals are likely underrepresented in the catch and survey data. While the M values 
needed for the single species assessments start with age 1 and M values for age 0 are less critical, 
shifts in the cod diet portion of age 0 herring and sprat could lead to changes in M estimates for 
the other prey age classes. It is therefore recommended to test the robustness of the model out-
comes to the values chosen for the mean weights of the age 0-group. 
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Figure 9. Annual natural mortalities (M=M1+M2) by species and age. Black dots are the sum of quarterly M1 and M2; the 
blue line is a gam spline estimate. 
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Some of the sensitivities of the model were quantified by running the following protocol: 

1. Retrospective analysis (successive 5-year peel of all input data); 
2. Robustness test of results towards a change in the residual natural mortality (M1). 

In addition, the effects of small model changes that had to be made, such as a new compilation 
method of the cod stomach contents, a correction of the food ration calculations, and a change in 
the fishing parameter configuration were tested on the model outcomes, effects of these changes 
on the model outcomes are described in section 1.1.6. In 2019, several other robustness tests were 
conducted (Table 1). In the table we present an overview of the tests that were conducted. These 
were not repeated for the current model input data and not reviewed by the 2022 review team 
and are therefore not formally part of this review.  

The retrospective analysis results in small shifts of F, recruitment and SSB (Figure 10), yet con-
sistent estimates of successive M2 values across clupeid age classes were obtained as additional 
years of assessment data were added to the key-run configuration (Figure 11). We therefore con-
clude that these point estimates might be regarded as robust to the variability in assessment data 
of herring and sprat and not strongly dependent on one specific year of data. 

Table 1. Changes of parameters values tested on the predictions of SMS in 2019 and 2022. The tests conducted in 2019 
were not repeated for the current model input data and not reviewed by the 2022 review team and are therefore not 
formally part of the review. 

Test Reference Tests performed Executed  Remarks 

Retrospective analysis Annex 2, 
section 5.2.1 

Peeling off 5 years of 
data 

2022   

Change in M1 value 
Annex 2, 
section 5.2.7 

Half of original value 
for sprat and herring 2022   

Change in aggregation pe-
riod stomach data 

Annex 2, 
section 5.2.4 

5 or 10 year aggrega-
tion period 

2019  

Change in consumption 
rates 

Annex 2, 
section 5.2.6 

Value at half of origi-
nal value 

2019   

Overlap index other food 
Annex 2, 
section 5.2.5 

With and without in-
dex 2019   

Change in stomach data 
Annex 2, 
section 5.2.2 

New and old stom-
ach data 

2019  
New data used since 
2019 

Change in shape size selec-
tion function 

Annex 2, 
section 5.2.3 

Uniform, constraint 
uniform, 

Log-normal 

2019 
Log-normal size se-
lection was chosen 
and used in 2022 

Comparison with Baltic 
Sea Gadget mode 

WGSAM 
2019 

 2019  
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Figure 10. Retrospective analysis for herring and sprat. Summary output. 
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Figure 11. Retrospective analysis for herring and sprat, M2 at age. 

Residual mortalities M1 are assumed constant and independent of age class in the model param-
eterization. M1 values for Herring and Sprat are respectively set to 0.1 and 0.2 in this as in the 
previous key-run; there is no empirical evidence available to support a choice in this value. To 
test the effect of M1, a simulation was performed with a 50% reduced value for M1 for sprat and 
herring. The results show a worse fit and higher M2 estimates for both clupeids across all age 
classes (Annex 2, section 5.2.7, Figure 13). Furthermore, the lower M1 values resulted in lower 
recruitment, a higher F and a lower SSB estimate for both herring and sprat (Figure 12); though 
for the latter species this effect is greater due to the larger absolute reduction in M1. 
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Figure 12. Effect of reduced M1 values on F, Recruitment and SSB for herring and sprat. 
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Figure 13. Effect of reduced M1 values on age-specific M2 estimates for herring and sprat. 
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The 2019 review states that the predator-prey size selection has quite a strong effect on old M2 
estimates (ICES WGSAM, 2019). In general, the diet partitioning of cod between herring, sprat 
and the other food component in the model is uncertain. The residuals of the diet data fitting 
show a significant deviation in the model fit for recent years (section 1.1.4, Figures 7 and 8), 
which is an indication that the model is perhaps not capable of catching changes in cod diet, such 
as a shift from benthic to fish or from herring to sprat. Additional analysis of the stomach data 
may allow for a better understanding of potential changes in the diet of cod and the changes in 
the model setup that may be needed to simulate these dynamics. 

One of the main uncertainties in the model are probably the Cod stock sizes. Due to the issues 
with the age readings in Baltic cod, estimates for weight and catch at age that SMS needs for its 
calculations are currently not available. Therefore, cod is at the moment considered as an ‘exter-
nal predator’ in SMS. In practice this means, that the cod numbers are kept fixed and assumed 
to be known without error. In reality, the estimates of the cod numbers are likely to be quite 
uncertain, especially with the current problems with the assessment of the cod stock in the Baltic 
(ICES 2022). The effect of different values for the cod abundance on the model estimates should 
be tested in the future. 

1.1.6 Previous peer review 

The SMS methodology has been reviewed in ICES (ICES 2012a, 2015, 2019). 

Compared with the 2019 key-run, the 2022 key-run is based on a revised food rationing, changes 
in the model configuration for fishing mortality and includes updated assessment data from 
WGBFAS. Despite these differences, the two key-runs show highly consistent results for the sum-
mary output of recruitment, SSB and mean F (Figure 14). For herring, estimates of F, SSB and 
recruitment are very similar prior to 2016. After 2016, the two key-runs deviate slightly, with the 
2022 key-run estimating higher F and lower SSB compared to the 2019 key-run. For sprat, the 
estimates of F, SSB and recruitment are similar for the entire time-series between the two key-
runs, with the 2022 key-run estimating slightly higher F across most years (Figure 14). These 
differences are likely due to the changes in the fishing mortality configuration settings in the 
2022 key-run (Figure 16).  

In terms of M2 (Figure 15), the two key-runs show similar results with some discrepancies for 
certain age groups. For herring, the 2022 key-run estimates higher M2 for age 0 herring prior to 
2000 and higher M2 for age 1 herring after 2000 compared to the 2019 key-run. For sprat, the 2022 
key-run estimates higher M2 for age 0 herring prior to 2000 (Figure 15). These patterns are likely 
due to the updated food rationing, where the average quarterly food consumption has been split 
each quarter according to the distribution key specified by Neuenfeldt et al. (2020), see for details 
below (Figure 17). 
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Figure 14. Comparison of fishing mortality (F), recruitment (Recruits) and spawning stock biomass (SSB) estimates be-
tween the 2019 (black squares) and the 2022 (red circles) Baltic Sea key-runs for herring (above) and sprat (below). 
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Figure 15. Comparison of natural mortality (M2) estimates between the 2019 (black squares) and the 2022 (red circles) 
Baltic Sea key-runs for herring (above) and sprat (below). 
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Changes in model parameterization and configuration 

For the 2022 key-run, the compilation procedure of the stomach data was performed using the 
‘FishStomach’ R package (https://github.com/MortenVinther/FishStomachs). This introduced 
some differences in terms of relative stomach contents compared to the beta version of FishStom-
ach used for the 2019 key-run; which, in turn, resulted in negligible deviations of M2 estimates 
(Figures 16 and 17). The discrepancies between 2019 vs. 2022 relative stomach content are likely 
arising from the allocation of partly identified preys within the latest FishStomach’s algorithm. 

The 2019 key-run food ration protocol was revised and average quarterly consumption rates 
were multiplied by 4 to yield average yearly consumption to subsequently redistribute over 
quarters according to KEY -xyz- in Annex 2. This update resulted in the largest changes observed 
in M2 (Figure 17). Herring M2 was particularly sensitive to this update across age classes in the 
recent past (with the exception of perhaps age = 0 Herring from 1974 to 1990). In contrast, Sprat 
M2 tended to be more sensitive in earlier years of the time-series.  

The responses of M2 estimates to the changes in fishing mortality configuration were modest 
(Figures 16 and 17). For Herring, an extra period was added in the season effect of the fisheries 
selectivity scenario (i.e. 2006–2021) to better capture potential temporal trends in age-specific 
fisheries effort, and consequently fishing mortalities, over the years. For both herring and sprat, 
alternative age groupings of the variance on F were chosen to prevent overfitting (see Annex 2 
for details). In addition, the catch observation variance was changed from annual to seasonal for 
sprat. Although marginal differences were found in M2 estimates with this new configuration 
(Figure 17), the data favours the new fishing mortality configuration (following the rescaling 
method in Burnham and Anderson (2004) to interpret AIC for model selection); even at the ex-
pense of an extra 25 parameters. 

https://github.com/MortenVinther/FishStomachs
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Figure 16. Comparison of F, Recruitment and SSB estimates for four different versions of the model: 1. With an update 
of the model input data, 2. With an update diet data compilation method, 3. with an updated ration calculation method, 
and 4. with a different configuration of the F-model. 
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Figure 17. Comparison of M2 estimates for four different versions of the model: 1. With an update of the model input 
data, 2. With an update diet data compilation method, 3. with an updated ration calculation method, and 4. with a 
different configuration of the F-model. 
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1.2 Review recommendations 

WGSAM accepts the model output from SMS as key-run with the settings given in the Stock 
Annex (Annex 2 of this report). 

Key-run summary sheet 
 

AREA BALTIC SEA 

Model name SMS 

Type of model Age–length structured statistical estimation model 

Run year 2022 

Predatory species Assessed species: Herring , Sprat 

Prey species Herring, Sprat 

Time range 1974–2021. 

Time step Quarterly 

Area structure Eastern Baltic Sea, ICES sub-divisions 25–29, excl Gulf of Riga 

Stomach data Cod: 1974-2014 

Purpose of key-run Making historic data on natural mortality available and multispecies 
dynamics 

Model changes since last key-
run 

All time-series updated. More stomach data included. Stomach data 
compiled with the FishStomach R package. Cod is now an external 
predator estimated by WGBFAS Stock-synthesis model. Daily food 
ration changed for the predator cod. Calculation of rations updated to 
follow the stock annex (Annex 2). 

Output available at Sharepoint/data/Eastern Baltic SMS key-run and 
https://github.com/ices-eg/wg_WGSAM 

Further details in Report of the Working Group on Multispecies Assessment Methods 
2022 

 

WGSAM considers the key-run as currently best possible run with SMS to provide natural mor-
tality estimates. WGSAM recommends to use these values as input to single species stock assess-
ments. Whether the raw or smoothed natural mortality values should be used in the herring and 
sprat assessment models is up to the stock assessors and is usually a decision that is reviewed 
and agreed upon during Benchmarks. The full time-series should be used and not only an update 
for the years after the last key-run in 2012.  

However, there are also clear limitations with the approach and results have been shown to be 
sensitive to e.g., consumption rates and treatment of “Other Food” as well as the size selectivity 
of cod (ICES WGSAM, 2019). In addition, the results are likely to depend to a large extent on the 
outcome of the ICES Eastern Baltic cod assessment. Any bias in this assessment may directly 
influence the predation mortality estimates. Assumptions around other food and constant vul-
nerabilities and uncertainties in the body sizes and abundance of age 0 prey individuals may 
also bias the natural mortality estimates to some extent. 

Multispecies models can provide multispecies FMSY estimates to be considered in comparison 
with single species FMSY values. It is valuable to ask how, for example, the chosen fisheries mor-
tality on sprat and herring may affect the optimal exploitation rate for cod, and vice versa. Mul-
tispecies FMSY estimates could be obtained, for example, by concurrently maximising the yield of 

https://github.com/ices-eg/wg_WGSAM
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all species in a system in the sense of a Nash equilibrium, with respect to F. In this Nash equilib-
rium all ICES single-species MSY reference points can be simultaneously attained and are iden-
tical to the multispecies FMSY values.  WGSAM can provide the computational machinery neces-
sary to compute such MS-FMSY estimates from any of the key-runs reviewed by WGSAM so far. 
A graphical representation of a set of FMSY values of all the key runs of multispecies models of 
the Baltic Sea would (i) facilitate visualising yield trade-offs amongst target species when evalu-
ating other socio-economic objectives and (ii) assist in identifying SS-FMSY reference points that 
can simultaneously be achieved. 

For further work on the Baltic Sea SMS keyrun, WGSAM recommends the following:   

1. Additional analyses of the cod diet to get a better process understanding of what is driving 
the systematic changes in relative stomach contents.  
 

2. A split of Other Food in parts where the time dynamic can be considered (e.g., flounder 
and Saduria entomon) directly or via a proxy and a part that still needs to be assumed con-
stant in time may be beneficial. The availability of the different food groups for cod in the 
Baltic Sea have changed strongly over time (e.g. Haase et al. 2020).  

In 2019, the WGSAM reviewers made these two recommendations, on which no work has been 
done since then. The overestimations of the model in the amount of herring eaten by cod and the 
underestimations of other food and sprat (all in recent years, Figure 8), indicate that it is still a 
good idea to consider these recommendations. The recent changes in the condition of Baltic cod 
indicate that there has been likely a change in the food availability for cod. Although it could be 
difficult to implement these changes they could be quite important for reliable estimates of the 
model.  

3. The inclusion of spatial dynamics in the food consumption of cod (either directly or via 
overlap coefficients) may improve the fit to data sources.  

In 2019, the WGSAM reviewers made this recommendation, which has not been considered so 
far. As long as the spatial overlap between prey and predator is constant through time, incorpo-
rating an overlap coefficient should not have a strong effect on the model predictions as this is 
currently addressed via the vulnerability parameter. However, if there is a temporal trend in the 
spatial overlap between predator and the prey species, and/or if the prey age classes are une-
venly distributed through space, an overlap coefficient (per prey age class) could make a differ-
ence for the model predictions.  

4. A run with age 1 as recruits could be tried because input for the 0 group is highly uncertain.  

In 2019, the WGSAM reviewers made this recommendation, which has not been considered so 
far. The idea is that the weight at age data for the age 0 classes of the prey species are so uncertain 
that the model cannot estimate the consumption correctly based on the data that is currently 
used. However, this may be a difficult change for the model as age 0 herring and sprat form an 
important part of the cod diet. It is relevant to highlight the uncertainty and potential issues with 
the quality of the estimates for the age 0 prey classes before they could be used as input in a 
single species stock assessment. Discussion with the stocks experts from the assessment working 
group on possible alternative data sources on the weight-at-age of age0 clupeids would be ben-
eficial.  

5. Account for the uncertainty in cod number at age in the model. 

In 2019, the WGSAM reviewers made this recommendation, which has not been considered so 
far. Due to the current problems regarding the age-reading of Baltic cod, an age-length-based 
model is used for the stock assessment. Cod number-at-age in the stock are retrieved from the 
stock assessment and used to represent the cod stock in the SMS keyrun without uncertainty. 
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6. Provide a multispecies FMSY estimation that can be used as a comparison with the FMSY val-
ues from the stock-by-stock (SS) frameworks currently used for advice. 

The current model version of SMS of the Baltic Sea is not suitable for predictions of multispecies 
FMSY values. Unfortunately, due to the non-dynamic nature of cod in the 2022 key run, it is not 
possible to predict how fisheries mortality may affect the other species in the food web through 
indirect effects.  It is advisable to calculate this metric in the future if possible. The consideration 
of optimal yield trade-offs amongst the commercially exploited species in the complex is an im-
portant facet in improving fisheries management advice and an ecosystem-based approach to 
fisheries management. 
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2 Georges Bank review 

This review concerns the evaluation of three modelling frameworks presented during the 
WGSAM which took place in Woods Hole on 10–14 October 2022. The three models are pre-
sented as a suite of tools to address long-term multiple management objectives in the context of 
ecosystem-based fisheries management for the Georges Bank. 

The three models consist of a multispecies production model (MSSPM), a multispecies length-
based model (Hydra), and a mass-balanced ecosystem model (Rpath). Overall, the aim of Hydra 
and MSSPM is multi-species assessment and catch advice for a subset of focal species by taking 
advantage of the structural difference of these two models. Differently, the overall aim of Rpath 
is the quantification of the foodweb interactions at large and of whole ecosystem consequences 
of alternative management strategies. 

It is important to remark that for WGSAM, multispecies model keyruns remain complete model 
implementations used to support the advice process. While none of the three models reviewed 
here is at that stage to be evaluated as a keyrun, the review detailed in the following sections is 
largely based on the review criteria (at least those applicable given the current status of the 
model) adopted by WGSAM for evaluation of model keyruns (ICES 2019 and also found at 
https://ices-eg.github.io/wg_WGSAM/ReviewCriteria.html). 

This review starts with general considerations common to each of the three models regarding 
the spatial domain and the centralized treatment of the data before detailing on each specific 
model. 

 

The spatial footprint and place-based management 

Georges Bank is considered an ecosystem production unit (EPU) based on a combination of ba-
thymetry, bottom sediments, temperature, salinity, and primary production characteristics. The 
relatively shallow waters and hydrographic characteristics make Georges Bank a hotspot of 
productivity in the Northeastern Atlantic shelf which supports the idea for placed-based man-
agement and for the development of fisheries ecosystem plans specifically for this area. 

The boundaries of Georges Bank, as defined by the NEFSC bottom trawl survey strata, are used 
as a common spatial footprint for the implementation of a multispecies surplus production 
model (MSPM), a length-based multispecies model (Hydra) and a foodweb model (Rpath) here 
evaluated by a subgroup of experts within WGSAM. It is important to note that this review does 
not concern the strength and weakness or appropriateness of the Georges Bank EPU for the de-
velopment of fisheries ecosystem plans but explores/evaluates the implications and challenges 
that this may represent for the implementation of the three models proposed for this keyrun. 

The conceptual models for all the three models implemented assume Georges Bank as a closed 
system which might be problematic because the definition of its boundaries as an EPU is limited 
to considerations on the primary productivity of the system and neglects that secondary produc-
tion is likely to be influenced by contribution from areas outside the EPU. The distribution of 
piscivorous fish species shows a clear increase in abundance towards the boundaries of the study 
area suggesting potential issues of spatial containment when modelling trophic interactions es-
pecially in the upper part of the foodweb. Of the 8 teleosts and 2 elasmobranch species included 
in the MSPM and Hydra models only the stock management unit of cod and two flounders show 
a good correspondence with the EPU. All the other stocks show considerably larger distributions 
and migratory species like herring and mackerel are known to be transient within the EPU. The 
mismatch between the GB and the stock-area definition is well reported but it would be useful 

https://ices-eg.github.io/wg_WGSAM/ReviewCriteria.html


28 | ICES SCIENTIFIC REPORTS 5:12 | ICES 
 

 

to evaluate how the life cycle, dynamics and productivity of each stock (assumed to be a biolog-
ical unit) relate to the EPU and to the main assumptions of the models. Leading questions for 
further development of the work include: 

• what proportion of the catch and fishing mortality occurs outside the EPU? 
• what proportion of natural mortality occurs outside the EPU? 
• what proportion of the energy intake is provided by preys outside the EPU? 
• do these proportions change over time? 
• what is the population structure (age/size) of those stocks inside and outside the 

EPU and does it suggest some level of separation for spawning components in the 
GB? 

Material to start answering these questions has been already presented during the WGSAM 
meeting indicating that catches taken on GB may represent <50% of the catches, hence only a 
limited part of the total fishing mortality for some of the key stocks analyzed by the models. 
Moreover, several of the species considered occur in Georges Bank with two or more stocks. 
Where information is available, we recommend attempting to answer the leading questions 
above approximating the stock level. 

A possible conclusion from answering these questions could be that from an ecological and mod-
elling perspective it would be difficult to understand the dynamics of the higher trophic levels 
in GB outside the context of the Northeast continental shelf. In that case, expanding the models 
outside the boundaries of the EPU, and/or explicitly accounting for the input/output of fish and 
energy across the boundaries will likely be needed. 

Species selected: MSSPM and Hydra used a common set of 10 species. They were selected pri-
marily because of their historical commercial importance and for management reasons. It would 
be useful to add ecological considerations to evaluate if other species should be included or given 
priority for inclusion in the models. That would include both predators as well as preys currently 
part of other food which includes a number of assessed and managed species. 

 

Data 

Dedicated R packages have been developed to handle both commercial data (comlandr), survey 
data (survdat), and compositional information (mscatch) used by the three models. This im-
proves considerably reproducibility and speed of the workflow as well as future updates of the 
dataset and models. 

 

Diet data 

Stomach data are available from different seasons with the majority of stomachs collected during 
Spring and Fall surveys. The underlying data and to the extent possible assumptions on trophic 
interactions should be consistent among the models (from the objective 2) to enhance comparison 
of results. Given that the production model does not fit to diet data, it might be difficult, how-
ever, to get a converged run if the interactions are complex. 

The interactions need to be double-checked because some species are considered predators only 
because of occasional occurrences of the other species in their stomachs while they are mainly 
prey (e.g., flounders). It is worth reducing the number of trophic interactions to those that really 
matter for the prey dynamics and fitting. It is difficult to come up with an automatic method for 
choosing the trophic links between the stocks. With other models in WGSAM, this is usually 
done by visual investigation of the diet. 
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A lot of the other food is actually data we have information on at the family or group level. This 
is considered other food in the two estimation models while a different approach is taken with 
Rpath that can include families or functional groups. Ideally, it would be good to make some 
assumptions on how to allocate these proportions to utilize this information in the estimation 
models as well and aim for the highest possible level of consistency in the treatment of the stom-
ach data across the three models used  

 

Catch data 

A great amount of work has been produced in order to extract catches that occurred on GB from 
catch data which are reported at the scale of statistical areas and that do not match the borders 
of the Georges Bank spatial footprint. The estimation method, based on the use of VTR and ob-
servers data, is sound but the availability of VMS data would help considerably the allocation of 
catches on the GB. Once time-series with the annual proportion of catches per species and statis-
tical rectangle are calculated their averages are used to split the catch and compile input catch 
data for the models due to little trust in the VTR data. It is difficult for the review team to judge 
the quality of the VTR data and the need to take an average proportion for the entire time-series 
but it would be relevant to consider alternative options like a moving average on the annual 
proportions and/or applying an average only on the older period of data. Resulting alternative 
time-series should at least be compared. This is especially important for those stocks where a 
consistent trend in the proportion of catches within the GB EPU has been observed over the 
historic period. The whole procedure for splitting catches should also be repeated separately for 
the different times of the year, gear and fleets at least to check for seasonal variations in the 
fishing patterns. 

Comparison of catches inside and outside the GB from rectangles matching the spatial footprint 
(521, 522, 525, 526, 537, 538, 551, 552, 561, 562) show that for some species a considerable propor-
tion of the biomass is taken outside the EPU. This poses some questions on the operationality of 
the method in terms of monitoring compared to defining the area according to the statistical 
areas. 

Evaluation of the catches estimated from the EPU compared to the total catches of the stocks is 
considered relevant even if the comparison requires merging catches for the multiple stocks of 
the same species occurring in GB. 

2.1 MS production model 

2.1.1 Is the model appropriate for the problem?  

MSSPM is intended to provide stock assessment for the 10 modelled species, including catch 
advice by species. It is also designed to, potentially, quantify predation and competition interac-
tions and estimate carrying capacity by species, trophic guild, as well as for the entire modelled 
system. This model is not designed for advice purposes in isolation, but to be a part of an ensem-
ble of multispecies models. It has been implemented in an interfaced software, where the esti-
mation procedure can be launched and monitored. 

Production models are currently used in situations with sparse dependent and independent fish-
ery data, and shortage of information about the biology of the stock. In the case of the Georges 
Bank fishing ground, with relative abundance of high-quality data, this is not the main reason 
for the development of this multispecies production model, but having a relatively simple mul-
tispecies model that can provide preliminary estimates of species interdependent dynamics. 
More importantly, in more complex versions of the model not presented during the meeting 
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(Gamble & Link, 2009; 2012), a competition parameter by pair of prey-predator species, and a 
common carrying capacity by trophic guild and a global carrying capacity parameter is also es-
timated, which can be of relevance for an EBFM in the Georges Bank.  

A candidate model fit was not presented due to convergence issues. Hence, the assessment of 
the model performance and analysis of diagnostics was not possible. However, based on the 
documentation and the results presented, MSSPM does not seem to be ready to be used in stock 
assessment, and it may be necessary to modify some elements in the optimization process and 
the model structure (see sections below).  

2.1.2 Assumptions (scientific basis, computational infrastructure; ad-
equacy of conceptual model) 

The model (and its variants) has been published (Gamble and Link, 2009, 2012), and the equa-
tions derive from well-established ecological principles (Schaefer, Lotka-Voltera, Verhulst-Pearl) 
also implemented in other multi-species models.  

Several forms of the model are available in the software, a simple version was favoured as a first 
attempt to model the GB system, assuming predation and density dependence at the species 
level (so no competition) and some environmental covariates. The approach of sequential in-
crease in model complexity and fitting (starting by fitting a single species version of the model 
on each species) is appropriate.  

It is worth noting that the assumption of density dependence and environmental effects differ 
from usual MS assessment models and from the two other models developed for the region.  

As a production multispecies model, the dynamics of the modelled populations are driven by 
the catch, predation interactions, the species growth rate and carrying capacity. Allowing extra 
flexibility in the input and output of biomass on each population (other than the biomass pro-
duced as result of population growth determined by growth rate and carrying capacity) would 
potentially help in fitting the observed biomass indices as well as accounting for lost and gain of 
individuals under the problematic assumption for the Georges Bank of closed populations. This 
flexibility could be achieved by incorporating a random process error in the model (see sugges-
tions in sections below). 

 

Fitting procedure 

The model estimates values for r (population growth rate), B0 (initial state biomass) and K (car-
rying capacity) parameters per species and predator prey interaction coefficients (rho). The esti-
mates of the parameters are derived through numerical exploration of the parameter space (me-
taheuristics). Several algorithms are available and tested, the stopping criteria being a tolerance 
value. The procedure is sequential, with a first approximation of r, B0 and K estimated in single 
species models and used to refine the search domain when fitting the MS model.  

The first attempts did not show convergence and the experts recommended several actions to 
improve it and evaluate the performance:  

• Carry out a sensitivity analysis of the objective function to the parameters, in order to 
refine the bounds of the parameter space to explore and identify possible local minima. 

• Standardize parameter values that are on a very different scale to improve the chance of 
convergence 

• The modelers used several algorithms to fit the model to data and this can be pursued, 
but the choice of the algorithm could efficiently be guided by the characteristics of the 
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optimisation problem and also sequentially combining global and local search algo-
rithms. 

• As part of best practices when using metaheuristics, it is recommended to test that the 
estimation is independent from the settings by repeating the estimation several times 
with different starting values, boundaries of parameter space and metaparameters (spe-
cific parameters of the algorithm such as mutation rate, tolerance, etc.) to assess the ro-
bustness of the estimation. 

• Given that the convergence is not guaranteed when using such optimisation methods, 
various diagnostics are recommended to assess the quality of the estimation. Traces of 
parameter and objective function as well as correlation matrix between parameters are 
good tools to inform on the quality of the convergence and should be provided.  

 

The modelers were faced with difficulty fitting the model and getting it to converge despite using 
different metaheuristic algorithms. While it might take a considerable amount of work, it might 
be useful to try automatic differentiation to fit this model (e.g., autodiff, ADMB or TMB), as it 
may help the fitting procedure. A source of inspiration could be the SPiCT model currently used 
in ICES.  

The MSSPM aims to add to the NOAA toolbox a simple, fast and user-friendly tool. The graphic 
user interface is easy and intuitive to use, making the tool accessible also to less experienced 
modelers. It seems useful to solve the estimation issues of the model before further development 
of the GUI.  

2.1.3 Is the input data quality and parameterization sufficient for the 
problem? 

It would be useful to document why certain interactions are estimated over others and possibly 
harmonize these decisions with the Hydra model to ease comparison between the models.  

The objective function is currently the sum of squared errors summed over all species. This is 
equivalent to having a Gaussian likelihood, with the same variance on all species. It possibly 
gives more weight to species with high biomasses and a standardization (scaling by the average 
biomass of the species for instance) would prevent the algorithm from fitting these in priority. 

The objective function uses only the fall survey data. It could advantageously be completed with 
the spring survey data, so the model represents a compromise between the two seasons more 
easily comparable to Hydra. It has also been discussed whether using catch as observations and 
using effort data as input could be more informative to the optimisation. The compromise be-
tween on one hand, additional information, and on the other hand, additional parameters (catch-
ability), to estimate the quality of effort data (and their standardization across fleet and gear) has 
to be evaluated. Along the same lines, it should be evaluated whether diet data could be used in 
the objective function.  

2.1.4 Comparison with observations 

A fitted model was not presented, therefore it was not possible to assess how well the model fit 
observations. 
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2.1.5 Uncertainty/sensitivity analyses 

Sensitivity analysis to the fitting procedure as described above should cover initial values, meta-
parameters and stopping criteria.  

The sensitivity to the fitting to the data weighting and influence of the different datasets (i.e., 
leave-one-out test) could be evaluated to better understand model response to the different data 
components.  

If a new fitting framework was to be adopted a comparison of the estimates between the different 
methods would be of interest.  

The uncertainty could be calculated using a Bayesian framework, which would probably involve 
running a Markov chain Monte Carlo procedure (see for example Gelman et al. 2013). However, 
this may not be feasible and an alternative could be to calculate the Fisher information, the hes-
sian of the log likelihood at the maximum likelihood estimation to get uncertainty in the model 
parameters. The delta method (Oehlert, 1992) could be used to determine uncertainty in the var-
iables of interest that are not parameters. 

2.2 Hydra 

2.2.1 Is the model appropriate for the problem? 

The main goal of this review was to investigate if Hydra could be used as an assessment model 
with the goal to provide catch advice in an Ecosystem-based fishery management (EBFM) con-
text. This review considers therefore the model structure, data availability and use in the model, 
estimation performance, and treatment of uncertainty and sensitivity analyses. 

The model is a length-structured model coded in ADMB. It was initially made as a simulation 
model and published in Gaichas et al. (2017). For this review, the model was extended to allow 
parameters estimation via negative log likelihoods. 

Length-structured models are notably relevant as catch and predation are usually length-based 
processes. Moreover, length-based models are particularly useful when information on age is 
limited or uncertain, although in Hydra, transition of fish across length bins is still based on the 
von Bertalanffy equation that necessitates some information on growth as a function of age. 

The model currently uses a limited number of length bins (5 for all stocks). While this number 
can be easily increased, the model uses less information than an age-structured model (except 
for the diet information) when the number of bins is less than the number of age classes in the 
single stock assessment. It seems reasonable to have at least the same number of length bins as 
the number of age classes, if not more. 

Some limitations were raised during the meeting regarding the model assumptions, model struc-
ture and data. This is detailed fully in section 2.2. These limitations need to be addressed before 
Hydra can be used for catch advice in the future. 

2.2.2 Assumptions (scientific basis, computational infrastructure; ad-
equacy of conceptual model) 

Length bins and adaptive time step 

The use of 5 length bins seems too coarse to capture the complexity in the size structure of most 
stocks (for instance, can we capture the transition throughout the stock size/age structure of 
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known large year classes?). Moreover, precision in the estimation of the selectivity of a fishery 
or of the prey-size preference of a predator (at the moment not estimated within the model) can 
be compromised by a too coarse size resolution in the model. 

Considering the differences in the length span of the various species, it would be convenient to 
be able to set the number of length bins specifically for every species.  

At present, the time step of the model is a function of the length bin of the fastest growing species 
in the model. Such dependency may represent an important limitation for the implementation 
of models with more resolved size compositions because it would automatically increase the 
time resolution of the model beyond the resolution of available data and result in a dispropor-
tionate increase in the computation time. Ideally, it should be possible to define the time step 
resolution in the model independently from the length step resolution or at least relax this de-
pendency (see Spence et al. 2020). The transition matrix (proportion of fish that change bin at 
each time step) is an input of the model currently assessed based on von Bertalanffy growth. The 
growth parameters and the proportion of fish that change length bin at each time step are esti-
mated outside Hydra which limit its ability to include uncertainties in growth.  

In addition, heterogeneity in growth is caused by the bin sizes and the time-step of the model. It 
is worth checking whether the length variability created by the model reflects the population 
variability. It could be of interest to account for the individual variability around the growth 
curve. 

At present the model does not allow for changes in growth over time. Growth is unlikely to be 
constant, as a strong decline in length at age has in fact been reported for several stocks in the 
Georges Bank. This could limit the ability of the model to fit length composition data adequately 
and most importantly, would result in a discrepancy between the model assumptions and the 
data. The importance of accounting for changes in growth over time is especially important if 
the number of size bins is increased in future versions of the model. 

 

Selectivities and annual catch (important with regard to catch advice) 

Fishery selectivity is fleet specific and estimated as a function of size. For each fleet, the model 
estimates a species-specific catchability parameter but the same size selectivity for all the species 
caught by the fleet. The shape of the fish, swimming ability and other factors such as the availa-
bility of different size groups (i.e., due to ontogenetic changes in species habitat selection) can 
result in a different selectivity by species for a given fish length. It is expected that this problem 
will be more important with the increase in the number of size bins (higher size resolution) or 
time resolution of catch data. It is recommended to estimate a selectivity per stock. An easy way 
to do this without changing the model would be to assume one fleet per stock, however this 
would limit the ability of the model to account for technical interactions if the fleets are not cor-
related in some way. 

The information on commercial catches is provided to the model annually despite most Hydra 
implementations having multiple time steps per year. At present the model assumes that fishing 
mortality is constant within the year, hence the same F is assumed across the time steps of a year. 
Deviations from this assumption, as in the case of pronounced seasonal patterns in the fishing 
effort, might result in biased estimation of F. It is recommended to relax the assumption of a 
constant F and allow the model to input catch data by time step. Considering the current ap-
proach in the definition of the number of time steps, the preparation of input catch data might 
be more demanding given that new catch data need to be compiled with changes in the time 
steps. However, the streamlined procedure for the data preparation supported by the comlandr 
R-package is expected to considerably simplify the task.    
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Survey timing 

Survey timing in the model should be set to the closest time when the survey occurred instead 
of being fixed to the middle of the year to account for both mortality and growth of fish within 
the year. Forcing the time of the survey to the middle of the year is likely to increase the potential 
conflict among different data sources as in the case of multiple surveys (i.e., the Spring and Fall 
surveys in the Georges Bank) and in general deteriorate the fitting. 

 

Predation and fitting to the stomachs (incl. vulnerabilities assumptions, scaling of “other 
food”) 

Predation is represented in the model by three main processes: (1) consumption, (2) prey species 
preference and (3) predator-prey size selection. In the current implementation, the model fits 
stomach contents of the predators in terms of proportion of the modelled prey and other food in 
the stomachs, and estimates only parameters in the process (2). Stomach data are currently fitted 
using a Multinomial distribution which is problematic given that the distribution sums to the 
total numbers while stomach data are proportions that sum to 1. A Dirichlet distribution or an-
other distribution that supports proportions as observations should be used instead and would 
provide a better fit to the diet data. 

In addition, the parameters for vulnerability of a prey to a predator in the model are assumed 
known and equal to 1 if the prey is eaten by the predator. The M2 equation implies that the 
vulnerability for other food is also 1. In multispecies statistical models, the vulnerability param-
eters are usually estimated and scaled in some way to the other food. This allows the diet pro-
portions to inform the predation equation via the predation parameters, including the vulnera-
bility. Not estimating the vulnerability parameters per prey might leave no room for the model 
to fit to the stomach content. We suggest to lift this assumption and estimate the vulnerability 
parameters in the model and make them relative to the other food. 

Per capita consumption uses species-specific mean stomach weights taken from Bowman and 
Michaels (1984). If information on the total stomach weights is available, at least from part of the 
stomach data and if needed from a broader area on the northeast continental shelf (NEUS), it 
would be relevant to evaluate/corroborate these old literature values with more recent observa-
tions. Food intake parameters are only separated for elasmobranchs and bony fish following rec-
ommendations in NEFSC 2010, which is an appropriate initial assumption. However, a model 
implementation that can be used for applications, such as for instance a future ICES keyrun, 
would require more details in the intake parameters based on a broader evaluation of the avail-
able literature including experimental work on some families like gadoids (i.e. see Jones 1978 as 
an example on the consumption of cod and haddock). 

Predator-prey size selection is a function of the predator-prey weight ratio which is assumed to 
be equal for all the prey species of a predator and at present it is not estimated within the model. 
The assumption of a predator-prey weight relationship common for all the preys of a predator 
may work as a first assumption but it is recommended to evaluate it at various stages. This 
should be done during the tuning of the model but it can already be explored outside the model 
starting from the stomach data. If information on prey weights is insufficient from the stomach 
data on Georges Bank, it is recommended to look at stomach data over a broader geographical 
area (e.g., NEUS). This data was previously used by Trijoulet et al. (2019, 2020). The other aspect 
on which the review team would like to comment is that, at present, the estimation of predator-
prey preference is not done internally to the model. While this is a convenient simplification 
during the development of the estimation framework, it would be worth reconsidering in the 
future. Recognising all the limitations of the data, we could draw a parallel by saying that in a 
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model like Hydra the estimation of the predator-prey size selection is as relevant as the estima-
tion of the fleet size selectivity, and more work is recommended in that direction. 

 

Fit to von Bertalanffy parameters and potential bias due to stratification of sampling– MS 

The fits of the von Bertalanffy curves are done without accounting for the length stratification in 
aging. The parameters of the von Bertalanffy model can be sensitive to the survey design (Per-
reault et al., 2020), with length-stratified sampling usually overestimating L∞. This will mean 
that the growth in Hydra will not match the growth in the population.  

 

Time of recruitment 

Recruitment is assumed to occur instantaneously at the beginning of every year. Depending on 
the species and the time step when recruitment occurs in nature and individuals appear in the 
data this could result in artifacts in the interactions between young individuals and predators or 
fleets. We recommend evaluating the impact of this assumption. 

2.2.3 Is the input data quality and parameterization sufficient for the 
problem? 

See above defining the problem (see section 2.2.1). Which datasets are adequate, which could be 
improved, and which are missing? 

Show the input data as a simple chart: beginning and end of time-series, gaps, different length 
of time-series, spatial resolution of data. 

Give information on input data pedigree/quality, references for where it comes from, whether it 
is survey data or comes from other model output, whether confidence intervals or other uncer-
tainty measures are available and used in the model. 

Categorize the assumptions behind modelled ecological or biological processes. Emphasize 
those related to species interactions (predation, competition), environmental pressures, and also 
fleet dynamics if needed to address the problem. If the model is spatial, how do these processes 
happen in space? 

Is the parameterization consistent with scientific knowledge (e.g. (PREBAL) diagnostics Link 
(2010) for general relationships across trophic levels, sizes, etc.). 

Catch data are aggregated on an annual basis regardless of the internal time step of the model 
under the assumption that F is constant throughout the year. An analysis of the seasonal distri-
bution of the catches is recommended to understand if such an assumption is appropriate for the 
species and fisheries represented in GB (see also general section above for issues on spatial seg-
regation of catches inside/outside the GB EPU). 

Age-length data are available from surveys, and were used to estimate the transition matrix. In 
a context of changes in population growth parameters, it is important to ensure that the transition 
matrix can be updated regularly to account for changes in growth rates.   

2.2.4 Comparison with observations 

Hydra was fitted to different data sets prior to the meeting and a complete set of diagnostics was 
made available to the reviewers. We appreciate the work that has been put in making clear and 
understandable diagnostics for this model. However, given the limitations described above and 
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the modelers agreeing on not presenting an official keyrun, the fit to observations is not com-
mented as part of this review.  

2.2.5 Uncertainty/sensitivity analyses 

The impact of any change suggested by the review team to the current model should be docu-
mented to evaluate the trade-off between model fit and uncertainty.  

As mentioned in section 2.2, sensitivity to timing of recruitment, which is currently assumed at 
the beginning of the year, should be evaluated. 

The modelling team started directly with fitting the model to complex ecosystems. Before doing 
this, we suggest starting with testing the performance of the model. Here, the framework is per-
fect because Hydra allows for simulating data. We suggest that the team starts by simulating 
data with very low variance for a set of parameters and then fits this data to check that the model 
structure is correct and the parameters are well estimated. Thereafter, the error can be increased 
to test model performance further. 

We would also suggest reducing the number of stocks at first as it might be difficult to under-
stand model performance when the system is complex from the beginning, e.g., a system with 
one predator and two prey. 

In section 2.2, we suggested estimating the vulnerability parameters within the model. To un-
derstand the properties of the model, it would be interesting to investigate the consequences of 
making this change by comparing the outputs and diagnostics of the model before and after 
change.  

As mentioned in part 2.2., using one fleet per stock would solve the problem of selectivity being 
the same per stock as a temporary fix. Maybe this could be used as a first step before making the 
model more complex and integrating technical interactions. 

Has uncertainty been assessed in the output of interest? Has sensitivity analysis been performed 
and how does it affect those outputs? 

The key-run should show estimates of uncertainty in the output quantity of interest. Uncertainty 
analysis is best if possible to estimate confidence intervals. If not possible, list key sources of 
uncertainty, expected bounds on outputs based on those (possibly from sensitivity analysis)–i.e. 
design a sensitivity analysis to approximate the uncertainty analysis. 

Specific analyses, sensitivity of key output in: 

1. Retrospective analysis (5-year peel of all input data) 
2. Forecast uncertainty: remove the last 3–5 years of survey indices only to see how 

well the model works in forecast mode, given the catch that actually happened 
3. Sensitivity to stomach data and other key or low-confidence data sources 
4. Sensitivity to key parameters: consumption rates, residual mortality (M1, M0) 
5. Sensitivity to initial conditions 

For complex models with long runtimes, simpler ways to address uncertainty may be appropri-
ate (Kaplan and Marshall, 2016). 

Best practice is to retain multiple parameterizations that meet the above criteria to allow scenario 
testing across a range of parameter values. Parameter uncertainty can be addressed even in com-
plex models. A possible simple method using bounding could for example be implemented (e.g. 
base, low bound, and high bound productivity scenarios; Saltelli and Annoni 2010). 

Could the model fit better with a different time step or bin setup? The time-step of the model is 
determined by the bin sizes, however the time-step of the model could be set to a reciprocal of 
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an integer, e.g. ½ a year, as long as the time-step is not larger than the lowest time spent in any 
bin. The dynamics of the model change as the time-step changes, so, for the same data set, the fit 
of the model would be different, as could the uncertainty. It would be interesting to see how 
sensitive the time-step of the model is to the fit and the results of the model, and possibly if the 
time-step could be a parameter that is fit. This is notably relevant if the time step and bin length 
are made independent.   

The effect of uncertainty in the growth parameter calculations could be considered. 

2.3 Rpath 

2.3.1 Is the model appropriate for the problem? 

The Rpath model, as a mass balance model, is intended to describe the structure and flow of 
energy through the ecosystem, by quantifying the food web interactions for a high number of 
species or trophic groups. As part of the Rpath package, the Rsim family of functions are in-
cluded for fitting of the historic data, estimating vulnerability parameters and simulating the 
dynamic of the modelled ecosystem components (Lucey et al. 2020). Rpath is not intended for 
stock assessment or provision of catch advice, but to cover the EBFM objective 1: assessing from 
a global perspective the consequences of certain management strategies, and particularly the 
impact of management strategies targeted at evaluated species on the rest of the ecosystem. The 
use of Rpath in the Georges Bank is planned in conjunction with other multispecies models, as 
well as an Operating Model in a MSE that can be used for hypothesis testing. The model is con-
sidered potentially suitable to deal with these objectives. However, the model was not finished 
and the fitting to the historic period could not be presented and reviewed. Hence, it was not 
possible to assess the performance of the complete model implementation for the Georges Bank 
and this review is limited to the balancing of the model. 

Few general concerns were raised during the meeting regarding: 

• The mismatch of the model spatial coverage with the observed distribution of a large 
number of populations and their commercial fisheries. Rpath has the capacity to be 
linked with other Rpath models developed in the Gulf of Maine and the Middle Atlantic 
Bight EPUs. By the time of the meeting, this extension had not been developed and could 
not be assessed by the reviewers, however it was considered an interesting development 
to address the issue of mismatch in spatial coverage. 

• The datasets used when setting the Rpath parameters to obtain a balanced model for 
which suggestions for improvement/sensitivity assessment are presented in the section 
below.  

2.3.2 Assumptions (scientific basis, computational infrastructure; ad-
equacy of conceptual model) 

Rpath is a published model and software which is an R coded version of Ecopath (Lucey et al. 
2020). The balancing (solving of the linear equations to assess the ecotrophic efficiency) of the 
Rpath model is done manually according to published criteria (Link et al. 2010) that constrain 
certain parameters within bounds. Therefore, two independent implementations of balancing 
could lead to a different balanced model. In general, this is considered a limitation for this type 
of models and development of automatic optimisation procedures would be an important addi-
tion to ensure reproducibility. This should maybe be looked at in the future. Nonetheless, the 
balancing procedure is documented, so that each decision and its impact is tracked. 
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Finally, the Rpath model is checked regarding a number of qualitative emerging properties 
known as PREBAL diagnostics, to evaluate the realism of the system structure and flows (i.e., 
biomass and production per trophic levels, consistency with longevity, etc.).  

Although these diagnostics are important, they are recognised as subjective and the reviewers 
recommend assessing the sensitivity of the fitting and projections to the initial model balancing 
assumptions and settings (see 2.3.5).  

2.3.3 Is the input data quality and parameterization sufficient for the 
problem? 

See above defining the problem. Which datasets are adequate, which could be improved, and 
which are missing? 

Show the input data as a simple chart: beginning and end of time-series, gaps, different length 
of time-series, spatial resolution of data. 

Give information on input data pedigree/quality, reference for where it comes from, whether it 
is survey data or comes from other model output, whether confidence intervals or other uncer-
tainty measures are available and used in the model. 

Categorize the assumptions behind modelled ecological or biological processes. Emphasize 
those related to species interactions (predation, competition), environmental pressures, and also 
fleet dynamics if needed to address the problem. If the model is spatial, how do these processes 
happen in space? 

Is the parameterization consistent with scientific knowledge (e.g. (PREBAL) diagnostics Link 
(2010) for general relationships across trophic levels, sizes, etc.). 

The Rpath model was balanced using 1981–1985 data so that the fitting could cover the period 
1986-recent. During the meeting, a concern was raised regarding the fact that the balancing of 
the model was based on the 1981–1985 period for all parameters except the diet proportions, 
where the full time-series was used to allow for a larger sample size. Doing so means that the 
diet proportions are partly independent from the population structure in the 1980s. For instance, 
the early 1980s are known for having a smaller mackerel stock size than currently due to the fact 
that it was heavily fished at that time. Mackerel should therefore be present in lower abundance 
in the predator diet in the 1980s than now and the averaged proportions will show a larger pro-
portion of mackerel in the diet. This might cause problems later in the fitting  with  matching the 
biomass or catches of mackerel. Some quick tests were recommended during the meeting to test 
the consequence of the diet assumption (see 2.3.5). 

Parameters from EMAX for upper and lower trophic level (benthos and whales): old surveys 
(fifties) but not updated information  

Similarly to Ecopath, a pedigree matrix is filled with regard to every parameter of the model. It 
has not been yet presented to the reviewers but it is a valuable tool to report on confidence and 
on which to base uncertainty analyses.  

2.3.4 Comparison with observations 

The model was incomplete since the fitting to the historic period (Ecosim) was not presented so 
it was not possible to assess how well the model fit observations. 
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2.3.5 Uncertainty/sensitivity analyses 

To test the consequence of the timing inconsistency between the starting period for Ecopath and 
the one for the diet proportion, a sensitivity analysis was performed by changing the proportion 
in the predator diet to the average proportions in 1981–1985 and using these proportions directly 
in the balanced model. This resulted in 5 stocks that became unbalanced (EE>1).  

The Ecosens procedure can be used to generate alternative parameter values for Rpath and select 
the ones that are balanced and allow all species to persist in projection. An analysis of these 
results would help understand the major factors that condition balance and persistence, and ra-
tionalize the process. It is also recommended that the robustness of the simulations (not pre-
sented at the meeting) to the Rpath parameterisation will be assessed when the model is used in 
projections.  

2.4 Ensemble 

The models are not currently ready to be combined in an ensemble model. The intended proce-
dure for combining (broad sense) the models was not presented nor reviewed and only sugges-
tions are provided in the following.  

Depending on the aim of combining the models the steps towards doing so are quite different: 

1. If the aim is to combine the models in a way similar to Spence et al. (2018), then the 
models should be completed, using as much information as possible. The ensemble 
model will describe how, with rigorously quantified uncertainty, the individual 
models relate to the truth. One issue we can see is the exchangeability assumption 
of the errors may not hold for all of the models, i.e. the surplus production model 
may require its own discrepancy term (Rougier et al. 2013). 

2. If the aim is to combine the models using a model average then the individual 
models should be completed, using as much information as possible. Although this 
is often informative, it is difficult to get a formal idea of what this means. For ex-
ample, it is difficult to estimate uncertainty. 

3. If the aim is to do a weighted average with the weights calculated using a likeli-
hood approach, e.g. Bayesian model averaging, then the models should be fit to 
the same data, which may not be possible across the three models. This is not rec-
ommended, due to the assumptions of Bayesian model averages. 

4. If the aim is to compare modelling frameworks then as much of the model struc-
tures and model inputs should be shared if possible. For examples on model com-
parison we suggest looking at the IPCC and FishMIP and Bauer et al. (2019). 

The differences in assumptions between Hydra and MSSPM (i.e., density dependence, species 
trophic interactions) should be kept in mind when they are combined, so discrepancies are in-
terpreted in relation to these assumptions, as well as to possible differences in the input data and 
to structural differences. The reviewers support the intention of the modelers to use Rpath for a 
different purpose than the two other models (MSE loop) and not try to aggregate its outputs with 
those of Hydra or MSSPM.  
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WGSAM Resolution 

The Working Group on Multispecies Assessment Methods (WGSAM), chaired by Valerio Bar-
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CHAIR, ETC.) 

Year 2022 10-14 
October 

Woods 
Hole, USA  

Reports on keyrun reviews to 
be provided after each 
review is complete 

Incoming co-chair: Michael 
Spence (UK) 

Outgoing co-chair: Sarah 
Gaichas (USA) 

Year 2023 9-13 October tbd Reports on any keyrun 
reviews that are completed  

 

Year 2024   Final report by Date to 
SCICOM 

 

 

ToR descriptors 

TOR 
 

DESCRIPTION BACKGROUND 
SCIENCE PLAN 

CODES DURATION EXPECTED DELIVERABLES 

a Regional updates: 
Review further progress 
and deliver key updates 
on multispecies 
modelling and  
ecosystem data analysis 
contributing to 
modeling throughout 
the ICES region 

This ToR acts to 
increase  
the speed of 
communication of new 
results across the ICES  
area 

5.1; 5.2; 6.1 3 years  Report on further 
progress and key 
updates. 
Review and collaborate 
with appropriate EGs 
to revise sections on 
“species interactions” 
in the Fisheries 
Overviews 

b Key-runs: 
Parametrisation of 
multispecies and 
ecosystem key-run 
models for different 
ICES regions. This 
includes standard 
update (limited to 
inclusion of  recent 
data), extensive update 
(incl. new data and 
processes), and new key-
runs. 

Key-runs are models 
checked against high 
quality criteria, which 
are developed to 
contribute to a variety 
of operational objectives 
as part of the ICES 
advice, i.e. provide 
information on natural 
mortality for inclusion 
in single species 
assessments, estimates 
of multispecies 
reference points, large 
operating ecosystem 
models for MSE, etc. 

5.1; 5.2;  6.1 3 years Report on output of 
multispecies models 
including stock 
biomass and numbers 
and natural mortalities 
for use by single 
species assessment 
groups and external 
users. 

c Skill assessment: 
Establish and apply 
methods to assess the 
skill of multispecies 

This work is aimed at  
assessing the 
performance  
of models intended for  

5.1; 6.1; 6.3 3 years Report on technical 
requirements for cross-
models standardisation 
and comparison. 

https://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
https://ices.dk/about-ICES/Documents/Resolutions/Science_plan_codes.pdf
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models intended for 
operational advice 

strategic or tactical  
management advice. 
Evaluation will require 
work towards 
standardisation for 
cross-model 
comparison. This ToR 
will also deal with 
evaluation of methods 
for model calibration 
and data weighting in 
the context of 
multispecies modelling. 

Manuscript(s) on skill 
assessment of wide 
array of multispecies 
models based on a 
large simulation study. 
 

d Multi-model advice: 
Evaluate methods for 
generating advice by 
comparing and/or 
combining multiple 
models 

This work is aimed at  
addressing structural  
uncertainty in advice  
arising from multiple  
models 

5.1; 6.1; 6.3 3 years Report on methods for 
comparing models and 
for constructing model 
ensembles. 
Report on case 
examples from both 
simulation testing and 
real studies 

e MSE: Evaluate methods 
and applications for 
multispecies and ecosys-
tem advice, including 
evaluation of manage-
ment procedures and es-
timation of biological 
reference points under 
the uncertainties of cli-
mate change. 

 

This ToR looks for 
multispecies and 
ecosystem approaches 
to understand the 
resistance and resilience 
of ecosystems to a 
warming environment 
and to perturbations 
related to the effects of 
climate change. 
Through the use of 
simulations, alternative 
management strategies 
and exploitation 
regimes can be 
evaluated for 
robustness to 
uncertainties related to 
climate change.  

2.5; 5.2; 6.1 3 years Review methods to 
evaluate populations 
and ecosystem 
resilience. 
Review of methods for 
management strategy 
evaluation which 
incorporate the effects 
and uncertainties of 
climate change 
 

Summary of the Work Plan 

Year 1 
All ToRs, update keyrun Baltic Sea (coupled with data preparation workshop for the Baltic 
Sea benchmark), keyrun Georges Bank multi-model (dedicated workshop) 

Year 2 All ToRs 

Year 3 All ToRs 
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Supporting information 

Priority The current activities of this Group will lead ICES into issues related to the 
ecosystem  
effects of fisheries under multiple sources of uncertainties incl. climate change. 
The activities will provide information (e.g., natural mortality estimates, 
performance of  
indicators, multispecies reference points) and tools (e.g., multi-model 
ensembles, keyrun models) valuable for the implementation of an integrated 
advice and the application of a precautionary approach in several North 
Atlantic ecosystems. Consequently, these activities are considered to have a 
high priority. 

Resource requirements The research programmes which provide the main input to this group are 
already underway, and resources are already committed. The additional 
resource required to undertake additional activities in the framework of this 
group is negligible. 

Participants The Group is normally attended by some 20–25 members and guests. Expertise 
in ecosystem dynamics, trophic interactions, modelling and fish stock 
assessment from across the whole ICES region. 

Secretariat facilities Standard EG support. 

Financial No financial implications. 

Linkages to ACOM and 
groups under ACOM 

ACOM, assessment Expert Groups. 

Linkages to other 
committees or groups 

WGMIXFISH, WGDIM, WGBIFS, IBTSWG, WGECO, all IEASG groups, 
WKCLIMAD. 

Linkages to other 
organizations 

None 

 

 

 



Stock Annex for the ICES Eastern Baltic Sea SMS configuration | 

 

Annex 2: Stock Annex for the ICES Eastern 
Baltic Sea SMS configuration 

Working Group  Working Group on Multispecies Assessment  
   Methods (WGSAM) 

Date   October 2022 (WGSAM 2022 meeting) 

Predatory species Cod  

Prey species  Assessed species: Herring, Sprat 

Stock Assessor  Morten Vinther 
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Summary 

The keyrun uses the SMS model (Lewy and Vinther, 2004) which is a stock assessment 
model including biological interactions estimated from a parameterised size-depend-
ent food selection function. The model is formulated and fitted to observations of total 
catches, survey cpue and stomach contents for the Eastern Baltic Sea (ICES Sub-divi-
sions 25-32, excluding the Gulf of Riga). Parameters are estimated by maximum likeli-
hood and the variance/covariance matrix is obtained from the Hessian matrix. 

In the present SMS analysis, cod is a predator, and herring and sprat are preys. The 
population dynamics of cod were estimated outside the model by ICES WGBFAS, 
whereas keyruns before 2019 estimated cod stock size and cod cannibalism within the 
SMS.   

Substantial changes of input data were part of the 2019 keyrun, but the 2022 keyrun is 
mainly an addition of stock assessment data of the last three years and a small correc-
tion of the food ration calculation.  The 2022 estimated predation mortalities (M2) are 
consistent with the M2 values from the previous keyrun in 2019.  

2019 keyrun 

A keyrun for the Eastern Baltic Sea SMS model, including data for the period 1974–
2018 was produced at the 2019 WGSAM. This keyrun replaced the 2012 keyrun. The 
2019 keyrun included revisions and updates of the input data. Major modifications 
were that cod is treated as an external predator and the use of newly available data on 
cod stomach contents sampled mainly by the Latvian Institute. 

SMS was updated with the most recent data from WGBFAS 2019, i.e. data for Herring 
in subdivisions 25–29 and 32, excluding the Gulf of Riga (central Baltic Sea) and for 
Sprat in subdivisions 22–32.  

Due to age reading problems for cod in the eastern Baltic, ICES has since 2019 applied 
an age-length based analytical assessment with the Stock Synthesis model (SS3). Nat-
ural mortality of cod is estimated within the SS3 model. Without input data by ages, 
and with estimated high and time variable natural mortality, SMS is no longer able to 
estimate cod stock numbers and predation mortality estimates on cod due to cannibal-
ism. Instead, cod is now considered as an “other predator” where stock number and 
size distribution are assumed to be known without errors. Population numbers and 
size distributions were extracted from the SS3 output. 

Consumption (food ration) of cod was revised to reflect the most recent knowledge of 
evacuation rates and temporal trends in cod consumption rates.  

Diet data for cod were substantially extended by including the stomach content data 
from the EU Stomach Tender. This addition of data did not change predation rates on 
herring and sprat substantially, but increased the weighting of the stomach data in the 
model likelihood, indicating a higher quality of stomach data compared to the previ-
ously used data. 

2022 keyrun 

The 2022 keyrun includes revisions and updates of the input data (1974-2021). New 
assessment input data (e.g. catch at age numbers, mean weight and survey indices) , 
2019-2021, from WGBFAS were included. Cod diet data were recalculated from the 
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same stomach data observations (1974-2014) as used in the 2019 keyrun. Cod food ra-
tions were also recalculated, to correct for seasonal variation. The model configuration 
was changed slightly for Fishing mortality. Overall these changes are not considered 
substantial, and the estimated keyrun results are close to the results from the 2019 
keyrun. 
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Model description 
The SMS model (Lewy and Vinther, 2004) is a stock assessment model including bio-
logical interactions estimated from a parameterised size-dependent food selection 
function. The model is formulated and fitted to observations of total catches, survey 
cpue and stomach contents for the main stocks in the Baltic Sea. Parameters are esti-
mated by maximum likelihood and the variance/covariance matrix is obtained from 
the Hessian matrix. 

The following predator and prey stocks are available: 

• External predator: cod; 
• Prey: herring and sprat 

 
The population dynamics of herring and sprat are estimated within the model. 

A detailed description of the model can be found in Appendix 1. 
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Input data 
The description of input data is divided into four main sections: 

Analytical assessment stocks: Stocks for which analytical age-based assessments are 
done by ICES or can be done from data available from ICES. Data input are similar to 
those applied by ICES “single-species” assessments used for TAC advice, with some 
additional data. 

External predator stocks: Stocks for which stock numbers are assumed known and 
given as input to SMS. 

Diet and ration data: Diet data and food ration data for all predators (analytical stocks 
and external predators) derived from observed stomach contents data. 

Additional data: Miscellaneous data. 

Analytical assessment stocks 

This group of stocks includes: 

1 ) Herring; 
2 ) Sprat; 

 
 “Single-species” input data, by default given by quarterly time steps, include 
• Catch-at-age in numbers (SMS input file canum.in); 
• Proportion of the catch-at-age landed, assumed 100%  (file propor-

tion_landed.in); 
• Mean weight-at-age in the catch  (file weca.in); 
• Mean weight-at-age in the stock (file west.in); 
• Proportion mature-at-age (file propmat.in); 
• Proportion of M and F before spawning (file proportion_M_and_F_be-

fore_spawning.in); 
• M, single-species natural mortality-at-age (file natmor.in); 
• Survey catch-at-age and effort (file fleet_catch.in). 

SMS uses quarterly time steps, so input catch data should preferably also be given by 
quarter which is also the case for the Baltic Sea.  
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Table 2.1.1. Overview of “dynamic” fish stocks used in SMS and their basis from ICES single-spe-
cies advice. 

SPECIES  
SMS 

ICES ASSESSMENT 

Species 
code 

Max 
age 

Stock area  First 
year 

Age 
range 
(data) 

time 
step 

Herring HER 8+ SD 25–29 and 32, excluding 
the Gulf of Riga (central 
Baltic Sea) 

1974 1–8+ Quarter 

Sprat SPR 7+ SD 22-32 1974 1–8+ Quarter 

Discarding is considered to be negligible for both stocks. 

 

Herring 

Catch numbers at age 

Data for 2019-2021 were copied from Excel sheets stored at the ICES WGBFAS Share-
Point. ICES WGBFAS provided quarterly catch-at-age number and mean weights for 
herring for the period 2002-2018. The full data series are not presented in the WGBFAS 
report, but were kindly made available by ICES stock assessor Tomas Gröhsler.  Catch 
at age for the period before 2002 data were copied from the 2012 SMS keyrun.  

Mean weight at age 

WGBFAS assumes that mean weight at age in the sea is the same as mean weight at 
age in the catch. This assumption is fairly unbiased for older fish even though fisheries 
may be concentrated in areas (southern part of the EB) with the largest individuals. 
Mean weight at age in the catch for the youngest fish is higher than the mean weight 
in the sea as these size classes are not fully selected in the fishery.  The mean weight at 
age as used by WGBFAS (Figure 2.1-1) shows a clear temporal trend with a decreasing 
mean weight in the period 1974-2000. 

The quarterly mean weight at age data from WGBFAS (2002-2021) combined with the 
2012 keyrun data for the period 1974-2001 are presented in Figure 2.1-2 for the young-
est ages 0 and 1. It is clearly seen that the mean weights for age 1 in quarter 2 do poorly 
link to quarter 1 and not at all to quarter 3.  

It is assumed that the mean weight in the sea are the same as the observed mean weight 
in the catch. However, when calculation the mean weight at age in the sea, the observed 
mean weight at age in the catch for age 1 in quarter 2 was discarded and substituted 
by the average of the observed mean weight at age in quarter 1 and 3 (Figure 2.1-3). As 
the observed mean weights for the ages 0-1 are highly variable, the smoothed values, 
ages 0 and 1, were finally used as mean weight in the sea.  
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Figure 2.1-1. Herring mean weight at age in the catch (and in the sea) as used by 
WGBFAS. Dots show data points and the blue line is a loess smoother. 
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Figure 2.1-2. Quarterly herring mean weight at ages 0 and 1 in the catch as provided 
by WGBFAS. Dots show data points and the blue line is a loess smoother. 

 

 
Figure 2.1-3.  Quarterly herring mean weight at ages 0 and 1 in the sea as used by 
SMS. Dots show data points and the blue line is a loess smoother. 
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Other biological data 

Proportion mature and M (used for “single species” SMS) at age data are copied from 
single-species data. WGSAM 2019 decided to use M1 at 0.025 per quarter for all ages. 
The 2012 key-run applied 0.05, but for consistency with herring in the North Sea this 
was changed to 0.025 in 2019 and this is also the value used in the 2022 keyrun. 

Survey data 

Survey data are copied from the previous keyrun and the ICES single-species assess-
ment. 

SMS name Years Ages alfa and beta Source 

Herring_Acoustic_May 1982-1996 1–8 0.2-0.7 (Q2) 2012 keyrun 

Herring_Acoustic_BIAS 1991-2021 1–7 0.0-0.3 (Q3) WGBFAS, 2022 

 

Sprat 

Catch at age  

Data for 2019-2021 were copied from Excel sheets stored at the ICES WGBFAS Share-
Point. Quarterly catch-at-age number and mean weights for sprat, 1998-2018, were pro-
vided by ICES WGBFAS. The full data series are not presented in the WGBFAS report, 
but were kindly provided by Tomas Gröhsler.  Older quarterly catch at age data were 
copied from the 2012 SMS keyrun.  

Mean weight at age 

WGBFAS assumes that mean weight at age in the sea is the same as mean weight at 
age in the catch. This assumption is probably unbiased for older fish even though fish-
eries may be concentrated in areas (south-western part of the EB) with the largest indi-
viduals. Mean weight at age in the catch for the youngest fish is probably higher than 
the mean weight in the sea as these size classes are not fully selected in the fishery.  The 
mean weights at age as used by WGBFAS (Figure 2.1-4) show a clear temporal trend 
with a peak in mean weight around 1987 followed by a decrease until around 2003. 

The quarterly mean weight at age in the catch from WGBFAS (1998-2018) combined 
with the 2012 keyrun data for the period 1974-1978 are presented in Figure 2.1-5 for the 
youngest ages 0 and 1. It is clearly seen that the mean weights for age 0 and age 1 in 
quarter 1 and 2 are highly variable from one year to the next. The same can be said 
about age 1 in quarter 3 and 4, but these quarters follow better the overall trend pre-
sented for the WGBFAS data (Figure 2.1-4). Due to the high (observation) variation in 
catch mean weights for ages 0-1, the smoothed values were used as mean weight at age 
in the sea (Figure 2.1-5) by SMS.  
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Figure 2.1-4.  Sprat mean weight at age in the catch (and in the sea) as used by 
WGBFAS. Dots show data points and the blue line is a loess smoother. 

 

 
Figure 2.1-5. Quarterly sprat mean weight at ages 0 and 1 in the catch as provided by 
WGBFAS. Dots show data points and the blue line is a loess smoother.  
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Survey data  

Survey data are copied from the single-species assessment (survey 1–3). 

 NAME YEARS  AGES ALFA AND BETA SOURCE 

1 Int acoustic in Oct. 1991-2018 1–7 0.0–0.1 (Q3) WGBFAS 2022 

2 Int_acoustic_in_May 2001–2018 1–7 0.25–0.50 (Q2) WGBFAS 2022 

3 LAT_RUS_acoustic 1992-2018 1–1 0.0-0.0 (Q1) WGBFAS 2022 

 

Biological data 

Proportion mature and M at age data are copied from single-species data. M1 is as-
sumed to be 0.05 per quarter for all ages. 

External predators 

In the 2019 keyrun, cod was for the first time in the Baltic SMS treated as an “external 
predator”. This means that the stock numbers are given by input, extracted from the 
ICES WGBFAS, Stock-Synthesis 3 (SS3) assessment for the stock. The SS3 assessment 
provides cod stock numbers and mean weight by 2-cm length classes for the main 
length classes.  These data were aggregated into length classes used by SMS stomach 
contents data. 

The SS3 assessment output is quite different from the previous age-based assessment 
from the 2012 key-run (Figure 2.2-1). The SS3 assessment estimates much higher stock 
numbers for ages 1-3 compared to the SMS estimate, and higher stock numbers for 
oldest cod when the stock size peaked. The SS3 results from the 2022 assessment are 
quite similar to the 2019 results. 

SS3 and SMS use different mean weight at age, so the difference in biomass, quarter 1, 
(Figure 2.2-2) becomes smaller than when stock numbers were compared. Total bio-
mass and biomass of the larger cod are estimated higher in the SS3 assessments (Figure 
2.2-3) such that the amounts of food eaten and predation mortality become higher 
when the cod estimate from SS3 is used. The SS3 results from 2022 are similar to the 
2019 results.   
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Figure 2.2-1. Stock numbers at age of cod estimated by the 2012 key-run and by the 
ICES SS3 assessments in 2019 and 2022. 

 
Figure 2.2-2. Biomass at age of cod estimated by the 2012 key-run and by the ICES 
SS3 assessments in 2019 and 2022. 
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Figure 2.2-3. Cod biomass for age 1 and older (left panel) and of age 5 and older (right 
panel) estimated by the 2012 key-run and by the ICES SS3 assessments in 2019 and 
2022. 

Diet and ration data 

Fish stomach data 

Two major datasets of cod stomach contents are available: 

• “Old”: International sampled stomach content data, 1977-1992, Individual 
stomachs were pooled by cod size class before analysis. The recorded sizes of 
both predator and are given by wide size classes, e.g. sprat by the size classes 
5-10-15 cm, for the oldest data in the time series. 

• “New”: Individually compiled stomach sampled by mainly Latvia in the pe-
riod (1963) 1974-2014. Predator and prey sizes are by cm or mm. 

 “old” pooled stomach data 

An international database of Baltic cod stomach contents contains data from 62 427 cod 
collected during 1977–1994. The collation of national stomach content data sets into 
one set for multispecies assessment has mainly been done by DIFRES (now DTU Aqua) 
and the results were published in ICES papers (e.g. ICES 1991/J:30; ICES 1989/J:2; ICES 
1990/Assess:25 and ICES 1993/J:11). The stomach contents data are available at “ex-
change format” from ICES (www.ices.dk). 

The “old” data stomach contents data are recorded by year, quarter, predator, predator 
size class, prey and prey size class. Most stomachs were pooled within a haul and pred-
ator size class before analysis, such that diet data from individual fish are scarce. For 
part of the time series, data were only provided (pooled) by country and ICES sub-
division (SD), such that the variation between hauls could not be analysed. 

“new” individually sampled stomach data 

More than one hundred thousand stomachs of cod from the Eastern Baltic Sea have 
been sampled by trawling between 1963 and 2014, by mainly the Latvian institute. 
Sampling (Figure 2.3-1) covered the distributional area of the Eastern Baltic cod popu-
lation (Bagge, 1994) except in the period 1995 to 2004, where sampling was limited to 
the north-eastern part. Stomach contents are provided by individual fish. Prey items in 
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the stomachs were recorded at the highest possible taxonomic resolution with total 
mass, and, where identifiable, number of individuals and lengths per prey taxon. Prey 
sizes are given by mm or cm. Predator length was also recorded and in later years also 
predator weight (Huwer et al., 2014;). The stomach data are available at ICES 
(www.ices.dk), however the ICES download facility has not been working for the last 
2 years!.  

 
Figure 2.3-1. ICES sub-divisions (bottom right panel) and stomach sampling cover-
age: number of Gadus morhua stomachs by ICES statistical rectangle for each period 
specified on top of each panel. Source Neuenfeldt et al., 2020. 

 

Pre-processing of data  

In the Latvian data before 2000, prey weight is not given per prey item, but per prey 
species and digestion stage. To assign weight to each prey item, a length weight rela-
tion was first made for each prey species and digestion stage, based on stomach data 
from predators with only one prey item of a given species. Secondly, these length 
weight relations were used to assign a weight to each prey with size information. The 
sum of these weights cannot exceed the total recorded prey weight for the individual 
stomach. If the sum exceeded the total prey weight (of both sizes and un-sized preys), 
the mean weight of the sized preys were downscaled and prey items with no size in-
formation was removed. If the sum was smaller than the recorded total weight, and 
the stomach included preys without size information, the difference in weight was as-
signed to the prey with no size information. 

Compilation of stomach contents data into diet 

The compilation of the individual stomach samples from trawl hauls into average diet 
of the Eastern Baltic Sea basically follows the technique given by ICES (1993). The com-
pilation of stomachs contents for the 2022 keyrun was done using the FishStomach R-
package (available from  https://github.com/MortenVinther/FishStomachs).  

http://www.ices.dk/
https://github.com/MortenVinther/FishStomachs
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The compilation of stomach contents data into diet data includes the following steps:   

1. Read and check data from agreed exchange format 

This step reads data from the ICES exchange format for stomach contents. The “new” 
data were initially transformed into a format similar to the ICES format as part of the 
paper Neuenfeldt et al. 2020. The function “read_exchange_data” from the FishStom-
ach package was applied for reading the data in ICES exchange format; more infor-
mation about the function can be found in the man-pages and vignettes of 
FishStomachs) 

2. Pre-processing of “new” data 

Weight by prey items were allocated where total prey weight was the only weight 
available – see previous section. FishStomach function prey_w_from_pooled_weight 
was applied. 

3. Non assessment species into “other” prey species 

Prey species other than herring, sprat and the unidentified mix of those ("Clupeidae" 
and "Clupeoides") were allocated to “other” species. As cod is an “other predator” cod 
preys are also included in “other”. Function group_prey_species was used for this step. 

3. Assign size classes for predators and preys 

The length of predators of preys were from the “new” data were recorded in mm or 
cm the sizes were assigned to sizes classes using the length classes provided in Table 
2.4-2. A wider size range, based on the initial applied size classes (e.g. 5-10-15 cm for 
preys) were applied for the “old” data set, or for combinations of the “old” and “new” 
data. Functions put_size_class_on_prey and put_size_class_on_predators were used. 

4. Bias correct to take into account regurgitated stomachs within a sample unit 

The “old” data compiled as a pooled stomachs, e.g. stomach contents from all 40-50 cm 
cod in a haul. For each stomach pool, data include the information on the number of a) 
empty stomachs; b) stomach with skeleton remains only; c) stomach with food and d) 
stomach with food, but regurgitated. In most cases, stomachs within a haul are pooled 
at the time of sampling for each predator size class. Only stomach contents from the 
feeding, non-regurgitated stomachs were recorded and later bulked to save time. In 
the calculation of the average stomach content, it was assumed that the regurgitated 
stomachs had similar stomach content as the (valid) feeding fish. The “new” data set 
does not include information on the presence of regurgitated stomachs, and no correc-
tions were made.  Function bias_correct_regurgitated was used. 

5. Aggregate stomachs contents within sample_id and size classes. 

Average stomach contents by prey species and size class are calculated for all stomachs 
within the same sample_id (by haul) and predator size class. Function aggre-
gate_within_sample was used. 

6. Stratification for allocation of missing data, and calculation of population diet 

Strata are used to group data for calculation of mean proportions of e.g. the size distri-
bution of a given prey, and for raising estimated stomach contents to population diet. 
Three strata were defined as: 1. stratum_time: year and quarter; 2. stratum_sub_area; 
ICES subdivision (i.e, SD25, SD26 and SD 28) and 3. stratum_area: ICES subdivision, 
same as above. Function add_strata was used. 

7. Allocation of partly identified prey species to known prey species distribution 
within strata. 
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Non species identified Clupeoides were allocated to the proportion of identified her-
ring and sprat, using a series of allocation keys calculated by groups of defined from 
combinations of the defined strata. First allocation keys are derived from data derived 
by the most “local” area and time period (e.g. within the same predator size class, year-
quarter combination and SD), but if sufficient data could not be found for construction 
of allocation keys, the search area for data was expanded e.g. using data from the same 
year irrespective of quarter.  

8. Allocation of identified prey species with missing size information to known prey 
sizes within strata. 

Size information was allocated to prey items without a size measurement using the 
same approach as in step 7, with use of  “local” allocation data as far as possible. Func-
tion  redist_unidentified_prey_lengths was used.   

9. Calculation of population diet. 

The population diet should reflect the average diet of the predators within the model 
area. First, the average stomach content in weight of the individual prey and prey size 
classes was calculated by ICES SD as a weighted mean of the available samples within 
the SD, weighted by the number of fish in the sample.  The absolute weights were then 
transformed into relative weights (proportions) of the individual prey and prey size 
classes. Finally the population diet was calculated as a weighted average of the prey 
proportion by the three SDs, weighted by the number of stomachs sampled within the 
SD. Function calc_population_stom was used.  

This approach assumes that sampling of the stomachs largely follows the spatial abun-
dance of the predator. This has however, not been the case in all years (see Figure 2.3-1).  

Diet data for the 2019 keyrun were compiled following the same steps, using an early 
version of the same R-code as included in FishStomach, however, the diet dataset from 
the 2019 and the 2022 keyrun came out different (Figure 2.3-2). Differences are due to 
both a change in methodology (and coding) and in the approach taken to allocate partly 
identified prey items to fully identified preys or to the group of other prey.  The raising 
procedure of stomach contents to population diet data has also changed.  

Due to time limitations, the diet of the population was estimated based on the assump-
tion that the observed stomach contents give an unbiased estimate of the diet. This is 
in contrast to the assumptions used for the estimation of food ration, as outlined in 
section below, where it is assumed that the stomach evacuation rate (and thereby the 
food intake) depends on e.g. the energy contents of the stomach contents (as described 
by FishStomach function bias_correct_energy_etc ). 
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Figure 2.3-2  Comparison of prey proportions in the diet data used in the 2019 keyrun 
(x-axis) and in the 2022 keyrun (y-axis). Each dot represent the proportion of the prey 
in a diet observation (year, quarter and cod (predator) size class).  

Estimation of food ration from stomach contents data 

Average daily energy consumption rates C (kJ d-1) were estimated using the cylinder 
gastric evacuation rate model (Andersen and Beyer, 2005a, b) by year and 1-cm preda-
tor length group for cod between 20 and 80 cm total length, amounting to 109 000 stom-
achs in this size range from the stomach database. Ambient temperature T was 
assumed constant at 5°C, corresponding roughly to the average temperature experi-
enced by cod in the Baltic Sea (Righton et al., 2010). Although cod experience varying 
temperature throughout the year, only significant trends in average temperature re-
gime for the cod in their preferred habitat might potentially bias our analyses. Such 
trends have not been shown for the Baltic Sea. We assumed constant energy densities 
Ei for benthic prey (3.5 kJ g-1) and consumed fishes (Clupea harengus L. (herring) and 
sprat 5.5 kJ g-1, cod 4.0 kJ g-1 ;Pedersen and Hislop, 2001). E denotes the average energy 
densities (kJ g-1) of the individually observed total stomach contents S (g). Using the 
principle that consumption rate C (kJ d-1) on average over population and time equals 
evacuation rate (Pennington, 1985), and knowing cod total length L (cm) and the basic 
evacuation rate parameter ρ0 = 2.43 x 10-3, we used the parametrization of the cylinder 
model for cod presented in Andersen (2012): 

 

𝐶𝐶 =  24 𝜌𝜌0𝐿𝐿1.30𝑒𝑒0.083𝑇𝑇𝐸𝐸0.15√𝑆𝑆     (1) 

 

In order to consider recent changes in cod consumption rate, the relationship between 
average quarterly consumption rate and total length (a priori parametrized as C=aLb 
with C the average quarterly consumption rate and L total length) was estimated sep-
arately for three different periods. 
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Figure 2.3-3. Scatterplots of cod total length and estimated quarterly consumption 
rate. The consumption rate has been estimated separately for 1974-1989, 1990-1999 
and 2000-2014 in order to account for recent changes in cod consumption (Neuen-
feldt et al., 2020). 

 

Table 2.3-1. Parameter estimates for the consumption rate model, C = aLb. 

 

PERIOD PARAMETER ESTIMATE STD. ERROR 
1974-1989 a 0.10367 0.01184 
 b 2.28617     0.02834   
1990-1999 a 0.017408    0.003971    
 b 2.713702    0.054565   
2000-2014 a 0.003230    0.000354    
 b 3.243353    0.025560 

 
 

The stomach data do not include 2015-2021. For this reason, the 2000-2014 estimates 
were applied for 2015-2021, too. 

Subsequently, average quarterly consumption was multiplied by 4 to give average ye
arly consumption and then distributed over quarters according to the distribution ke
ys given in Table 2.3-2. Even though specified in the stock annex for the 2019 keyrun, 
the quarterly consumptions were (by an error) not redistributed over quarters, such t
hat the same consumption was applied for all quarters.  
 

Table 2.3-2. Proportion of annual consumption by quarter of the year for different 
periods and size groups. The key was generated using all years (to account for only 
few data in the 3rd quarter). The length of cod (l.start and l.stop) reflect spawners 
and non-spawners. 

year.start year.stop l.start l.stop q1_prop q2_prop q3_prop q4_prop 
1974 1989 15 30 0.27 0.23 0.25 0.25 
1974 1989 31 120 0.22 0.16 0.30 0.32 
1990 1999 15 30 0.24 0.22 0.27 0.27 
1990 1999 31 120 0.21 0.19 0.31 0.29 
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2000 2019 15 30 0.30 0.16 0.16 0.38 
2000 2019 31 120 0.38 0.19 0.11 0.32 

Age length keys 

Age length keys (ALK) are used by SMS to transform stock number at age into stock 
numbers at length for the calculation of predation mortality. Length at age is derived 
from weight at age in the sea using a length-weight relation.  The length distribution 
for each age is derived from the coefficient of variation (CV) of the mean length at age 
as estimated from age and length observation from the BITS survey, quarter 1 and 4, 
2000-2018. A year and quarter independent CV of mean length at age was derived from 
the estimated values by quarter (Table 2.4-1). These CV’s (row “Used” in Table 2.4-1) 
are afterwards used to produce a length distribution around the mean length for a 
given age in a given year and quarter, assuming a normal distributed length distribu-
tion for each age.  

 

Table 2.4-1. Coefficient of variation of mean length at age derived from survey data 
Species         Quarter                     Age        
                        0    1    2    3    4    5    6    7    8 
Clupea harengus   1    NA 0.14 0.09 0.11 0.13 0.13 0.13 0.13 0.12 
                  4  0.12 0.10 0.14 0.16 0.16 0.15 0.13 0.13 0.11 
                Used 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 
Gadus morhua      1    NA 0.32 0.24 0.21 0.18 0.17 0.17 0.16 0.19 
                  4  0.34 0.25 0.22 0.18 0.18 0.17 0.18 0.18 0.18 
                Used 0.34 0.25 0.23 0.20 0.18 0.18 0.18 0.18 0.18 
Sprattus sprattus 1    NA 0.12 0.08 0.09 0.08 0.08 0.07 0.08 0.08 
                  4  0.10 0.08 0.08 0.08 0.07 0.07 0.06 0.07 0.07 
                Used 0.10 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08    

 

The total number of fish by length classes (Table 2.4-2) are finally calculated as the sum 
of contributions from each ages.  The chosen length classes depend on the length clas-
ses used in the stomach data. The “new”, individual sampled stomach data (see section 
2.3) have used length classes by cm and mm, however boarder length classes were used 
due to the low number of stomachs sampled in the individual year and quarter combi-
nations.  

The “old” pooled stomach data (see section 2.3) used larger size classes, e.g. 5-10-15 cm 
for sprat, in the first years of sampling. This means that the applied length classes used 
in the SMS configuration depends on the actual used stomach data sets used. As an 
example, the length classes get wider than outlined in Table 2.4-2, when both the “old” 
and “new” stomach data are used.  When both the “old” and “new” stomach data are 
used, length classes are defined for each individual year, reflecting the widest length 
class in the particular year. 
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Table 2.4-2. Default length classes used for stomach data and ALK. 

SPECIES LOWER 
LENGTH 

(MM) 

 

SPECIES LOWER 
LENGTH 

(MM) 

 

SPECIES LOWER 
LENGTH 

(MM) 

Gadus 
morhua 

50 

 

Clupea 
harengus 

50 

 

Sprattus 
sprattus 

50 

  100 

 

  70 

 

  60 

  150 

 

  85 

 

  70 

  200 

 

  100 

 

  80 

  250 

 

  120 

 

  90 

  300 

 

  140 

 

  100 

  350 

 

  160 

 

  110 

  400 

 

  180 

 

  120 

  500 

 

  200 

 

  130 

  600 

 

  220 

 

  140 

  700 

 

  240 

   

   

  260 

   

Predator–prey overlap 

The stock area for predator cod (SD 24-32 + part of SD 23) does not completely overlap 
with the stock areas for herring (SD 25–29 and 32, excluding the Gulf of Riga) and sprat 
(SD 22-32).  This will not matter, given the normally applied assumption in fisheries 
assessment models that individuals of the population redistributes instantaneously, 
such that local fishing or predation do not affect the stock distribution. 

Predator–prey species overlap is a quarter dependent parameter used in the calculation 
of food suitability (see equation 8 in Appendix 1).  By default, the spatial overlap is set 
to one, but it is also estimated within SMS for a few combinations, where the “quarter 
effect” was estimated significantly different from 1.0.  

Length–weight relations 

Conversions from lengths into weights are used for some SMS configurations. The 
used parameters values are shown below. 
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Table 2.6-1. Length (mm) weight (kg) relation for herring and sprat (W=a*l^b) 

SPECIES A B 

Herring 2.997653e-09 3.136964 

Sprat 3.670895e-09 3.107974 

 

The l-w relations were estimated from BITS Q1 & Q4 data, 2000-2018 (minus 2004 data 
with errors). There is a statistical significant quarter effect in condition (parameter a), 
however this is ignored for use in SMS, until data for Quarter 2 and 3 data become 
available. 
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Model configuration 
The configuration of the SMS model aims firstly to mimic the results from ICES single-
species assessment models when SMS is run in single-species mode (no estimation of 
predation mortality) using the same annual M values as the single-species assessment, 
and secondly to configure options for estimation of predation mortality.  

Appendix 2 presents the SMS configuration (option files) used for the 2022 keyrun. 

Fishing mortality 

SMS uses a separable F-model (see equation 3 of the model description, in Appendix 
1) while the ICES single-species assessments use XSA (and SAM as supplementary 
models) for herring and sprat. XSA estimates F directly from catch observations in a 
VPA. Further differences; SMS is using quarterly time steps while XSA is using annual 
time steps. 

A comparison of output from the two assessments shows quite similar results for her-
ring (Figure 3.1-1). The “SMS-single” run uses the model configuration from the 2019 
keyrun, while the “SMS-single new config.” uses the suggested configuration for the 
2022 keyrun. The comparison for sprat (Figure 3.1-2) show that F and SSB have the 
same trend, but the levels are different between the ICES version and the SMS. SSB is 
estimated the 1st January in SMS but at spawning time in the ICES assessment (the 
proportion of M and F before spawning is set to 40%) which may explain the two levels 
of SSB estimated. SMS estimates consistently a lower F for sprat. This is because ap-
proximately 50% of the annual yield of sprat is taken in the first quarter. Within SMS, 
with quarterly time steps, such catch distribution means that fishing is removing most 
of the individuals, before the natural mortality decreased the stock considerably. This 
will result in a lower F compared to the ICES-single run, with annual time steps, where 
F and M is assumed constant over the full year.  
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Figure 3.1-1.  Comparison of the herring assessment results from SMS assessment 
using fixed M (from ICES assessment) and the ICES single species XSA assessment. 
Recruitment is at age 0 for the SMS assessment and age 1 for the ICES assessment. 

 

 
 

Figure 3.1-2. Comparison of the sprat assessment results from SMS assessment using 
fixed M (from ICES assessment) and the ICES single species XSA assessment. Re-
cruitment is at age 0 for the SMS assessment and age 1 for the ICES assessment. 

A closer look of the diagnostics shows that using the 2019 keyrun configuration, the 
catch observation variances are quite high for all ages of sprat, except for age 3. In a 
maximum likelihood model like SMS, there is a risk of overfitting to just one age (which 
might be the case for age 3), so an alternative configuration of the variance age groups 
(age 1, 2, 3-5, 6-7) was tried. For herring the catch observation variance for age group 2 
and 3-8 seem not to be significantly different, so an alternative configuration uses the 
ages 1 and 2-8 groups for the variance of catch observations.  

Table 3.1-1 Observation variance of catch observations estimated from the “SMS-
single” run. The configuration states that the ages 1, 2 and 3-8 have a separate vari-
ance group for herring, and ages 1, 2, 3 and 4-7 for sprat. 

Age Herring  Sprat 
1 0.591 0.761 
2 0.384 0.471 
3 0.358 0.384 
4 0.358 0.560 
5 0.358 0.560 
6 0.358 0.560 
7 0.358 0.560 
8 0.358  
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SMS estimates the catch variance by each quarter, or as done in the 2019 keyrun, with 
the assumption that the variances are independent of quarters, such that there is only 
one annual variance. As number of samples from the fishery normally follows the land-
ings quantity, the observations variance is often highest in the periods with the lowest 
landings.  For sprat (Figure 3.1-3) quarter 3 catches are always considerably lower than 
in the other quarters, which may indicate the catch variance is higher in that quarter. 
The effect of quarter dependent catch variances was investigated in an alternative run.   

 

 
 

 
Figure 3.1-3 Yield by year and quarter in absolute terms and as proportions for her-
ring and sprat. 

 

SMS assumes that season and age effects in the model for F are constant within a spec-
ified range of years. The quarterly distribution of herring yield show a clear increasing 
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trend of the proportion of yield taken in quarter 1, and a decreasing trend in the pro-
portion taken in quarter 2 (Figure 3.1-3), which indicates that the F-model needs several 
periods with (fairly) constant season effects.  The year groups used in the 2019 keyrun 
where 1974-1988 and 1989-2019, however these two year groups may not be sufficient 
to obtain a (fairly) stable selection within a period. An alternative grouping of year was 
tried for herring:   1974-1988, 1989-2004 and 2005-2021.  For sprat, there is no clear trend 
in the quarterly proportion of yield, and the 2019 keyrun configuration was maintained 
( 1974-1999 and 2000-2019 (2021)) 

 

Alternative configuration of the F-model 

As suggested above, the following changes were made to the configuration of the F-
model. 

1. Changes of age grouping for catch observation variance for both herring and 
sprat 

2. Change of catch observation variance from annual to seasonal for sprat 
3. Change of year ranges with assumed constant selectivity for herring. 

Figure 3.1-1 and Figure 3.1-2 show the effect of applying the alternative configuration, 
with the “SMS-single” run using the 2019 configuration and  “SMS-single new config.” 
the alternative. Sprat F is slightly higher and SSB slightly lower with the new configu-
rations. For herring the deferens in the results is smaller.  

SMS is used for estimating predations mortality, so the effects of the changes, when 
SMS is run with estimation of predation mortality, is presented below: 

2019 configuration of the F-model 

objective function (negative log likelihood):  -1423.75 

Number of parameters: 304 

Akaike information criterion (AIC):   -2239.51 

unweighted objective function contributions:  

                 Catch      CPUE     SSB/R   stomach       Sum 
Cod                0.0       0.0       0.0    -333.7      -334 
Herring         -693.6    -146.5      -5.7       0.0      -846 
Sprat           -133.6    -115.8      -7.0       0.0      -256 
Sum             -827.2    -262.2     -12.7    -333.7     -1436 

 

Alternative configuration of the F-model 

objective function (negative log likelihood):  -1646.5 

Number of parameters: 329 

Akaike information criterion (AIC):   -2635 

unweighted objective function contributions:  

                 Catch      CPUE     SSB/R   stomach       Sum 
Cod                0.0       0.0       0.0    -337.6      -338 
Herring         -857.6    -144.3      -6.5       0.0     -1008 
Sprat           -187.9    -118.5      -7.6       0.0      -314 
Sum            -1045.4    -262.7     -14.1    -337.6     -1660 
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The new configuration has a better (more negative) likelihood in total with improve-
ments for catches for both herring and sprat. The likelihoods for survey observation 
(CPUE), stock recruitment (SSB/R) and stomach contents are fairly the same. The cost 
of the better likelihoods is the increase in model parameters from 304 to 329, however, 
judged from the AIC values from the two configurations, the alternative configuration 
is significantly better. 

Values for the affected variances of catch observations by configuration are shown be-
low: 

2019 configuration of the F-model 
sqrt(catch variance) ~ CV: 
-------------------------- 
Herring     
 1       0.587 
 2       0.383 
 3       0.361 
 4       0.361 
 5       0.361 
 6       0.361 
 7       0.361 
 8       0.361 
 
Sprat       
 1       0.757 
 2       0.475 
 3       0.383 
 4       0.575 
 5       0.575 
 6       0.575 
 7       0.575 

Alternative configuration of the F-model 

Herring     
 1       0.545 
 2       0.325 
 3       0.325 
 4       0.325 
 5       0.325 
 6       0.325 
 7       0.325 
 8       0.325 
       
Sprat             season 
-------------------------------------- 
age        1       2       3       4 
 1       0.646   0.750   0.957   0.619 
 2       0.582   0.563   0.453   0.385 
 3       0.431   0.402   0.602   0.330 
 4       0.431   0.402   0.602   0.330 
 5       0.431   0.402   0.602   0.330 
 6       0.522   0.486   0.887   0.699 
 7       0.522   0.486   0.887   0.699 

The main effect is a much higher variance for the sprat catches in quarter 3 and lower 
values for the other quarters, when quarterly variances are used. 

At WGSAM 2022, it was decided to use the alternative configuration of the F-model 
for the key-run.  
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Configuring predation mortality options 

The SMS model has three main options for size preferences of predators (see equations 
11, 12 and 13 in the description of SMS model, Appendix 1):  

1. Log normal size selection: a predator has a preferred prey size ratio and a prey 
twice as big as the preferred size is as attractive as another half the prey size. 
The preferred size ration and its variance are estimated by SMS.  

2. Uniform size selection: a size preference at 1 within the range of the observed 
size ratio and 0 outside that ratio. 

3. Constraint uniform size selection: as Uniform size selection, but the size pref-
erence ratio is constrained to exclude “outliers” in the observed size ratio. 

The “Constraint uniform size selection” option was chosen for the 2012 key-run. The 
new stomach data available for the 2019 keyrun include more detailed data (prey 
length by cm group, while the old data set has prey length by 5 cm for most years) and 
a SMS run using the “log normal size selection” gave actually a better model fit than 
both the “Uniform size selection” and “Constraint uniform size selection” the (see sec-
tion 5.2.3).  Therefore, the “log normal size selection” and was chosen option for the 
2019 and the 2022 key-runs.  

Changes in configuration/option file from the 2019 to the 2022 keyrun  

To sum up: the 2022 keyrun uses a slightly different configuration of the F-model 
where the variance of catch observation for sprat is by quarter in the 2022 keyrun, while 
the 2019 keyrun used a variance for annual (summed quarterly) catches. This configu-
ration takes the variable catch proportion between quarters, and the higher variance in 
quarters with a low catch, better into account. For herring, the 2022 keyrun uses three 
year periods to model the seasonal fishing pattern, while the 2019 keyrun uses only 
two year periods.  
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Other issues 
The SMS model, input and output for several keyruns for both the Baltic and the North 
Sea can be found at Github https://github.com/ices-eg/wg_WGSAM. This Github also 
store the SMS source code and R scripts for preparing, running and presenting results 
from a SMS run. 

https://github.com/ices-eg/wg_WGSAM
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Results of the Eastern Baltic Sea SMS 
keyrun 
The minor changes in model configuration and input data for the 2022 keyrun com-
pared to the 2019 version, resulted in minor changes of the output (recruitment, mean 
F and SSB) compared to 2019.   The estimated predation mortalities (M2) from the 2022 
keyrun are also similar and consistent with the M2 values from the previous keyrun.  

Keyrun summary sheet 

AREA EASTERN BALTIC SEA  

Model name SMS 

Type of model Age–length structured statistical estimation model 

Run year 2022 

Predatory species Cod 

Prey species Herrnig, Sprat 

Time range 1974–2021. 

Time step Quarterly 

Area structure Eastern Baltic Sea, ICES sub-divisions 25-29 excl Gulf of Riga 

Stomach data Cod: 1974-2014, ~60000 stomachs 

Purpose of keyrun Making historic data on natural mortality available and 
multispecies dynamics 

Model changes since last 
keyrun in 2019 

All time-series updated (2019-20221). Diet and food rations data 
were recalcualted based on the same stomach observations as used 
in the previous keyrun. A small change in the configuration of the 
fishing mortality model was also made. 

Output available at WGSAM Sharepoint/data/EBaltic_SMS_key_run and 
https://github.com/ices-eg/wg_WGSAM 

Further details in Report of the Working Group on Multispecies Assessment 
Methods 2022 (WGSAM, 2022) 

Results of the 2022 keyrun 

Model diagnostics 

The population dynamics of all species except ‘external predators’ were estimated 
within the model. The key‐run converged and the uncertainties of parameters and key 
output variables were obtained from the inverse Hessian matrix. Key diagnostics (Ta-
ble 5.1-1) show a reasonable fit for catch (“sqrt(catch variance) ~ CV:”) and survey in-
dices (“sqrt(Survey variance) ~ CV:”) data. Catch and survey data fit better for herring 
than for sprat. The same can be seen from the catch at age residual plots (Figure 5.1-2). 
Herring has, in general, smaller residuals than sprat, but herring residuals show a more 
clustered distribution with periods of either positive or negative residuals. The survey 
residuals show in some cases a “year effect” with either all positive or all negative re-
siduals within a year. This is often seen when the survey indices are based on an acous-
tic measurements.    

The residual plot of stomach contents, Figure 5.1-4, shows a quite randomly distributed 
residuals for sprat. Model estimates of the stomach contents of herring seems generally 
higher than observed values in the period after 1990, while the opposite pattern is seen 

https://github.com/ices-eg/wg_WGSAM


  | Stock Annex for the ICES Eastern Baltic Sea SMS configuration  

for “other food”. The same picture is seen in the boxplots of residuals (Figure 5.1-5), 
where the upper two rows of the plot show generally positive residuals for herring and 
generally negative residuals for “other food” from 1990 onwards. The bias in residuals 
by quarter seems limited (third row of Figure 5.1-5). The residual pattern is not inde-
pendent of predator size (fourth row of Figure 5.1-5). The model overestimates the 
stomach contents of herring for the medium sized cod, and underestimate the stomach 
contents of sprat for the largest cod. This might be a result of a size dependent spatial 
distribution of cod.  

The one step ahead residuals (Trijoulet, et al., 2023) are shown in Figure 5.1-6. They 
differ slightly from the standardised residual (Figure 5.1-4), but the overall pattern is 
the same for the two kinds of residuals. 

 

Table 5.1-1. SMS keyrun model diagnostics. 
October 09, 2022 16:36:40   run time:39 seconds 
 
objective function (negative log likelihood):  -1646.5 
Number of parameters: 329 
Number of observations used in likelihood: 15714 
Maximum gradient: 2.91877e-07 
Akaike information criterion (AIC):   -2635 
Number of observations used in the likelihood: 
                            Catch    CPUE     S/R Stomach     Sum 
Species: 1, Cod                 0       0       0    1599    3198        
Species: 2, Herring          1536     300      48       0    3768        
Species: 3, Sprat            1344     363      48       0    3510        
Sum                          5760    1326     192    3198   15714        
 
 
objective function weight: 
                          Catch  CPUE   S/R     Stom.     
Species: 1, Cod           0.00  0.00  0.00       1.00        
Species: 2, Herring       1.00  1.00  0.05       0.00        
Species: 3, Sprat         1.00  1.00  0.05       0.00        
 
 
unweighted objective function contributions:  
                 Catch      CPUE     SSB/R   stomach       Sum 
Cod                0.0       0.0       0.0    -337.6      -338 
Herring         -857.6    -144.3      -6.5       0.0     -1008 
Sprat           -187.9    -118.5      -7.6       0.0      -314 
Sum            -1045.4    -262.7     -14.1    -337.6     -1660 
 
unweighted objective function contributions (per observation):  
                Catch   CPUE     S/R   Stomachs 
Cod             0.00    0.00    0.00   -0.21 
Herring        -0.56   -0.48   -0.14    0.00 
Sprat          -0.14   -0.33   -0.16    0.00 
 
 
contribution by fleet: 
---------------------- 
Species:2, Herring      
Herring Acoustic May        total: -38.824   mean:  -0.373 
Herring BIAS                total:-105.430   mean:  -0.538 
 
Species:3, Sprat        
Sprat Int acoustic in Oct.  total: -89.428   mean:  -0.456 
Sprat Int acoustic in May.  total: -39.596   mean:  -0.283 
Sprat LAT RUS acoustic      total:  10.553   mean:   0.391 
 
 
F, Year effect: 
--------------- 
       sp. 2  sp. 3   
1974:  1.000  1.000 
1975:  0.976  0.992 
1976:  1.318  0.691 
1977:  0.933  0.792 
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1978:  0.681  0.483 
1979:  0.659  0.458 
1980:  1.081  0.507 
1981:  1.208  0.366 
1982:  1.180  0.306 
1983:  1.592  0.181 
1984:  1.550  0.145 
1985:  1.426  0.192 
1986:  1.478  0.272 
1987:  1.133  0.259 
1988:  1.355  0.253 
1989:  1.000  0.237 
1990:  1.111  0.204 
1991:  1.004  0.210 
1992:  0.798  0.555 
1993:  0.939  0.381 
1994:  1.031  0.628 
1995:  1.120  0.730 
1996:  1.120  0.865 
1997:  1.265  1.004 
1998:  1.401  1.133 
1999:  1.143  1.010 
2000:  1.362  1.000 
2001:  1.705  0.857 
2002:  1.163  1.177 
2003:  0.899  1.238 
2004:  0.755  1.340 
2005:  1.000  1.279 
2006:  1.042  1.012 
2007:  1.003  1.289 
2008:  1.087  1.321 
2009:  1.126  1.327 
2010:  1.175  1.229 
2011:  0.995  1.180 
2012:  0.727  1.038 
2013:  0.665  1.173 
2014:  0.808  1.280 
2015:  1.180  0.981 
2016:  1.551  0.814 
2017:  1.652  0.996 
2018:  1.853  0.972 
2019:  1.828  1.190 
2020:  1.662  1.057 
2021:  1.262  0.951 
 
F, season effect: 
----------------- 
Herring      
age: 1 
    1974-1988:   0.033 0.071 0.115 0.250 
    1989-2004:   0.070 0.056 0.079 0.250 
    2005-2021:   0.160 0.077 0.043 0.250 
age: 2 
    1974-1988:   0.112 0.406 0.176 0.250 
    1989-2004:   0.176 0.211 0.095 0.250 
    2005-2021:   0.276 0.163 0.042 0.250 
age: 3 - 8 
    1974-1988:   0.138 0.613 0.306 0.250 
    1989-2004:   0.223 0.367 0.138 0.250 
    2005-2021:   0.374 0.260 0.089 0.250 
 
Sprat        
age: 1 
    1974-1999:   0.073 0.044 0.035 0.250 
    2000-2021:   0.325 0.141 0.051 0.250 
age: 2 - 7 
    1974-1999:   0.428 0.279 0.068 0.250 
    2000-2021:   0.640 0.351 0.060 0.250 
 
F, age effect: 
-------------- 
                0      1      2      3      4      5      6      7      8 
Herring     
1974-1988:  0.000  0.092  0.145  0.152  0.168  0.205  0.205  0.205  0.205 
1989-2004:  0.000  0.181  0.235  0.284  0.362  0.466  0.466  0.466  0.466 
2005-2021:  0.000  0.099  0.148  0.165  0.225  0.321  0.321  0.321  0.321 
Sprat       



  | Stock Annex for the ICES Eastern Baltic Sea SMS configuration  

1974-1999:  0.000  0.095  0.164  0.243  0.249  0.249  0.249  0.249 
2000-2021:  0.000  0.108  0.142  0.181  0.196  0.196  0.196  0.196 
 
 
Exploitation pattern (scaled to mean F=1) 
----------------------------------------- 
                         0      1      2      3      4      5      6      7      8 
Herring     
1974-1988 season 1:      0  0.013  0.068  0.088  0.097  0.118  0.118  0.118  0.118 
          season 2:      0  0.027  0.247  0.390  0.432  0.527  0.527  0.527  0.527 
          season 3:  0.000  0.044  0.107  0.195  0.216  0.263  0.263  0.263  0.263 
          season 4:  0.000  0.096  0.152  0.159  0.176  0.215  0.215  0.215  0.215 
 
1989-2004 season 1:      0  0.033  0.107  0.164  0.210  0.270  0.270  0.270  0.270 
          season 2:      0  0.026  0.129  0.270  0.344  0.443  0.443  0.443  0.443 
          season 3:  0.000  0.037  0.058  0.101  0.129  0.167  0.167  0.167  0.167 
          season 4:  0.000  0.117  0.152  0.184  0.235  0.302  0.302  0.302  0.302 
 
2005-2021 season 1:      0  0.063  0.163  0.247  0.335  0.478  0.478  0.478  0.478 
          season 2:      0  0.031  0.096  0.171  0.233  0.332  0.332  0.332  0.332 
          season 3:  0.000  0.017  0.025  0.059  0.080  0.114  0.114  0.114  0.114 
          season 4:  0.000  0.099  0.147  0.165  0.224  0.320  0.320  0.320  0.320 
 
Sprat       
1974-1999 season 1:      0  0.027  0.277  0.411  0.420  0.420  0.420  0.420 
          season 2:      0  0.017  0.181  0.268  0.274  0.274  0.274  0.274 
          season 3:  0.000  0.013  0.044  0.066  0.067  0.067  0.067  0.067 
          season 4:  0.000  0.094  0.162  0.240  0.246  0.246  0.246  0.246 
 
2000-2021 season 1:      0  0.142  0.365  0.466  0.505  0.505  0.505  0.505 
          season 2:      0  0.061  0.200  0.255  0.277  0.277  0.277  0.277 
          season 3:  0.000  0.022  0.034  0.044  0.047  0.047  0.047  0.047 
          season 4:  0.000  0.109  0.143  0.182  0.197  0.197  0.197  0.197 
 
 
sqrt(catch variance) ~ CV: 
-------------------------- 
 
Herring     
 1       0.545 
 2       0.325 
 3       0.325 
 4       0.325 
 5       0.325 
 6       0.325 
 7       0.325 
 8       0.325 
 
Sprat       
              season 
-------------------------------------- 
age        1       2       3       4 
 
 1       0.646   0.750   0.957   0.619 
 2       0.582   0.563   0.453   0.385 
 3       0.431   0.402   0.602   0.330 
 4       0.431   0.402   0.602   0.330 
 5       0.431   0.402   0.602   0.330 
 6       0.522   0.486   0.887   0.699 
 7       0.522   0.486   0.887   0.699 
 
 
Survey catchability: 
-------------------- 
Herring           age 0  age 1  age 2  age 3  age 4  age 5  age 6  age 7  age 8 
 Herring Acoustic May    0.430  1.054  1.797  2.503  2.503  2.503  2.503  2.503 
 Herring BIAS            0.567  1.192  2.082  3.106  3.106  3.106  3.106 
Sprat                       
 Sprat Int acous in Oct  0.469  0.706  1.022  0.945  0.945  0.945  0.945 
 Sprat Int acous in May  0.303  0.699  1.054  1.024  1.024  1.024  1.024 
 Sprat LAT RUS acoustic  0.329 
 
sqrt(Survey variance) ~ CV: 
--------------------------- 
Herring                      age 0  age 1  age 2  age 3  age 4  age 5  age 6  age 7  age 8 
 Herring Acoustic May                0.38   0.38   0.38   0.44   0.44   0.44   0.44   0.44 
 Herring BIAS                        0.41   0.33   0.33   0.33   0.33   0.37   0.37 
Sprat                       
 Sprat Int acoustic in Oct.          0.47   0.35   0.35   0.38   0.38   0.38   0.38 
 Sprat Int acoustic in May.          0.49   0.35   0.35   0.51   0.51   0.51   0.51 
 Sprat LAT RUS acoustic              0.90 
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Recruit-SSB                               alfa      beta        var      sd 
Herring      Geometric mean:             16.853               0.280    0.530 
Sprat        Geometric mean:             18.573               0.229    0.479 
 
Multispecies parameters 
======================== 
stomach content variance model: Dirichlet distribution 
 
Vulnerability pred - prey 
--------------------------- 
           Other-food     Herring    Sprat       
Cod            1.000      8.829      3.580 
 
Size selection parameters: 
---------------------------           Cod             
Size selection model:               log-norm.       
Sum prey sizes in likelihood:            yes 
Preferred size ratio:                  5.650 
Variance of size ratio:                2.674 
 
Other food Suitability slope: 
Cod                 0.3150 
 
Stomach variance:    value    internal     max alfa0 
Cod                  0.426    0.426        41.552 
 
Predator prey season overlap 
---------------------------- 
Predator:Cod         Other-food  Herring     Sprat        
  q:1                 1           1           1     
  q:2                 0.445       0.273       1     
  q:3                 0.445       0.273       0.309 
  q:4                 1.811       1           0.896 
 
 
 
 
 
 

 
 

Figure 5.1-1 Observed and model predicted catch  
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Figure 5.1-2. Residual plots for catch-at-age observations by species and quarter. Re-
siduals are not standardised. The red dots shows that the observed catches are larger 
than the model estimates. The yellow dots show the largest residual value as a ref-
erence for the dot sizes. 
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Figure 5.1-3. Residual plots for survey, Catch per unit effort, at age observations by 
species and survey. Residuals are not standardised. The red dots show that the ob-
served catches are larger than the model estimates. The yellow dots show the largest 
residual values per plot. 
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Figure 5.1-4.  Stomach contents residuals (Standardised residuals). The y-axis show 
prey group and predator (cod) size class. The x-axis time period, where the upper 
panel is sorted by year and quarter, and lower panel sorted by quarter and year. 
Green dots show that the observed stomach contents are lower than the model esti-
mates. 
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Figure 5.1-5. Box plot of stomach contents residuals (“Raw”). Upper (first) row shows 
the boxplots by individual quarter and years, second row by year (quarters com-
bined), third row by quarter and fourth row by cod size class.  

 

 
Figure 5.1-6  Stomach contents residuals (One step ahead residuals, see Trijoulet, et 
al., 2023). The y-axis show prey group and predator (cod) size class. The x-axis time 
period, where the upper panel is sorted by year and quarter. Green dots show that 
the observed stomach contents are lower than the model estimates. 
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Stock summary results 

The stock summaries are presented in Figure 5.1-7 (herring) and Figure 5.1-8 (sprat).  

The estimated predation mortalities (M2) are shown in details in Figure 5.1-9 and Fig-
ure 5.1-10. Total natural mortality M=M1+M2 are tabulated in Table 5.1-2 and Error! 
Reference source not found. Figure 5.1-11 shows the same data using the same scale 
on the y-axis and with an added smoother. The smoothed M values are tabulated in 
Table 5.1-4 and Table 5.1-5. 

A comparison of M2 from this keyrun with M2 from the 2019 keyrun show similar 
values for herring (Figure 5.1-12) and for sprat (Figure 5.1-13), even though sprat M2 
is now estimated higher for age 0 and 1, and herring M2 for age 0 is now higher.   

Natural mortalities (M=M1+M2) estimated by SMS may be used as input to the ICES 
stock assessment of herring and sprat. If M values are used, WGSAM does recommend 
to update the full time series of M.   
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Figure 5.1-7. SMS output for Herring. Catch weight, Recruitment, F, SSB, Biomass 
removed due to fishery (F), predation by SMS species (M2) and residual natural mor-
tality (M1). The predation mortality (M2) presented by the 0-group (black solid line) 
is for the second half of the year. The M2 for the rest of the ages are annual values. 
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Figure 5.1-8. SMS output for Sprat. Catch weight, Recruitment, F, SSB, Biomass re-
moved due to fishery (F), predation by SMS species (M2) and residual natural mor-
tality (M1). The predation mortality (M2) presented by the 0-group (black solid line) 
is for the second half of the year. The M2 for the rest of the ages are annual values. 
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Table 5.1-2.  Herring : Natural mortality (sum of quarterly M1+M2) 

 

Year/Age 0 1 2 3 4 5 6 7 8+ 
1974 0.463 0.442 0.311 0.253 0.234 0.220 0.218 0.204 0.174 
1975 0.395 0.486 0.341 0.277 0.254 0.239 0.238 0.223 0.189 
1976 0.387 0.420 0.307 0.258 0.239 0.227 0.225 0.213 0.182 
1977 0.527 0.469 0.328 0.273 0.253 0.239 0.237 0.222 0.189 
1978 0.727 0.694 0.388 0.343 0.323 0.301 0.275 0.260 0.229 
1979 0.812 0.874 0.416 0.353 0.340 0.326 0.318 0.283 0.234 
1980 0.706 0.886 0.522 0.417 0.371 0.375 0.326 0.302 0.267 
1981 0.716 0.802 0.503 0.394 0.340 0.308 0.308 0.276 0.236 
1982 0.667 0.819 0.484 0.399 0.336 0.302 0.283 0.280 0.227 
1983 0.601 0.730 0.537 0.379 0.354 0.312 0.282 0.265 0.236 
1984 0.499 0.626 0.480 0.372 0.300 0.299 0.271 0.246 0.220 
1985 0.447 0.537 0.436 0.332 0.279 0.248 0.241 0.227 0.205 
1986 0.415 0.491 0.374 0.331 0.260 0.239 0.220 0.207 0.183 
1987 0.448 0.500 0.312 0.271 0.254 0.219 0.203 0.192 0.172 
1988 0.394 0.508 0.368 0.266 0.253 0.235 0.212 0.194 0.173 
1989 0.303 0.423 0.285 0.287 0.239 0.212 0.201 0.183 0.165 
1990 0.195 0.285 0.205 0.185 0.193 0.167 0.160 0.154 0.147 
1991 0.159 0.227 0.189 0.164 0.148 0.158 0.140 0.144 0.134 
1992 0.190 0.236 0.192 0.170 0.145 0.137 0.146 0.134 0.131 
1993 0.240 0.296 0.245 0.207 0.191 0.173 0.163 0.170 0.149 
1994 0.211 0.304 0.251 0.221 0.193 0.184 0.172 0.157 0.156 
1995 0.185 0.268 0.228 0.211 0.194 0.183 0.178 0.166 0.163 
1996 0.161 0.235 0.213 0.192 0.183 0.175 0.167 0.162 0.150 
1997 0.146 0.212 0.196 0.178 0.170 0.161 0.156 0.152 0.147 
1998 0.171 0.217 0.189 0.176 0.162 0.155 0.148 0.146 0.135 
1999 0.195 0.245 0.206 0.184 0.175 0.163 0.153 0.150 0.139 
2000 0.202 0.324 0.233 0.219 0.207 0.198 0.183 0.174 0.172 
2001 0.211 0.343 0.246 0.213 0.208 0.193 0.186 0.182 0.179 
2002 0.199 0.358 0.263 0.226 0.203 0.195 0.184 0.177 0.181 
2003 0.165 0.313 0.208 0.189 0.178 0.172 0.164 0.156 0.153 
2004 0.193 0.286 0.259 0.197 0.183 0.165 0.159 0.153 0.146 
2005 0.237 0.345 0.290 0.259 0.211 0.187 0.171 0.163 0.153 
2006 0.239 0.378 0.252 0.249 0.234 0.209 0.180 0.170 0.161 
2007 0.252 0.387 0.270 0.243 0.222 0.210 0.181 0.169 0.154 
2008 0.257 0.410 0.272 0.248 0.227 0.201 0.209 0.183 0.171 
2009 0.287 0.425 0.299 0.248 0.239 0.211 0.194 0.209 0.185 
2010 0.307 0.470 0.340 0.277 0.240 0.234 0.215 0.200 0.197 
2011 0.286 0.479 0.309 0.283 0.242 0.219 0.213 0.194 0.195 
2012 0.266 0.428 0.236 0.242 0.210 0.184 0.175 0.164 0.154 
2013 0.282 0.409 0.256 0.196 0.201 0.177 0.163 0.157 0.150 
2014 0.227 0.413 0.262 0.209 0.176 0.182 0.162 0.155 0.149 
2015 0.210 0.338 0.221 0.194 0.175 0.160 0.159 0.150 0.145 
2016 0.188 0.317 0.276 0.191 0.179 0.167 0.157 0.153 0.146 
2017 0.169 0.284 0.213 0.196 0.162 0.155 0.146 0.137 0.134 
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2018 0.166 0.266 0.193 0.161 0.159 0.138 0.137 0.135 0.128 
2019 0.148 0.262 0.181 0.167 0.150 0.150 0.136 0.133 0.129 
2020 0.143 0.246 0.178 0.158 0.151 0.141 0.142 0.130 0.129 
2021 0.130 0.240 0.176 0.164 0.151 0.147 0.140 0.138 0.132 

 

 
 
Table 5.1-3. Sprat : Natural mortality (sum of quarterly M1+M2) 

 

Year/Age 0 1 2 3 4 5 6 7 
1974 0.416 0.755 0.543 0.478 0.452 0.452 0.439 0.449 
1975 0.331 0.762 0.566 0.503 0.476 0.476 0.462 0.472 
1976 0.336 0.623 0.485 0.437 0.418 0.418 0.409 0.416 
1977 0.482 0.816 0.572 0.485 0.464 0.464 0.451 0.460 
1978 0.594 1.158 0.784 0.720 0.640 0.629 0.619 0.619 
1979 0.591 1.269 0.835 0.766 0.771 0.713 0.718 0.733 
1980 0.516 1.264 0.886 0.757 0.741 0.751 0.713 0.731 
1981 0.535 1.130 0.717 0.676 0.638 0.641 0.668 0.619 
1982 0.473 1.124 0.768 0.684 0.665 0.637 0.666 0.674 
1983 0.413 0.867 0.676 0.608 0.590 0.576 0.564 0.561 
1984 0.349 0.722 0.595 0.522 0.517 0.501 0.495 0.493 
1985 0.327 0.636 0.517 0.483 0.468 0.450 0.434 0.443 
1986 0.327 0.651 0.486 0.461 0.434 0.419 0.413 0.410 
1987 0.343 0.656 0.485 0.439 0.421 0.416 0.416 0.405 
1988 0.297 0.626 0.476 0.461 0.430 0.414 0.411 0.400 
1989 0.242 0.515 0.404 0.375 0.369 0.361 0.358 0.354 
1990 0.180 0.371 0.308 0.303 0.297 0.291 0.293 0.286 
1991 0.166 0.330 0.270 0.267 0.262 0.260 0.259 0.260 
1992 0.187 0.346 0.280 0.268 0.264 0.261 0.259 0.257 
1993 0.206 0.380 0.338 0.322 0.312 0.308 0.304 0.298 
1994 0.185 0.378 0.334 0.317 0.305 0.303 0.299 0.298 
1995 0.169 0.334 0.301 0.299 0.292 0.287 0.286 0.285 
1996 0.158 0.305 0.293 0.279 0.277 0.271 0.270 0.270 
1997 0.153 0.298 0.280 0.274 0.266 0.259 0.258 0.256 
1998 0.168 0.307 0.286 0.280 0.277 0.269 0.267 0.268 
1999 0.180 0.337 0.304 0.292 0.293 0.291 0.284 0.281 
2000 0.175 0.376 0.316 0.318 0.313 0.309 0.306 0.298 
2001 0.179 0.391 0.333 0.319 0.320 0.314 0.316 0.317 
2002 0.171 0.405 0.341 0.337 0.330 0.330 0.329 0.330 
2003 0.154 0.366 0.315 0.309 0.308 0.303 0.307 0.308 
2004 0.169 0.345 0.316 0.296 0.289 0.292 0.290 0.291 
2005 0.189 0.399 0.363 0.349 0.326 0.321 0.316 0.321 
2006 0.190 0.429 0.375 0.369 0.360 0.341 0.335 0.336 
2007 0.197 0.440 0.380 0.362 0.362 0.360 0.346 0.335 
2008 0.199 0.466 0.382 0.373 0.363 0.367 0.369 0.350 
2009 0.213 0.465 0.383 0.368 0.361 0.358 0.363 0.356 
2010 0.222 0.504 0.430 0.401 0.390 0.387 0.383 0.386 
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2011 0.213 0.515 0.417 0.409 0.394 0.381 0.383 0.377 
2012 0.207 0.487 0.380 0.357 0.356 0.347 0.343 0.345 
2013 0.217 0.488 0.372 0.343 0.335 0.334 0.332 0.333 
2014 0.188 0.491 0.378 0.356 0.338 0.332 0.333 0.338 
2015 0.178 0.400 0.327 0.314 0.306 0.301 0.297 0.303 
2016 0.167 0.376 0.336 0.309 0.298 0.295 0.291 0.292 
2017 0.159 0.355 0.309 0.301 0.286 0.280 0.280 0.280 
2018 0.159 0.342 0.296 0.288 0.285 0.276 0.271 0.274 
2019 0.148 0.336 0.297 0.284 0.279 0.279 0.267 0.267 
2020 0.146 0.321 0.277 0.273 0.268 0.265 0.266 0.260 
2021 0.139 0.310 0.276 0.269 0.266 0.263 0.258 0.262 

 

 
 

Table 5.1-4. Herring GAM-Smoothed Natural mortality (sum of quarterly M1 
(=0.1)+M2) 

 

Year/Age 0 1 2 3 4 5 6 7 8 
1974 0.362 0.361 0.282 0.234 0.218 0.205 0.206 0.193 0.166 
1975 0.449 0.460 0.316 0.263 0.245 0.232 0.228 0.214 0.182 
1976 0.530 0.554 0.348 0.291 0.271 0.257 0.250 0.233 0.198 
1977 0.601 0.637 0.380 0.317 0.294 0.280 0.269 0.250 0.213 
1978 0.656 0.706 0.409 0.340 0.313 0.298 0.284 0.263 0.224 
1979 0.691 0.753 0.436 0.359 0.328 0.311 0.294 0.273 0.233 
1980 0.700 0.776 0.460 0.374 0.336 0.318 0.299 0.277 0.237 
1981 0.686 0.775 0.478 0.383 0.339 0.318 0.298 0.276 0.237 
1982 0.653 0.755 0.489 0.385 0.336 0.312 0.291 0.271 0.234 
1983 0.607 0.718 0.489 0.381 0.328 0.302 0.281 0.261 0.227 
1984 0.553 0.670 0.476 0.369 0.315 0.288 0.267 0.249 0.218 
1985 0.496 0.614 0.448 0.349 0.297 0.270 0.250 0.234 0.206 
1986 0.440 0.553 0.408 0.323 0.276 0.250 0.232 0.217 0.193 
1987 0.385 0.491 0.360 0.292 0.254 0.230 0.213 0.200 0.180 
1988 0.334 0.432 0.311 0.262 0.232 0.211 0.196 0.184 0.167 
1989 0.290 0.377 0.268 0.235 0.212 0.194 0.181 0.170 0.157 
1990 0.253 0.332 0.236 0.214 0.197 0.181 0.169 0.160 0.149 
1991 0.225 0.297 0.218 0.201 0.186 0.172 0.162 0.154 0.144 
1992 0.204 0.271 0.210 0.194 0.179 0.168 0.159 0.152 0.142 
1993 0.190 0.254 0.210 0.192 0.176 0.166 0.158 0.152 0.143 
1994 0.181 0.245 0.214 0.192 0.175 0.166 0.159 0.153 0.144 
1995 0.177 0.243 0.218 0.193 0.176 0.167 0.161 0.156 0.147 
1996 0.175 0.246 0.219 0.193 0.177 0.169 0.163 0.158 0.150 
1997 0.175 0.253 0.218 0.193 0.179 0.171 0.164 0.160 0.153 
1998 0.178 0.263 0.218 0.194 0.181 0.173 0.166 0.162 0.156 
1999 0.181 0.275 0.218 0.195 0.184 0.175 0.167 0.163 0.158 



  | Stock Annex for the ICES Eastern Baltic Sea SMS configuration  

2000 0.186 0.287 0.220 0.198 0.187 0.177 0.169 0.164 0.160 
2001 0.190 0.299 0.225 0.203 0.191 0.180 0.170 0.164 0.160 
2002 0.195 0.310 0.233 0.209 0.195 0.182 0.171 0.164 0.159 
2003 0.202 0.322 0.243 0.216 0.200 0.185 0.172 0.164 0.158 
2004 0.210 0.336 0.254 0.224 0.205 0.189 0.174 0.166 0.158 
2005 0.222 0.353 0.265 0.233 0.211 0.193 0.178 0.168 0.160 
2006 0.236 0.374 0.275 0.242 0.218 0.198 0.182 0.172 0.163 
2007 0.252 0.397 0.283 0.249 0.224 0.203 0.188 0.178 0.168 
2008 0.268 0.419 0.289 0.255 0.229 0.208 0.194 0.183 0.173 
2009 0.281 0.436 0.292 0.258 0.231 0.211 0.197 0.187 0.177 
2010 0.287 0.446 0.292 0.258 0.231 0.211 0.198 0.188 0.178 
2011 0.285 0.444 0.288 0.252 0.226 0.207 0.195 0.186 0.176 
2012 0.275 0.431 0.280 0.242 0.217 0.199 0.188 0.179 0.171 
2013 0.258 0.410 0.269 0.229 0.205 0.190 0.179 0.170 0.163 
2014 0.237 0.383 0.256 0.214 0.193 0.179 0.168 0.160 0.154 
2015 0.215 0.354 0.243 0.200 0.180 0.168 0.158 0.150 0.145 
2016 0.195 0.327 0.229 0.188 0.170 0.159 0.149 0.142 0.138 
2017 0.178 0.302 0.216 0.178 0.162 0.153 0.144 0.137 0.133 
2018 0.163 0.281 0.204 0.171 0.157 0.148 0.141 0.134 0.131 
2019 0.150 0.262 0.192 0.166 0.153 0.146 0.139 0.134 0.130 
2020 0.139 0.244 0.180 0.163 0.151 0.144 0.139 0.134 0.130 
2021 0.128 0.226 0.169 0.160 0.149 0.143 0.139 0.135 0.130 

 

 

Table 5.1-5. Sprat GAM-Smoothed Natural mortality (sum of quarterly M1 
(=0.1)+M2). 

 

Year/Age 0 1 2 3 4 5 6 7 
1974 0.340 0.605 0.476 0.420 0.392 0.393 0.375 0.389 
1975 0.394 0.750 0.552 0.489 0.461 0.459 0.445 0.456 
1976 0.444 0.885 0.623 0.554 0.526 0.521 0.511 0.518 
1977 0.487 1.000 0.685 0.611 0.583 0.575 0.568 0.573 
1978 0.517 1.086 0.733 0.655 0.627 0.617 0.613 0.615 
1979 0.532 1.133 0.762 0.682 0.655 0.643 0.641 0.641 
1980 0.528 1.133 0.768 0.689 0.663 0.650 0.648 0.647 
1981 0.508 1.091 0.753 0.677 0.653 0.638 0.637 0.635 
1982 0.475 1.020 0.722 0.651 0.628 0.612 0.611 0.608 
1983 0.436 0.930 0.678 0.613 0.593 0.577 0.575 0.572 
1984 0.394 0.835 0.627 0.570 0.551 0.535 0.533 0.529 
1985 0.355 0.744 0.573 0.524 0.507 0.492 0.489 0.485 
1986 0.320 0.664 0.519 0.478 0.462 0.449 0.446 0.442 
1987 0.290 0.595 0.467 0.435 0.420 0.408 0.405 0.401 
1988 0.263 0.534 0.419 0.395 0.381 0.371 0.368 0.363 
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1989 0.240 0.481 0.378 0.360 0.347 0.339 0.336 0.332 
1990 0.220 0.436 0.346 0.333 0.321 0.314 0.311 0.307 
1991 0.204 0.397 0.323 0.313 0.302 0.296 0.294 0.290 
1992 0.190 0.367 0.309 0.299 0.290 0.285 0.282 0.279 
1993 0.180 0.343 0.300 0.291 0.283 0.278 0.276 0.273 
1994 0.172 0.327 0.296 0.287 0.280 0.276 0.273 0.271 
1995 0.167 0.320 0.295 0.286 0.280 0.276 0.273 0.272 
1996 0.165 0.320 0.296 0.286 0.282 0.278 0.276 0.275 
1997 0.165 0.326 0.297 0.289 0.285 0.281 0.280 0.278 
1998 0.166 0.335 0.300 0.292 0.289 0.285 0.284 0.283 
1999 0.168 0.346 0.304 0.297 0.294 0.290 0.289 0.288 
2000 0.170 0.356 0.310 0.303 0.300 0.296 0.295 0.294 
2001 0.171 0.364 0.316 0.309 0.305 0.301 0.300 0.299 
2002 0.172 0.370 0.324 0.316 0.311 0.307 0.305 0.304 
2003 0.174 0.377 0.333 0.324 0.318 0.313 0.311 0.309 
2004 0.176 0.386 0.343 0.333 0.325 0.321 0.317 0.316 
2005 0.181 0.399 0.354 0.343 0.334 0.329 0.326 0.324 
2006 0.187 0.419 0.366 0.353 0.344 0.340 0.336 0.333 
2007 0.196 0.442 0.379 0.364 0.355 0.350 0.348 0.344 
2008 0.204 0.466 0.390 0.374 0.365 0.360 0.358 0.354 
2009 0.211 0.486 0.398 0.381 0.372 0.367 0.366 0.361 
2010 0.215 0.499 0.402 0.383 0.374 0.369 0.369 0.364 
2011 0.215 0.501 0.400 0.380 0.371 0.366 0.365 0.361 
2012 0.210 0.491 0.391 0.371 0.361 0.356 0.355 0.353 
2013 0.202 0.472 0.378 0.358 0.348 0.342 0.341 0.340 
2014 0.192 0.447 0.362 0.343 0.332 0.326 0.324 0.325 
2015 0.182 0.420 0.346 0.327 0.316 0.310 0.307 0.310 
2016 0.171 0.394 0.330 0.312 0.302 0.296 0.293 0.296 
2017 0.163 0.372 0.316 0.300 0.291 0.285 0.282 0.285 
2018 0.156 0.352 0.303 0.290 0.282 0.277 0.273 0.276 
2019 0.149 0.334 0.292 0.281 0.275 0.271 0.267 0.268 
2020 0.144 0.317 0.281 0.274 0.269 0.266 0.262 0.262 
2021 0.139 0.301 0.271 0.267 0.264 0.262 0.258 0.256 
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Figure 5.1-9. Annual predation mortality (M2) of herring the colours show M2 by 
quarter (green Q3, blue Q4, black Q1 and red Q4). 
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Figure 5.1-10. Annual predation mortality (M2) of herring the colours show M2 by 
quarter (green Q3, blue Q4, black Q1 and red Q4). 
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Figure 5.1-11. Annual natural mortalities (M=M1+M2) by species and age. Black dots 
are the sum of quarterly M1 and M2; the blue line is a gam spline estimate. 
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Figure 5.1-12. Herring. Comparison of predation mortality (M2) estimated by the 
2019 key-run and by the 2022 keyrun. 

 

 
Figure 5.1-13. Sprat. Comparison of predation mortality (M2) estimated by the 2019 
key-run and by the 2022 keyrun. 

Uncertainties of parameters and output 

SMS estimate the uncertainties of selected output variables using the Hessian matrix 
and the delta-method approximation.  Most variables like stock number and F for dy-
namic species are estimated within the model, while other variables like the stock num-
bers of the “external predators” cod are assumed known without errors. With cod as 
the only predator, this combination of estimated and assumed “known” variables will 
certainly lead to an underestimate of the uncertainties of e.g. predation mortality.  
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Therefore, the uncertainties estimated from the Hessian matrix are not presented in 
details. 

An example of estimated uncertainties is presented in Figure 5.1-14. The confidence 
interval seems too tight! 

 

 
Figure 5.1-14. Values of M2 and 95% confidence interval (+- 2*standard deviation) 
for age 1 of herring and sprat. From the 2019 keyrun. 
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Sensitivity test 

To get a better idea on true uncertainties several sensitivity runs were carried out as 
mainly as part of the 2019 and 2022 keyrun:  

1. Retrospective analysis (5 year peel of all input data). 2022 keyrun. 
2. Sensitivity to stomach data (old vs. new stomach data set). 2019 keyrun. 
3. Sensitivity to stomach data (aggregation stomach data over a 5 or 10 years 

period). 2019 keyrun. 
4. Sensitivity towards using different assumptions for size selection. 2019 

keyrun.  
5. Sensitivity towards using or not using an overlap index for Other Food. 2019 

keyrun. 
6. Sensitivity towards consumption rates. 2019 keyrun. 
7. Sensitivity towards residual mortality (M1). 2022 keyrun. 
8. Comparison of the 2012, 2019 and 2022 keyrun. 
9. Comparison with the Gadget model run. 2019 keyrun. 

 

Retrospective analysis (5 year peel of all input data) 

The retrospective analysis shows variable estimates of recruitment, SSB and F for the 
terminal years in the time series, (Figure 5.2-1). Comparison with the same kind of out-
put for the ICES assessment (WGBFAS, 2022) reveals however a similar variability in 
the ICES single species assessment output. 

The retrospective analysis show a consistent estimate of predation mortalities (Figure 
5.2-2). This consistent estimate is probably also because all runs use the same stomach 
contents data; the last year with stomach data is 2014. As for all other retrospective 
assessment analysis, values (M2) in the terminal year of the time-series have larger un-
certainties. 
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Figure 5.2-1. Retrospective analysis for herring and sprat. Summary output. 
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Figure 5.2-2. Retrospective analysis for herring and sprat, M2 at age. 

 

 

 



  | Stock Annex for the ICES Eastern Baltic Sea SMS configuration  

Sensitivity to stomach data (old vs. new stomach data set) 

The choice of stomach contents data, “old”, “new” or combined was investigated as 
part of the 2019 keyrun. The actual choice has limited effect on the SMS stock summary 
output (Figure 5.2-4) or predation mortalities (Figure 5.2-4) 

 
 

 
Figure 5.2-3. Comparison of output from SMS runs with combinations of contents 
data:  “old” pooled stomach data, “new” individually sample stomachs. The keyrun 
uses only the “new” data. 
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Figure 5.2-4. Comparison of M2 values from SMS runs with combinations of con-
tents data:  “old” pooled stomach data, “new” individually sampled stomachs. The 
keyrun uses only the “new” data. 
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Sensitivity towards using different assumptions for size selection  

Three options for predator prey size selection were tried as part of the 2019 keyrun: 

1. Log normal size selection (keyrun): a predator has a preferred prey size 
ratio and a prey twice as big as the preferred size is as attractive as another 
half the prey size. The preferred size ration and its variance are estimated 
by SMS.  

2. Uniform size selection: a size preference at 1 within the range of the ob-
served size ratio and 0 outside that ratio. 

3. Constraint uniform size selection: as Uniform size selection, but the size 
preference ratio is constrained to exclude “outliers” from the observed size 
ratio, estimated from a quantile regression (Figure 5.2-5).  

. 

The main performance statistics of a SMS run for the three size selection models (Table 
5.2-1) show the best model likelihood and AIC for the keyrun. 

Stock summary output (Figure 5.2-6) and M2 (Figure 5.2-7) are quite sensitive to the 
choice of size selection option. It seems as if the “constraint uniform” option excludes 
interactions from medium sized cod on larger herring (Figure 5.2-5) such that M2 on 
herring ages 4-8 becomes very low. The (unconstraint) “uniform” options includes the 
full observed predator/prey size ratio which results in a higher M2 for the older herring 
than for the “constraint uniform” option.   

The “constraint uniform” option performed well in the 2012 keyrun, however there is  
difference in the quality of stomach contents data used in the old and the new 2019 
keyrun. The old keyruns made use of stomach contents data with large size classes for 
predator preys, e.g. sprat 5-10-15 cm, while the new stomach data uses a much smaller 
size classes, e.g. by cm group for sprat. With wider size classes, the in predator/prey 
size ratio becomes imprecise, such that the cutting of “outliers” by the “constraint uni-
form” options had a limited effect. With the new data, the full range of observations 
should probably be used, if a uniform size selection option is used. 
 
  



Stock Annex for the ICES Eastern Baltic Sea SMS configuration | 

 

  

Table 5.2-1. SMS main performance statistics from a SMS run with the “uniform size 
selection”, “constraint uniform size selection” and the keyrun. 
 

uniform size selection 
objective function (negative log likelihood):  -1166.15 
Number of parameters: 289 
Number of observations used in likelihood: 14892 
Akaike information criterion (AIC):   -1754.31 
 
Number of observations used in the likelihood: 
unweighted objective function contributions (total):  
                Catch    CPUE    S/R   Stom.       Sum 
Cod              0.0     0.0     0.0  -173.4      -173 
Herring       -667.6  -117.3   -12.5     0.0      -797 
Sprat         -100.9  -106.0    -5.5     0.0      -212 
Sum           -768.6  -223.3   -18.0  -173.4     -1183 
 

 
constraint uniform size selection 
objective function (negative log likelihood):  -1110.12 
Number of parameters: 289 
Number of observations used in likelihood: 14892 
Akaike information criterion (AIC):   -1642.24 
 
unweighted objective function contributions (total):  
                Catch    CPUE    S/R   Stom.       Sum 
Cod              0.0     0.0     0.0  -182.5      -183 
Herring       -645.5  -121.1    -8.2     0.0      -775 
Sprat          -56.8  -103.5    -5.2     0.0      -166 
Sum           -702.4  -224.7   -13.4  -182.5     -1123 
 

Log-normal size selection (keyrun 2019) 
objective function (negative log likelihood):  -1232.3 
Number of parameters: 292 
Number of observations used in likelihood: 14892 
Akaike information criterion (AIC):   -1880.6 
 
unweighted objective function contributions (total):  
                Catch    CPUE    S/R   Stom.       Sum 
Cod              0.0     0.0     0.0  -256.2      -256 
Herring       -660.4  -118.7    -8.6     0.0      -788 
Sprat          -92.3  -104.0    -5.6     0.0      -202 
Sum           -752.7  -222.7   -14.2  -256.2     -1246 
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Figure 5.2-5. Quantile regression with observations of predator and predator/prey 
sizes. The blue lines shows the 2.5% and 97.5 % percentile lines, which defines the 
“size selection window”. 
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Figure 5.2-6. Comparison of output from SMS runs with three options for predator 
prey size selection. 
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Figure 5.2-7. Comparison of M2 values from SMS runs with three options for pred-
ator prey size selection. 
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Sensitivity to stomach data (aggregation over a 5 or 10 years period) 

Stomachs data are by default aggregated for each combination of year and quarter of 
the year. For most cases this leads to a rather few stomachs for some of the predator 
length classes and uncertainties on how partly identified prey items should be as-
signed. Aggregating stomach data over more years, e.g. 5 or 10 years, provides a larger 
sample size and a smaller observation uncertainties, but an e.g. ”10 years diet” will not 
reflect the variability in available food for the individual years. This effect of aggregat-
ing stomachs over several years was investigated as part of the 2019 keyrun. 

The average likelihood contribution (Table 5.2-2) show that likelihood per stomach 
contents observation becomes better (more negative) when data are aggregated over 
some years compared to the keyrun which uses data by year. The best average likeli-
hood for stomach data is obtained using a 5-years aggregation. This may be interpreted 
that  pooling stomach data between year gives a higher precision (more stomachs) of 
data used by SMS. However, using a very wide year range may negatively affect the 
fit between “observed” stomach contents and the model estimate of stomach contents 
calculated for the midpoint of the years used in the data aggregation. Likelihood con-
tributions from For Catch, CPUE and S/R observations are quite the same for the three 
configurations. 

M2 values for the three configurations are differ mainly for age 0 and 1 of herring and 
sprat (Figure 5.2-8).  

 

Table 5.2-2. Objective function contributions (per observation) from SMS models 
using stomach contents data aggregated over 5, 10 years and from the keyrun. 

 

5 years aggregation: 

                Catch   CPUE     S/R   Stomachs 
Cod             0.00    0.00    0.00   -0.28 
Herring        -0.46   -0.46   -0.18    0.00 
Sprat          -0.08   -0.33   -0.12    0.00 

 

10 years aggregation: 

                Catch   CPUE     S/R   Stomachs 
Cod             0.00    0.00    0.00   -0.26 
Herring        -0.47   -0.45   -0.18    0.00 
Sprat          -0.09   -0.33   -0.11    0.00 

 

Keyrun: 

                Catch   CPUE     S/R   Stomachs 
Cod             0.00    0.00    0.00   -0.16 
Herring        -0.46   -0.47   -0.19    0.00 
Sprat          -0.07   -0.33   -0.12    0.00 
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Figure 5.2-8. M2 estimated from SMS runs using stomach contents data aggregated 
over 5, 10 years and from the keyrun. 
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Sensitivity towards using an overlap index for Other Food 

The “other food” prey Saduria entomon is an important benthic prey item for cod. The 
occurrence of this prey depends on the oxygen level at the bottom, which have changed 
considerably in the model timespan.  

A time-series of total area (km2) of hypoxic bottoms (between 20 and 100 m depth) was 
used to develop an index for overlap with Saduria entomon and other benthic compo-
nents, assuming  ≤1 ml l−1 (approx. 1.4 mg l−1) as threshold for oxygen concentration to 
indicate failure in benthic productivity. With Ah indicating the hypoxic bottom area, 
the index was defined as (Ah / maxAh)-1, yielding higher values the smaller the hypoxic 
area was in a given year. We applied a 5-yr running mean. Weighting the areas with 
the sub-division specific cod distribution did not change the index time series except 
for the last two years with data, 2013 and 2014. 

The overlap index between cod and the prey species herring and sprat was left un-
changed (assumed 1 throughout the period) 

The performance statistics (Table 5.2-3) for the runs with input overlap index and the 
2019 keyrun  are almost the same, even though the keyrun has a better total model 
likelihood. The likelihood contributions from stomach observations are the same for 
the two models. 

Stomach contents residuals (Figure 5.2-9) are similar to the keyrun residuals (Figure 
5.1-4) but residuals are actually less clustered in positive and negative residuals when 
the input overlap index is applied.  

 

Table 5.2-3. SMS main performance statistics from a SMS run with input overlap 
index for Other Food and the keyrun. 

Log-normal size selection (2019 keyrun) 
objective function (negative log likelihood):  -1232.3 
Number of parameters: 292 
Number of observations used in likelihood: 14892 
Akaike information criterion (AIC):   -1880.6 
unweighted objective function contributions (total):  
                Catch    CPUE    S/R   Stom.       Sum 
Cod              0.0     0.0     0.0  -256.2      -256 
Herring       -660.4  -118.7    -8.6     0.0      -788 
Sprat          -92.3  -104.0    -5.6     0.0      -202 
Sum           -752.7  -222.7   -14.2  -256.2     -1246 
 

With input overlap index for Other Food 
Objective function (negative log likelihood):  -1210.41 
Number of parameters: 292 
Number of observations used in likelihood: 14892 
Akaike information criterion (AIC):   -1836.83 
 
unweighted objective function contributions (total):  
                Catch    CPUE    S/R   Stom.       Sum 
Cod              0.0     0.0     0.0  -256.3      -256 
Herring       -662.2  -116.4   -20.4     0.0      -799 
Sprat          -71.9  -102.3    -5.9     0.0      -180 
Sum           -734.1  -218.7   -26.3  -256.3     -1235 
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Figure 5.2-9. Stomach contents residuals (“Dirichlet residuals”, Peter Lewy, pers. 
comm.). The y-axis show prey group and predator (cod) size class. The x-axis is time 
period sorted by year and quarter. Green dots show that the observed stomach con-
tents are lower than the model estimate. 
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Figure 5.2-10. M2 estimated from a SMS run with input overlap index for Other Food 
and from the keyrun. 
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Sensitivity towards consumption rates 

SMS can estimate a scaling factor for the input consumption rate by species. For cod 
this was estimated to 0.47, with a standard deviation at 0.07 for the 2019 keyrun. This 
run was used to illustrate the sensitivity of M2 to consumption rates.  

The performance statistics (Table 5.2-4 and Table 2.4-1) show a slightly better fit, when 
the factor to the input consumption rate is applied. Likelihood contribution from stom-
ach becomes better on the cost of the likelihood for catch at age. A similar exercise using 
the 2022 keyrun estimated a ration scaling factor at 0.46 (sd 0.07) and the same shifts in 
likelihood contributions as shown for the 2019 keyrun.  

M2 values are lower when a considerably lower consumption rate are applied, but the 
reduction is not linear to the reduction in consumption, as expected (Figure 5.2-11). The 
reduction in M2 is larger for herring than for sprat. 

  

Table 5.2-4 SMS main performance statistics from a SMS run with input overlap 
index for Other Food and the 2019 keyrun. 

Log-normal size selection (2019 keyrun) 
objective function (negative log likelihood):  -1232.3 
Number of parameters: 292 
Number of observations used in likelihood: 14892 
Akaike information criterion (AIC):   -1880.6 
unweighted objective function contributions (total):  
                Catch    CPUE    S/R   Stom.       Sum 
Cod              0.0     0.0     0.0  -256.2      -256 
Herring       -660.4  -118.7    -8.6     0.0      -788 
Sprat          -92.3  -104.0    -5.6     0.0      -202 
Sum           -752.7  -222.7   -14.2  -256.2     -1246 
 

With input consumption rates *0.47 
 
objective function (negative log likelihood):  -1244.78 
Number of parameters: 293 
Number of observations used in likelihood: 14892 
Akaike information criterion (AIC):   -1903.57 
 
unweighted objective function contributions (total):  
                Catch    CPUE    S/R   Stom.       Sum 
Cod              0.0     0.0     0.0  -273.5      -273 
Herring       -659.6  -119.9   -16.1     0.0      -796 
Sprat          -87.2  -103.6    -5.4     0.0      -196 
Sum           -746.7  -223.5   -21.5  -273.5     -1265 
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Figure 5.2-11. M2 estimated from a SMS run with lower (47%) consumption rates the 
keyrun. 
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Sensitivity towards residual natural mortality (M1). 

M1 values are assumed to be constant, independent of age and known without errors, 
however there are no data to actually support the exact values chosen. As part of the 
2019 keyrun it was decided to use 0.1 for herring and 0.2 (annual values) for sprat, with 
the justification that this are the values used for the same species for the North Sea 
keyrun. 

To show the sensitivity of the M1 values on the estimated M2 values, an SMS run was 
made where the M1 used in the 2022 keyrun were multiplied 0.5. 

 

Table 5.2-5. SMS main performance statistics from a run with M1 values are multi-
plied by 0.50 

M1 halved 
M1 for herring changed from 0.1 to 0.05 (annual values) 
M1 for herring changed from 0.2 to 0.1 (annual values) 
 
objective function (negative log likelihood):  -1614.62 
Akaike information criterion (AIC):   -2571.23 
 
unweighted objective function contributions:  
                 Catch      CPUE     SSB/R   stomach       Sum 
Cod                0.0       0.0       0.0    -320.4      -320 
Herring         -855.0    -141.6      -3.9       0.0     -1001 
Sprat           -179.9    -117.0      -7.7       0.0      -305 
Sum            -1035.0    -258.7     -11.5    -320.4     -1626 
 
Keyrun 2022 
 
objective function (negative log likelihood):  -1646.5 
Akaike information criterion (AIC):   -2635 
 
unweighted objective function contributions:  
                 Catch      CPUE     SSB/R   stomach       Sum 
Cod                0.0       0.0       0.0    -337.6      -338 
Herring         -857.6    -144.3      -6.5       0.0     -1008 
Sprat           -187.9    -118.5      -7.6       0.0      -314 
Sum            -1045.4    -262.7     -14.1    -337.6     -1660    
 
The model statistics are not affected much by the choice of M1, but the fits for both 
catch, cpue and stomach data are the best for the keyrun (unchanged M1 values). The 
model configuration is the same for the two runs, and is chosen on the basis of the 
keyrun, which may influence this result.  
 
A lower M1 value results in a lower recruitment, a higher F and a lower SSB for both 
herring and sprat (Figure 5.2-12). The larges changes are seen for sprat with the larg-
est absolute change in M1 (from 0.2 to 0.1). M2 values (Figure 5.2-13) are estimated 
higher with a lower M1 as the stock sizes of the prey stock are lower and cod has the 
same total consumption irrespective of M1. Cod, is an “other predator” with input 
stock size is not affected by the change in M1.  The sum of M1 and M2 (M), as used by 
the single species assessment is practically the same for herring. For sprat, with an 
higher absolute change in M1, a slightly lower M are estimated for a lower M2 and a 
slightly higher M2.  
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To conclude: Estimated values of recruitment, F and SSB depends on the value of M1. 
The estimated M2 depends on the applied M1 values as well, with the highest M2 for 
the lowest M1. The sum of M1 and estimated M2 (M) as used in the ICES single spe-
cies assessment becomes in most cases lower with a lower M1. As the stock size of the 
predator cod in this run is not affected by the change in M1, the results from the Bal-
tic Sea run may not be valid for e.g. the North Sea, where a change in M1 will also af-
fect the main part of the predators. 
  

 

 
Figure 5.2-12  Comparison of the 2022 keyrun and a run with M1 multiplied by 0.5. 
Summary output.  
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Figure 5.2-13  Comparison of the 2022 keyrun and a run with M1 multiplied by 0.5. 
Predation mortality (M2). 
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Figure 5.2-14 Comparison of the 2022 keyrun and a run with M1 multiplied by 0.5. 
Natural Mortality (M = M1 + M2).  
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Comparison with the old keyruns 

Comparison of the 2012 and 2019 keyruns 

Even though the 2012 and the 2019 keyrun are based on different stomach data, differ-
ent assumption about the only predator species and different M1, the two keyruns 
shows quite similar results for the summary output recruitment, SSB and mean F (Fig-
ure 5.2-15). Herring F and SSB are similar, while recruitment is considerably higher in 
the beginning of the time series in the 2019 keyrun, probably as an effect of the assumed 
larger cod stock. For Sprat, the trend in SSB and F is the same in the two runs, but F in 
the 2019 keyrun is consistently estimated lower and SSB higher.  

The difference in M2 for the two runs is more pronounced, especially for herring (Fig-
ure 5.2-16). Herring M2 is now estimated higher for all ages, and much higher for the 
first part of the time series. The difference is probably due to the assumption of a larger 
cod stock (especially of larger cod) in the 2019 keyrun, and the application of the pred-
ator-prey size selection model in the new keyrun, whereas the old version used a “con-
straint uniform” size selection. Herring M2 follows better the stock size of cod in the 
new run which may indicate that the uniform size selection option was not the best 
choice for the 2012 keyrun.  

Comparison of the 2019 and 2022 keyruns. 

The results from the 2019 and 2022 are very similar (Figure 5.2-15 and Figure 5.2-16), 
as few changes were made in in model configuration and data other than addition of 
stock assessment data for the period 2019-2021. The new data have revised F and SSB 
in the most recent years in the 2019 keyrun, with the largest changes for herring. This 
revision is also seen in the ICES single species assessment. Estimated values have 
changed slightly, with the largest for the M2 of 0-groups of herring and sprat.  
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Figure 5.2-15. Comparison of the 2012, 2019 and 2022 keyruns. Summary output. 
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Figure 5.2-16. Comparison of the 2012, 2019 and 2022 keyruns. Predation mortality 
(M2) 
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Comparison with the Gadget model run. 

A comparison of the SMS keyrun and the results from the Gadget model evaluated at   
WGSAM 2019 is presented for herring (Figure 5.2-17) and for sprat (Figure 5.2-18). The 
estimated M values are quite similar.  

 

 
Figure 5.2-17. Comparison of M (M=M1+M2) values for herring from the SMS 2019 
keyrun and a Gadget configuration. 
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Figure 5.2-18. Comparison of M (M=M1+M2) values for sprat from the 2019 keyrun 
and a Gadget configuration. 

 

Conclusion, keyruns 

2019 keyrun 

WGSAM 2019 discussed and reviewed the changes in input data and the results in 
detail and concluded that: 

The (2019) key-run as currently best possible run with SMS to provide natural mortal-
ity estimates. WGSAM recommends to use these values as input to single species stock 
assessments. The full time series should be used and not only an update for the years 
after the last key-run in 2012.  

However, there are also clear limitations with the approach and results have been 
shown to be sensitive to e.g., consumption rates, assumptions regarding M1 and treat-
ment of “Other Food” as well as the size selectivity of cod. In addition, the results de-
pend to a large extent on the outcome of the ICES Eastern Baltic cod assessment. Any 
bias in this assessment directly influences the predation mortality estimates. Assump-
tions around other food and constant vulnerabilities may also bias the natural mortal-
ity estimates to some extent. Contrarily, the very similar results from the Gadget model 
run are encouraging and increase the credibility of the provided M time series. 

WGSAM (2019) does not recommend using the uncertainty estimates around M as 
these are underestimated due to the assumption that the cod population is known 
without error.  
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2022 keyrun 

WGSAM 2022 reviewed the updated keyrun for the central Baltic Sea and concluded 
that it provides the best possible estimates of natural mortality for the Baltic sprat and 
central Baltic herring stocks. WGSAM recommends using these values as input to sin-
gle species stock assessments. The full time series should be used and not only an up-
date for the years after the last key-run in 2019. 

Main aspects of uncertainty and limitations highlighted for the 2019 model remain also 
for this updated keyrun. 

 

Identified areas of priority research 

WGSAM 2019 recommendation  

WGSAM 2019 recommended: 

1. More analyses on stomach data to get a better process understanding what is driving 
the systematic changes in relative stomach contents.  

2. A split of Other Food in parts where the time dynamic can be taken into account 
(e.g., flatfish and Saduria entomon) and a part that still needs to be assumed constant in 
time may be beneficial.  

3. The inclusion of spatial dynamics (either directly or via overlap coefficients) may 
improve the fit to data sources.  

4. A run with age 1 as recruits could be tried because input for the 0 group is highly 
uncertain.   

5. Account for the uncertainty in cod numbers in the model. 

 

Some work has been done since 2019 to address these recommendation. The develop-
ment of the R-package FishStomachs allows a consistent approach to analyse stomach 
data (Recommendation 1). Several papers (e.g. Neuenfeldt et al., 2022) discuss the poor 
state of the cod in the Eastern Baltic Sea in relation to e.g. food availability, parasite 
load and effects of environmental changes. A model like SMS is however not adequate 
to handle such issues.  

With respect to recommendation 5) the SMS model was extended such that uncertain-
ties of the stock size of “other predators” could be taken into account in e.g. the esti-
mation of the uncertainties on M2 values. The approach uses “observations” of stock 
size (e.g. 10 samples of stock size drawn from the “real” (WGBFAS estimate) cod stock 
size with a specified CV. These “observations” are used in the SMS likelihood where 
the “observed” and “real” data are used to estimate a model stock size. This resulting 
uncertainty of the model stock size are afterwards used in the calculation of e.g. M2 
values, in a similar way as for all other SMS output.  The likelihood contributions from 
comparing the model stock size with the “real” stock size are used together with the 
likelihood contributions from the catch, cpue and stomach observations.  Preliminary 
runs with the new version of SMS show that the best likelihood is obtained with a 
relative poor fit between the model cod stock size and the “real” stock size. The new 
SMS version has tendency to estimate a considerably lower stock size of cod than the 
“real” stock size. Said in another way, the likelihood for all (other) observations in SMS 
become better if the model stock size is decreased, on the cost of a poor fit between 
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model stock size and “real” stock size. More work is needed, before the new version of 
SMS can be applied.     

 

WGSAM 2022 recommendation 

For further work on the Baltic Sea SMS keyrun, WGSAM 2022 recommends the follow-
ing:   

1. Additional analyses of the cod diet to get a better process understanding of what is 
driving the systematic changes in relative stomach contents.  

2. A split of Other Food in parts where the time dynamic can be considered (e.g., floun-
der and Saduria entomon) directly or via a proxy and a part that still needs to be assumed 
constant in time may be beneficial. The availability of the different food groups for cod 
in the Baltic Sea have changed strongly over time (e.g. Haase et al. 2020).  

In 2019, the WGSAM reviewers made these two recommendations, on which no work 
has been done since then. The overestimations of the model in the amount of herring 
eaten by cod and the underestimations of other food and sprat (all in recent years, Fig-
ure 8), indicate that it is still a good idea to consider these recommendations. The recent 
changes in the condition of Baltic cod indicate that there has been likely a change in the 
food availability for cod. Although it could be difficult to implement these changes 
they could be quite important for reliable estimates of the model.  

3. The inclusion of spatial dynamics in the food consumption of cod (either directly or 
via overlap coefficients) may improve the fit to data sources.  

In 2019, the WGSAM reviewers made this recommendation, which has not been con-
sidered so far. As long as the spatial overlap between prey and predator is constant 
through time, incorporating an overlap coefficient should not have a strong effect on 
the model predictions as this is currently addressed via the vulnerability parameter. 
However, if there is a temporal trend in the spatial overlap between predator and the 
prey species, and/or if the prey age classes are unevenly distributed through space, an 
overlap coefficient (per prey age class) could make a difference for the model predic-
tions.  

4. Uncertainty and potential issues with the quality of the estimates for the age 0 prey 
classes before they could be used as input in a single species stock assessment. Discus-
sion with the stocks experts from the assessment working group on possible alternative 
data sources on the weight-at-age of age0 clupeids would be beneficial.  

5. Account for the uncertainty in cod number at age in the model, such that this uncer-
tainty is reflected in the uncertainties of estimated values like M2 and SSB. 

In 2019, the WGSAM reviewers made this recommendation, which has not been fully 
considered so far. Due to the current problems regarding the age-reading of Baltic cod, 
only a length-based abundance estimate is available for this stock. Consequently, cod 
is considered as a predator with a constant density in the model. The effect of the un-
certainties of cod stock densities and size distribution on the M2 predictions of SMS 
have not been tested.  

6. Provide a multispecies FMSY estimation that can be used as a comparison with the 
FMSY values from the stock-by-stock (SS) frameworks currently used for advice. 

The current model version of SMS of the Baltic Sea is not suitable for predictions of 
multispecies FMSY values. Unfortunately, due to the non-dynamic nature of cod in the 
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2022 key run, it is not straightforward to predict how fisheries mortality on cod may 
affect the other species in the food web through indirect effects.  It is advisable to cal-
culate this metric in the future if possible. The consideration of optimal yield trade-offs 
amongst the commercially exploited species in the complex is an important facet in 
improving fisheries management advice and an ecosystem-based approach to fisheries 
management. 
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APPENDIX 1: SMS, a stochastic age–length 
structured multispecies model applied to 
North Sea and Baltic Sea stocks 
Working document to ICES WKMULTBAL, March 2012 

By Morten Vinther and Peter Lewy,  

DTU Aqua. Technical University of Denmark, National Institute of Aquatic Resources, 
Charlottenlund Castle, DK-2920  Charlottenlund, Denmark. 

Overview 

SMS (Stochastic Multi Species model) is a fish stock assessment model which includes 
estimations of predation mortalities from observation of catches, survey indices and 
stomach contents. Estimation of predation mortality is based on the theory for preda-
tion mortality as defined by Andersen and Ursin (1977) and Gislason and Helgason 
(1985). SMS is a “forward running” model that operates with a chosen number of time 
steps (e.g. quarters of the year).  The default SMS is a one-area model, but the model 
has options for spatial explicit predation mortality given a known stock distribution. 

The model parameters are estimated using a maximum likelihood (ML) technique. Un-
certainties of the model parameters are estimated from the Hessian matrix and confi-
dence limits of derived quantities like historical fishing mortalities and stock 
abundances are estimated from the parameter estimates and the delta-method. SMS 
can be used to forecast scenarios and Management Strategy Evaluations, where fishing 
mortalities are estimated dynamically from Harvest Control Rules. 

This document describes the model structure and the statistical models used for pa-
rameter estimation. 

Model Structure 

Survival of the stocks 

The survival of the stocks is described by the standard exponential decay equation of 
stock numbers (N). 

 

or 

 

The instantaneous rate of total mortality, 𝑍𝑍𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞  by species s, age group a, year y and 
season q, is divided into three components; predation mortality (M2), fixed residual 
natural mortality (M1) and fishing mortality (F): 

𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞+1 = 𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞 𝑒𝑒−𝑍𝑍𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞 Eq. 1 

𝑁𝑁𝑠𝑠,𝑎𝑎+1,𝑦𝑦,+1,𝑞𝑞=1
= 𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞=𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑒𝑒−𝑍𝑍𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞=𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Eq. 2 
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For non-assessment species which act as predators (e.g. grey seal and horse mackerel) 
stock numbers are assumed known and must be given as input. 

Fishing mortality 

Fishing mortality, 𝐹𝐹𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞 is modelled from an extended separable model including age, 
year and season effects. However, as these effects may change over time a more flexible 
structure is assumed, allowing for such changes for specified periods. For convenience, 
the species index is left out in the following: 

where indices 𝐴𝐴1 and 𝐴𝐴2  are grouping of ages, (e.g. ages 1–3, 4–7 and 8–9) and 𝑌𝑌 is 
grouping of years (e.g. 1975–1989, 1990–2011). 

Eq. 3 defines that the years included in the model can be grouped into a number of 
period clusters (𝑌𝑌), in which the age selection (𝐹𝐹 

1) and seasonal selection (𝐹𝐹 
3) are as-

sumed constant. 𝐹𝐹 
2is the year effect, specifying the overall level of F for a particular 

year.  The grouping of ages for age selection, 𝐴𝐴1, and season selection, 𝐴𝐴2, can be de-
fined independently. 

2.2.1 Options for year effect  

Given a good relationship between F and effort the fishing mortality can be calculated 
from the observed effort. 

Natural Mortality 

Natural mortality is divided into two components, predation mortality (M2) caused by 
the predators included in the model and a residual natural mortality (M1), which is 
assumed to be known and is given as input. 

M2 of a prey species, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,  with size group 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 due to a predator species, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, with 
size group 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is calculated as suggested by Andersen and Ursin (1977) and Gislason 
and Helgason (1985). 

where 𝑅𝑅𝑅𝑅 denotes the total food ration (weight) of one individual predator per time 
unit, where S denotes the food suitability defined in section 6.2.3.2 and where AB is the 
total available (suitable) biomass. AB is defined as the sum of the biomass of preys 
weighted by their suitability. This total prey biomass includes also the so-called “other 
food” (OF) which includes all prey items not explicitly modelled, e.g. species of inver-
tebrates and non-commercial fish species. Other food species are combined into one 
group, such that the total available prey biomass becomes: 

𝑍𝑍𝑠𝑠,𝑎𝑎,𝑦𝑦,,𝑞𝑞 = 𝑀𝑀1𝑠𝑠,𝑎𝑎,𝑞𝑞 + 𝑀𝑀2𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞 + 𝐹𝐹𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞 
 

𝐹𝐹𝑎𝑎,𝑦𝑦,𝑞𝑞 =  𝐹𝐹𝑌𝑌,𝐴𝐴1
1  𝐹𝐹𝑦𝑦2  𝐹𝐹𝑌𝑌,𝐴𝐴2,𝑞𝑞

3     
Eq. 3 

𝐹𝐹𝑎𝑎,𝑦𝑦,𝑞𝑞 =  𝐹𝐹𝑌𝑌,𝐴𝐴1
1  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦   𝐹𝐹𝑌𝑌,𝐴𝐴2,𝑞𝑞

1      

𝑀𝑀2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦,𝑞𝑞 

= � �
  𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦,𝑎𝑎   𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦,𝑞𝑞   𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞(𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦,𝑎𝑎𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

   Eq. 4 
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M2 cannot directly be calculated from Eq. 4 because M2 also is included in the right 
hand term of Eq. 6 to calculate 𝑁𝑁�. 

As no analytical solution for 𝑀𝑀2 exists, 𝑀𝑀2 has to be solved numerically. If the time 
step considered is sufficiently small, for instance a quarter, 𝑀𝑀2 becomes small and can 
optionally be approximated by replacing the average number during the season, 𝑁𝑁�, on 
the right hand side of Eq. 4 by the stock at the beginning of the season, N. As the right 
hand side of equation now is independent of M2 this quantity can be calculated directly 
from Eq. 4 where AB (Eq. 5) is modified correspondingly. 

Use of size distribution by age 

The equations outlined in the section above provide M2 at-size groups. However, pre-
dation mortality by age is needed as well because F and catches are age-structured. If 
just one size group per age group of predators and preys is assumed Eq. 4 can be used 
directly where the age index substitutes the size group index in stock numbers 
(𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑎𝑎,𝑦𝑦,𝑞𝑞  =  𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦,𝑞𝑞) 

Given more size groups per age, the calculation of M2 at-age requires age–length-keys 
to split N at age to N at size group. 

 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠,𝑙𝑙𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞  denotes the observed  proportion of size group ls for a given species 
and age group, i.e. ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠,𝑙𝑙𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞𝑙𝑙𝑠𝑠 = 1 

Assuming that F and M1 depend only on age and that M2 only depends on length, M2 
at-age is estimated by: (leaving out the species, year and quarter indices). 

where 

and where 

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦,𝑞𝑞 = � �  �𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦,𝑞𝑞  𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦,𝑞𝑞  𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞�𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝��
𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

+ 𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,  𝑆𝑆𝑂𝑂𝑂𝑂 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞(𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  
Eq. 5 

𝑁𝑁� =
𝑁𝑁 (1 − 𝑒𝑒−(𝑀𝑀1+𝑀𝑀2+𝐹𝐹))

𝑀𝑀1 + 𝑀𝑀2 + 𝐹𝐹
 Eq. 6 

𝑁𝑁𝑠𝑠,𝑙𝑙𝑠𝑠,𝑦𝑦,𝑞𝑞 = �𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞  𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠,𝑎𝑎,𝑙𝑙𝑠𝑠,𝑦𝑦,𝑞𝑞 
𝑎𝑎

  Eq. 7 

𝑀𝑀2𝑎𝑎 =  𝑍𝑍𝑎𝑎
∑ 𝑁𝑁� 𝑎𝑎,𝑙𝑙  𝑀𝑀2𝑎𝑎,𝑙𝑙𝑙𝑙

𝐷𝐷𝑎𝑎
 

=  log(
𝑁𝑁𝑎𝑎

𝑁𝑁𝑎𝑎 − 𝐷𝐷𝑎𝑎
) 
∑ 𝑁𝑁� 𝑎𝑎,𝑙𝑙   𝑀𝑀2𝑙𝑙  𝑙𝑙

𝐷𝐷𝑎𝑎
 

 

𝑁𝑁�𝑎𝑎,𝑙𝑙 = 𝑁𝑁𝑎𝑎,𝑙𝑙  
1 − 𝑒𝑒−�𝐹𝐹𝑎𝑎,𝑙𝑙+𝑀𝑀1𝑎𝑎,𝑙𝑙+𝑀𝑀2𝑎𝑎,𝑙𝑙�

𝐹𝐹𝑎𝑎,𝑙𝑙 + 𝑀𝑀1𝑎𝑎,𝑙𝑙 + 𝑀𝑀2𝑎𝑎,𝑙𝑙
 

=  𝑁𝑁𝑎𝑎,𝑙𝑙  
1 − 𝑒𝑒−(𝐹𝐹𝑎𝑎+𝑀𝑀1𝑎𝑎+𝑀𝑀2𝑙𝑙)

𝐹𝐹𝑎𝑎 + 𝑀𝑀1𝑎𝑎 + 𝑀𝑀2𝑙𝑙
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denotes the number of individuals at-age that died within a season. 

Food suitability 

As suggested by Andersen and Ursin (1977) and Gislason and Helgason (1985) the size-
dependent food suitability of prey entity 𝑗𝑗 for predator entity 𝑖𝑖 is defined as the product 
of a species dependent vulnerability coefficient, 𝜌𝜌𝑖𝑖,𝑗𝑗, a size preference coefficient 
𝜚𝜚𝑖𝑖,𝑗𝑗(𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑗𝑗), and an overlap index 𝜊𝜊𝑖𝑖,𝑗𝑗,𝑞𝑞.  Suitability is then defined as: 

For the “other food” part suitability is defined as: 

Where 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the average size of the predator species. Eq. 9 extends the original equa-
tion, to allow predator size dependent suitability for other food, for values of  𝜐𝜐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
different from zero. The overlap index may change between seasons, but is assumed 
independent of year and sizes. 

Log-normal distributed size selection 

Several functions can be used for the size preference for a prey. Andersen and Ursin 
(1977) assumed that a predator has a preferred prey size ratio and that a prey twice as 
big as the preferred size is as attractive as another half the prey size. This was formu-
lated as a log-normal distribution: 

Where 𝜂𝜂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the  natural logarithm of the preferred size ratio, 𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 is the "variance" 
of relative preferred size ratio, expressing how selective a predator is with respect to 
the size of a prey and where 𝑊𝑊𝑙𝑙𝑠𝑠is the mean weight for a species size group. 

The basic size selection equation (Eq. 10) has been extended by modifying the preferred 
size ratio parameter. 

 

𝐷𝐷𝑎𝑎 = �𝑁𝑁�𝑎𝑎,𝑙𝑙  (𝐹𝐹𝑎𝑎 + 𝑀𝑀1𝑎𝑎 + 𝑀𝑀2𝑙𝑙)     
𝑙𝑙

     

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞�𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
= 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝜚𝜚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  𝜊𝜊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞  

Eq. 8 

𝑆𝑆𝑂𝑂𝑂𝑂 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞�𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
= 𝜌𝜌𝑂𝑂𝑂𝑂 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    𝜊𝜊𝑂𝑂𝑂𝑂 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞 exp �𝜐𝜐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  log �𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑞𝑞 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⁄  ��  

Eq. 9 

𝜚𝜚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = exp

⎝

⎜
⎛
−
�log�

𝑊𝑊𝑙𝑙𝑝𝑝𝑟𝑟𝑒𝑒𝑒𝑒
𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

� −  𝜂𝜂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
�
2

2 𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2

⎠

⎟
⎞

; 0

< 𝜚𝜚 ≤  1 

Eq. 10 

𝜚𝜚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

= exp

⎝

⎜
⎛
−
�log�

𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

� −  �𝜂𝜂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝜛𝜛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  log �𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�� 
�
2

2 𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2

⎠

⎟
⎞
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Where 𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 specify a prey-specific adjustment term for the preferred size ratio, and 
where 𝜛𝜛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  specifies how the preferred size range can change by predator size. 

Uniform size selection 

Alternatively, a uniform size preference can be assumed within the range of the ob-
served size ratio and zero size selection outside that ratio: 

where 𝜂𝜂𝑀𝑀𝑀𝑀𝑀𝑀 and 𝜂𝜂𝑀𝑀𝑀𝑀𝑀𝑀  are the observed minimum and maximum predator/prey size ra-
tios. 

7.2.3.2.2.1. Constraint uniform size selection 

The uniform size preference does not take into account that the preferred preda-
tor/prey size ratio might change by size, such that larger individuals select relatively 
smaller preys (Floeter and Temming, 2005; Sharft et al., 2000).   A way to account for 
that is to assume that the fixed minimum and maximum constants, 𝜂𝜂𝑀𝑀𝑀𝑀𝑀𝑀 and 𝜂𝜂𝑀𝑀𝑀𝑀𝑀𝑀, 
depend on the predator size: 

 

The regression parameters are estimated externally by quantile regression (e.g. 
Koenker and Bassett, 1978) using e.g. the 2.5% and 97.5% percentiles of stomach con-
tent data. Figure 7.1 shows an example of such regression. 

 

Figure 7.1. Quantile regression of stomach contents observations (Baltic cod eating cod), with 2.5%, 
50% and 97.5% lines shown. Predator and prey size in weight. 

Adjustment of age–size keys 

For the North Sea configuration, age length keys were obtained from the IBTS surveys 
where the same gear (i.e. the GOV trawl) has been used in the period considered. This 
allows an adjustment of the observed ALK’s to account for mesh size selection. Using 
a logistic length-dependent selection function, selection is defined as: 

𝜚𝜚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

= �
1      for  𝜂𝜂𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  ≤   

𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 ≤  𝜂𝜂𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0      for values outside observed range                 
  �  

Eq. 12 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

= �
1   for  𝑈𝑈1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑈𝑈2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  log(𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ≤   log�

𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�  ≤  𝑈𝑈3𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑈𝑈4𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  log(𝑊𝑊𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

0       for values outside regression range                                                                                                                          
  �  
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Where 𝑆𝑆1𝑠𝑠 and 𝑆𝑆2𝑠𝑠  are species-specific gear selection parameters. 

The adjusted ALK can then be derived from the observed ALK by: 

which finally has to be standardised to 1 for each age before used in Eq. 7. 

Growth 

Not implemented yet! 

Food ration 

Food ration, RA, pr. time step is given as input or estimated from mean weight by size 
group assuming an exponential relationship between ration and body weight W. 

where the coefficient γ and 𝜍𝜍 are assumed to be known. 

Body weight at-size group 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is estimated from mean length within the size group 
and a length–weight relationship. 

Area-based SMS 

SMS has three area explicit options: 

1 ) Default one area model. Both F and M2 are calculated for the entire stock 
area; 

2 ) M2 by area. M2 is calculated by subareas, but F is assumed global; 
3 ) M2 and F by area. Both M2 and F are calculated by area (forecast only). 

Stock distribution 

For the area-based models, the stock is assumed redistributed between areas between 
each seasonal time step. 

Where DIST is a stock distribution key that sums up to 1 

The calculation of M2 for Option 1) is provided in the previous section. 

The method for option 3) is very similar, but the calculations must be done by each 
subarea separately. 

𝑆𝑆𝑆𝑆𝑠𝑠(𝑙𝑙) =  1 �1 + 𝑒𝑒(𝑆𝑆1𝑠𝑠− 𝑆𝑆2𝑠𝑠 ∗ 𝑙𝑙)�⁄   

𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠,𝑙𝑙𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑎𝑎 =   ObservedALK 𝑠𝑠,𝑙𝑙𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞    𝑆𝑆𝑆𝑆𝑠𝑠,𝑙𝑙𝑠𝑠⁄  
 

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞 = 𝛾𝛾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞  𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜍𝜍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  Eq. 2 

 𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞   𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    

 � 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

=  1           

𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =   𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   +  𝑀𝑀1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
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where 𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is calculated as given in Eq. 4. 

Option 2) is the hybrid, where F is global but M is calculated by area. 

𝑁𝑁� in an area is calculated in the usual way 

The total number of individuals died due to predation mortality (DM2) then becomes: 

M2 for the whole stock can be estimated from: 

where 

and 𝐷𝐷𝐷𝐷 and 𝐷𝐷𝐷𝐷1 represent the number that died due to fishery and residual mortality 
(M1) and are calculated in similar ways as specified for DM2 (Eq. 3). 

Area based suitability parameters 

For the ”one area” SMS suitability is defined by Eq. 8. 

The area-based version of suitability uses an area-specific vulnerability and overlap 
index, while the size preference (𝜚𝜚) is assumed independent of area. 

 

Statistical models 

Three types of observations are considered: Total international catch-at-age; survey 
abundance indices and relative stomach content. For each type, a stochastic model is 
formulated and the likelihood function is calculated. As the three types of observations 
are independent, the total log likelihood is the sum of the contributions from three 
types of observations. A stock–recruitment (penalty) function is added as a fourth con-
tribution. 

Catch-at-age 

Catch-at-age observations are considered stochastic variables subject to sampling and 
process variation. The probability model for these observations is modelled along the 
lines described by Lewy and Nielsen (2003): 

𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =   𝐹𝐹𝑎𝑎   +  𝑀𝑀1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +  𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
 

𝑁𝑁�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =    𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
1 −  𝑒𝑒−𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
  

𝐷𝐷𝐷𝐷2𝑎𝑎 = � 𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 𝑁𝑁�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎       Eq. 3 

𝑀𝑀2𝑎𝑎 = log �
𝑁𝑁𝑎𝑎

𝑁𝑁𝑎𝑎 −  𝐷𝐷𝑎𝑎
�  
𝐷𝐷𝐷𝐷2𝑎𝑎
𝐷𝐷𝑎𝑎

          

𝐷𝐷𝑎𝑎 = � 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 + 𝐷𝐷𝐷𝐷1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐷𝐷𝐷𝐷2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎                

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

  
�𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

=  𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   𝜚𝜚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  𝜊𝜊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑞𝑞

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   
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Catch-at-age is assumed to be lognormally distributed with log mean equal to log of 
the standard catch equation. The variance is assumed to depend on age and season and 
to be constant over years. To reduce the number of parameters, ages and seasons can 
be grouped, e.g. assuming the same variance for age 3 and age 4 in one or all seasons. 
Thus, the likelihood function, LCATCH, associated with the catches is: 

Where 

Leaving out the constant term, the negative log-likelihood of catches then becomes: 

Where 𝑁𝑁𝑁𝑁𝑁𝑁is the number of years in the time-series. 

Annual catches 

Catch-at-age numbers by quarter have not been available for some of the demersal 
North Sea stocks in recent years. For use in the default SMS configuration of the North 
Sea, where quarterly time step is used, it is assumed that the seasonal distribution (the 
𝐹𝐹3 parameter in Eq. 3) is known and given as input. The likelihood function is modified 
to make use of the observed annual catches. 

 

Survey indices 

Similarly to the catch observations, survey indices, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞  are assumed to be 
log-normally distributed with mean: 

where Q denotes catchability by survey and  𝑁𝑁�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is mean stock number during the 
survey period. Catchability may depend on a single age or groups of ages. Similarly, 

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

= �
1

 𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠,𝑎𝑎,𝑞𝑞
  √2𝜋𝜋  𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞

    𝑒𝑒𝑒𝑒𝑒𝑒 �−
�log�𝐶𝐶𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞� − 𝐸𝐸�log�𝐶𝐶𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞���

2

2 𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠,𝑎𝑎,𝑞𝑞
2 �    

Eq. 4 

𝐸𝐸�log�𝐶𝐶𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞�� 
= log�𝐹𝐹𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞 𝑁𝑁�𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞�    

𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  = − log(𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)  

∝  NOY � log�𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠,𝑎𝑎,𝑞𝑞�
𝑠𝑠,𝑎𝑎,𝑞𝑞

  

+  � �log�𝐶𝐶𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞� − 𝐸𝐸�log�𝐶𝐶𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞���
2 2𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠,𝑎𝑎,𝑞𝑞

2�
𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞  

         

Eq. 
5 

𝐸𝐸�log�𝐶𝐶𝑠𝑠,𝑎𝑎,𝑦𝑦�� 
= log��𝐹𝐹𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞

𝑞𝑞

  𝑁𝑁�𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞  �    

𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

= �
1

 𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠,𝑎𝑎
  √2𝜋𝜋  𝑠𝑠,𝑎𝑎,𝑦𝑦

    𝑒𝑒𝑒𝑒𝑒𝑒 �−
�log�𝐶𝐶𝑠𝑠,𝑎𝑎,𝑦𝑦� − 𝐸𝐸�log�𝐶𝐶𝑠𝑠,𝑎𝑎,𝑦𝑦���

2

2 𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠,𝑎𝑎
2 �    

Eq. 6 

𝐸𝐸�log�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞�� 
=   log�𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎  𝑁𝑁�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑞𝑞� 

 
  Eq. 7 
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the variance of log cpue, 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2  may be estimated individually by age or by clusters 
of age groups. The negative log-likelihood is on the same form as Eq. 4. 

Stomach contents 

The stomach contents observations, which are the basis for modelling predator food 
preference, consist of the average proportions by weight of the stomach content aver-
aged over the stomach samples in the North Sea. The model observations, 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑦𝑦,𝑞𝑞, are given for combinations of prey and predator species and 
size classes. In the following, we use entity 𝑖𝑖 for a combination of predator species and 
predator size class (e.g. saithe 50–60 cm) and entity 𝑗𝑗 for the combination of prey spe-
cies and prey size class eaten by entity 𝑖𝑖. Model observations are therefore defined as  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ,𝑗𝑗,𝑦𝑦,𝑞𝑞. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ,𝑗𝑗,𝑦𝑦,𝑞𝑞 is assumed to be a set of stochastic variables subject to sampling and process 
variations. For a given predator entity the observations across prey entities 𝑖𝑖 are con-
tinuous variables which sum to one. Thus, the probability distribution of the stomach 
observations for a given predator including all prey/length groups needs to be a mul-
tivariate distribution defined on the simplex. As far as the authors know, the Dirichlet 
distribution is the only distribution fulfilling this requirement. Leaving out the year 
and season index, the Dirichlet density function for a predator entity 𝑖𝑖 with 𝑘𝑘 observed 
diet proportions 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,1, … 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑘𝑘−1 > 0 and the parameters 𝑝𝑝1, … , 𝑝𝑝𝑘𝑘 > 0 follows the 
probability density given by: 

Where 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑘𝑘 =  1 −�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ,𝑗𝑗

𝑘𝑘−1

𝑗𝑗=1

 

and 

𝑝𝑝𝑖𝑖 =  �𝑝𝑝𝑖𝑖,𝑗𝑗

𝑘𝑘

𝑗𝑗=1

 

The mean and variance of the observations in the Dirichlet distribution are equal to: 

𝐸𝐸�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗� =  
𝑝𝑝𝑖𝑖 ,𝑗𝑗
𝑝𝑝𝑖𝑖

 

 

𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  
= − log(𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)  
∝  𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 � log�𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠,𝑎𝑎�

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠,𝑎𝑎

  

+  � �log�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠,𝑎𝑎,𝑦𝑦� − 𝐸𝐸�log�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠,𝑎𝑎,𝑦𝑦���
2 2𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠,𝑎𝑎

2�
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠,𝑎𝑎,𝑦𝑦  

         

Eq. 
8 

𝑓𝑓𝑖𝑖 = 𝑓𝑓�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,1, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ,𝑘𝑘−1  | 𝑝𝑝𝑖𝑖,1, … , 𝑝𝑝𝑖𝑖,𝑘𝑘 �

=
Γ(𝑝𝑝𝑖𝑖)

∏ Γ�𝑝𝑝𝑖𝑖,𝑗𝑗�𝑘𝑘
𝑗𝑗=1

 �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ,𝑗𝑗
𝑝𝑝𝑖𝑖,𝑗𝑗−1

𝑘𝑘

𝑗𝑗=1

  Eq. 9 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗� =  
𝐸𝐸�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗�  �1 − 𝐸𝐸�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗��

𝑝𝑝𝑖𝑖 + 1
 Eq. 10 
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The expected value of the stomach contents observations is modelled using the theory 
developed by Andersen and Ursin (1977): 

where the food suitability function, 𝑆𝑆, is defined by Eq. 8 and Eq. 9. We use the same 
assumptions as for the calculation of M2 (Eq. 4), the small time steps used in the model 
allow for an approximation of 𝑁𝑁�𝑗𝑗 by 𝑁𝑁𝑗𝑗 in Eq. 11. 

Regarding the variance of stomach content observations in unpublished analyses of 
the present authors of data from the North Sea stomach-sampling project 1991 (ICES, 
1997), the authors indicate that the relationship between the variance and the mean of 
the stomach contents may be formulated in the following way: 

where 𝑈𝑈𝑖𝑖,𝑦𝑦,𝑞𝑞 is a known quantity reflecting the sampling level of a predator entity, e.g. 
the number of hauls containing stomach samples of a given predator and size class. 
𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is a predator species-dependent parameter linking the sampling level and vari-
ance. Equating Eq. 10 and Eq. 12 implies that: 

 

 

Insertion of Eq. 13 into Eq. 11 results in: 

𝑃𝑃𝑖𝑖,𝑗𝑗,𝑦𝑦,𝑞𝑞 = �𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑈𝑈𝑖𝑖,𝑦𝑦,𝑞𝑞 − 1�  
𝑁𝑁�𝑗𝑗   𝑊𝑊𝑗𝑗   𝑆𝑆𝑖𝑖,𝑗𝑗�𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑗𝑗�

∑ �𝑁𝑁�𝑗𝑗  𝑊𝑊𝑗𝑗  𝑆𝑆𝑖𝑖,𝑗𝑗�𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑗𝑗��  +  𝑂𝑂𝑂𝑂𝑖𝑖  𝑆𝑆𝑂𝑂𝑂𝑂 ,𝑖𝑖(𝑙𝑙𝑖𝑖)𝑗𝑗

.  

The parameters, 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑦𝑦,𝑞𝑞 are uniquely determined through stock numbers, total mortal-
ity, suitability parameters and 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

Assuming that the diet observations for the predator length groups are independent, 
the negative log likelihood function including all predators and length groups is de-
rived from Eq. 9: 

Modification of the stomach contents model 

The stomach contents observations,  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑦𝑦,𝑞𝑞  are given for combina-
tions of prey and predator species and size classes. For a diet consisting of a large pro-
portion “other food” and several species and prey size classes, the proportion of the 
individual combination of species and size becomes small (less than 0.1%) for several 
prey entities. Very small proportions, in combination with a modest sampling size per 
stratum, make the estimation of parameters impossible in some cases. To overcome the 
problem, SMS has an option to let the likelihood use proportion summed over all size 
classes for a given prey species such that the prey entity equals the species. 

𝐸𝐸�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗� =  
𝑁𝑁�𝑗𝑗   𝑊𝑊𝑗𝑗   𝑆𝑆𝑖𝑖,𝑗𝑗�𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑗𝑗�

∑ �𝑁𝑁�𝑗𝑗  𝑊𝑊𝑗𝑗  𝑆𝑆𝑖𝑖,𝑗𝑗�𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑗𝑗��  +  𝑂𝑂𝑂𝑂𝑖𝑖  𝑆𝑆𝑂𝑂𝑂𝑂 ,𝑖𝑖(𝑙𝑙𝑖𝑖)𝑗𝑗

 =
𝑝𝑝𝑖𝑖,𝑗𝑗
𝑝𝑝𝑖𝑖

 Eq. 11 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗,𝑦𝑦,𝑞𝑞� =  
𝐸𝐸�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗,𝑦𝑦,𝑞𝑞�  �1 − 𝐸𝐸�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗,𝑦𝑦,𝑞𝑞��

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   𝑈𝑈𝑖𝑖,𝑦𝑦,𝑞𝑞
 Eq. 12 

𝑃𝑃𝑖𝑖,𝑦𝑦,𝑞𝑞 =  𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑈𝑈𝑖𝑖,𝑦𝑦,𝑞𝑞 − 1. Eq. 13 

𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  − log(𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =  − � log�𝑓𝑓𝑖𝑖,𝑗𝑗,𝑦𝑦,𝑞𝑞�
𝑖𝑖,𝑗𝑗,𝑦𝑦,𝑞𝑞

 Eq. 14 
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The same grouping of all sizes from a prey is applied when the uniform size selection 
option (Eq. 12 and Eq. 1) is used. The likelihood function is the same as used for stom-
ach observations that include prey size. 

Stock–recruitment 

In order to enable estimation of recruitment in the last year for cases where survey 
indices catch from the recruitment age is missing (e.g. saithe), and to estimate param-
eters for forecast use, a stock–recruitment relationship 𝑅𝑅𝑠𝑠,𝑦𝑦 = 𝑅𝑅�𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦| 𝛼𝛼𝑠𝑠,𝛽𝛽𝑠𝑠� penalty 
function is included in the likelihood function. 

Recruitment to the model takes place in the same season (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) and at the same age 
(𝑓𝑓𝑓𝑓) for all species. It is estimated from the Spawning–Stock Biomass (SSB) in the first 
season (𝑓𝑓𝑓𝑓) of the year, and a stock–recruitment relation. SSB is calculated from stock 
numbers, proportion mature (PM) and mean weight in the sea. 

 

 

At present, the Ricker (Eq. 16), the Beverton and Holt (Eq. 17), segmented regression 
(Eq. 18) and geometric mean are implemented. 

 

 

 

 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦 =  �𝑁𝑁𝑠𝑠,𝑦𝑦,𝑎𝑎,𝑞𝑞=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑎𝑎

 𝑃𝑃𝑃𝑃𝑠𝑠,𝑦𝑦,𝑎𝑎,𝑞𝑞=𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒  𝑊𝑊𝑠𝑠,𝑦𝑦,𝑎𝑎,𝑞𝑞=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  Eq. 15 

𝑅𝑅𝑠𝑠,𝑦𝑦 =  𝛼𝛼𝑠𝑠 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦−𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓 𝑒𝑒�𝛽𝛽𝑠𝑠 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦−𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓� Eq. 16 

𝑅𝑅𝑠𝑠,𝑦𝑦 =  
𝛼𝛼𝑠𝑠  𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦−𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓

1 + 𝛽𝛽𝑠𝑠 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦−𝑓𝑓𝑓𝑓,𝑞𝑞
 Eq. 17 

𝑅𝑅𝑠𝑠,𝑦𝑦 =  �
𝛼𝛼𝑠𝑠 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦−𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓                 for  𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦−𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓 < 𝛽𝛽𝑠𝑠 
𝛼𝛼𝑠𝑠  𝛽𝛽𝑠𝑠                                   for  𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦−𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓 < 𝛽𝛽𝑠𝑠

  Eq. 18 
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Assuming that recruitment is lognormally distributed, the negative log likelihood, 𝑙𝑙𝑆𝑆𝑆𝑆  , 
equals: 

Where 𝑁𝑁𝑁𝑁𝑁𝑁 gives the number of years selected and where Eq. 20 gives the expected 
recruitment for the Ricker case. 

Total likelihood function and parameterisation 

The total negative log likelihood function, 𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , is found as the sum of the four terms: 

𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑙𝑙𝑆𝑆𝑆𝑆 

To ensure uniquely determined parameters it is necessary to fix part of them. For the 
F-at-age model (Eq. 3) the year selection in the beginning of each year range (Y) has 
been fixed to one (𝐹𝐹𝑦𝑦=first year in each group of years

2 = 1). The season effect in the last season 
of all years and ages is also fixed (𝐹𝐹𝑦𝑦,𝑎𝑎,𝑞𝑞=𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

3 = 1 number of seasons⁄ ). 

Eq. 4 and Eq. 8 indicate that it is only possible to determine relative vulnerability pa-
rameters, 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. We have chosen to fix the vulnerability of other food for all pred-
ators to 1.0. Similarly, the biomass of other food OFpred has arbitrarily been set (e.g. at 
1 million tonnes) for each predator. The actual value by predator was chosen to obtain 
estimates of vulnerability parameters for the fish prey at around 1. Other parameters 
than suitability are practically unaffected of the actual choice of biomass of other food. 

In the food suitability function (Eq. 8 and Eq. 9), vulnerability and overlap effects can-
not be distinguished. Hence the overlap parameters were fixed for at least one season. 
In practice, however, several combinations of overlap have to be fixed (at e.g. 1). 

Initial stock size, i.e. the stock numbers in the first year and recruitment over years are 
used as parameters in the model while the remaining stock sizes are considered as 
functions of the parameters determined by Eq. 1 and Eq. 2. 

The year effect (𝐹𝐹𝑦𝑦,𝑠𝑠
2 ) in the separable model for fishery mortality (Eq. 3) takes one pa-

rameter per species for each year in the time-series which sum up to a considerable 
number of parameters. To reduce this high number of parameters, the year effect can 
optionally be modelled from a cubic spline function which requires fewer parameters. 
The number of knots must be specified if this option is used. 

Another way to reduce the number of parameters is to substitute the parameters 
𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  and 𝜎𝜎𝑆𝑆𝑆𝑆 used in the likelihood functions by their empirical estimates. 
This optional substitution has practically no effect on the model output and the associ-
ated uncertainty. 

Appendage 1 gives an overview of parameters and variables in the model. 

𝑙𝑙𝑆𝑆𝑆𝑆  
= − log(𝐿𝐿𝑆𝑆𝑆𝑆)  
∝  𝑁𝑁𝑁𝑁𝑁𝑁� log(𝜎𝜎𝑆𝑆𝑆𝑆 𝑎𝑎)

𝑠𝑠

  

+  � �log�𝑁𝑁𝑠𝑠𝑠𝑠,𝑎𝑎=𝑓𝑓𝑓𝑓,𝑦𝑦,𝑞𝑞=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� − 𝐸𝐸�log�𝑅𝑅𝑠𝑠,𝑦𝑦���
2 2𝜎𝜎𝑆𝑆𝑆𝑆 𝑠𝑠

2�
𝑠𝑠,𝑎𝑎,𝑦𝑦  

         

Eq. 19 

𝐸𝐸(log(𝑅𝑅𝑠𝑠)) =  log �𝛼𝛼𝑠𝑠 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦−𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓  𝑒𝑒�𝛽𝛽𝑠𝑠 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑦𝑦−𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓�� Eq. 20 
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The parameters are estimated using maximum likelihood (ML) i.e. by minimizing the 
negative log likelihood, 𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 . The variance/covariance matrix is approximated by the 
inverse Hessian matrix. Uncertainties of functions of the estimated parameters (such 
as biomass and mean fishing mortality) are calculated using the delta method. 

SMS forecast 

SMS is a forward-running model and can as such easily be used for forecast scenarios 
and Management Strategy Evaluation (MSE). SMS used the estimated parameters to 
calculate the initial stock numbers and exploitation pattern used in the forecast. Exploi-
tation pattern is assumed constant in the forecast period, but is scaled to a specified 
average F, derived dynamically from Harvest Control Rules (HCR).  Recruits are pro-
duced from the stock–recruitment relation, input parameters and a noise term. 

Recruitment 

Recruitment is estimated from the available stock–recruitment relationships, f(SSB), 
(see Section 6.3.4) and optionally a lognormal distributed noise term with standard de-
viation std. 

 

 

Where NORM(0,1) is a random number drawn from a normal distribution with 
mean=0 and standard deviation 1. A default value for std can be obtained from the 

estimated variance of stock–recruitment relationship, sSR
2σ  (Eq. 19) 

Application of the noise function for the lognormally distributed recruitment gives on 
average a median recruitment as specified by f(SSB). Optionally, recruitment can be 
adjusted with half of the variance, to obtain, on average, a mean recruitment given by 
f(SSB). 

 

 

Harvest Control Rules 

Several HCRs have been implemented, e.g. constant F and the ICES interpretation of 
management according to MSY for both short- and long-lived species. Selected, more 
complex management plans in force for the North Sea and Baltic Sea species have also 
been implemented. 

Model validation 

Model validation (in the years 2004–2009), was focused on the performance of the 
model using simulated data from an independent model and simulated data produced 
by the SMS model itself. The independent model was implemented using R (R Devel-
opment Core Team. 2011) and include a medium complex North Sea configuration 
(nine species, of which four are predators and eight species preys). The simulation 
model follows the SMS model specification with an addition of von Bertallanfy growth 
curves to model mean length-at-age.  Variance around mean length-at-age was as-
sumed to increase by increasing age. This combined age–length approach made it pos-
sible to simulate all the data needed for model verification. Test dataset from the 
simulation model included 20 years of catch data, one survey time-series per species 

𝑅𝑅 = 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆)  𝑒𝑒(𝑠𝑠𝑠𝑠𝑠𝑠  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,1)) Eq. 21 

𝑅𝑅 = 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆)  𝑒𝑒(𝑠𝑠𝑠𝑠𝑠𝑠  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,1)) 𝑒𝑒�−�𝑠𝑠𝑠𝑠𝑠𝑠
2/2�� Eq. 22 
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covering all years and ages, and four quarterly stomach samples in year ten including 
stomach observations for all predator length groups. Data from the independent sim-
ulation model was used to verify that the SMS model actually works as intended and 
to investigate model sensitivity with respect to observation errors on catch, survey 
cpue and stomach data. 

To test if model parameters were identifiable when uncertainties estimated from real 
data were applied, the SMS model was modified to produce observations with the es-
timated observation noise of catch, survey and stomach data. The experiment consists 
of the following steps: 

1 ) Estimate model parameters using the SMS model and available North Sea 
data. 

2 ) Generate 100 set of input data from SMS output (expected catch numbers, 
survey indices and stomach observations) and their associated variance of 
these values). 

3 ) Let SMS estimate 100 sets of parameters from the 100 sets of input data. 

This procedure results in one set of “true parameters”, 𝜃𝜃 =  (𝜃𝜃1, … , 𝜃𝜃𝑘𝑘) and 100 sets of 
estimated parameters, 𝜃𝜃�𝑗𝑗 =  �𝜃𝜃�1,𝑗𝑗, … , 𝜃𝜃�𝑘𝑘,𝑗𝑗�, 𝑗𝑗 = 1, … , 𝑘𝑘. Based on the 100 repetitions, and 
for each of the k parameters, the mean and the standard deviation of the mean 𝜃𝜃�̅𝑖𝑖 and 
𝜎𝜎𝑖𝑖 and hence the 95% confidence limits was calculated. Finally, the proportion of the 
parameters was calculated for which 𝜃𝜃𝑖𝑖 lies in the 95% confidence interval of 𝜃𝜃�̅𝑖𝑖. 

The test showed that parameters are identifiable for most “real” North Sea configura-
tions. For some species with relatively few diet observations, size selection parameters 
(Eq. 11) and the variance parameter (V) linking the stomach sampling level to the var-
iance of Dirichlet distribution (Eq. 12 and Eq. 13), were outside the 95% confidence 
interval of 𝜃𝜃�̅𝑖𝑖. 

A more informal testing of the model has been done by simply using the model. SMS 
has been applied to produce the so called keyrun for both the species rich North Sea 
system (ten species with stock number estimation including seven prey species, and 16 
species of “other predators”) (ICES, WGSAM 2011) and the species poor Baltic Sea 
(cod, herring and sprat, one predator and three prey species) (WGSAM 2008,  
WKMAMPEL 2009). In addition, the model has been used in single-species mode for 
the ICES advice of blue whiting in the North East Atlantic (WGWIDE 2011) since 2005 
and several sandeel stocks in the North Sea since 2009 (WGNSSK 2011). For MSE pur-
poses, the model has been applied for sandeel and Norway pout in the North Sea (AG-
SANNOP 2007 ), blue whiting and pelagic stocks in the Baltic (WKMAMPEL 2009) in 
both single and multispecies mode. 

SMS is essentially an extension of the statistical models normally used for single-spe-
cies stock assessment. This allows the use the long list of available diagnostics tools, 
e.g. residuals plots, and retrospective analysis, developed for model testing of submod-
els for catch-at-age and survey indices. For stomach observations, however, fewer es-
tablished methods are available. To apply reliable residual plots for stomach 
observations residuals need to be independent, which are not the case for the stomach 
contents model as the observations with respect to prey entity sum to one. Instead, we 
do the following: Let the predator entity, year and quarter be given and consider the 
stomach contents observations following the Dirichlet distribution: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟 = �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟,1, … , 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑟𝑟,𝑘𝑘−1�~𝐷𝐷𝐷𝐷𝐷𝐷(𝑝𝑝𝑟𝑟,1, … , 𝑝𝑝𝑟𝑟,𝑘𝑘) 
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Where 𝑟𝑟 equals the combined entity of predator entity, year and quarter and where 
𝑝𝑝𝑟𝑟,𝑗𝑗, 𝑗𝑗 = 1, … , 𝑘𝑘 represent the Dirichlet parameters estimated. Instead of considering the 
weight proportions, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, we consider absolute weights in the stomachs, 𝑊𝑊𝑟𝑟,𝑗𝑗 , 𝑗𝑗 =
1, … , 𝑘𝑘, where 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟,𝑗𝑗 =
𝑊𝑊𝑟𝑟,𝑗𝑗

∑ 𝑊𝑊𝑟𝑟,𝑗𝑗𝑗𝑗
 

If we assume that 𝑊𝑊𝑟𝑟,𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑘𝑘 are independent and follow gamma distributions 
with the same scale parameter, 𝜃𝜃𝑟𝑟, i.e. 

𝑊𝑊𝑟𝑟,𝑗𝑗  ~ Γ(𝑝𝑝𝑟𝑟,𝑗𝑗 ,𝜃𝜃𝑟𝑟)  𝑗𝑗 = 1, … , 𝑘𝑘 

it is well known that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟  follows the Dirichlet distribution. We now assume that the 
opposite is the case (we have to prove that!) and hence assume that the absolute 
weights, 𝑊𝑊𝑟𝑟,𝑗𝑗  are independent gamma distributed variables. We then transform these 
observations to obtain normal distributed residuals: Leaving out the indices, we get 
that 𝑈𝑈 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑊𝑊, 𝑝𝑝,𝜃𝜃), where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the distribution function of the gamma 
distribution, is uniformly distributed. To obtain normally distributed variables, 𝑈𝑈 is 
finally transformed to 𝑉𝑉 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑈𝑈), where 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 equals the inverse of the distribu-
tion function of the standardized normal distribution. This means that 𝑉𝑉 is our new 
residuals for stomach contents observations. 

To obtain the absolute weight of the prey entities form the relative stomach content, 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, we have to know the total stomach weight for the predator entity. We have not 
extracted those from the basic observations, but simply assumed that the total weight 
in the stomach is proportional to the number of stomachs sampled for a given predator 
entity. 

Implementation 

The SMS has been implemented using the AD Model Builder (Fournier et al., 2011), 
which is freely available from ADMB Foundation (www.admb-project.org).  ADMB is 
an efficient tool including automatic differentiation for Maximum likelihood estima-
tion of many parameters in nonlinear models. 

SMS configurations may contain more than 1000 parameters of which less than 5% are 
related to predation mortality. It is not possible to estimate all parameters simultane-
ously without sensible initial parameter values. Such values are obtained in three 
phases: 

1 ) Estimate “single-species” stock numbers, fishing mortality and survey 
catchability parameters assuming that natural mortality (M1+M2) are fixed 
and known (i.e. as used by the ICES single-species assessments). 

2 ) Fix all the “single-species” parameters estimated in step 1 and use the fixed 
stock numbers to estimate initial parameter values for the predation param-
eters. 

3 ) Use the parameter values from step 1 and 2 as initial parameter values and 
re-estimate all parameters simultaneously in the full model including esti-
mation of predation mortality M2. 

Optimisation might potentially be dependent on the initial parameter values, however 
the same final result was obtained using the three steps above or using a configuration 
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where step two is omitted. Using step two however, in general makes the estimation 
process more robust as extreme values and system crash are avoided. 
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Appendage 1. Notation, parameters and variables 

Indices 

a age 
area area with specific predation mortality 
A1, A2 group of ages 
Fa first age group in the model 
i prey entity, combination of prey species and prey size group 
j predator entity, combination of predator group and predator size group 
l species size class 
lpred predator size class 
lprey prey size class 
other other food “species” 
pred predator species 
prey prey species 
q season of the year, e.g. quarter 
recq recruitment season 
s species 
survey survey identifer 
y year 
Y group of years 

Parameters and variables 

AB available (suitable) prey biomass for a predator 
ALK proportion at-size for a given age group. Input 
C catch in numbers. Observations 
Cpue catch in numbers per unit of effort. Observations 
D number died 
DM1 number died due to M1 
DM2 number died due to M2 
DF number died due to F 
F instantaneous rate of fishing mortality 
𝐹𝐹1 age effect in separable model for fishing mortality. Estimated parameter 
𝐹𝐹2 year effect in separable model for fishing mortality. Estimated parameter 
𝐹𝐹3 season effect in separable model for fishing mortality. Estimated parameter 
M1 instantaneous rate of residual natural mortality. Input 
M2 instantaneous rate of predation mortality estimated in the model 
N stock number 
Ns,a,y=first year,q=1 Stock number in the first year of the model. Estimated param-

eters 
Ns,a=fa,q=recq Stock numbers at youngest age (recruitment). Estimated parameter 
OF Biomass of other food for a predator. Input 
Q catchability, proportion of the population caught by one effort unit. Estimated 
Rs,y recruitment calculated from stock–recruitment model 
RA food ration, biomass consumed by a predator. Input 
S suitability of a prey entity as food for a predator entity 
S1, S2 mesh selection parameters. Estimated 
SSB spawning–stock biomass 
STOM weight proportion of prey i found in the stomach of predator j.  Observations 
U sampling intensity of stomachs. Observation 
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V variance of diet observations in relation to sampling intensity. Estimated Pa-
rameter 

W body weight. Input 
Z instantaneous rate of total mortality 
α stock–recruitment parameter. Estimated 
β stock–recruitment parameter. Estimated 
𝜚𝜚 prey size preference of a predator. Estimated parameter 
𝛾𝛾 food ration coefficients. Input 
𝜍𝜍 food ration exponent. Input 
υ parameter for size dependent preference for other food. Estimated parameter 
ηPREF natural logarithm of the preferred predator prey size ratio. Estimated  

parameter 
ηMIN observed minimum relative prey size for a predator species. Input 
ηMAX observed maximum relative prey size for a predator species. Input 
ο spatial overlap between predator and prey species. Estimated parameter  
ρ coefficient of species vulnerability. Estimated parameter 
σCATCH standard deviation of catch observations. Estimated parameter 
σPREF parameter expressing how particular a predator is about the size of its prey. 

Parameter 
σSR standard deviation of stock–recruitment estimate. Estimated parameter 
σSTOM standard deviation of stomach content observations (used with lognormal dis-

tribution) 
σSURVEY standard deviation of survey cpue observations. Estimated parameter 
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APPENDIX 2: Option file for SMS-key-runs 
Keyrun 2022 
# sms.dat option file 
# the character "#" is used as comment character, such that all text and numbers 
# after # are skipped by the SMS program 
# 
######################################## 
# Produce test output (option test.output) 
#  0 no test output 
#  1 output file sms.dat and  file fleet.info.dat as read in 
#  2 output all single species input files as read in 
#  3 output all multi species input files as read in 
#  4 output option overview 
# 
# 11 output between phases output 
# 12 output iteration (obj function) output 
# 13 output stomach parameters 
# 19 Both 11, 12 and 13 
# 
# Forecast options 
# 51 output hcr_option.dat file as read in 
# 52 output prediction output summary 
# 53 output prediction output detailed 
0 
######################################## 
# Produce output for SMS-OP program. 0=no, 1=yes 
0 
######################################## 
# Single/Multispecies mode (option VPA.mode) 
# 0=single species mode 
# 1=multi species mode, but Z=F+M (used for initial food suitability parm. est.) 
# 2=multi species mode, Z=F+M1+M2 
1 
######################################## 
# Number of areas for multispecies run (default=1) 
1 
#&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
# 

# single species parameters 
# 
## first year of input data (option first.year) 
1974 
######################################## 
## first year used in the model (option first.year.model) 
1974 
######################################## 
## last year of input data (option last.year) 
2021 
######################################## 
## last year used in the model (option last.year.model) 
2021 
######################################## 
##  number of seasons (option last.season). Use 1 for annual data 
4 
######################################## 
## last season last year (option last.season.last.year). Use 1 for annual data 
4 
######################################## 
## number of species (option no.species) 
3 
######################################## 
# Species names, for information only. See file species_names.in  
#  Cod Herring Sprat  
######################################## 
## first age all species (option first.age) 
0 
######################################## 
## recruitment season (option rec.season). Use 1 for annual data 
3 
######################################## 
## maximum age for any species(max.age.all) 
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11 
######################################## 
## various information by species 
# 1. last age  
# 2. first age where catch data are used (else F=0 assumed) 
# 3. last age with age dependent fishing selection 
# 4. Esimate F year effect from effort data. 0=no, 1=yes 
# 5. Last age included in the catch at age likelihood (normally last age) 
# 6. plus group, 0=no plus group, 1=plus group 
# 7. predator species, 0=no, 1=VPA predator, 2=Other predator 
# 8. prey species, 0=no, 1=yes 
# 9. Stock Recruit relation 
#      1=Ricker, 2=Beverton & Holt, 3=Geom mean, 
#      4= Hockey stick, 5=hockey stick with smoother, 
#      51=Ricker with estimated temp effect, 
#      52=Ricker with known temp effect, 
#      61=STN Ricker for sprat. Input from file Sprat_rec_61.in 
#      71=STN special SSB/R for cod. Input from file Cod_rec_71.in 
#      >100= hockey stick with known breakpoint (given as input) 
# 10. Spawning season (not used yet, but set to 1) 
# 11. Additional data for Stock Recruit relation 
11 0 0 0 0 0 2 0 0 0 0   # 1 Cod as other predator 
 8 1 5 0 8 1 0 1 3 0 0   # 2 Herring  
 7 1 4 0 7 0 0 1 3 0 0   # 3 Sprat  
######################################## 
## use input recruitment estimate (option use.known.rec) 
#   0=estimate all recruitments 
#   1=yes use input recruitment from file known_recruitment.in 
0 
######################################## 
## adjustment factor to bring the beta parameter close to one (option beta.cor) 
      1e+06  #      Herring  
      1e+06  #        Sprat  
######################################## 
## year range for data included to fit the R-SSB relation (option 
SSB.R.year.range) 
# first (option SSB.R.year.first) and last (option SSB.R.year.last) year to 
consider. 
# the value -1 indicates the use of the first (and last) available year in time series 
# first year by species 
         -1  #      Herring  
       1990  #        Sprat  
# last year by species 
         -1  #      Herring  
         -1  #        Sprat  
######################################## 
## Objective function weighting by species (option objective.function.weight) 
# first=catch observations, 
# second=CPUE observations, 
# third=SSB/R relations 
# fourth=stomach observations, weight proportions  
# fifth=stomach observations, number at length  
## 
0 0 0    1 0  # 1 Cod  
1 1 0.05 0 0  # 2 Herring  
1 1 0.05 0 0  # 3 Sprat  
######################################## 
## parameter estimation phases for single species parameters 
# phase.rec (stock numbers, first age) (default=1) 
1 
# phase.rec.older (stock numbers, first year and all ages) (default=1) 
1 
# phase.F.y (year effect in F model) (default=1) 
1 
# phase.F.y.spline (year effect in F model, implemented as spline function) 
-1 
# phase.F.q (season effect in F model) (default=1) 
1 
# phase.F.a (age effect in F model) (default=1) 
1 
# phase.catchability (survey catchability) (default=1) 
1 
# phase.SSB.R.alfa (alfa parameter in SSB-recruitment relation) (default=1) 
1 
# phase.SSB.R.beta (beta parameter in SSB-recruitment relation) (default=1) 
1 
######################################## 
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## minimum CV of catch observation used in ML-estimation (option min.catch.CV) 
0.1 
######################################## 
## minimum CV of catch SSB-recruitment relation used in ML-estimation (option min.SR.CV) 
0.1 
######################################## 
## Use proportion landed information in calculation of yield (option calc.discard) 
#    0=all catches are included in yield 
#    1=yield is calculated from proportion landed (file proportion_landed.in) 
          0  #      Herring  
          0  #        Sprat  
######################################## 
## use seasonal or annual catches in the objective function (option combined.catches) 
# do not change this options from default=0, without looking in the manual 
#    0=annual catches with annual time steps or seasonal catches with seasonal 
time steps 
#    1=annual catches with seasonal time steps, read seasonal relative F from 
file F_q_ini.in (default=0) 
          0  #      Herring  
          0  #        Sprat  
######################################## 
## use seasonal or common combined variances for catch observation 
# seasonal=0, common=1 (use 1 for annual data) 
          1  #      Herring  
          0  #        Sprat  
######################################## 
##  
# catch observations: number of separate catch variance groups by species  
           2   #     Herring  
           4   #       Sprat  
 
#  first age group in each catch variance group  
1 2   #  Herring  
1 2 3 6  #  Sprat  
######################################## 
##  
# catch observations: number of separate catch seasonal component groups by species  
           3   #     Herring  
           2   #     Sprat  
 
#  first ages in each seasonal component group by species  
1 2 3  #  Herring  
1 2  #  Sprat  
######################################## 
## first and last age in calculation of average F by species (option avg.F.ages) 
3 6  # Herring  
3 5  # Sprat  
######################################## 
## minimum 'observed' catch, (option min.catch). You cannot log zero catch at age! 
# 
# 0 ignore observation in likelihood 
# 
# negative value gives percentage (e.g. -10 ~ 10%) of average catch in age-group for input 
catch=0 
# negative value less than -100 substitute all catches by the option/100 /100 *average catch 
in the age group for catches less than (average catch*-option/10000 
# 
# if option>0 then will zero catches be replaced by catch=option 
# 
# else if option<0 and option >-100 and catch=0 then catches will be replaced by catch=av-
erage(catch at age)*(-option)/100 
# else if option<-100  and catch < average(catch at age)*(-option)/10000 then catches will 
be replaced by catch=average(catch at age)*(-option)/10000 
          0  #      Herring  
          0  #        Sprat  
########################################  
# catch observations: number of year groups with the same age and seasonal selection  
            3  #     Herring  
            2  #       Sprat  
 
#  first year in each group (please note #1 will always be changed to first model year)  
1974 1989 2005 #  Herring  
1974 2000  #  Sprat  
######################################## 
##  
# number of nodes for year effect Fishing mortality spline 
# 1=no spline (use one Fy for each year), >1 number of nodes  
           1   #     Herring  
           1   #       Sprat  
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#  first year in each group  
1974  #  Herring  
1974  #  Sprat  
######################################## 
## year season combinations with zero catch (F=0) (option zero.catch.year.season) 
# 0=no, all year-seasons have catches, 
# 1=yes there are year-season combinations with no catch. 
#   Read from file zero_catch_seasons_ages.in 
# default=0 
0 
######################################## 
## season age combinations with zero catch (F=0) (option zero.catch.season.ages) 
# 0=no, all seasons have catches, 
# 1=yes there are seasons with no catch. Read from file zero_catch_season_ages.in 
# default=0 
0 
######################################## 
## Factor for fixing last season effect in F-model (default=1) (fix.F.factor)) 
          1  #      Herring  
          1  #        Sprat  
######################################## 
## Uncertainties for catch, CPUE and SSB-R observations (option calc.est.sigma) 
#  values: 0=estimate sigma as a parameter (the right way of doing it) 
#          1=Calculate sigma and truncate if lower limit is reached  
#          2=Calculate sigma and use a penalty function to avoid lower limit  
#  catch-observation, CPUE-obs, Stock/recruit 
           0            0            0  
######################################## 
# Read HCR_option file (option=read.HCR) default=0  
#  0=no  1=yes 
0 
######################################## 
# 

# multispecies parameters 
# 
# Exclude year,season and predator combinations where stomach data are not incl.(option 
incl.stom.all) 
#   0=no, all stomach data are used in likelihood 
#   1=yes there are combinations for which data are not included in the likelihood. 
#      Read from file: incl_stom.in 
#   default(0) 
1 
######################################## 
##  N in the beginning of the period or N bar for calculation of M2 (option use.Nbar) 
#  0=use N in the beginning of the time step (default) 
#  1=use N bar 
0 
######################################## 
## Maximum M2 iterations (option M2.iterations) in case of use.Nbar=1 
5 
######################################## 
## convergence criteria (option max.M2.sum2) in case of use.Nbar=1 
#  use max.M2.sum2=0.0 and M2.iterations=7 (or another high number) to make 
Hessian 
0 
######################################## 
## likelihood model for stomach content observations (option stom.likelihood) 
#  1 =likelihood from prey weight proportions only (see option below) 
#  2 =likelihood from prey weight proportions and from prey numbers to estimate size 
selection 
#  3 =Gamma distribution for prey absolute weight and size selection from prey numbers 
1 
######################################## 
# Variance used in likelihood model for stomach contents as prey weight propor-
tion (option stomach.variance) 
#  0 =not relevant,  
#  1 =log normal distribution,  
#  2 =normal distribution, 
#  3 =Dirichlet distribution 
3 
######################################## 
## Usage of age-length-keys for calc of M2 (option simple.ALK)) 
#  0=Use only one sizegroup per age (file lsea.in or west.in) 
#  1=Use size distribution per age (file ALK_all.in) 
0 
######################################## 
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## Usage of food-rations from input values or from size and regression parameters (option 
consum) 
#  0=Use input values by age (file consum.in) 
#  1=use weight at age (file west.in) and regression parameters (file consum_ab.in) 
#  2=use length at age (file lsea.in), l-w relation and regression parameters (file con-
sum_ab.in) 
0 
######################################## 
## Size selection model based on (option size.select.model) 
#  1=length: 
#      M2 calculation: 
#         Size preference: 
#           Predator length at age from file: lsea.in 
#           Prey     length at age from file: lsea.in 
#         Prey mean weight is weight in the sea from file: west.in 
#      Likelihood: 
#         Size preference: 
#           Predator mean length per length group (file: stom_pred_length_at_sizecl.in)  
#           Prey mean length per ength group (file stomlen_at_length.in  
#         Prey mean weight from mean weight per prey length group (file: stom-
weight_at_length.in  
#  2=weight: 
#      M2 calculation: 
#         Size preference: 
#           Predator weight at age from file: west.in 
#           Prey     weight at age from file: west.in 
#         Prey mean weight is weight in the sea from file: west.in 
#      Likelihood: 
#         Size preference 
#           Predator mean weight is based on mean length per predator length group (file: 
stom_pred_length_at_sizecl.in) 
#              and l-w relation (file: length_weight_relations.in),  
#           Prey mean weight per prey length group (file: stomweight_at_length.in)  
#         Prey mean weight from mean weight per prey length group (file: stom-
weight_at_length.in  
#  3=weight: 
#       M2 calculation: Same as option 2 
#       Likelihood: 
#         Size preference: 
#           Predator mean weight is based on mean length per predator length group (file: 
stom_pred_length_at_sizecl.in) 
#              and l-w relation (file: length_weight_relations.in),  
#           Prey mean weight per prey length group (file: stomlen_at_length.in) and l-w 
relation (file:length_weight_relations.in) 
#         Prey mean weight from prey mean length per prey length group (file: stom-
len_at_length.in) and l-w relation (file: length_weight_relations.in)  
#  4=weight: 
#       M2 calculation: 
#         Size preference: 
#           Predator mean weight from file lsea.in (length in the sea) and l-w relation 
(file: length_weight_relations.in)  
#           Prey mean weight from file lsea.in (length in the sea) and l-w relation (file: 
length_weight_relations.in)  
#       Likelihood:  Same as option 3 
#  5=weight in combination with simple.ALK=1: 
#       M2 calculation: 
#         Size preference: 
#           Predator weight based on length from file ALK_all.in (length distribution at 
age) and l-w relation (file: length_weight_relations.in)  
#           Prey     weight based on length from file ALK_all.in (length distribution at 
age) and l-w relation (file: length_weight_relations.in)  
#         Prey mean weight based on length from file ALK_all.in (length distribution at age) 
and l-w relation (file: length_weight_relations.in)  
#       Likelihood: Same as for option 2 
#  6=weight in combination with simple.ALK=1: 
#       M2 calculation: Same as option 5 
#       Likelihood: Same as option 3 
2 
######################################## 
# Adjust Length at Age distribution by a mesh selection function (option L50.mesh) 
#  Please note that options simple.ALK shoud be 1 and option size.select.model 
should be 5 
# L50 (mm) is optional given as input. Selection Range is estimated by the model 
# L50= -1 do not adjust 
# L50=0, estimate L50 and selection range 
# L50>0, input L50 (mm) and estimate selection range 
# by VPA species 
         -1  #      Herring  
         -1  #        Sprat  
######################################## 
## spread of size selection (option size.selection) 
#   0=no size selection, predator/preys size range defined from observations 
#   1=normal distribution size selection 
#   3=Gamma distribution size distribution 
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#   4=no size selection, but range defined by input min and max regression 
parameters (file pred_prey_size_range_param.in) 
#   5=Beta distributed size distribution, within observed size range 
#   6=log-Beta size distributed, within observed size range 
# 
# by predator 
          1 #          Cod  
######################################## 
## sum stomach contents over prey size for use in likelihood for prey weight 
proportions (option sum.stom.like) 
#   0=no, use observations as they are; 1=yes, sum observed and predicted stomach 
contents before used in likelihood for prey weight proportions 
# 
# by predator 
          1  #          Cod  
######################################## 
## # Use estimated scaling factor to link number of observation to variance for 
stomach observation likelihood (option stom_obs_var) 
#    0=no, do not estimate factor (assumed=1);  1=yes, estimate the factor;  
2=equal weight (1) for all samples 
# 
# by predator 
          1  #          Cod  
######################################## 
## # Upper limit for Dirichlet sumP. A low value (e.g. 10) limits the risk of 
overfitting. A high value (e.g. 100) allows a full fit. (option stom_max_sumP) 
# by predator 
        1000  #          Cod  
######################################## 
## Scaling factor (to bring parameters close to one) for relation between no of 
stomachs sampling and variance 
#  value=0: use default values i.e. 1.00 for no size selection and otherwise 0.1 
(option var.scale.stom) 
          0  #          Cod  
######################################## 
## other food suitability size dependency  (option size.other.food.suit) 
#  0=no size dependency 
#  1=yes, other food suitability is different for different size classes 
          1  #          Cod  
######################################## 
## Minimum observed relative stomach contents weight for inclusion in ML esti-
mation (option min.stom.cont) 
        0.001  #          Cod  
######################################## 
## Upper limit for no of samples used for calculation of stomach observation 
variance (option max.stom.sampl) 
     500 # 1e+06  #          Cod  
######################################## 
## Max prey size/ pred size factor for inclusion in M2 calc (option 
max.prey.pred.size.fac) 
        0.3  #          Cod  
######################################## 
## inclusion of individual stomach contents observations in ML for weight pro-
portions (option stom.type.include) 
# 1=Observed data 
# 2= + (not observed) data within the observed size range (=fill in) 
# 3= + (not observed) data outside an observed size range. One obs below and one 
above (=tails) 
# 4= + (not observed) data for the full size range of a prey species irrespective 
of predator size (=expansion) 
          1  #          Cod  
######################################## 
## use overlap input values by year and season (use.overlap) 
#   0: overlap assumed constant or estimated within the model  
#   1: overlap index from file overlap.in (assessment only, use overlap from 
last year in forecast) 
#   2: overlap index from file overlap.in (assessment and forecast) 
0 
######################################## 
## parameter estimation phases for predation parameters 
#  the number gives the phase, -1 means no estimation 
# 
#  vulnerability (default=2) (phase phase.vulnera) 
2 
# other food suitability slope (default=-1) (option phase.other.suit.slope) 
2 
# preferred size ratio (default=2) (option phase.pref.size.ratio) 
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2 
# predator size ratio adjustment factor (default=-1) (option phase.pref.size.ra-
tio.correction)) 
-1 
# prey species size adjustment factor (default=-1) (option phase.prey.size.ad-
justment) 
-1 
# variance of preferred size ratio (default=2) (option phase.var.size.ratio) 
2 
# season overlap (default=-1) (option phase.season.overlap) 
3 
# Stomach variance parameter (default=2) (option phase.Stom.var) 
2 
# Mesh size selection of stomach age length key (default=-1) (option 
phase.mesh.adjust) 
-1 
######################################## 
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Background 

Surplus production models have been useful tools for estimating essential parameters for population 

dynamics and fisheries because they require minimal data and generate simple outputs (Prager, 1994; 

Hilborn and Walters, 1992). Though models with more forms can be used, the simplest of this type only 

require catch and biomass time series data, or their equivalents (Fox, 1975; Schnute, 1985; Ludwig and 

Walters, 1989; Prager, 1994), thus they can be broadly used for and make efficient use of data. Surplus 

production models, in some cases, have more accurately assessed stock than more complicated age-

structured models (Ludwig and Walters, 1985).  

Species interactions, such as predation and competition, may not have large discernible impacts on 

fisheries stocks, but may be an important feature in fishery ecosystems (Bax, 1998; Christensen, 1996). 

However, several authors (Sissenwine, 1984; Bax, 1991, 1998; Christensen, 1996) suggest that species 

interactions in combination with fisheries pressure may impact recruitment or suppress already 

diminished prey populations (Worm and Myers, 2003; Walters et al., 2005). A range of methods for 

incorporating multi-species interactions have been reviewed in Hollowed et al., 2000;Whipple et al., 

2000; Plagányi, 2007). 

With a move towards Ecosystem-Based Fishery Management (EBFM), a need to better account for 

interactions among living marine resources in an ecosystem arises. This is especially important because 

in many management plans there are mandates to achieve certain targets (e.g. MSY) that do not 

account for the effects of predators and prey, or competitors for common resources.  Numerous 

modeling approaches to account for ecological interactions have been developed and used over the past 

30 years – EwE, Atlantis, OSMOSE, MSVPA, MSCAA; however, many of these approaches have 

drawbacks that limit their implementation for management. These models may be considered to be too 



 

  
 

complex or “data hungry”, so fisheries agencies may be reluctant to undertake multi-species modeling 

projects. This hesitance to attempt to quantify species interactions - a not at all trivial exercise - has 

continued to slow the uptake of EBFM. A key constraint in adopting EBFM has been the lack of modeling 

tools to easily implement these ecological considerations. 

Multi-species surplus production models can be used to quantify species interactions, and because of 

their focus on minimal population structure, the barriers to begin modeling are surmountable due to 

lower data needs for each species than a corresponding age-structured assessment model.  Generally, 

these include: biomass or survey index time series, catch data time series, spatial overlap and food 

habits information (for competitive and predation interactions). Multi-species models have been applied 

in a fisheries context since at least the 1970s.  The background of multi-species (MS) models in general 

ecology goes back another 70 years.  There have been major points of emphasis of these MS models in a 

fisheries context.  

The progenitor of the approach we developed was a software package called Kraken (unpublished) 

which was developed initially as a simulation tool to explore the wide range of data we have in the 

Northeast Fisheries Science Center.  The first model it incorporated was MS-PROD (Gamble & Link, 

2009):  

This model utilized spatial data and food habits data from the NEFSC bottom trawl surveys to develop 

reasonable parameters for competition and predation, bottom trawl survey indices to inform growth 

rates and carrying capacity to tune to the biological time series of commercially and recreationally 

important fish in the region.  A second, simpler model was developed within Kraken, called AGG-PROD 

(Gamble & Link ,2012): 

AGG-PROD used aggregate groups (groundfish, elasmobranchs and pelagics) instead of individual 

species.  Both models showed an ability to be tuned to data, and to model direct and indirect effects 



 

  
 

based on changes to fishing pressure, ecological interactions and climate drivers.  Kraken continued to 

be developed, and became more of a toolkit for creating multispecies surplus production models from 

simple Schaeffer type models with a single matrix that included competition, predation and density 

dependence, up to MS-PROD level models that also incorporated different functional forms for 

predation.  Additionally, a genetic algorithm was explored as an estimation and fitting routine, but all 

work was used internally and some presented at conferences, but no results were published.   

The current software and modeling approach, described next, drew from and greatly expanded on 

Kraken to create a flexible modeling and estimation package for surplus production models, complete 

with a more user friendly GUI. 

The Multi-Species Surplus Production Model (MSSPM) software enables a user to build discrete-form 

single species and multi-species surplus production models.  The software allows a user to 1) define a 

model, using choices of growth, harvest, competition, and predation forms, 2) run the model, which 

estimates the necessary parameters using choices for optimization algorithms, and 3) visualize the 

estimated data. A user can conduct diagnostic testing of a fitted model including retrospective analysis 

and parameter profiling. Forecasts may be generated using the estimated parameters and additional 

harvest and uncertainty parameters. The software has a specialized user interface, the REsource 

Management Options Review and Analysis (REMORA) tool that allows a non-technical user to explore 

fisheries management policy under different types and levels of uncertainty. More detail on the 

software is provided in Appendix A and in the User Guide 

(https://docs.google.com/document/d/14imgRumit05fcf3QJ00SXFoMu_837hvz/edit). 

 

The MSSPM has been applied to data of the Georges Bank ecosystem. This application will allow further 

review of the model framework as well as a review of the potential utility of the MSSPM as a potential 

model to be used in a suite of models. 

https://docs.google.com/document/d/14imgRumit05fcf3QJ00SXFoMu_837hvz/edit


 

  
 

Problem Identification 

Goal of the model 

Generally, the goal of the MSSPM software is to allow an analyst to rapidly develop surplus production 

models of multiple fisheries species where some interactions are expected but data are limited. When 

data on stock age/length structure and diet habits are limited, but expected to be important, an analyst 

can use this approach to evaluate surplus production model structures (i.e., different population growth, 

species interaction, and harvest forms) and to test different hypotheses about an ecosystem. Upon 

selecting the best hypothesis model forms, a candidate set, the analyst can derive quantities of interest 

(e.g., estimated biomass, reference points) and produce forecasts for exploring policy options. In 

addition to being used for data-limited modeling, this approach can be useful for building a suite or 

ensemble of models with different structures to explore ecosystem-oriented fisheries management 

policies. Multi-model approaches are necessary for dealing with the uncertainty associated with model 

structure choices. Moreover, as this approach uses a simple model structure, the runtime can be fairly 

rapid, thus enabling a broad exploration of parameter uncertainty through profiling and forecasting.   

Use of the model 

Though the software was built for building data-limited models, the application to Georges Bank is 

intended as a simple-structured model to be used with a suite of other models with a range of 

structures. This model can provide information about species interactions and environmental conditions 

that may be influencing the productivity of key Georges Bank species. 

Model decision support 



 

  
 

When used with other multi-species ecosystem models, this model can be used to provide information 

on ecological reference points and to augment advice provided within a previously established 

framework.  

As this is a biomass-based model, no age and length information are used. So as a standalone, this 

model application could not be used to provide advice where age/size limits are applied to catch, and 

would only be suitable for data-limited situations.  

Data to support the model 

All data from this model application are found in the Georges Bank ms-keyrun data package 

(https://github.com/NOAA-EDAB/ms-keyrun/tree/master/data). Harvest data (catchIndex.rda) was used 

to drive the model dynamics. A combined survey index (surveyIndexAll.rda) was used for the relative 

biomass time series to fit the model to. A model-derived bottom temperature index was tested as a 

covariate to influence carrying capacity and population growth rates of some species. More information 

on this index is in Appendix B. Information to inform potential predation interactions was derived from 

“Fish Trophic Ecology of the Northeast U.S. Continental Shelf”. 

 

Conceptual Model 

Available and alternative theories 

The software gives flexibility when compared to the available theoretical population dynamics models. 

From a baseline discrete-form population model, an analyst can select different forms for population 

https://github.com/NOAA-EDAB/ms-keyrun/tree/master/data
https://fwdp.shinyapps.io/tm2020/


 

  
 

growth, harvest and predation.  Alternative continuous-form and state-space-form population models 

have not been implemented in the software as of yet.  Figure 1 provides a schematic of the software. 

Model equation terms can be selected for a flexible model structure (described in Appendix A “Creating 

a Population Model”). 

 

Figure 1. Conceptual Model of MSSPM Software. 

Assumptions 

The main assumptions of surplus production models are that 1) all individuals have the same growth and 

mortality rates, 2) fish stocks, on the average, produce more offspring than necessary to replenish 

themselves, 3) populations are stable.  



 

  
 

The software allows incorporation of environmental covariates that can be applied to population growth 

(r), carrying capacity (K), or survey catchability (Q). In this, a coefficient is estimated to determine the 

strength of the covariate effect. For example, the covariate is applied as: 

𝑥𝑥 = (1 + 𝑐𝑐𝑐𝑐𝑐𝑐) Equation 1 

where, x is growth rate or carrying capacity, I is the environmental covariate Index, and the cc is the 

covariate  coefficient to be estimated. The incorporation of covariates gives some flexibility from the 

constraint of the population stability assumption. 

In addition, as this is intended as a multi-species modeling method, the software allows the user to 

implement predation using the Hollings’ functional response types. Other types of functional responses 

have not yet been implemented.  

Uncertainties 

The main uncertainties that affect the robustness of fisheries population models (and pose challenges to 

fisheries management) originate from a variety of sources including: observation error (associated with 

model input data and initial parameter estimates), dynamic model process errors, model structure 

misspecifications, and volatility in fishery socioeconomic dynamics. Few, if any models, can adequately 

deal with all of these uncertainties.  

One of the main uncertainties with surplus production models lies within the simplicity of the 

population structure. The MSSPM has diagnostic capabilities to enable users to explore uncertainties by 

1) examining parameter profiles, 2) performing retrospective analyses, and 3) forecasting with a range 

of uncertainties around parameter estimates. 

Peer reviews 



 

  
 

The software was previously presented and the framework was reviewed to the WGSAM in 2021.  

Models developed using the precursor to the MSSPM software, Kraken, were published including [Rob 

list MSPROD and other papers published here]. 

 

  



 

  
 

Constructed Model 

Spatial/temporal resolution 

Spatial resolution is discussed elsewhere with the Georges Bank data package. 

Temporal resolution is an annual time step. The model time period is 1969-2019.  

Algorithm choices 

For this constructed model of the Georges Bank Ecosystem, a range of population algorithms was used 

including 1) single species models, 2) single species models with covariates, 3) multi-species models with 

Type I predation, and 4) multi-species models with covariates. These models are discussed further in the 

Test scenarios section.  

 

Within the MSSPM software, there are two sets of algorithms used for the parameter estimation: 

 · NLopt Library: https://nlopt.readthedocs.io/en/latest/ 

 · Bees Algorithm: http://beesalgorithmsite.altervista.org/ 

Each is open source, available in C++ and freely available for download. 

The NLopt Library is a library for nonlinear optimization. It contains support for both global and local 

algorithms as well as gradient-based and derivative-free algorithms. Each algorithm is described both in 

the software via online help and in the NLopt documentation pages here: 

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#comparing-algorithms. 

https://nlopt.readthedocs.io/en/latest/
http://beesalgorithmsite.altervista.org/
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#comparing-algorithms
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#comparing-algorithms


 

  
 

The Bees Algorithm is a global search algorithm based on the behavior of honey bees. The “bees” 

explore the parameter space with more bees in various generations exploring further the parts of the 

parameter space that are more fruitful (i.e., have a better fitness value). 

 

For the constructed model, the NLopt GN_ORIG_DIRECT_L minimizer algorithm was applied to the 

Maximum Likelihood objective function. The DIRECT (DIviding RECTangles) algorithms are deterministic 

search algorithms based on the splitting of the search domain into smaller and smaller hyper-rectangles. 

 

Assumptions 

The major assumption of this model is that size/age-related dynamics are not necessary to adequately 

replicate the biomass time series for the given species. For models with environmental covariates, 

mechanisms of the environmental drivers’ effects are not modeled, only correlation evidence is 

provided. For models with predation, seasonal and spatial overlap are not considered. Process and 

observation error are not treated separately as would be the case for a state-space model. As this is a 

data-limited modeling approach being applied to a system that is not data limited, some data (e.g., age-

structured catch) are ignored. The purpose of this model application is that it be used in a modeling 

suite or ensemble to allow exploration of uncertainty attributable to model structure. 

Data availability/software tools 

The MSSPM is currently packaged with the Keyrun 2022 MySQL database. This can be found in the 

sample data distribution directory and should be imported into MSSPM once the user has started 



 

  
 

MSSPM and created their project. MSSPM requires the MySQL database system be installed onto the 

user’s machine. MSSPM has been ported to Linux and to Windows. 

Quality assurance/quality control 

The software was previously presented and the framework was reviewed to the WGSAM in 2021.  

For that review we implemented a process of 3-levels of simulation testing for this modeling software: 

comparison testing, integration testing, and skill assessment. Comparison testing used simulated data 

from an operating model with the same structure as used in the software with known parameter values, 

known harvest time series, and known biomass time series (without and with uncertainty). Integration 

testing uses simulated data from an operating model with a different structure (Norwegian Barents 

Atlantis Model, NOBA) thus different parameters, and known catch and biomass time series without 

uncertainty to demonstrate that software modules (e.g., parameter estimation, diagnostics, 

forecasting/projection) produce reasonable results. The skill assessment uses simulated data from an 

operating model with a different structure (NOBA) and different parameters to create catch and 

biomass index time series with uncertainty. For comparison testing, MSSPM fits the operating model 

perfectly (r2=1.00) for data without uncertainty, and fits decrease as uncertainty increases in biomass 

time series (e.g., with cv=0.5, r2 ranges from 0.50 to 0.60). For integration testing, the best fit model r2 

was 0.44. Skill assessment model runs are ongoing and have not been analyzed at this date. 

  

With updates to the software, additional comparison testing has been conducted, i.e., the software has 

been tested with simulation data. That is, based upon the current model desired, the software can 

generate either relative or observed biomass. This biomass is then run through the model, and the 

results should be (and are) a perfect fit. Random error may also be added to the simulation data to 

check the model’s behavior under uncertainty. 



 

  
 

Test scenarios 

All models are developed using catch data to drive the dynamics and survey indices (relative biomass) 

data for fitting (). The time period of the model is 1969-2019. The species modeled and their trophic 

guilds are listed in Table 1. 

 

Figure 2. Catch and relative biomass time series used for the Georges Bank MSSPM. 

 

Species Name Guild 



 

  
 

Atlantic cod Groundfish 

Atlantic herring Small pelagics 

Atlantic mackerel Small pelagics 

Goosefish Groundfish 

Haddock Groundfish 

Silver hake Groundfish 

Spiny dogfish Elasmobranchs 

Winter flounder Flatfish 

Winter skate Elasmobranchs 

Yellowtail flounder Flatfish 

Table 1. Georges Bank Fisheries species models using MSSPM. 

Four test scenarios were conducted to compare basic surplus production models with and without 

environmental covariates and predation. The model names, descriptions, and parameters estimated are 

given in Table 2.  

Model Name Description Parameters estimated 

LogisticFullEst Base model - with Logistic growth, predation, and 

environmental covariates 

B0,r,K, cc, ρ 

LogisticSS Multiple single species models  - with Logistic 

growth 

B0,r,K 

LogisticCov Multiple single species models with - Logistic 

growth environmental covariates 

B0,r,K, cc 

LogisticPred Base model - with Logistic growth and predation B0,r,K, ρ 

Table 2. Candidate models for Georges Bank Ecosystem using MSSPM. 



 

  
 

The model equation for the full model is  

𝐵𝐵𝑖𝑖,𝑡𝑡+1 = 𝐵𝐵𝑖𝑖,𝑡𝑡 + 𝑟𝑟𝑖𝑖𝐵𝐵𝑖𝑖,𝑡𝑡 �1 − 𝐵𝐵𝑖𝑖,𝑡𝑡
𝐾𝐾𝑖𝑖
� − 𝐶𝐶𝑖𝑖,𝑡𝑡 − 𝐵𝐵𝑖𝑖,𝑡𝑡 ∑ 𝜌𝜌𝑖𝑖,𝑗𝑗𝐵𝐵𝑗𝑗,𝑡𝑡  Equation 2 

where, B is biomass (in metric tons), r is population growth rate, K is carrying capacity,  C is catch (in 

metric tons), ρ is a predation coefficient, i is focal species index, j is predator species index, and t is time 

(year). For models with environmental covariates, Equation 1 is applied to r or K.  B0, r, and K are 

estimated for all species. Environmental covariate and predation coefficients are only applied to select 

species, which are identified in the parameter estimates for the most parsimonious model given in 

Appendix C. 

Models listed in Table 2 were fit to relative Biomass indices using the Maximum Likelihood objective 

function and the GN_DIRECT_L minimizer algorithm. Akaike Information Criterion was used to select the 

most parsimonious model from the candidate set. 

Corroboration with observation 

The most parsimonious model (i.e., model with the lowest AIC value) included predation and 

environmental covariates applied to some species (Table 3). A summary of fit statistics for this model is 

given in Appendix D. 

ModelName  r²  SSResiduals  AIC 

LogisticFullEst 0.244 3.39E+16 1193.725 

LogisticPred 0.227 3.40E+16 1198.364 

LogisticSS 0.285 7.19E+16 1201.359 

LogisticCov 0.326 1.34E+17 1202.010 

Table 3.Model selection for Georges Bank Ecosystem using MSSPM.



 

  
 

The model was able to reasonably replicate historical biomass trends for each species, guild, and the system (Figure 2-4). 

 

Figure 3. Model fit to species biomass. 



 

  
 

 

Figure 4. Model fit to guild biomass. 

 

 

 



 

  
 

 

Figure 5. Model fit to system biomass.



 

  
 

Uncertainty/Sensitivity 

To explore the uncertainty associated with the parameters and model structure, parameter fitness profiles were created and retrospective 

analysis was conducted. As parameter space is multidimensional, single dimension profiles may have limited use. More information on how 

these analyses were produced are given in Appendix A – Model Diagnostics section. 

Parameter Profiles 

Parameter profiles were created by calculating fit for 50 different parameter values at ±50% of the estimated value. Two-dimensional plots for 

single parameters are provided in Figures 5-7. Three-dimensional plots of parameter combinations are created in the software for this model. 

 



 

  
 

 

Figure 6. B0 profiles 

 



 

  
 

 

Figure 6. r profiles 

 



 

  
 

 

Figure 7. K profiles 

 

  



 

  
 

Retrospective Analysis 

Retrospective analysis plots were created by four one-year peels. Mohn’s rho values are provided in Table 4. 

 

Figure 8. Retrospective analysis 

  



 

  
 

 

 
Atlantic 
cod 

 Atlantic 
herring 

 Atlantic 
mackerel 

 
Goosefish  Haddock 

 Silver 
hake 

 Spiny 
dogfish 

 Winter 
flounder 

 Winter 
skate 

 Yellowtail 
flounder 

Mohn's Rho 
(Initial Absolute 
Biomass) 0.002 0.00E+00 0.00E+00 0 0 0.00E+00 0 -0.001 0 0 
Mohn's Rho 
(SurveyQ) 0 0 0 0 0 0 0 0 0 0 
Mohn's Rho 
(Growth Rate) 0 0.014 -0.011 0 0 0 0 0 0 0 
Mohn's Rho 
(Carrying 
Capacity) 0 0.00E+00 -3.30E-02 -0.01 0 0.00E+00 -0.001 0 0 0 
Mohn's Rho 
(Predation Rho) 0   0  0.004 0  0.064  
Mohn's Rho 
(Estimated 
Biomass) 0.02 2.00E-02 2.00E-02 0.02 0.02 2.00E-02 0.02 0.02 0.02 0.02 

 

Table 4. Mohn’s rho values for keyrun species. 



 

  
 

Peer review  

The software was previously presented and the framework was reviewed to the WGSAM in 2021.  

Models developed using the precursor to the MSSPM software, Kraken, were published including [Rob list 

MSPROD and other papers published here].  



 

  
 

Appendix A. MSSPM Software Overview 

The MSSPM software is designed to allow fishery analysts to estimate aquatic ecosystem population 

parameters. These parameters may then be used to forecast future biomass trends. Care has been taken 

to design an intuitive and functional user experience. The forecast component, REMORA, is designed with 

a select group of user interface widgets that enable a stakeholder to quickly interact with the estimated 

model parameters and to construct a forecast using easy-to-tweak forecast parameters. 

Layout 

The user interface consists of movable panels allowing the user to customize their layout.  The default 

layout allows for program flow from left to right, with a navigator panel being on the left, data input and 

model control in the middle, and output results on the right. The panel at the bottom displays real-time 

feedback for the user as the model runs as well as making a session log file visible. 

 

Philosophy & General Principles 

The MSSPM software is built using open-source and cross-platform libraries and systems.  It uses Qt’s 

library of graphical user interface (GUI) widgets as its basic framework, taking advantage of Qt’s messaging 

capabilities (i.e., signals/slots) for inter-GUI communication.  It uses MySQL as its relational database 

management system with 85 tables comprising the data storage functionality. The user saves data to the 

database as they move from one input data tab to the next. The user may also import/export data from/to 

data files on disk. 



 

  
 

In order to balance numeric precision with ease-of-reading, MSSPM uses a scheme of significant digits. 

This optional feature controls how many significant digits are defined for the data in the GUIs. This greatly 

increases the readability of the data tables. 

MSSPM’s logging functionality captures various software checkpoints, warnings, and errors and writes 

them to a timestamped data file.  The user has the capability to view the current session’s log file or that 

of a previous session.  Log files are periodically deleted upon user approval. 

MSSPM’s inline help functionality is based upon Qt’s tooltips and What’s This? help.  The former displays 

to the user a brief help message upon hovering over a graphical widget. The latter is enabled by the user 

by first clicking on the What’s This? help icon in the toolbar and then clicking on a widget for more 

information. If available, more detailed help will appear. Finally, under the Help main menu item, the user 

can find the About item. This item describes the current MSSPM version in detail, including the run time, 

version number, build data, and version numbers of all 3rd party software used. 

 

Functionality 

The MSSPM allows the user to create a population model, estimate model parameters, run parameter 

diagnostics, and generate biomass forecasts. The user chooses from a library of 3rd party, open source 

optimization algorithms for the parameter estimation. 

 

 

 



 

  
 

Creating a Population Model 

The MSSPM allows the user to create a custom population numerical model, which defines species 

biomass values, based upon 4 terms: Growth Term, Harvest Term, Competition Term, and Predation Term. 

The first term is additive whereas the other terms are subtractive. In addition to the user creating their 

own model, they may select from a list of preset models (i.e., Schafer Model). 

 

After the user defines their model, the appropriate data input GUIs will be enabled and the user proceeds 

to input their data. Care should be taken by the user to enter data using consistent units. For example, 

biomass units should be in metric tons and be consistent between all species.  

 

The Growth term defines how the population grows. It’s a function of growth rate of species i, r(i) (a unit-

less term), the calculated biomass of the species, B(i) (metric tons) at time t, and possibly a carrying 

capacity (maximum biomass of species which can be supported by the environment) K(i) term (also in 

metric tons). Available choices are: 

 · Linear:  r(i)B(i,t) 

 · Logistic: r(i)B(i,t)(1-B(i,t)/K(i)) 

 

The Harvest term defines how the population is decreased by fishing. Available choices are:  

 · Effort:  q(i)E(i,t)B(i,t) 

 · Catch:  C(i,t) 

 

The estimated parameter q(i) is the unit-less catchability parameter. The non-estimated input parameter 

E(i,t) is the unit-less effort data. Both parameters are typically between 0.0 and 1.0. 



 

  
 

 

The Competition term describes how biomass is decreased by fish competing against other fish for the 

same food. Available choices are:  

 · NO_K:  B(i,t)∑α(i,j)B(j,t) 

 · MS-PROD: r(i)B(i,t)[(∑β(i,j)B(j,t))/K(G) - (∑β(i,G)B(G,t))/(K(σ) - K(G))] 

 

The estimated parameters are: α(i,j) - the effect of species j on species i, β(i,j) - the effect of species j in 

same guild as species i, on species i, β(i,G) - the effect of guild G on species i, K(G) - guild carrying capacity, 

and K(σ) - the system carrying capacity. A guild is defined as a group of species. 

 

The Predation term describes how the biomass is decreased by fish eating other fish. Available choices 

are:  

 · Type I: B(i,t)∑ρ(i,j)B(j,t) 

 · Type II: B(i,t)∑[ρ(i,j)B(j,t)/(1+∑h(k,j)ρ(k,j)B(k,t))] 

 · Type III: B(i,t)bᵢ+1∑[ρ(i,j)B(j,t)/ (1+∑h(k,j)ρ(k,j)B(k,t)bₖ+1)] 

 

The estimated parameters are: ρ(i,j) - the effect of predator species j on prey species i, h(k,j) - handling 

time for predator species j with prey species k, and b(k) - a predator dependent parameter. 

 

An example model equation for logistic growth, catch harvest, and NO_K competition is:  

 

 B(i,t+1) = B(i,t) + r(i)B(i,t)(1 - B(i,t)/K(i)) - C(i,t) - B(i,t)∑α(i,j)B(j,t) 

 



 

  
 

Note that this model generates a time series of biomass for species i and j over time t. The time series 

requires an initial biomass (given or estimated) at t=0. 

Estimating Model Parameters 

After the user has entered all population model data, including min/max ranges for each parameter to be 

estimated, they then set the model algorithm parameters that will determine how the model is to run. An 

estimation model is run until 1 of 3 stop conditions are met: the fitness value reaches a certain value, after 

time t, or after a specific number of function evaluations.  The fitness value measures how well the 

estimated biomass fits the observed biomass as described below. 

The model algorithm parameters are: objective criterion, estimation algorithm, minimizer algorithm, 

scaling algorithm, and stopping conditions.  Each has a variety of settings which may yield different results. 

The user should try several distinct combinations as they estimate their parameters. Users may create an 

“ensemble” of runs with each run consisting of sub runs with unique model algorithm parameter settings. 

The user may then average the results. 

The Objective Criterion parameter measures how well (i.e., fitness) the estimated biomass fits the 

observed biomass or relative biomass. Available choices are: least squares, maximum likelihood, or model 

efficiency. 

 

The Estimation Algorithm is currently defined as being one of two families of algorithms: the 3rd party, 

open source NLopt non-linear optimization library or the 3rd party, open source Bees Algorithm, modeled 

after a global search algorithm derived from the behavior of honey bees. 

The Minimizer Algorithm is the sub algorithm selected from the family of Estimation Algorithms selected.  

There is only one Bees Algorithm available but there are several (global/local and deterministic/stochastic) 



 

  
 

NLopt optimization algorithms available. Each algorithm is defined in more detail from the inline What’s 

This? help. When running a stochastic algorithm, each time that the estimation is run, a random seed 

value will be used. If the user wishes to run stochastically, but also wishes to reproduce the results, a box 

may be checked to set the initial seed to a constant. In this fashion, the stochastic runs will use the same 

random seeds each time they’re run. More details on specific optimizing algorithms are provided in the 

MSSPM User Guide. 

The Scaling Algorithm is used to rescale the biomass data since biomass values for each species may not 

be scaled the same. The user may select from a list of scaling algorithms. Available choices are: 

 · mean: (B - Bave) / (Bmax - Bmin) 

 · min/max: (B - Bmin) / (Bmax - Bmin) 

 

The Stopping Parameters are used to terminate the estimation evaluations. There are 3 stopping 

parameters available and 1 or more may be used. The estimation will stop when one of the following 

conditions is met: after reaching a specific value, after time t, or after a specific number of function 

evaluations. The user may “watch” the estimation’s fitness values change over time from the Progress 

window and adjust the stopping parameter(s) accordingly. 

The user may create an “ensemble” of runs consisting of multiple runs using the same or different 

algorithms. An ensemble’s run sub runs are then averaged (either by parameter or by biomass) and the 

averaged estimated biomass is shown against the individual runs. 

The user can add to a “review list” the results from a run to view with other run results in a tabular format 

and generate a report from a selected run. In this fashion the user can compare previous runs and also 

“call-up” a previous run as each run’s initial parameter settings are saved. 

 



 

  
 

 

Model Diagnostics 

The user may visually inspect the estimated parameter’s neighborhood using a 2d chart (one parameter at 

a time) or using a 3d surface plot (2 parameters at a time). By varying the number of points and percent 

variation on either side of the estimated parameter, the user can visualize the parameter space in 

question and see if the estimated parameter is a global minimum point for the parameter(s) in question. 

 

Additionally, a retrospective analysis (i.e., Mohn’s Rho) may be run with the user selecting the number of 

years to be “peeled” from subsequent runs. The Mohn’s Rho is a numerical measurement of the severity 

of a retrospective pattern [Deroba 2014]. Its value is given by: 

 

    · Mon’s Rho: {Σ [ (X(t-n,t-n) - X(t-n,t)) / X(t-n,t) ] } / x 

 

where Σ goes from n=1 to x years. The value n represents the number of years “peeled off” from the 

complete time series. 

Running a Forecast 

With estimated parameters found, the user may now project forward the population model to see how 

the population may change in the future. The data needed for a forecast are: the number of years/run, 

number of runs/forecast, the harvest data to be used for the duration of the forecast, and the % error 



 

  
 

desired around each parameter. Multiple forecasts are run in a Monte Carlo fashion using the preceding 

data. 

The forecast display consists of all of the individual runs in gray (i.e., those using % errors in their 

parameter values) and one overlaid run in blue with 0% error. In this fashion, the user can quickly see how 

the Monte Carlo runs compare with the 0% error run. 

 

Running REMORA 

REMORA is a streamlined forecasting interface for stakeholders (see next section for more details) that 

allows for quick forecast iterations. It is designed to be used after the user has completed their estimation 

and is ready to run different forecast scenarios. 

 

Analyzing Results  

The following output charts are available in the Output Panel: Biomass vs Time, Harvest vs Time, and 

Exploitation Rate. Data may be viewed per species, per guild, or per system. Additionally, maximum 

sustained yield lines may be superimposed over the output plots. 

 

Generate Simulated Data 

For testing purposes, the software can generate its own simulated biomass data, with user inputted 

percent error if desired. The simulated biomass data are generated with the current parameter settings. In 



 

  
 

this fashion, the user can confirm that the estimation is working correctly by confirming, for example, that 

with simulated biomass data with 0% error, a perfect fit of the estimated parameters is found. 

 

 

REMORA 

The REMORA (REsource Management Option Review and Analysis) interface is designed for the interactive 

forecasting use of a stakeholder after parameter estimations have been completed. The user interface is a 

slimmed down version of the main application’s forecast controls. It gives the stakeholder intuitive control 

for the tweaking of uncertainty parameters as subsequent forecasts are created. For example, in lieu of 

harvest values having to be entered in tabular format, an interactive plot has been developed where the 

stakeholder can graphically construct the desired harvest trend throughout the forecast period. 

 

The REMORA workflow is to generate a forecast and then allow users to interactively adjust errors around 

parameters and harvest values and create another forecast.  Through this iterative process the user can 

then define harvest values and error values that yield a desired forecast, thus a suitable policy to consider. 

 

  



 

  
 

Components 

The MSSPM is written in C++ and built with the following open-source tools. The Qt1 graphical user 

interface widget toolkit is used as the GUI framework. The MySQL2 relational database system is used to 

store all model data. Model estimation is performed by the NLopt3 nonlinear optimization library. In 

addition to the algorithms provided by NLopt, an implementation of a Bees algorithm4, a global search 

algorithm based upon honey bee behavior, has been provided for the analyst as well. Linear algebra 

operations are performed with the Boost5 library. Finally, two other modules were used: QDarkStyleSheet6 

for dark widget colors when in dark mode, and linuxdeployqt7 to facilitate creating a Linux release of 

MSSPM. 

The specific version number of each of the aforementioned libraries, as well as a link to their websites, 

may be found in the About dialog from MSSPM’s Help menu group.  

 

 

 

______ 

1https://www.qt.io 

2https://www.mysql.com 

3https://nlopt.readthedocs.io 

4http://beesalgorithmsite.altervista.org 

5https://www.boost.org 

6https://github.com/ColinDuquesnoy/QDarkStyleSheet 

7https://github.com/probonopd/linuxdeployqt 

https://www.qt.io/
https://www.mysql.com/
https://nlopt.readthedocs.io/
http://beesalgorithmsite.altervista.org/
https://www.boost.org/
https://github.com/ColinDuquesnoy/QDarkStyleSheet
https://github.com/probonopd/linuxdeployqt


 

  
 

Appendix B. Bottom Temperature Time series  

Author and Analyst Hubert duPontavice 

Data Sources  

Three bottom temperature products to get temperature from 1959 to 2019: 

1. Numerical simulation of the NWA Ocean was performed with the Regional Ocean Modelling 

System (ROMS)  

PERIOD: 1958-1992 

INITIAL RESOLUTION: ~7km → REGRID: 1/10° 

(Shchepetkin and McWilliams, 2005) 

https://www.sciencedirect.com/science/article/pii/S1463500304000484 

2. Global Ocean Physics Reanalysis (Glorys reanalysis) 

PERIOD: 1993-2019 

INITIAL RESOLUTION: 1/12° → REGRID: 1/10° 

(Fernandez and Lellouche, 2018; Lellouche et al., 2018) 

https://resources.marine.copernicus.eu/product-

detail/GLOBAL_REANALYSIS_PHY_001_030/INFORMATION 

3. Furthermore, we use bottom temperature from the Northwest Atlantic Regional Climatology to 

estimate a monthly decadal bias (Seidov et al., 2016a, 2016b)  



 

  
 

INITIAL RESOLUTION: 1/10° 

https://www.ncei.noaa.gov/products/northwest-atlantic-regional-climatology 

Data Processing  

Bottom temperature data from Glorys reanalysis was not processed.  

Bottom temperatures from ROMS-NWA (used for the period 1958-1992) were bias-corrected.  

Previous studies that focused on the ROMS-NWA-based Cold Pool highlighted strong and consistent warm 

bias in bottom temperature of about 1.5˚C during the stratified seasons over the period of 1958-2007 

(Chen et al., 2018; Chen and Curchitser, 2020) In order to bias-correct bottom temperature from ROMS-

NWA, we used the monthly climatologies of observed bottom temperature from the Northwest Atlantic 

Ocean regional climatology (NWARC) over decadal periods from 1955 to 1994. The NWARC provides high 

resolution (1/10° grids) of quality-controlled in situ ocean temperature based on a large volume of 

observed temperature data (Seidov et al., 2016a, 2016b)  

(https://www.ncei.noaa.gov/products/northwest-atlantic-regional-climatology). The first step was to re-

grid the ROMS-NWA to obtain bottom temperature over the same 1/10° grid as the NWARC. Then, a 

monthly bias was calculated in each grid cell and for each decade (1955–1964, 1965–1974, 1975–1984, 

1985–1994) in the MAB and in the SNE shelf: 

Where T(i,d) Climatology is the NWARC bottom temperature in the grid cell i for the decade d and T(i,d) 

ROMS-NWA is the average ROMS-NWA bottom temperature over the decade d in the grid cell i.  

 



 

  
 

Bottom Temperature Index 

A GIS Shapefile for Georges Bank was used to extract relevant grid cells for the model. Cell values were 

averaged by year to produce an annual index. The inverse of the index was calculated for application to 

species where growth rate or carrying capacity might be inversely related to the bottom temperature. 
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Appendix C. Final model parameter estimates from most 

parsimonious model 

B0, r, and K 

Species B0 r K 

 Atlantic cod 182500 0.297 206000 

 Atlantic herring 7591000 0.900 54340000 

 Atlantic mackerel 575000 0.978 3615000 

 Goosefish 41200 0.291 40640 

 Haddock 25830 0.357 146700 

 Silver hake 198300 0.900 244900 

 Spiny dogfish 2918 0.291 20530 

 Winter flounder 31880 0.510 31480 

 Winter skate 2128 0.553 20850 

 Yellowtail flounder 41240 0.461 50780 

cc 

Species K r K∙ r∙ 

 Atlantic cod 0.0 0.0   

 Atlantic herring 

0.911 0.0 Bottom 

temp 

 



 

  
 

 Atlantic 

mackerel 

1.198 0.0 Bottom 

temp 

 

 Goosefish 0.0 0.0   

 Haddock 

0.699 0.0 Bottom 

temp 

 

 Silver hake 

0.927 0.0 Bottom 

temp 

 

 Spiny dogfish 

0.0 0.00330  Bottom temp-

1 

 Winter flounder 

0.0 0.0333  Bottom temp-

1 

 Winter skate 

0.791 0.0 Bottom 

temp 

 

 Yellowtail 

flounder 

0.167 0.0 Bottom 

temp-1 

 



 

  
 

ρ 

 Prey          

Predator 

Atlantic 

cod 

Atlantic 

herring 

 Atlantic 

mackerel 

 

Goosefis

h 

 

Haddock 

 Silver 

hake 

 Spiny 

dogfish 

 Winter 

flounde

r 

 Winter 

skate 

 Yellowtail 

flounder 

 Atlantic cod 0 1.77E-07 6.02E-08 0 0 1.31E-08 0 0 0 0 

 Atlantic herring 0 0 0 0 0 0 0 0 0 0 

 Atlantic mackerel 0 0 0 0 0 0 0 0 0 0 

 Goosefish 0 1.45E-07 4.92E-07 0 0 8.99E-08 0 0 0 0 

 Haddock 0 0 0 0 0 0 0 0 0 0 

 Silver hake 0 2.36E-06 2.67E-06 0 0 9.53E-07 0 0 0 0 

 Spiny dogfish 0 6.44E-07 4.90E-07 0 0 3.25E-08 0 0 0 0 

 Winter flounder 0 0 0 0 0 0 0 0 0 0 

 Winter skate 0 1.44E-07 1.52E-07 0 0 5.20E-08 0 0 0 0 

 Yellowtail flounder 0 0 0 0 0 0 0 0 0 0 



 

  
 

Appendix D. Model Fit Summary 

Statistic 

 Atlantic 

cod 

 Atlantic 

herring 

 Atlantic 

mackerel 

 

Goosefish  Haddock 

 Silver 

hake 

 Spiny 

dogfish 

 Winter 

flounder 

 Winter 

skate 

 Yellowtail 

flounder  Model 

SSresiduals 5.05E+11 3.36E+16 3.48E+14 3.89E+10 8.16E+10 6.05E+12 6.56E+09 6.53E+09 7.62E+09 4.18E+09 3.39E+16 

SSdeviations 2.05E+11 1.57E+15 9.55E+12 4.21E+09 1.14E+11 3.84E+11 1.80E+09 3.21E+09 3.09E+09 4.29E+09 1.58E+15 

SStotals 7.09E+11 3.52E+16 3.57E+14 4.31E+10 1.95E+11 6.44E+12 8.36E+09 9.75E+09 1.07E+10 8.47E+09 3.55E+16 

r² 0.288 0.045 0.027 0.098 0.582 0.06 0.215 0.33 0.288 0.506 0.244 

r 0.562 0.174 0.024 0.462 0.756 0.213 0.459 0.312 0.515 0.514 0.399 

AIC 1203.794 1781.27 1543.593 1070.531 1109.023 1332.979 977.989 977.729 985.767 954.569 1193.725 

 



Hydra Methology

Introduction
The original purpose of the Hydra simulation model was to create simulated data for testing simpler multi-
species assessment models (Gaichas et al. 2017). Further model development repurposed Hydra as an MSE
tool to test proposed multispecies and ecosystem level management procedures to support EBFM analyses
for the New England Fishery Management Council, and were reviewed in 2018 as part of an Ecosystem
Based Management Strategy Review for Georges Bank.

The current Hydra estimation model can still be used for the above purposes (no simulation code was
removed), but with the potential added benefit of estimating operating model parameters by fitting to data
from the ecosystem, rather than iterative hand calibration.

Multispecies models “of intermediate complexity” between single population and full ecosystem models
potentially combine the best aspects of current single species assessment models (including demographic
structure and statistical parameter estimation) with key ecological linkages between species (Plagányi et
al. 2012, Collie et al. 2014). The Northeast Fisheries Science Center (NEFSC) is currently applying mul-
tispecies production and delay-difference models to a simulated system coarsely modeled after the Georges
Bank fish community. The focus of this work is to evaluate the performance of a length-based multispecies
approach for providing management advice. While we do not yet have a fitted model ready to provide catch
advice, this review should identify next steps for further developing model code, inputs, and diagnostics
towards this goal.

To evaluate Hydra’s performance as an estimation model, we converted it from a simulation model by incor-
porating likelihood functions to fit the model to time series of aggregate fishery catch, survey biomass, size
compositions from the fishery and survey, and length-specific predator diets. Assessment model performance
evaluation is in progress by comparing “true” biomass, abundance, and fishing mortality rates to model-
estimated quantities using skill assessment metrics (e.g., correlation, RMSE, Modeling efficiency; Stow et
al. 2009). Finally, the length-based multispecies model is being fit to actual observations from Georges Bank
to evaluate operational potential within a particular region.

Methodology
The reviewed model is based on the simulation model Hydra (Gaichas et al. 2017), implemented in ADMB
(Fournier et al. 2012). Hydra’s structure is derived from the length-based multispecies simulation model,
LeMANS (Hall et al. 2006; Rochet et al. 2011), with additional options for growth, and recruitment
functional forms and more detailed fishing fleets.

A key feature of Hydra that differentiates it from LeMANS and other length-based models is its treatment
of length information. Attempting to balance model complexity and run time with available data and
adequately modeling length-based processes, Hydra applies an equal number of length bins to all modeled
species. The modeler specifies the overall number of bins (5 in the original simulation model), and the size
in cm spanned by each bin for each species. The original Hydra simulation model used narrower length bins
for smaller fish sizes and a length bin spanning a wider range of sizes for larger fish to efficiently represent
changes size selectivity of predators and fisheries. The estimation model uses equal width bins equally
dividing each species’ maximum observed length into the overall number of bins.

Modeler decisions on length bin number and width combined with individual species growth parameters both
contribute to the model temporal scale, which internally calculated and set equal to the time required for

Annex 4: Hydra Model

https://www.fisheries.noaa.gov/resource/peer-reviewed-research/ecosystem-based-fisheries-management-strategy-review-georges-bank
https://www.fisheries.noaa.gov/resource/peer-reviewed-research/ecosystem-based-fisheries-management-strategy-review-georges-bank


the fastest-growing species to grow out of its smallest length bin (if that is less than one year). Therefore,
model timesteps will never exceed one year, but can be subannual.

For this review, the simulation model code was forked and an objective function added, with modifications
to the data section to accommodate new data inputs and to the parameter section to estimate fishery and
survey selectivity and catchability. As an estimation model, Hydra can be fitted to multiple data streams.
Currently the objective function comprises the following components, catch (by species for each fleet), size
composition of the catch (by species for each fleet), survey abundance index (by species for each survey),
survey size composition (by species for each survey), survey diet composition (stomach weight by predator
size bin for each predator species and survey), and recruitment (annual deviations from mean recruitment
by species). A detailed description of the objective function equations is available here.

Hydra input files were developed directly from mskeyrun datasets by modifying functions in the hydradata
R package. The function create_Rdata_mskeyrun.R (code) allows the user to specify whether datasets
should be constructed from Atlantis-simulated or real Georges Bank data, and the number of length bins to
use for composition data, then creates an R data object. This data object is then used to create data and
parameter input files using the function hydradata::create_datpin_files().

Hydra output visualizations were developed to evaluate model fits with different settings and input datasets.
The current diagnostics include model fits to each survey index, model fits to catch by fleet, comparisons
of estimated and observed length compositions by year and in aggregate across years for each modeled
species, residuals of fits to length compositions, and comparisons of estimated and observed diet composition.
In addition, model outputs of estimated recruitment, total biomass, fishery and survey selectivity, fishing
mortality, and predation mortality are produced. Initial model skill assessment compares model output total
biomass with known total biomass for the simulated datasets.

All model code, data processing, and visualization is available online:

• Hydra model estimation version code https://github.com/thefaylab/hydra_sim

• Hydra estimation model data file generation https://github.com/thefaylab/hydradata

• Hydra model diagnostics https://github.com/thefaylab/hydra_diag

Data requirements

A common dataset for 10 Georges Bank species has been developed, as well as a simulated dataset for model
performance testing. This mskeyrun data package holds both datasets. All modeling teams used these
datasets. Group decisions on data are also documented below.

Years: 1968-2019

Area: Georges Bank (see map above)

Species: Atlantic cod (Gadus morhua), Atlantic herring (Clupea harengus), Atlantic mackerel (Scomber
scombrus), Goosefish (Lophius americanus), Haddock (Melanogrammus aeglefinus), Silver hake (Merluccius
bilinearis), Spiny dogfish (Squalus acanthias), Winter flounder (Pseudopleuronectes americanus), Winter
skate (Leucoraja ocellata), and Yellowtail flounder (Limanda ferruginea)

Model description

Much of the material below is edited from from Gaichas et al. (2017), supplementary material:

Hydra is a length-based multispecies, multifleet model designed to provide simulated data for
performance testing of simpler (non-size structured) multispecies assessment models and man-
agement procedures for the Northeast U.S. Continental Shelf.

We focus on body size rather than age because:

• Predation is a length-based process

https://drive.google.com/drive/folders/1Cx4J1hToM2WgfUQjH_9rC7Hg81tTuIxU
https://github.com/thefaylab/hydradata/blob/master/data-raw/create_RData_mskeyrun.R
https://github.com/thefaylab/hydra_sim
https://github.com/thefaylab/hydradata
https://github.com/thefaylab/hydra_diag


• Harvesting is a length-based process
• Routine age determinations are not available for all ecologically and economically important

species

Population dynamics For an individual species i, the number of individuals N in size class j at time
t + 1 represent the survivors from that cohort from the previous time step (t) that have not grown into a
larger size class, plus the number of individuals growing into size class j from smaller size classes during the
time interval. We only consider transitions among immediately adjacent size classes. For size classes larger
than the recruit (smallest) size class, the model for each species i can be written:

Ni,j,t+1 =
∑

j′

ϕi,j′→j,tSi,j′,tNi,j′,t

The proportion surviving from size class j − 1 to size class j for a species at time t is denoted Sj′,t,. ϕj′→j

is the probability of moving from size class j − 1 to size class j.

Growth and Time-in-Stage The values for ϕj′→j,t, the time required for an individual to grow between
length bins are determined from the growth function. Growth can be assumed to follow a von Bertalanffy (see
Hall et al. (2006)) or power function, either of which can be applied to any species. As in Hall et al. (2006),
the model timestep is set up to equal the amount of time it takes for the fastest growing species/length bin
combination to grow into the next length bin.

One of the simplest possible models for indeterminate growth with environmental effects is exponential:

li,a,t = Ψia
Ki
i

where li,a,t is the length of species i, age a and time t; Ψi and Ki are growth model parameters.

The time required to grow through a specified length interval lb is:

∆ti =
[

∆lbi

Ψi

]1/Ki

and the expression for the probability ϕ of moving through the length interval is then:

ϕi = 1
∆ti

Von Bertalanffy growth is modeled identically as in Hall et al. (2006):

li,t = L∞i(1 − e−vonBKi,(t−t0,i))

with the time required to grow through a specified length interval:

∆ti = 1
vonBKi

log

[
L∞i − lblower,i

L∞i − lbupper,i

]
and an identical expression for the probability of moving through the length interval as above.



Recruitment Average recruitment with annual deviations

In the most basic formulation, no spawner-recruit model is specified, but annual log deviations Λi,t from
mean log recruitment R̄i determine annual recruitment levels:

Ni,1,t = eR̄i+Λi,t

Mortality The survival rate is:

Si,j,t = e−(M1i,j+M2i,j,t+si,j,qFi,j,q,t)

The rate of natural mortality is partitioned into two components: sources of natural mortality due to all
unmodeled factors (M1) and predation mortality from species included in the model (M2).

The predation process is decomposed into size selectivity and species vulnerability in each area. The ρ, of
prey species m size n for a given predator species i size j is:

ρi,j,m,n = ϑn,jλm,i

where ϑn,j is the preference for a prey item of size n by predator size j, and λm,i is the vulnerability of prey
species m to predator species i. The parameter λ is set to either 0 or 1 depending on whether predator i is
known to prey on species m.

The size preference function is:

ϑn,j = 1
(wn/wj)σj

√
2π

e
−

[loge(wn/wj )−Ψj ]

2σ2
j

where wn is the weight at the midpoint of the length bin for a prey of size n, wj is the weight at the midpoint
of the length bin for a predator of size j, Ψj is the ‘preferred’ predator/prey weight ratio on a logarithmic
scale, and σ2

j is the variance in predator size preference.

To estimate the daily food intake I for each predator, we use:

Ii,j,t = 24[δie
ωiT ]C̄i,j,k,t

where the term in brackets gives the temperature (T )-dependent hourly consumption rate with parameters
δi and ωi and C̄i,j,k,t is the mean stomach content weight (g) over a diel cycle.

The predation mortality rate on a particular prey species depends on the total consumption by predators, the
suitability of that prey to each predator, and the total suitable prey biomass available to each of its predators.
If the predation functional feeding response is assumed to be a Holling Type II, the M2 component on prey
species m size n is then (Hall et al., 2006; Magnússon, 1995):

M2m,n,t =
∑

i

∑
j

Ii,j,tNi,j,t
ρi,j,m,n∑

a

∑
b ρi,j,a,bWa,bNa,b + Ω

where a and b represent all prey species and sizes for predator i, W is the mean weight of prey a in size class
b, Ω is ‘other’ food not explicitly included in the model, and all other terms are as above.

Fishing in the hydra estimation model has been re-implemented differently from the original simulation
model. Similar to the original simuilation model, multispecies fleets are implemented. However, rather than
driving a simulation with fleet effort, we estimate fishing mortality rates (F ) by fleet where there are one or
more target species/stocks per fleet, with one “primary” stock identified for each fleet.

Annual fishing mortality rates (F ) over time for the primary stock (modeled via average Fbar and annual
deviations Fdev) are specified as:



Ff,i,y = Fbarf,ie
(F devf,y)

fleet-specific F for target stocks other than the primary stock modeled as offset from the primary stock via
catchability q:

Ff,j,y, = qf,j .Ff,i,y

We note this implies same fishing pattern across stocks within a fleet, which is a simplification that may
need later adjustment. This could be modified with a multivariate random walk.

Logistic selectivity at length for each fleet is applied to all species caught by the fleet:

Ff,i,t,l = self,i,L(l)

The selectivity for a specified gear type q is given by:

si,j,q = [1 + e−(ci,q+di,ql)]−1

where ci,j,q and di,j,q are model parameters and l is the midpoint of the jth length interval.

The yield from species i at time t is then:

Yi,t =
∑

j

∑
q

si,j,qFi,j,q,t

M1i,j + M2i,j,t + si,j,qFi,j,q,t
[1 − e−(M1i,j+M2i,j,t+si,j,qFi,j,q,t)]Ni,j,tWi,j

where Wi,j,k is the mean weight of an individual of species i and length j.

Objective Function

The model can be fitted to multiple data streams. Currently the objective function comprises the following
components, catch (by species for each fleet), size composition of the catch (by species for each fleet), survey
abundance index (by species for each survey), survery size composition (by species for each survey), survey
diet composition (stomach weight by predator size bin for each predator species and survey), and recruitment
(annual deviations from mean recruitment by species).

Catch Expected catch for species i in fleet q is summed over time steps to the fishing/calendar year y.

Ĉy,i,q =
∑
t∈y

∑
j

si,j,qFi,j,q,t

M1i,j,t + M2i,j,t + si,j,qFi,j,q,t

[
1 − e−(M1i,j,t+M2i,j,t+si,j,qFi,j,q,t)

]
Ni,j,tWi,j,t

ln(Cy,i,q) ∼ N (ln(Ĉy,i,q), σ2
q,i,y)

Catch length composition
p̂q,i,y,j = p∗

q,i,y,j/
∑

j′

p∗
q,i,y,j′

p∗
q,i,y,j =

∑
t∈y

si,j,qFi,j,q,t

M1i,j,t + M2i,j,t + si,j,qFi,j,q,t

[
1 − e−(M1i,j,t+M2i,j,t+si,j,qFi,j,q,t)

]
Ni,j,t

Proportions at length (in numbers) in catch for each species in each fleet are modeled as multinomial, given
an input annual sample size for each composition.



Survey abundance indices The predicted values for survey abundance rely on the timing of the survey
within a year, catchability of the species in the survey, and the (length-based) survey selectivity. Survey g
predicted values (in weight) are:

Îg,i,t = qi,g,t

∑
jsi,j,gNi,j,tljWi,j,t

The observed annual index values for each species are assumed to be lognormally distributed around the
predicted values:

ln(Ig,i,t) ∼ N (ln(Îg,i,t), σ2
g,i,t)

Survey length composition
p̂g,i,t,j = p∗

g,i,t,j/
∑

j′

p∗
g,i,t,j′

p∗
g,i,t,j = si,j,g,tNi,j,t

Proportions at length (in numbers) in the survey for each species are modeled as multinomial, with an
additional input sample size for each composition.

Prey proportions in survey diet Proportions by weight in stomach of predator i of size j of prey m:

ϕ̂g,t,i,j,m = ϕ∗
g,t,i,j,m/

(
ϕ∗

g,t,i,j,other +
∑
m

ϕ∗
g,t,i,j,m

)

ϕ∗
g,t,i,j,m =

∑
n

ρi,j,m,nNm,n,tWm,n,t

Proportions by prey species (in weight) in the survey are modeled as multinomial with an input sample size
for each composition (potentially these data could be modeled as Dirichlet or delta-dirichlet, or. . . .)

Penalties

Recruitment deviations A penalty to the objective function is added for the annual deviations from the
stock-recruitment relationship for each species, which are assumed to be log-normal around the expected
recruitment (equation 8):

Λi,t ∼ N
(
0, τ2

Λi

)
where τ2

Λi
is the variance of the recruitment deviations for species i.

Estimated (or estimable) parameters

Parameter types and numbers of parameters by type (Nsp = number of species, Nlen = number of length
bins, Nyr = number of years, Nfleet = number of fleets, Nsurvey = number of surveys) include:

1. Initial year numbers at size for each stock (Nsp * Nlen)

2. Average annual recruits for each stock (Nsp)

3. Recruitment deviations for each stock (Nsp * (Nyr-1) )



4. Annual F for each fleet (Nfleet * Nyr)

5. Fishery catchability for non-primary stocks (Nsp - Nfleet)

6. Fishery logistic selectivity at length for each fleet (2 * Nfleet)

7. Survey catchability for each stock for each survey (Nsurvey * Nsp)

8. Survey logistic selectivity at length for each survey (2 * Nsurvey)

Not currently estimating (but could add):

1. M1 by stock (constant over age) (Nstock)

2. M2 related parameters (e.g. vulnerability)

Diagnostics

Functions to visualize both model inputs and outputs are in development in the hydra_diag github repository.
At present, workflows for visualizing an individual model output and for comparing across model outputs
are available, along with initial options to add model skill assessment (comparison with known simulated
data).

Individual model diagnostics include plots of input survey biomass, catch, and length data (not aggregated
by length bin). Model fits to aggregate survey indices and catch by fleet, fits to annual and aggregate (all
years) survey and fishery length compositions (length bins), and diet composition for predator and length
bin are visualized. In addition, effective sample size is compared with input sample size for length and
diet compositions, and both Pearson and One Step Ahead (OSA, Trijoulet et al. (2023)) residuals are
calculated for fits to all length compositions. Model derived quantities (estimated recruitment, biomass,
fishing mortality, predation mortality, and survey and fishery selectivity) are also plotted.

Modeling approach

Given the current development level of Hydra as an estimation model, current objectives are to demonstrate
that the model runs and generates the desired output. Priorities for further development should ideally be
identified during the ECES WGSAM review. Hydra is being fit to both simulated and real Georges Bank
datasets to develop and test estimation functions.

For simulated data our initial species selection includes 11 single species groups from the Norwegian Barents
Sea (NOBA) Atlantis model (Hansen et al. 2016, 2019). These groups are fully age structured. All but
two of them are fished. The full process for generating the simulated dataset is described on the mskeyrun
R package documentation at this link. Hydra was fit to an 80 years of simulated survey and catch index,
size, and diet composition data for these 11 simulated stocks using 2 fleets (cod and other), with both 5
and 10 length bins for each stock. The simulated datasets were used to test incrementally added estimation
functionality, and will be used for model skill assessment.

For Georges Bank, the model was fit to 10 stocks using 2 fleets (groundfish and pelagic), with 5 length
bins for each stock. Time series for fitting included 1978 - 2019. The model was fit to total catch (summed
retained + discard), catch size compositions, annual Fall and Spring NEFSC bottom trawl survey abundance
indices (pre-processed for vessel differences via calibration), survey size compositions, survey and stomach
content diet composition (proportion by weight). M1 and M2-related mortality parameters are fixed inputs
(for now).

Initial fits to real Georges Bank data have been for testing only, but several examples were presented during
the review. Please see the “Hydra Results” document for an overview.

https://github.com/thefaylab/hydra_diag
https://noaa-edab.github.io/ms-keyrun/articles/SimData.html
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Introduction
Hydra model equations, new objective function equations, and descriptions of initial modeling approaches
and diagnostics are found in the Hydra Methodology document. An overview of results presented during
the ICES WGSAM 2022 meeting under ToR b, keyrun reviews, is included in this document.

Hydra model diagnostics and progress fitting to three datasets were presented:

• Simulated data with 5 length bins

• Simulated data with 10 length bins

• Georges Bank data with 5 length bins

We use 5 length bins as a starting structure for fitting the Georges Bank data because the simulation model
Hydra used 5 length bins. We do not consider any of these models fully converged as keyruns, rather the
diagnostics with each dataset are intended to give insight into model behavior and performance.

Specifically, the simulated datasets with different numbers of length bins are intended to evaluate model
sensitivity to this choice of input data structure and tradeoffs with overall performance. These datasets also
allow preliminary comparisons with true Atlantis quantities (biomass, recruitment, diet) as a step towards
skill assessment. Sensitivity of the model to the Other food parameter was identified as a high priority in the
2018 simulation model review, and is being evaluated with the simulated dataset. Initial fits to different levels
of other food with simulated data were posted, but not presented at the meeting due to time constraints.

Fits to the real Georges Bank data have just begun, and have already highlighted several implicit assumptions
in the Hydra model code that have been addressed. The time period for modeling has been adjusted to 1978-
2019 to avoid starting the model with extremely high catches observed 1968-1977.

Three sets of Georges Bank fits were presented, including:

• Estimate only average F, no initial N or recruitment deviations

• Estimate average F and initial N, no recruitment deviations

• Estimate all

Results
These fits are shown to illustrate initial model performance. Neither the model code nor the
data inputs are considered final.

Overall, the results of initial fitting are encouraging, considering that Hydra has only recently been developed
as an estimation model, and the datasets continue to be refined as well. We note that interannual variability
has been picked up by the model for lots of stocks in both simulated and real datasets, suggesting that
the model is able to respond to input data. The fits and other outputs shown here are from the model
“estimate-all” presented 11 October 2022.



Figure 1: Survey 1index fit, Georges Bank estimate-everything Oct 11 2022



Figure 2: Survey 2 index fit, Georges Bank estimate-everything Oct 11 2022



Figure 3: Fleet 1 catch fit, Georges Bank estimate-everything Oct 11 2022



Figure 4: Fleet 2 catch fit, Georges Bank estimate-everything Oct 11 2022



However, it is clear that there is a challenge estimating scale for some stocks. In particular, Georges Bank
pelagics (Atlantic herring and Atlantic mackerel), scale is problematic, and estimated F is very low. This is
also true for yellowtail flounder (notably, single stock assessment for this stock on Georges Bank is difficult
as well).

Figure 5: Hydra estimated biomass, Georges Bank estimate-everything Oct 11 2022

Fits to annual size composition in these initial attempts are poor, and turning off diet composition during
fitting doesn’t affect general model behavior too much.

Model estimated recruitment deviations show patterns that are unlikely given species life history (e.g. spiny
dogfish).

To begin addressing where fitting issues are happening, a series of runs are in progress with Georges Bank
data sequentially turning on different portions of the estimation. In addition, fits to simulated data are in
progress to determine the impacts of different length bin specification on model estimation performance.
Finally, sensitivity analysis has started looking at different levels of OtherFood using simulated datasets.
Results from all of these analyses in progress were available during the review.



Figure 6: Hydra estimated F, Georges Bank estimate-everything Oct 11 2022



Figure 7: Atlantic cod fishery length comp fit, Georges Bank estimate-everything Oct 11 2022. This example
shows fits to annual Atlantic cod fishery length compositions (in the 5 model length bins, each panel represents
a year).



Figure 8: Monkfish diet comp fit, Georges Bank estimate-everything Oct 11 2022. This example compares
observed and estimated diet composition at length for Monkfish (Fall survey, each panel represents a year).



Figure 9: Hydra estimated recruitment, Georges Bank estimate-everything Oct 11 2022



Next steps
Initial skill assessment and initial fits to GB mskeyrun data suggest Hydra is responsive to data sets. However,
ongoing modeling work is designed to get more of a feel for how this model is behaving when confronted
with data.

Potential topics for discussion with reviewers include:

• Mismatch between drivers of trends and spatial resolution (subsets of stock being included for pelagics)

• Generic structure of length bin parameterization

• Fishing fleet specification

• Fits to all species together rather than starting from results of single-species

• Predation mortality component estimation

• Data weighting

• Simulation testing (self-tests, fits to Atlantis)

• Move to TMB (state space) framework (Rceattle?)

• Application as a multispecies assessment model

• How precise do the growth functions need to be? (i.e. reliance on age/growth studies)

• How do growth model choices (structure) affect performance
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ABSTRACT
Georges Bank is a highly productive region of the Northeast US Continental Shelf
Large Marine Ecosystem. Its unique physical properties make it ideal for ecosystem-
based fisheries management which is inherently place-based. In order to evaluate
ecosystem-based strategies there will need to be a management strategy evaluation
procedure undertaken. As part of this procedure various operating models will need
to be developed to account for the various uncertainty in the system. Mass balance
models offer many of the characteristics that would benefit an ecosystem-level man-
agement strategy evaluation. Existing mass balance models in the region are either
too aggregated at both the species and fleet level or not geographically specified to
Georges Bank. Here we describe a new mass balance model for Georges Bank built
using Rpath, the R implementation of the mass balance algorithms. Our model has
71 groups including 69 living groups, 2 detrital groups, and 10 fleets. It describes a
system that is highly productive and inter-connected. The package in which it was
built, Rpath, is flexible and should allow for the model to be tailored to address
specific management questions, an important feature as management timeline tend
to be more accelerated than model development horizons.

KEYWORDS
Rpath; mass balance; Georges Bank; EBFM

1. Introduction

Included in the suite of MSKeyrun models is a mass balance representation of Georges
Bank. Mass balance models are a good tool for identifying and quantifying major
energy flows in a system (Plaganyi 2007). Mass balance models describe the ecosystem
resources and their interactions which makes them good at evaluating the ecosystem
effects of fishing or environmental changes as well as exploring management policy
options (Plaganyi 2007). The use of mass balance models was popularized through the
use of Ecopath with Ecosim (EwE: Christensen and Pauly 1992; Walters, Christensen,
and Pauly 1997; Christensen and Walters 2004). For MSKeyrun, I used the R version,
Rpath (Lucey, Gaichas, and Aydin 2020).

Mass balance models can be used in a variety of ways. For the ICES WGSAM
review, only the initial mass balance was complete. Mass balance is a static snapshot
of the ecosystem and is a trophic model at its base (Polovina 1984; Christensen and
Pauly 1992, Figure 1). Having a balanced model does not necessarily imply steady-
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Figure 1. Conceptual model of mass balance where consumption and production are balanced. Production 
as described in Equation 1 as a sum of fishery y ield ( Y), p redator mortality (M2), emigration ( E), biomass 
accumulation (BA), and other mortality (M0 or 1 – EE). Consumption as described in Equation 2 is a sum of 
production (P), unassimilated food (U) and respiration (R).

state, although many models are parametrized as such. Mass balance models can also 
be extended into dynamic simulations referred to as Ecosim in the EwE framework or 
Rsim in the Rpath framework (Walters, Christensen, and Pauly 1997; Lucey, Gaichas, 
and Aydin 2020). Spatial processes can also be explored using the Ecospace module 
of EwE (Walters, Pauly, and Christensen 2000). No such equivalent exists in Rpath at 
this time. Future work within the MSKeyrun project will include dynamic simulations 
as well as tuning to time series data.

This new mass balance representation of Georges Bank build off existing mass bal-
ance work that was developed as part of the Northeast Fisheries Science Center’s 
(NEFSC) Energy Modeling and Analysis eXercise (EMAX: Link et al. 2006). EMAX 
models were developed for both the Ecopath (Christensen and Pauly 1992; Walters, 
Christensen, and Pauly 1997; Christensen and Walters 2004) and EcoNetwrk (Ulanow-
icz and Kay 1991) software packages. The Georges Bank model from EMAX is highly 
aggregated with 29 species groups, two detrital groups, and one fishery. This trophic 
structure is too coarse to be useful for management. Many of the commercially impor-
tant species are aggregated together and there is not enough resolution in the fisheries 
to address any meaningful trade-offs.

A companion model from EMAX describing the Gulf of Maine was incorporated into 
the early stages of a management strategy evaluation (MSE) on the role of Atlantic 
herring, Clupea harengus as a forage item within the system particularly for marine 
mammals. Despite EMAX being designed to describe forage fish i n t he r egion (Link 
et al. 2009), the results were highly uncertain with no discernible benefits due to the 
highly aggregated nature of the model. Therefore the model was not pursued further 
within MSE (S. Gaichas personal communication).

The purpose of the MSKeyrun project is to make models that will be useful for 
managers. With that goal in mind, I present a new mass balance representation of 
Georges Bank. Here all commercial species have been disaggregated and the fisheries 
have been divided into major gear categories. Developing the model in Rpath will



also let us explore various fisheries management strategies using built in functionality
(Lucey et al. 2021).

2. Methods

2.1. Mass Balance Equations

Mass balance is governed by two master equations; one describing production (Eq.
1) and the other consumption (Eq. 2: Christensen and Pauly 1992). The interaction
between the two gives rise to the term mass balance. Production accounts for natural
and fishery-induced mortality as well as emigration and biomass accumulation as:

Pi = Yi +BiM2i + Ei +BAi + Pi(1− EEi) (1)

where production, Pi, is the sum of a species’ fishery yield, Yi; predation mortality,
M2i; emigration, Ei; biomass accumulation, BAi; and other mortality, expressed as
Pi(1 − EEi). Where EEi is the ecotrophic efficiency or percentage of mortality ex-
plained within the model. In this equation, M2i is expressed as a rate and therefore
multiplied by the species biomass, Bi.

Consumption accounts for the production expressed above as well as unassimilated
food and respiration as:

Qi = Pi +Ri + Ui (2)

where Qi is the total consumption, Ri is respiration, and Ui is unassimilated food. 
Energy used for respiration is lost from the system. Unassimilated food is the portion 
of consumption that is excreted and remains in the system through a detrital group.

2.2. Parameter input

Mass balance models require several parameters that can be obtained from commonly 
collected data. These parameters include biomass, catch, and food habits. In addition, 
several biological parameters that relate biomass to production and consumption are 
required. The following sections will outline how inputs were derived.

2.2.1. Fisheries independent data

Many fish species as well as large benthic animals are routinely sampled by the NEFSC 
(Table 1). For the purpose of this model the Autumn Bottom Trawl Survey (Politis 
et al. 2014), the Sea Scallop and Integrated Benthic Survey (NEFSC 2018), and the 
Atlantic Surf Clam and Ocean Quahog Survey (Jacobson and Hennen 2019) provided 
biomass estimates. Data for years 1981 to 1985 were queried from the NEFSC survey 
databases. This time period was chosen to mimic models for the Gulf of Maine and 
Mid-Atlantic Bight that are also under development.



Table 1.: Living groups for the Georges Bank Rpath model whose data were

pulled directly from Northeast Fishery Science Center (NEFSC) databases.

Surveys used are the Autumn Bottom Trawl Survey (ABTS), Sea Scallop and
Integrated Benthic Survey (Scallop), and the Atlantic Surf Clam and Ocean

Quahog Survey (Clam). Classifications and diet are those used for PREBAL

calculations.

Group Data Source Classification Diet

AtlHerring ABTS Pelagic (Small; Round) Planktivore

AtlMackerel ABTS Pelagic (Small; Round) Planktivore
Butterfish ABTS Pelagic (Small; Round) Benthivore

SmPelagics ABTS Pelagic (Small; Round) Planktivore
Mesopelagics ABTS Pelagic (Small; Round) Benthivore

OtherPelagics ABTS Pelagic (Medium; Round) Piscivore
Cod ABTS Demersal (Round) Piscivore

Haddock ABTS Demersal (Round) Benthivore

Goosefish ABTS Demersal Piscivore
OffHake ABTS Demersal (Round) Piscivore

SilverHake ABTS Demersal (Round) Piscivore
RedHake ABTS Demersal (Round) Benthivore

WhiteHake ABTS Demersal (Round) Benthivore

Redfish ABTS Demersal (Round) Benthivore
Pollock ABTS Demersal (Round) Benthivore

OceanPout ABTS Demersal Benthivore

BlackSeaBass ABTS Demersal (round) Benthivore

Bluefish ABTS Pelagic (Medium; Round) Piscivore
Scup ABTS Pelagic (Small; Round) Benthivore

OtherDemersals ABTS Demersal (Round) Benthivore

SouthernDemersals ABTS Demersal (round) Benthivore

Fourspot ABTS Demersal (Flat) Piscivore
SummerFlounder ABTS Demersal (Flat) Piscivore

AmPlaice ABTS Demersal (Flat) Benthivore
Windowpane ABTS Demersal (Flat) Benthivore

WinterFlounder ABTS Demersal (Flat) Benthivore

WitchFlounder ABTS Demersal (Flat) Benthivore
YTFlounder ABTS Demersal (Flat) Benthivore

OtherFlatfish ABTS Demersal (Flat) Benthivore
SmFlatfishes ABTS Demersal (Flat) Benthivore

SpinyDogfish ABTS Demersal (Round) Piscivore
SmoothDogfish ABTS Demersal (Round) Benthivore
Barndoor ABTS Demersal (Flat) Piscivore

WinterSkate ABTS Demersal (Flat) Benthivore
LittleSkate ABTS Demersal (Flat) Benthivore

OtherSkates ABTS Demersal (Flat) Benthivore

Illex ABTS Invertebrate (Pelagic)

Loligo ABTS Invertebrate (Pelagic)
OtherCephalopods ABTS Invertebrate (Pelagic)

AmLobster ABTS Invertebrate (Benthic)

AtlScallop Scallop Invertebrate (Benthic)

Clams Clam Invertebrate (Benthic)

Samples pertaining to Georges Bank were identified u sing t he s ame stratification 
as used for the NEFSC State of the Ecosystem reports (Figure 2) Dominate or com-
mercially important species were kept as separate species groups while less domi-
nate/important species were grouped into aggregate species groups. Biomass estimates 
were calculated as the mean for the time period as:



Figure 2. Map of the Northeast US Large Marine Ecosystem broken into Ecological Production Units (red
line). The NEFSC bottom trawl survey strata are outlined in grey. The colors represent the strata used for the

NEFSC State of the Ecosystem Report.

Bi =
I

q
· A
a

(3)

where I is the mean biomass per tow (converted to metric tons from kg), A the area of 
the Georges Bank EPU, a the average swept area of the tows, and q the catchability. 
Data on catchability is sparse so q ’s from EMAX (Link et al. 2006) were applied to 
scale biomass values. Swept area biomass was then converted to a density by dividing 
by the area of the Georges Bank EPU to be in the proper units for the mass balance 
model (t km−2).

2.2.2. Fisheries dependent data

For the same time period as the fishery i ndependent d ata, fi sheries de pendent data 
(landings and discards) were also obtained from the NEFSC. Landings were queried



Figure 3. Map of the Northwest Atlantic Fisheries Organizations Statistical Areas used to define Georges

Bank.

from the commercial fishery databases while discard ratios were calculated using ob-
server data. Due to the nature of how data is collected there is a spatial mismatch
between fishery independent and fisheries dependent data (Figure 3). Commercial
landings are reported by Northwest Atlantic Fisheries Organization’s Statistical Ar-
eas. For the purpose of this study we selected statistical areas 521, 522, 523, 524, 526,
551, 552, 561, and 562. As outlined in the MSKeyrun documentation, landings were
proportioned between those inside and outside of the Georges Bank spatial footprint
using the average ratio from the NEFSC bottom trawl survey.

Landings data were queried by species and gear (Table 2). Skates are reported as a
mix. Fortunately most skates retained for human consumption are the larger Winter
skate, Leucoraja ocellata, while the smaller Little skate, Leucoraja erinacea, is used
as bait (NEFSC 2007). Therefore landings identified as Skates Uncl were segregated
based on their utilization code. In addition to the skate reclassification, otter trawl
landings were divided into small and large mesh fleets. These two similar gear types
catch vastly different suites of species. Distinction between small and large was made
using a mesh size of 6in (GARFO 2019). Landings were converted to metric tons and
averaged over the time period. Landings were then divided by the area of the Georges
Bank statistical areas to be in the proper units for the mass balance model (t km−2).

Table 2.: Non-living groups for the Georges Bank Rpath model. Fleets were
parameterized using Northeast Fishery Science Center (NEFSC) databases.

Group Type

Detritus Detritus
Discards Detritus
DredgeScallop Fleet
DredgeClam Fleet

Gillnet Fleet

Longline Fleet

Seine Fleet



Table 2.: Non-living groups for the Georges Bank Rpath model. Fleets were

parameterized using Northeast Fishery Science Center (NEFSC) databases.

(continued)

Group Type

PotTrap Fleet
OttertrawlSmall Fleet

OttertrawlLarge Fleet

Midwater Fleet

OtherFisheries Fleet

Observers record the disposition of catch aboard fishing vessels. The ratio of the
discarded amount of a species to the amount kept from observed trips can be expanded
by the total landings to estimate total discards as:

Dig =

∑
Dig∑
Kg

·
∑

Lg (4)

where Dig are the discards for species i and gear g, Kg the retained or kept species,
and Lg the gear specific landings. Observers also record incidental takes of marine
mammals and other protected species. Only records where a mortality was recorded
were included as discards. Most of the incidental take records did not include a weight.
Therefore an average weight for the species was used based on Trites and Pauly (1998).
Similar to landings, discards were divided by the area of the Georges Bank statistical
areas to be in the proper units for the mass balance model (t km−2).

2.2.3. Food Habits

The NEFSC has been collecting food habits data since 1973 (Link and Almeida 2000).
There are over 1400 different prey items in the database so the first step was assigning
all prey items to their respective species group. Next the food habits data was queried
excluding blown and empty stomachs. Stomach contents identified as fish unclassified
or animal remains were also ignored. Stomachs were used from the entire time series
to ensure enough coverage of less well studied species groups.

Percent weight of prey was calculated using the cluster design explained in Nelson
(2014) as:

r̂ =

∑n
i=1Miµ̂i∑n
i=1Mi

(5)

where r̂ is the mean attribute of interest (in our case weight per stomach), Mi is the
total number of fish in each cluster (Station/Species group), and µ̂i the mean attribute
in the cluster calculated as:

µ̂i =

∑Mi

j=1 yij
(6)

Mi

where yij is attribute of fish j in cluster i. After calculating the mean weight per



stomach of each prey item, percent diet by weight was calculated as:

%preyi =
r̂i∑n
i=1 r̂i

(7)

2.2.4. Upper and lower trophic levels

Several species groups in the model are not well represented in the NEFSC surveys
as outlined above. Most of these are upper trophic level species such as birds, sharks,
and marine mammals or lower trophic levels like zooplankton and benthos (Table 3).
For those groups we utilized the parameters in the EMAX model for Georges Bank
(Link et al. 2006).

Table 3.: Living groups for the Georges Bank Rpath model that were param-
eterized using values from EMAX. Classifications and diet are those used for

PREBAL calculations.

Group Classification Diet

Seabirds Bird
Seals Mammal

BalWhale Whale
ToothWhale Whale
HMS HMS Piscivore

Sharks Shark Piscivore

Macrobenthos Invertebrate (Benthic)
Megabenthos Invertebrate (Benthic)
OtherShrimps Invertebrate (Pelagic)

Krill Invertebrate (Pelagic)

Micronekton Invertebrate (Pelagic)

GelZooplankton Invertebrate (Pelagic)
Mesozooplankton Zooplankton
Microzooplankton Zooplankton

Phytoplankton Primary Producer

2.2.5. Biological parameters

Mass balance models require biological parameters that relate biomass to production 
and consumption. While more in-depth methods exist (see Aydin et al. 2007), for this 
model we relied on the Northwest Atlantic Continental Shelf (NWACS) Ecosystem 
model (Buchheister et al. 2017). This model was a shelf-wide model that used EMAX 
as a starting point but included many of the more disaggregated groups present in 
our model. The biological parameters used in Buchheister et al. (2017) were based 
on recent individual stock assessments so there was no need to duplicate effort. The 
NWACS model did have several multi-stanza groups whose parameter values were 
biomass weighted to be included. For groups not present in NWACS, we queried Fish-
Base.org (FishBase 2019). Production to biomass was calculated a 1 over longevity 
and consumption to biomass was an average of the published studies on the site. After 
utilizing Buchheister et al. (2017) and FishBase.org, the aggregate groups SmFlatfishes 
and OtherFlatfish still did not have parameters. Due to their s ize and position in the 
food web, we used the SmPelagics for the SmFlatfishes and O therDemersals f or the 
OtherFlatfish.



2.3. Balancing procedures

Inevitably due to the uncertainty around parameter estimates models are not bal-
anced. Within the mass balance framework, ecotrophic efficiencies (EE ) represent the
proportion of mortality explained in the model. Therefore values greater than one
are considered out of balance. While getting a model to have no EE s greater than
one is a good starting point, Link (2010) suggests some other criteria that should be
explored. The pre-balance diagnostics (PREBAL) of Link (2010) are broken into five
categories. These are: biomass across trophic levels, biomass ratios, vital rates across
trophic levels, vital rate ratios, and total production and removals. These diagnostics
follow general ecological and fishery principles.

The Georges Bank Rpath model was balanced by hand moving sequentially down
from the largest EE until the model was balanced. During the balancing process,
PREBAL diagnostics were consulted. There are several ways to reduce the EE of a
species group. First you can increase the biomass or production of the group, second
you can decrease the consumption on a group, or finally you can decrease the fishing
pressure. Consumption can be lowered by reducing the biomass of the predator, its
consumption to biomass ratio, or the proportion of the prey in its diet. Due to the large
uncertainty around fishery independent data and the use of EMAX qs designed for
different gear and more aggregate species, biomass was typically the first parameter to
be manipulated. Production and consumption rates were held within range of similar
continental shelf mass balance models obtained from the Ecobase website (Colléter
et al. 2015). Finally, diet compositions were modified to alleviate predation.

Table 4.: Balanced Georges Bank model. The column type is the proportion
of primary production used by the group (1 = primary producers, 0 = het-

erotroph) or 2 for detrital groups or 3 for fleets. The columns biomass and re-
movals correspond to the mass per km2. Other abbreviations are TL = Trophic

Level; PB = Production to Biomass ratio; QB = Consumption to Biomass ra-

tio; EE = Ecotrophic Efficiency (% mortality explained in the model); and GE
= Growth Efficiency or Production to Consumption ratio.

Group type TL Biomass PB QB EE GE Removals

Seabirds 0 4.27 0.06 0.28 80.00 0.16 0.00 0.00
Seals 0 4.76 0.14 0.07 0.62 0.00 0.12 0.00

BalWhale 0 4.08 1.66 0.04 0.36 0.01 0.11 0.00

ToothWhale 0 4.85 0.49 0.04 1.59 0.09 0.03 0.00
HMS 0 4.27 0.14 0.58 2.26 0.01 0.26 0.00

Sharks 0 4.74 0.10 0.14 0.88 0.38 0.16 0.00

AtlHerring 0 3.79 6.32 1.10 3.70 0.87 0.30 0.02

AtlMackerel 0 3.98 0.39 0.55 2.17 0.96 0.25 0.02
RiverHerring 0 3.82 0.06 1.30 4.40 0.81 0.30 0.00
Butterfish 0 3.58 6.13 1.31 4.23 0.97 0.31 0.03

SmPelagics 0 3.22 11.24 1.64 5.47 0.80 0.30 0.00
Mesopelagics 0 3.36 0.13 1.10 3.70 0.80 0.30 0.00

OtherPelagics 0 4.65 1.34 0.59 2.19 0.80 0.27 0.00
Cod 0 4.36 6.68 0.11 0.37 0.97 0.29 0.40
Haddock 0 3.78 8.96 0.13 0.60 0.99 0.21 0.12

Goosefish 0 4.93 0.85 0.08 0.81 0.91 0.10 0.03

OffHake 0 4.83 0.03 0.45 2.44 0.75 0.18 0.00
SilverHake 0 4.51 14.35 0.24 0.76 0.96 0.32 0.10

RedHake 0 4.03 2.05 0.45 1.61 0.94 0.28 0.07
WhiteHake 0 5.05 0.57 0.11 0.62 0.70 0.18 0.01

Redfish 0 3.76 0.08 0.06 0.23 0.95 0.27 0.00



Table 4.: Balanced Georges Bank model. The column type is the proportion

of primary production used by the group (1 = primary producers, 0 = het-

erotroph) or 2 for detrital groups or 3 for fleets. The columns biomass and re-
movals correspond to the mass per km2. Other abbreviations are TL = Trophic

Level; PB = Production to Biomass ratio; QB = Consumption to Biomass ra-

tio; EE = Ecotrophic Efficiency (% mortality explained in the model); and GE
= Growth Efficiency or Production to Consumption ratio. (continued)

Group type TL Biomass PB QB EE GE Removals

Pollock 0 4.29 4.10 0.10 0.48 0.21 0.21 0.05

OceanPout 0 3.52 0.75 0.19 0.92 0.94 0.21 0.01

BlackSeaBass 0 3.98 0.03 0.12 0.83 0.30 0.15 0.00
Bluefish 0 4.84 0.65 0.28 1.42 0.44 0.20 0.00

Scup 0 3.40 0.26 0.45 1.61 0.82 0.28 0.01

OtherDemersals 0 3.74 3.26 0.52 1.74 0.90 0.30 0.02

SouthernDemersals 0 3.74 0.00 1.12 4.50 0.20 0.25 0.00
Fourspot 0 4.40 0.31 0.45 1.61 0.55 0.28 0.02

SummerFlounder 0 4.80 0.10 0.28 1.11 0.72 0.25 0.02

AmPlaice 0 3.69 0.27 0.12 0.92 0.90 0.14 0.02

Windowpane 0 3.93 3.71 0.14 0.92 0.99 0.16 0.02
WinterFlounder 0 3.47 3.55 0.18 0.92 0.90 0.19 0.10

WitchFlounder 0 3.39 0.08 0.12 0.92 0.95 0.14 0.01
YTFlounder 0 3.58 0.63 0.92 3.23 0.35 0.28 0.11

OtherFlatfish 0 3.74 0.25 0.52 1.74 0.80 0.30 0.00

SmFlatfishes 0 3.44 0.05 1.64 5.47 0.80 0.30 0.00
SpinyDogfish 0 4.42 28.24 0.08 0.29 0.29 0.28 0.12

SmoothDogfish 0 4.03 0.06 0.45 2.44 0.13 0.18 0.00
Barndoor 0 4.37 0.08 0.09 0.83 0.99 0.11 0.01

WinterSkate 0 4.06 18.43 0.12 0.42 0.59 0.29 0.17
LittleSkate 0 3.77 7.04 0.08 0.83 0.44 0.10 0.15
OtherSkates 0 3.87 1.23 0.10 0.42 0.80 0.24 0.00

Illex 0 3.86 0.44 5.72 19.00 0.67 0.30 0.01
Loligo 0 3.86 2.44 5.72 19.00 0.49 0.30 0.05

OtherCephalopods 0 3.86 0.17 5.72 19.00 0.80 0.30 0.00

AmLobster 0 3.02 2.60 0.17 1.29 1.00 0.14 0.02

Macrobenthos 0 2.36 138.67 2.40 16.84 0.82 0.14 0.00
Megabenthos 0 3.02 5.46 2.30 15.53 0.80 0.15 0.01

AtlScallop 0 2.08 8.09 1.20 6.66 0.41 0.18 0.55

Clams 0 2.08 55.22 1.20 6.66 0.32 0.18 0.04

OtherShrimps 0 2.63 4.76 2.00 6.66 0.80 0.30 0.00
Krill 0 2.92 12.00 14.25 85.50 0.38 0.17 0.00

Micronekton 0 2.92 18.40 14.25 85.50 0.53 0.17 0.00

GelZooplankton 0 3.09 20.96 20.00 100.00 0.72 0.20 0.00

Mesozooplankton 0 2.32 121.20 46.00 108.97 0.92 0.42 0.00

Microzooplankton 0 2.32 24.80 85.00 212.55 0.77 0.40 0.00
Bacteria 0 2.00 20.74 91.25 285.16 0.79 0.32 0.00
Phytoplankton 1 1.00 79.09 174.35 0.00 0.82 0.00 0.00
Detritus 2 1.00 29404.66 0.50 0.00 0.80 0.00 0.00

Discards 2 1.00 1.64 0.50 0.00 0.05 0.00 0.00
ScallopDredge 3 3.27 0.00 0.00 0.00 0.00 0.00 0.00

ClamDredge 3 3.08 0.00 0.00 0.00 0.00 0.00 0.00

OtherDredge 3 3.18 0.00 0.00 0.00 0.00 0.00 0.00
FixedGear 3 5.29 0.00 0.00 0.00 0.00 0.00 0.00

Pelagic 3 4.78 0.00 0.00 0.00 0.00 0.00 0.00

Trap 3 4.10 0.00 0.00 0.00 0.00 0.00 0.00
SmallMesh 3 5.08 0.00 0.00 0.00 0.00 0.00 0.00
LargeMesh 3 4.99 0.00 0.00 0.00 0.00 0.00 0.00

HMSFleet 3 5.37 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 4. Food web of the Georges Bank Rpath model.

Table 4.: Balanced Georges Bank model. The column type is the proportion

of primary production used by the group (1 = primary producers, 0 = het-

erotroph) or 2 for detrital groups or 3 for fleets. The columns biomass and re-
movals correspond to the mass per km2. Other abbreviations are TL = Trophic

Level; PB = Production to Biomass ratio; QB = Consumption to Biomass ra-
tio; EE = Ecotrophic Efficiency (% mortality explained in the model); and GE

= Growth Efficiency or Production to Consumption ratio. (continued)

Group type TL Biomass PB QB EE GE Removals

OtherFisheries 3 5.08 0.00 0.00 0.00 0.00 0.00 0.00

3. Results

3.1. Georges Bank model structure

The Georges Bank Rpath model consists of 71 groups (Tables 4). Of these, 59 are 
living groups comprised of individual fish and invertebrate species, aggregate fish and 
invertebrate groups, marine mammals, birds, primary and secondary producers, and 
bacteria. There are two detrital groups representing discards and general detritus. 
Finally, there are 10 fleets r epresenting t he v arious fi shing ge ars us ed on  Georges 
Bank. The resultant food web (Figure 4) is highly interconnect, an expected result 
due to the generalist nature of many of the species.

3.2. Balancing

PreBal provides some rules of thumb that put your model in a realistic starting point 
(Link 2010). They are also helpful during the balancing procedure. The first criteria for
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Figure 5. Biomass decomposition over trophic level. Biomass spans six orders of magnitude and has a slope
of -0.69.

PREBAL is biomass across trophic levels. The initial biomass span was six orders of
magnitude which is in line with PreBal suggestion of five to seven. The decomposition
slope was 69% which is off from the 5-10% suggestion of PreBal (Figure 5). The reason
is that PreBal uses a non-parametric rank for the x-axis whereas I used the species
trophic level. This value makes much more sense for a system that spans six orders
of magnitude from phytoplankton to top predators. This should be investigated more.
Biomasses for some fringe species (well below the line on figure 5) were not increase
purposely. All of these groups represent species that are only partially on the bank.
The bulk of their biomass resides outside the bank.

During the balancing procedure, the largest deficiencies in EE were addressed first.
Many of these groups were poorly sampled or aggregated (or both). This included
several pelagic groups who are not sampled well in the survey. To simplify issues that
arose from aggregate groups with little to no data available their EEs were set to 0.8.
Undersampled pelagic species were increased by an order of magnitude. In addition,
all species biomasses were multiplied by 4 to better scale with fisheries data.

Several key predators needed to have their biomass reduced as well. The most sig-
nificant of these was SpinyDogfish. This was a similar issue in Buchheister et al. (2017)
most likely arising from an aggregate q that is not really applicable to their behavior
with a trawl. There were a few situations were diet compositions were adjusted to help
achieve balance. Once again this mostly occurred with the aggregated species groups
such as OtherFlatfish and OtherCephalopods. In these cases a portion of the diet com-
position assigned to the species were moved to a similar species. The other notable
diet composition change occurred for three hake species groups (RedHake, SilverHake,
and WhiteHake) where conspecific mortality was reduced. Cannibalism can be hard
to balance in these models as increasing biomass actually has an adverse effect. So
species with lower productivities (fish species) have a hard time sustaining more than
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Figure 6. Biomass ratios for the Georges Bank Rpath model. Top left panel displays ratios between predators 
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10%.
The second criteria looks at ratios between taxa groups (Figure 6). Initial impres-

sions led to an increase in Phytoplankton which improved the ratios to primary pro-
duction. Several of the ratios are greater than one which is indicative of too much 
predation on a prey group (Link 2010). However, the generalist nature of many of 
the predators in the system means that not one prey group is experiencing all of the 
predation pressure from a particular group of predators. Very small ratios are indica-
tive of multiple trophic levels between the predator and the prey and are expected for 
groups like whales:zooplankton (Figure 6:A).

The third and fourth criteria are similar to criteria one and two but for vital rates 
(consumption, production, respiration) instead of biomass. Similar to the biomass 
plots, the slopes were steeper than suggested. Once again this is most likely due to 
the high productivity of Georges Bank. There was no attempt made to correct this 
issue as it would have meant dramatically lowering the vital rates of lower trophic 
levels or raising the vital rates of mid to upper trophic levels. Most vital rates were 
within range of other studies obtained from Ecobase. Vital rate decomposition plots 
were consulted during the balancing process to identify outliers (Not shown).

The fifth criteria of the PREBAL diagnostics evaluates overall production and con-
sumption. The model did not have any groups with growth efficiencies (GE: Table 4 
or production to consumption) that were too low or high or any with ratios greater 
than one. This is good as it is not physically possible to have more production than 
consumption (Link 2010).



4. Discussion

Georges Bank is a highly productive region of the world’s ocean; highlighted by the 
diverse fauna present throughout the bank and long storied history of fishing. Our 
mass balance representation of Georges Bank captures that essence. Based on the 
PREBAL rules of thumb for balancing marine ecosystems, Georges Bank has a steeper 
biomass and vital rate decomposition than typical marine systems (Link 2010). This is 
indicative of the system having high primary production as well as lower biomass and 
production from the mid to upper trophic levels. In addition, the food web is highly 
interconnected. This aligns with the fact that most of the predators on Georges Bank 
are generalists, eating whatever prey is available (Link and Almeida 2000).

The distinct geographic and oceanographic properties of Georges Bank make it an 
ideal area to enact EBFM. Of course there will be many questions surrounding the 
implementation of place-based strategies. Some of which could be addressed through 
an MSE process. Our Georges Bank Rpath model could serve as an operating model 
or contribute to a suite of operating models for that purpose. Rpath has been designed 
with these types of applications in mind (Lucey et al. 2021).

As a full ecosystem model, mass balance models can encapsulate most of the species 
in a system. Although with any modeling approach it is not necessary to have explicit 
details for every trophic level (Fulton, Smith, and Johnson 2003). The computational 
overhead for Rpath is fairly low which allows mass balance models to be included 
in sensitivity analysis (Gaichas, Aydin, and Francis 2015). The compromise is losing 
the ability to explore length (or age) and/or spatial questions. While not part of 
this study, mass balance models can be parameterized to include multi-stanza groups 
which could mimic the length stanzas in Hydra (Lucey, Gaichas, and Aydin 2020). 
Mass balance models can also be extended to include spatial properties if using the 
Ecospace algorithms of the Ecopath with Ecosim software (Christensen and Walters 
2004).

There have been a number of mass balance models produced for the Northeast US 
Continental Shelf Large Marine Ecosystem. Unfortunately they are too aggregated 
(i.e. Link et al. 2006) or not specific to the Georges Bank region (i.e. Buchheister et al. 
2017). Therefore we used the Link et al. (2006) work as a starting point supplemented 
by Buchheister et al. (2017). The new fleet s tructure and s pecies d isaggregation will 
allow for more management policies to be explored.

Our Georges Bank model is the static snapshot of energy flow through the system. 
For management purposes it should be tuned to data and ideally designated as a ‘key-
run’ (ICES 2016). ‘Key-runs’ serve as a quality control device that provide confidence 
to managers that the model is appropriate for use in providing advice. The next step 
in creating a ‘key-run’ will be to tune the model to data.

This Georges Bank Rpath model is a good starting point for management. The com-
plexity of the model allows it to be flexible and inclusive. Inevitably during the MSE 
process specific questions will need to be addressed. At that time further refinement of 
the model and its parameters can be made. This model refinement should take place 
as part of a stakeholder process to ensure the model is capturing the aspects of the 
system in which they are interested (Fulton et al. 2014; Goethel et al. 2018).
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