Poster

P 1: Novel insights improve cryopreservation of the Mentha genebank collection

Angelika Senula, Doris Büchner, Joachim Keller, Manuela Nagel
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland/OT Gatersleben, Germany

DOI 10.5073/jka.2016.453.034

Abstract

The IPK Gatersleben houses a mint collection of 286 accessions. More than 50% of these accessions do not produce seeds and can only be maintained in the field, in vitro or in cryopreservation. Routine application of mint cryopreservation was started at IPK in 2006. This went along with the development of a simple droplet-vitrification protocol using In vitro plants as source material, the plant vitrification solution PVS 2 as cryoprotectant and aluminum strips as carrier material. Recent$l y$, the number of accessions exceeded 130 , hence about 17 mint species are safely cryopreserved and show on an average 60% regeneration after rewarming. Highest plant regrowth, up to 100%, was achieved when In vitro plants coming from $10^{\circ} \mathrm{C}$ cold storage were prepared for nodal culture and cultivated under changing temperatures at $25^{\circ} \mathrm{C} /-1^{\circ} \mathrm{C}$. Under these conditions multiplication and hardening was realized in a short-term period of maximum 2 weeks. Genotype, incubation period of explants in loading solution ($20 \mathrm{~min}-120 \mathrm{~min}$) and in PVS2 for $20-40 \mathrm{~min}$ at room temperature had only a minor impact on overall regeneration. Therefore, factors determining successful cryopreservation are as important as high initial plant quality, precise shoot tip preparation, the avoidance of endophyte outbreak after rewarming by controlled climatic condition. The developed method is simple and applicable to all mint accessions.

