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Abstract: On a global scale, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
poses a serious threat to the health of the human population. Not only humans can be infected,
but also their companion animals. The antibody status of 115 cats and 170 dogs, originating from
177 German households known to have been SARS-CoV-2 positive, was determined by enzyme-
linked immunosorbent assay (ELISA), and the results were combined with information gathered
from a questionnaire that was completed by the owner(s) of the animals. The true seroprevalences
of SARS-CoV-2 among cats and dogs were 42.5% (95% CI 33.5–51.9) and 56.8% (95% CI 49.1–64.4),
respectively. In a multivariable logistic regression accounting for data clustered in households, for
cats, the number of infected humans in the household and an above-average contact intensity turned
out to be significant risk factors; contact with humans outside the household was a protective factor.
For dogs, on the contrary, contact outside the household was a risk factor, and reduced contact, once
the human infection was known, was a significant protective factor. No significant association was
found between reported clinical signs in animals and their antibody status, and no spatial clustering
of positive test results was identified.

Keywords: coronavirus; companion animals; COVID-19; risk assessment; zooanthroponosis

1. Introduction

Ever since the World Health Organization (WHO) declared the outbreak of the severe
acute respiratory syndrome coronavirus (SARS-CoV-2) in the city of Wuhan, China, as a
public health emergency of international concern in January 2020 [1] and as a pandemic later
on in March 2020 [2], the role of various animals in the origin, transmission, and evolution
of SARS-CoV-2 was a subject of debate [3]. In particular, domestic cats (Felis catus), as well
as dogs (Canis lupus familiaris), were at the center point of the discussion since they are
an essential part of the lives of many humans worldwide [4]. A global survey estimated
that 57% of people own at least one pet animal. Dogs lead the chart at 33%, followed by
cats at 29% [5]. Since both domestic animal species not only proved to be susceptible to
infection with SARS-CoV-2 in early animal trials [6–9] but also showed a regular occurrence
of natural infections in various prevalence studies around the world [10–23], the question
arose of what the consequences of an infection with SARS-CoV-2 are not only for the animals
themselves but also for the households and in a broader context, the direct environment of
the infected animal.

Although the occurrence of a SARS-CoV-2 infection in both cats and dogs has fre-
quently been reported, there is presently little evidence that these animals play an active
part in the transmission dynamic [3,24]. Other than a suspected transmission from an
infected cat to the attending veterinarian [25], no case of interspecies transmission from
these two animal species to humans has been documented to date. However, the possibility
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of such an animal-to-human transmission cannot be ignored since it has already been
shown for other animal species. The first instance occurred in a fur production facility be-
tween farm workers and mink kept for fur production [26]. This was followed by multiple
outbreaks in mink farms in Europe [26–29]. Further, an outbreak among humans in Hong
Kong was linked to a pet shop selling Syrian hamsters [30,31]. In these settings, the risk of
the evolution of a new variant is present, as was seen during an outbreak in a Danish mink
farm that led to a cluster of human infections [27,28]. Although the mutations acquired in
mink-associated SARS-CoV-2 virus isolates, such as Y453F, seem to attenuate the virus in
human airway cells [32], the evolution of the virus in such a setting is hard to predict and
needs constant surveillance [33].

In order to acquire a deeper understanding of the role of cats and dogs in the trans-
mission dynamics of SARS-CoV-2, an epidemiological study was conducted. The primary
aim of the study was to obtain an explorative data set for the evaluation of occurrence,
impact, and implications of SARS-CoV-2 infection in cats and dogs kept in households
with confirmed human infection. Additionally, some background information concern-
ing the course of infection in humans was collected. Households that were known to be
SARS-CoV-2 positive were asked to participate with their cats and dogs. The combination
of the determination of the serological status of the animals with an individually answered
questionnaire that was filled out by the respective owner(s) of the animals, enabled an
analysis of risk factors for interspecies transmission and possible signs of disease after
SARS-CoV-2 infection in cats and dogs.

2. Materials and Methods

Participation in the study was granted if prerequisites (see below) were met. From
each animal that took part in the study, a single serum sample was taken. In addition,
a questionnaire (Questionnaire S1) concerning general data, observed clinical signs, and
human–animal interaction had to be completed for each animal and submitted by the
respective owner(s). Only complete data sets containing both the serum sample and the
completed questionnaire were included in the final analysis.

Participating households had to have at least one case of PCR-confirmed SARS-CoV-2
infection in any household member within three months prior to the date of sampling and
at least one pet (cat or dog) that they were willing to let take part in the study. The owner(s)
of the animals were informed about the purpose of the study, the sampling, and data
collection procedures. They had to consent to a declaration of readiness for participation
in the study as well as a declaration of consent under data protection law according to
Art. 4 No. 11, 7 EU-DSGVO. The costs of the blood sampling at the local veterinarian were
incurred and the owner(s) were additionally awarded compensation for their effort of EUR
35 per animal.

Participants were acquired through convenience sampling, meaning that everyone
who applied for participation and fulfilled the aforementioned criteria was allowed to
take part with any number of pets (i.e., cats and dogs) living in the household. Since the
targeted population was hard to reach, an approach best described as indirect snowball
sampling [34] was chosen. Attention to the study was generated through two approaches.
Firstly, the Chambers of Veterinarians in each German federal state were asked to alert
the veterinary practices and clinics of their state to the study and ask them to display an
information sheet in their premises. All veterinary practitioners are members of a Chamber
of Veterinarians in Germany. This approach provided the additional benefit of assuring
veterinarians of the legitimation of the study when participating pet owner(s) asked them
for the sample collection within the frame of the study. The 17 federal veterinary chambers
offered different degrees of support. Ten chambers answered to the formal request sent
via e-mail. Eight of them sent a corresponding note to their members and one released a
note on their homepage. Second, an online approach was chosen. Therefore, various online
platforms aimed at pet owners and veterinarians were contacted and asked for support in
promoting the study. This resulted not only in notices on multiple homepages but also in
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a variety of posts on popular social media platforms that spread through sharing in the
targeted community. This virtual snowball sampling [35] was further amplified by word of
mouth, meaning that participants told their friends and neighbors about the study.

A single serum sample was taken from each participating animal by the family vet-
erinarian during a routine health check and sent to the Friedrich Loeffler Institute (FLI),
Federal Research Institute for Animal Health of Germany, for testing. Since sampling was
performed in the context of a diagnostic test, no ethical approval was needed in consulta-
tion with the relevant state ethics committee (State Office for Agriculture, Food Safety and
Fishery in Mecklenburg-Western Pomerania). Accordingly, owners were informed about
the test results that were obtained for their pets. Participants were asked to aim for an
appointment approximately four weeks after infection was confirmed by PCR test in at least
one human of the respective household. However, a timeframe between three weeks and
at most three months was allowed for inclusion in the study. This slot was chosen based on
the sparsely existing data on the course of antibody titres naturally infected cats [10,36].

Serum samples were tested for the occurrence of antibodies against SARS-CoV-2 by a
validated indirect multispecies ELISA [37]. The ELISA was based on the receptor-binding
domain (RBD) of the SARS-CoV-2 spike protein [37]. In brief, 50 µL of a 1/100 dilution of
each serum sample in Tris-buffered saline, pH 7.4, with Tween 20 (TBST) was incubated
simultaneously in a well coated with the RBD of the SARS-CoV-2 spike protein and an
uncoated well in microplates for one hour. After a washing step with TBST, all wells
were incubated with a multispecies conjugate (SBVMILK; Innovative Diagnostics, Grabels,
France). After another hour, a second washing step was performed and tetramethylbenzi-
dine (TMB) substrate (IDEXX GmbH, Kornwestheim, Germany) added to the wells. The
stop solution (IDEXX GmbH, Kornwestheim, Germany) was added after ten min and
reading was performed at a wavelength of 450 nm on a Tecan Infinite M200 Pro microplate
reader (Tecan Group Ltd., Männedorf, Switzerland). By subtraction of the optical density
(OD) value of the uncoated well from the OD value of the coated well, the absorbance was
determined. An OD of ≥0.3 was defined as positive, while smaller values were declared as
negative [37]. The intermediate zone of the test, which is defined as the values between
0.3 and 0.2, was declared as negative, since the sampling occurred in a period where high
antibody values were expected.

Owners were asked to complete a questionnaire for their participating animals. In-
quiries involving understanding or interpretation of the questions that occurred, although
the questions were formulated as clearly as possible, were not answered. Instead own-
ers were asked to answer in accordance with their own understanding in order to avoid
influence on the answer given [38].

Questions were either dichotomous, yielding dichotomous data, or they were di-
chotomized for univariable and partly multivariable analysis as follows. The interaction
between animals and owner(s) was queried on a multi-item psychometric scale [39]. For
analysis, a four-point rating scale was coded as follows: ‘daily’ (4), ‘several times a week’ (3),
‘sometimes’ (2), ‘never’ (1). An interaction score was calculated by building the sum of the
values of all questions concerning the interaction. The mean value was then calculated for
the interaction scores of all participants. Participants with an interaction score above the
mean were classified as having a high interaction and participants with an interaction score
below the mean were classified as having low interaction.

Clinical signs of the animals were queried in a nominal-polytomous question for
the time before, during, and/or after quarantine of the household. The information was
unified for all three timepoints. Further, clinical signs of the respective animal were
grouped according to the organ system affected. Therefore, the given options ‘cough’, ‘nasal
discharge’, and ‘laboured breathing’ were grouped as ‘respiratory symptoms’. ‘Reduced
resilience’ as well as ‘reduced appetite’ and ‘increased need for rest’ were combined as
‘reduced general health’. ‘Diarrhea’ was classified as ‘gastrointestinal symptoms’. Further,
answers given under the free-text option ‘other symptoms’ were grouped into one of the
described groups according to their affiliation.
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Reported chronic diseases were also dichotomized as ‘one or more chronic disease
reported’ and ‘no chronic disease reported’ since the reported individual diseases were too
diverse with very low respective frequencies to warrant meaningful analysis.

Background information concerning the course of infection in humans was evaluated
descriptively, with data referring to infection in pets descriptively and analytically.

Statistical analysis was performed in order to identify factors influencing the risk of
infection of pet animals and associations of clinical signs with seropositivity. Analysis
was performed separately for cats and dogs, since pre-analyses revealed differences in
the effect of potentially influential factors between these species. An unifactorial analysis
was performed by using univariable generalized logistic regression models with binomial
error distribution for each factor. For univariable analysis only, the following data were
dichotomized. Reported age as well as weight were dichotomized into low and high,
applying the respective mean as the threshold for dogs and cats. The data concerning
the number of infected humans were split into the categories of one and more than one
infected human. Further, the data retrieved from the closed-ended trichotomous question
concerning the change of interaction between animals and owner(s) were dichotomized
by combining the responses ‘yes, reduced’ and ‘yes, discontinued’ to ‘yes’ in contrast
to ‘no, everything remained unchanged’. Factors with a p-value of lower than 0.2 were
used for a multivariable logistic regression model [40]. In this multivariable analysis,
the reported number of infected humans (n) per household were used as numerical data
and the data retrieved from the question concerning the change of interaction between
animals and owner(s) were used in an ordinal form. The model was then optimized by
stepwise backward reduction using the Akaike information criterion (AIC) [41]. Both
univariable and multivariable analysis were corrected for clustering among households
through calculation of robust standard errors [42]. A p-value of 0.05 or lower was assumed
as indicative of a significant association.

To analyze the situation in multiple-pet households, a data subset was created that
contained only households with more than one participating animal. Pets that lived in a
household with at least one seropositive animal were classified as having other seropos-
itive animals in the household, and again, a univariable generalized regression model
was calculated.

Further, the correlation between participating households and animals, respectively,
and inhabitants per federal state was analyzed by a linear regression model and the geo-
graphic origin of the samples was displayed employing a Geographic Information System
(GIS; Karten-Explorer©, version 2.21). In addition, a spatial scan statistic (SaTScan™, ver-
sion v10.1, [43]) was used to assess potential spatial clustering. In this analysis, the positive
test samples (cats and dogs combined) represented the cases, and negative test samples the
controls. Therefore, the Bernoulli model was chosen when running the scan statistic. As
recommended [44], the maximum window size was set to capture up to 50% of the events
(cases and controls).

Reported clinical signs were analyzed by a univariable generalized logistic regression
model with binomial error distribution for each symptom category separately for cats
and dogs.

The confidence intervals for the apparent and true seroprevalences in dogs and cats
of infected households were calculated using the Clopper–Pearson [45] method. The true
prevalence was calculated according to Rogan and Gladen [46] based on the sensitivity
(98.31%) and specificity (100%) reported for the test in use [37].

Statistical analysis was conducted in R [47] with packages sandwich [48,49] and
lmtest [50]. Figures were created using the packages ggplot2 [51] and UpSetR [52,53].

3. Results
3.1. Properties of Participating Households and Respective Human and Companion Animal Members

Overall, 285 animals, 115 cats and 170 dogs, from 177 households participated in the
study. The initial confirmation of an infected human household member via PCR occurred
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from September to December 2021. The mean time interval from the aforementioned
confirmation of human infection in the household until blood sampling of the participating
animal was 38.0 ± 14.6 (mean ± standard deviation) days. Participating households were
located all over Germany (Figure 1). The number of households and individual animals
acquired for the study was significantly correlated (p = 0.002 and p < 0.001, respectively)
with the human population of each federal state [54] (Figure 2). No spatial clustering of
positive cases was identified.

The mean number of human household members was 2.9 ± 1.3, from which a mean
of 2.0 ± 1.5 members was infected with SARS-CoV-2. The majority of households reported
at least one human member showing symptoms during SARS-CoV-2 infection (n = 176,
99.4%). Between the first positive PCR test and the onset of symptoms, 0.1 ± 7.1 days
passed by. The most common symptoms in humans were having a cold (n = 157, 88.7%),
coughing (n = 148, 83.6%), headache (n = 133, 75.1%), loss of smell or taste (n = 132, 74.6%),
and having a sore throat (n = 104, 58.8%). When asked about other symptoms, the most
common statement was some kind of pain in the limbs or joints (n = 27, 15.3%).
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Figure 1. Geographic origin of serum samples in Germany. Households with at least one seropositive
pet (cat or dog) sample are represented by yellow dots and households with only seronegative
samples by green dots. The number of human inhabitants living in each district is given in shades of
blue according to the legend.
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Figure 2. Univariable linear regression model of participants (A) as well as participating households
(B) from each German federal state in dependence of human inhabitants given in millions. Line
fits represent linear regression and 95% confidence interval. R = Spearman correlation coefficient,
p = associated p-value, BB = Brandenburg, BE = Berlin, BW = Baden-Württemberg, BY = Bavaria,
HE = Hesse, HB = Bremen, HH = Hamburg, MV = Mecklenburg-Western Pomerania, NI = Lower
Saxony, NW = North Rhine-Westphalia, RP = Rhineland-Palatinate, SH = Schleswig-Holstein,
SL = Saarland, SN = Saxony, ST = Saxony-Anhalt, TH = Thuringia.

Half of the participating animals were male (n = 144, 50.5%). Approximately one-third
of dogs (n = 59, 34.7%) were described as mixed breed. The most frequent dog breeds
reported were the Labrador Retriever (n = 12, 7.1%), the French Bulldog (n = 10, 5.9%), and
the Border Collie (n = 9, 5.3%). Cats were predominately described as mixed breed resp.
as ‘European Shorthair’ being a synonym for an unspecified origin (n = 82, 71.3%). The
British Shorthair was the most frequently reported cat breed (n = 12, 10.5%) followed by
the Ragdoll (n = 5, 4.3%). One-quarter of the participating animals were reported to have
one or more chronic diseases (n = 73, 25.6%). Further, 79 (27.7%) had regular unsupervised
outdoor access and 82 (28.8%) owners stated that they reduced or stopped interaction with
their animal after diagnosis of infection with SARS-CoV-2. The most frequent interaction
between the owner(s) and the animal that occurred on a daily basis was cuddling (n = 249,
87.4%), followed by letting the animal sniff (hands, face) (n = 214, 75.1%), the allowance to
lay on furniture (n = 194, 68.1%), and kissing the animal (n = 119, 41.8%). The allowance to
lick used tableware (n = 8, 2.8%), feeding the animal from the table (n = 16, 5.6%), letting the
animal lick the owners face (n = 29, 10.2%), to sleep on the owners’ bed (n = 88, 30.9%) as
well as letting the animal lick the hands (n = 112, 39.3%) were the least frequent interactions
that occurred on a daily basis (Figure 3).
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Approximately half of the households (n = 83, 46.9%) stated that there was more than
one pet animal in the household. A total of 69 households (39.0%) actually participated with
more than one animal and 44 (63.8%) of the latter housed at least one positive animal. In 30
(43.5%) of the multiple-pet households, more than one animal was seropositive (Figure 4).
Of these 30 households, all animals of the household of which samples were submitted
were seropositive in 22 (73.3%) households. Interestingly, in five of the eight households in
which not all participating animals acquired an infection, the animal that remained testing
negatively was the only animal in the respective household with a lower-than-average
interaction score. Of the 177 animals living in multiple-pet households, 94 (53.1%) had
another positive animal in their households.
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Figure 4. Structure of the pet holdings participating in the study. The vertical columns represent
the number of households that own animals of a specific category or resp. category combination
as indicated by black dot(s) below. The black lines interlinking the black dots indicate respective
combinations of categories in the household. Households with at least one positive animal are marked
in blue; households with at least two positive animals are marked in green. The horizontal columns
on the left-hand side represent the sum of all households sharing the indicated category.

Most participating animals were reported to have been asymptomatic before, during
and after human quarantine (n = 166, 58.3%). Of the 119 animals that showed clinical
signs, 22 experienced them before quarantine, 96 during, and 59 after the end of the
quarantine. The most common symptom described was an increased need for rest (n = 55,
19.3%), followed by diarrhea (n = 45, 15.8%), a reduced appetite (n = 36, 12.6%), nasal
discharge (n = 27, 9.5%), coughing (n = 26, 9.1%), labored breathing (n = 21, 7.4%), and
reduced resilience (n = 21, 7.4%). Additional symptoms to the one specifically asked
for in the questionnaire were reported for 48 (16.8%) animals with sneezing being the
most frequent (n = 22, 7.7%). Grouping for statistical analysis found that of the 119
(41.8%) animals that showed clinical signs at some point during quarantine, 74 (26.0%)
experienced a reduction in general health, 62 (21.8%) respiratory symptoms and 49 (17.2%)
gastrointestinal symptoms.

For further details of the categorized information separated according to animal
species, see Table 1 for parameters and Table 2 for reported clinical signs.
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Table 1. Descriptive statistics of parameters.

Cats Dogs

Positive Negative Positive Negative

Number of participants 48 67 95 75
Mean sd * Mean sd Mean sd Mean sd

Age (years) 6.2 5.5 6.3 5.4 6.8 3.9 5.2 4.1
Infected humans (n) 2.4 1.2 1.8 0.9 2.1 1.1 1.8 1.0

n prop. ** n prop. n prop. n prop.

Male 30 62.5 39 58.2 45 47.4 30 40.0
One or more chronic diseases 10 20.8 16 23.9 29 30.5 18 24.0
Unsupervised outdoor access 14 29.2 32 47.8 21 22.1 12 16.0
Contact outside the household 3 6.3 12 17.9 35 36.8 17 22.7

Above-average contact intensity 32 66.7 31 46.3 57 60.0 35 46.7
Reduced contact 12 25.0 22 32.8 20 21.1 28 37.3

* standard deviation, ** proportion (%).

Table 2. Descriptive statistics of observed clinical signs in participating animals.

Cats Dogs

Positive Negative Positive Negative

Number of participants 48 67 95 75

n prop. * n prop. n prop. n prop.
Overall symptoms 22 45.8 30 44.8 32 33.7 35 46.7

Respiratory symptoms 15 31.3 19 28.6 17 17.9 11 14.7
Reduced general health 15 31.3 19 28.6 22 23.2 18 24.0

Diarrhea 5 10.4 11 16.4 12 12.6 21 28.0

* proportion (%).

3.2. Seroprevalence in Dogs and Cats

One-hundred-and-forty-three (50.2%) samples tested positive in the indirect ELISA.
A total of 48 (41.7%) of all cat sera and 95 (55.9%) of all dog sera tested positive. This leads to
an apparent prevalence of 41.7% (95% CI 32.6–51.3) for cats and of 55.9% (95% CI 48.1–63.5)
for dogs. Further, the true prevalence for cats was calculated as 42.5% (95% CI 33.5–51.9)
and 56.8% (95% CI 49.1–64.4) for dogs. Details about absorbance can be found in the
supplements (Figure S1).

3.3. Risk Factors for Infection and Clinical Signs
3.3.1. Univariable Statistical Analysis

The determined seroprevalence of dogs was higher than the seroprevalence in cats
(1.77 OR 95% CI 1.00–3.13, p = 0.051) but not significant at the specified significance level
of 0.05.

The factor of more than one infected human in a household was significantly associated
with the probability of a cat testing positive for antibodies to SARS-CoV-2 (3.08 OR 95%
CI 1.11–8.54). Further, univariable analysis revealed a trend for seropositive cats to be less
likely to have unsupervised outdoor access (0.45 OR 95% CI 0.18–1.13) as well as contact
with humans outside the household (0.31 OR 95% CI 0.06–1.45) and a higher contact
intensity with their owner(s) (2.32 OR 95% CI 0.96–5.62). Seropositive dogs showed a trend
of being more likely to have contact with humans outside the household (1.99 OR 95%
CI 0.89–4.45). Further, there was a trend that their owner(s) were less likely to reduce or
stop contact during quarantine (0.45 OR 95% CI 0.17–1.18) and that more than one human
of the household was infected (2.15 OR 95% CI 0.95–4.84). Consistent with findings in
humans, the sex ‘male’ and a higher age increased the probability of both cats and dogs to
test positive, but the association was not significant. For details see Table 3.
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Table 3. Univariable analysis of parameters.

Cats Dogs

Variable xi Coding of xi OR * 95% CI ** p-Value OR 95% CI p-Value

Age (years) ≤ 6 = 0, > 6 = 1 1.13 0.48–2.66 0.79 1.35 0.66–2.74 0.41
Infected humans (n) One = 0, > one = 1 3.08 1.11–8.54 0.03 2.15 0.95–4.84 0.07

Sex Female = 0, male = 1 1.20 0.56–2.57 0.64 1.35 0.76–2.40 0.31
One or more chronic diseases No = 0, yes = 1 0.84 0.34–2.04 0.70 1.39 0.66–2.92 0.38
Unsupervised outdoor access No = 0, yes = 1 0.45 0.18–1.13 0.09 1.49 0.60–3.70 0.39
Contact outside the household No = 0, yes = 1 0.31 0.06–1.45 0.14 1.99 0.89–4.45 0.09
Above-average contact intensity No = 0, yes = 1 2.32 0.96–5.62 0.06 1.71 0.75–3.91 0.20

Reduced contact No = 0, yes *** = 1 0.68 0.24–1.9 0.46 0.45 0.17–1.18 0.10

* Odds ratio; ** confidence interval of odds ratio; *** reduced or discontinued.

In households with more than one participating animal, seropositive animals were
significantly more likely to have another positive animal in the household than seronegative
animals (9.63 OR 95% CI 3.69–25.16, p < 0.001).

The categorized reported clinical signs did not show significant differences between
seropositive and seronegative cats and dogs, respectively. For details, see Table 4.

Table 4. Univariable analysis of described clinical signs in participating animals.

Cats Dogs

Variable xi Coding of xi OR * 95% CI ** p-Value OR 95% CI p-Value

Overall symptoms No = 0, yes = 1 1.04 0.45–2.40 0.92 0.58 0.25–1.32 0.20
Respiratory symptoms No = 0, yes = 1 1.15 0.49–2.71 0.75 1.27 0.51–3.17 0.61
Reduced general health No = 0, yes = 1 1.15 0.49–2.71 0.75 0.95 0.41–2.21 0.91

Diarrhea No = 0, yes = 1 0.59 0.16–2.18 0.43 0.37 0.11–1.21 0.10

* Odds ratio; ** confidence interval of odds ratio.

3.3.2. Multivariable Statistical Analysis

Stepwise backward reduction of the logistic regression model for cats reduced the
AIC from a starting value of 145.19 to a value of 143.80 in the final model. The factors
that remained in the final optimized regression model for cats were the numerical factor
‘infected humans per household’ as well as the binominal factors ‘above average contact
intensity’, ‘unsupervised outdoor access’, and ‘contact outside the household’. More
infected humans in the household were significantly associated with the probability of a cat
being positive for antibodies to SARS-CoV-2 (2.00 OR 95% CI 1.38–2.91; p < 0.001). Further,
seropositive cats were significantly more likely to have an above-average contact intensity
(2.54 OR 95% CI 1.10–5.85; p = 0.03).

The optimization of the logistic regression model for dogs reduced a starting AIC of
232.08 to 228.5 in the final model. The factors that were included in the final optimized
regression model were the binominal factors ‘contact outside the household’ and ‘above
average contact intensity’ as well as the ordinal factor ‘contact reduction’. Dogs were
significantly less likely to turn out seropositive when the owner(s) reduced contact with
their animal during quarantine (0.49 OR 95% CI 0.27–0.87; p = 0.02). Further, seropositive
dogs were significantly more likely to have contact with a human outside the household
(2.05 OR 95% CI 1.00–4.18; p = 0.048). See Figure 5.
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4. Discussion

The seroprevalence studies that have been conducted in Germany so far showed
a range of seroprevalence from 0.7% to 4.2% [12,13,55,56] for cats with unknown status
of human infection in the household. In the presented study, only animals from known
SARS-CoV-2-positive households were included, yielding a markedly higher prevalence of
seropositive cats (41.7%) and a very high prevalence for dogs (55.9%). This supports earlier
findings that natural interspecies transmission between humans and their pet animals
occurs on a regular basis [3]. In various countries worldwide, a similar pattern was ob-
served, with prevalences of animals from households with an unknown SARS-CoV-2 status
being considerably lower than those of animals from households with known SARS-CoV-2
infections in human household members [11,14,15,17,57–59]. This strengthens the theory
that the household is the main source of infection for pet animals.

The true prevalences found in this study for cats and dogs from infected households
are in accordance with results from other, similar studies [14,60], although there are also
studies that report markedly lower prevalences [58,61]. In contrast to experimental studies
that indicate a higher susceptibility of cats compared to dogs [6] and other studies in
infected households [60,61], we found higher prevalences in dogs than in cats. We attribute
the latter on the one hand to a more intense contact between dogs and humans if dogs are
kept as pets as compared to an experimental setting. On the other hand, our study involved
samples from a time interval with dominance of the delta variant (between September
and December 2021), whereas other studies in households [60,61] involved samples from
a much wider time interval starting as early as mid-2020 and covering several variants.
However, relative susceptibility of dogs and cats might vary with the virus variant.

A potential source of bias with the risk of an overestimation of seroprevalences in
companion animals is the fact that nearly all households that participated (n = 176, 99.4%)
stated that the infected persons experienced symptoms typical of a SARS-CoV-2 infection.
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The latter may have fostered the interest in potential transmission to dogs and cats of
the household and thus, participation in the study. As the currently estimated general
manifestation index in the human population is approximately 55–85% [62–64], an over-
representation of symptomatic cases seems likely. Moreover, the frequency of the reported
symptoms exceeded that found by the Robert Koch Institute (RKI), the German federal
institute for public health. For example, coughing was reported by 84% of households,
while the RKI found a proportion of 42% in the German population [65]. Furthermore,
fever, which is an indicator for a more severe course of infection was reported in 55% of
households of the presented study and only in 19% of German cases [65]. Asymptomatic
infected humans seemed to be less likely to spread the infection [62] to other persons due to
the lower virus load that was shed. Therefore, pets living in a household with symptomatic
infected humans might be at a higher risk of becoming infected.

For both dogs and cats, the multivariable logistic regression model identified factors
that influence the risk of acquiring an infection for the animal in question. Both analyses
showed that the conditions under which an animal is kept during quarantine influence
the probability of acquiring an infection, while biological factors such as having a chronic
disease seem to play a less important role. For cats, the most influential factor was the
number of infected humans in the household. Infected humans shed the virus while breath-
ing [66] in the form of fine aerosols and droplets of various sizes that carry the virus [67].
Aerosols consist of tiny water particles that are less than 10 µm in diameter and can stay
suspended for hours in the atmosphere [68]. The viral load in the microenvironment of
the household increases with the number of infected humans present [69]. Therefore, the
infectious pressure on the cat was higher if more infected humans were present.

Interestingly, in contrast to cats, for dogs, the number of infected persons in the
household had no significant effect on the probability of positive test results and was
excluded as an influential factor upon model optimization. The reason for this may be
found in the different social role dogs and cats typically take on in a household. Dogs,
as a pack animal, are keen to have at least regular contact with each member of their
pack [70], while cats, as solitary hunters, choose the amount of time spent with each
human household member [71]. Thus, for dogs, the effect of an increase in the infectious
pressure in the environment with the number of infected humans might be masked by the
dominant effect of close interaction of a dog with each household member and an increased
probability of picking up the infection from single infected humans as compared to cats.
However, the number of infected household members was demonstrated to be a significant
risk factor for both, cats and dogs, in a study from the Netherlands [61].

The generally closer contact of dogs with household members also gives room for
a marked reduction of contact during human quarantine, which possibly explains why
contact reduction turns out to be a preventive factor in dogs, in contrast to cats. On the
contrary, the less intense baseline contact (contact independent of the knowledge of human
infection in the household) between cats and household members reduces the options for
further contact reduction during quarantine, which thus has no significant effect in cats, but
may explain why a baseline contact beyond average indicated by owners is a significant
risk factor for cats. In a similar study conducted with a smaller sample size, the same trend
of contact reduction acting as a preventive measure [60] was detected. Moreover, increased
interaction between the animal and the owner was linked to an increase in the likelihood of
the animal becoming infected [60,72]. However, in both studies, the effect was tested in
conjunction for cats and dogs and not separately as we did in the present study. Generally,
in the light of contact intensity being an important risk factor for interspecies transmission,
the insight that lockdown measures lead to a higher frequency of interactions between
humans and their pets [73] seems troublesome. It is crucial to highlight the importance of
the reduction of direct contact between pet animals and SARS-CoV-2 infected humans and
therefore, promote the establishment of hygiene rules in the handling of animals while one
is infected. Such guidelines were published by various institutions [74–76].
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Interestingly, the factor ‘contact with humans outside the infected household’ turned
out to have a significant effect on the probability of positive test results in dogs, thus being a
risk factor, whereas, in cats, there is a trend for this factor to act protectively. For cats, these
human contacts outside the household could refer to time spent outside the household
due to the SARS-CoV-2 infection of the owners or in neighbors’ gardens or houses where
they were possibly even fed, thus reducing the time under risk in the environment of the
original household and hence becoming a protective factor. The protective, though the
not significant, effect of unsupervised outdoor access of cats is possibly based on the same
principle. On the contrary, concerning dogs, contacts with humans outside the infected
household will rather represent additional contacts with humans that add to the baseline
risk in the household, i.e., when dogs are walked by household members and interact, for
example, with other dog owners who might be infected with SARS-CoV-2. Dogs tend to
have intensive close contact with other dogs and humans they meet on their walks [77],
which may pose a potential risk of transmission [78].

In households with more than one participating seropositive pet, animals were signifi-
cantly more likely to live with another SARS-CoV-2-positive cat or dog. This could either
be due to similar circumstances under which the animals were kept within the household
that favored the occurrence of interspecies transmission or due to a transmission occur-
ring between the pets of the household. The fact that most cats and dogs that remained
seronegative in a household with at least one seropositive animal were those for which
a below-average contact intensity with humans was reported hints at human-to-animal
transmission as the main route of infection. Nevertheless, the possibility of transmission
between cats has been shown under experimental conditions [79]. Therefore, further stud-
ies are needed to explore the transmission dynamics of SARS-CoV-2 in a multiple-pet
household, also if cats, as well as dogs, are kept in the same household.

Though clinical signs of animals that might have been related to infection were re-
ported by some owners, no significant association with seropositivity could be demon-
strated in our study. The latter is in line with most case reports of SARS-CoV-2 infections in
cats and dogs, which describe a subclinical or mild course of disease [80–85], and findings
of a comparable study from the Netherlands [61]. Furthermore, a systematic review found
that the majority of cats infected with SARS-CoV-2 do not show any or only mild clinical
signs [86]. Slightly more severe courses of infections, such as pneumonia, have been re-
ported occasionally for animals with pre-existing illnesses [87]. However, an assessment of
the causes of death of companion animals with laboratory-confirmed SARS-CoV-2-infection
employing a patho-epidemiological model concluded that in most cases, the infection was
not the primary factor for death or the decision for euthanasia, respectively [88]. Therefore,
it may be concluded that dogs and cats that are infected with SARS-CoV-2 do not usually
develop a disease that resembles the COVID-19 of humans.

Our study was based on samples from households in which human infection occurred
between September and December 2021, when the delta variant was predominant in
Germany [89]. Transmissibility to and pathogenicity in cats and dogs may be different for
the omicron or other variants.

5. Conclusions

The presented study demonstrates that interspecies transmission of SARS-CoV-2
between humans and their pet animals occurs on a regular basis. Infected cats and dogs
usually do not display clinical signs that can be observed by owners. An important risk
factor for infection is, as expected, the intensity and frequency of contact at the interface
of humans and pets. Therefore, the implementation of basic hygiene measurements while
interacting with cats or dogs during infection with SARS-CoV-2 is strongly advised to avoid
mutual infections.
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