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Abstract: Classical swine fever (CSF) is one of the most important re-emergent swine diseases
worldwide. Despite concerted control efforts in the Andean countries, the disease remains endemic in
several areas, limiting production and trade opportunities. In this study, we aimed to determine the
risk factors and spatiotemporal implications associated with CSF in Ecuador. We analysed passive
surveillance and vaccination campaign datasets from 2014 to 2020; Then, we structured a herd-level
case–control study using a logistic and spatiotemporal Bayesian model. The results showed that the
risk factors that increased the odds of CSF occurrence were the following: swill feeding (OR 8.53),
time until notification (OR 2.44), introduction of new pigs during last month (OR 2.01) and lack of
vaccination against CSF (OR 1.82). The spatiotemporal model showed that vaccination reduces the
risk by 33%. According to the priority index, the intervention should focus on Morona Santiago and
Los Rios provinces. In conclusion, the results highlight the complexity of the CSF control programs,
the importance to improve the overall surveillance system and the need to inform decision-makers
and stakeholders.

Keywords: risk factors; classical swine fever; spatiotemporal; risk-based surveillance; case-control;
vaccination; Ecuador

1. Introduction

With the growing demand for animal protein in the Andean region, especially pork,
diseases such as classical swine fever (CSF) are gaining importance as they are limiting
local production and potential export opportunities for affected countries. The per capita
consumption of pork has increased in Ecuador from 6.88 kg in 2009 to 10.9 kg in 2018
(www.aspe.org.ec, accessed on 1 December 2022). The overall importance of pig produc-
tion is related not only to meat consumption but also to cultural traditions. In Andean
communities, pigs play a central role as a source of protein, festivities and savings [1].

CSF is considered a relevant re-emerging viral disease of pigs, caused by Pestivirus
of the family Flaviviridae [2]. The only natural host are domestic and wild pigs (Suidae
family). Clinical signs are variable and depend on the viral strain, host immune response,
age, general health status and concomitant infections [3].

The course of the disease includes acute, chronic and persistent forms according to
their duration [4,5]. Transmission occurs mainly by direct contact between infected and
susceptible animals via the oronasal route but also indirectly through contact with contami-
nated clothes, vehicles, equipment, and ingestion of contaminated and undercooked meat,
e.g., as part of swill feeding [6]. Outbreaks of CSF usually have dramatic consequences.
Control measures include long quarantine periods, movement restrictions, emergency vac-
cination, or culling of the pigs. Additionally, major impacts on animal welfare occur [7,8].
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For instance, the 1998 epidemic in the Netherlands had an estimated cost of 2.3 billion US
dollars and about 10 million pigs were destroyed [9]. Countries with endemic status are
banned from export, and therefore the impact of the disease on the economy and public
health worldwide is high. In Ecuador, the economic impact caused by CSF was estimated
by the National Veterinary Service (NVS) to be USD 6 million per year. Since many affected
farms were low-income backyard producers, the impact of CSF on them is substantial [10].

In South America, the disease is considered endemic in Guyana, Suriname, the North
and Northeast regions of Brazil and the Andean Community, and these regions struggle to
implement successful control programs [11,12].

The CSF eradication Project in Ecuador started in 2012; the first national vaccination
campaign was gradually launched in 2014 with a locally produced lapinised Chinese
vaccine strain [13]. The highest coverage was achieved in 2019 (2.7 million doses) due
to a compulsory vaccination campaign, government subsidies and coordination with
stakeholders (commercial and industrial producers’ associations). However, the field
response and data analysis capacity of the veterinary service was limited, and in 2022,
the disease was still present (https://wahis.oie.int, accessed on 1 December 2022). In
this regard, the NVS planned to enhance their analysis capacity and apply risk-based
surveillance. One of the main challenges in applying risk-based surveillance is to identify
the factors associated with the occurrence of CSF [14–19]; in developing countries, due to
very particular production systems, the risk factors may be different. Recently, for some
countries in South America such as Colombia [20], Brazil [21], and Peru [22], this issue has
been addressed.

For Ecuador despite the importance and need for local CSF risk factors, little is still
known concerning control measures and public policy. This is the first time that official
data have been analysed in this regard.

The objectives of this study were to determine the risk factors associated with the
occurrence of CSF and to analyse the spatiotemporal implications in order to identify the
most at risk locations.

2. Materials and Methods
2.1. Datasets

Data were collected by the NVS from January 2014 to November 2020 in mainland
Ecuador, excluding the Galapagos Islands, as they are a recognised CSF-free zone [2].
The information was stored in two databases: (1) Ecuador’s animal health information
system (SIZSE) created to record paper questionnaires for notifiable diseases from passive
surveillance since 2014 (https://sistemas.agrocalidad.gob.ec/sizse/, accessed on 1 January
2021); (2) the Unified information manager (GUIA) developed by the NVS to manage
cadastre, mass vaccination campaigns against CSF, and movements since 2016 (https:
//guia.agrocalidad.gob.ec/agrodb/ingreso.php, accessed on 1 January 2021). Shapefiles
of administrative units of Ecuador were downloaded from the Institute of Statistics and
Census (INEC) (https://www.ecuadorencifras.gob.ec/division-politico-administrativa/,
accessed on 1 February 2021).

All raw data were then imported and processed with R version 4.2.1 (https://CRAN.
R-project.org/, accessed on 1 January 2022).

2.2. Surveillance, Factors Influencing the Risk and Case Definition

Surveillance of swine diseases in Ecuador is the responsibility of the SNV. Producers
and citizens notify suspect animals to the local veterinary service using mainly telephone,
then official veterinarians investigate the suspect animals, as well as perform clinical
anamnesis, conduct epidemiological investigations, collect the necessary samples and fill
the information in the questionnaire; after laboratory diagnosis, when the suspect event is
ruled out or when a positive case is confirmed, official control measures are taken which
include quarantine, culling, movement restrictions and ring vaccination in the area.

https://wahis.oie.int
https://sistemas.agrocalidad.gob.ec/sizse/
https://guia.agrocalidad.gob.ec/agrodb/ingreso.php
https://guia.agrocalidad.gob.ec/agrodb/ingreso.php
https://www.ecuadorencifras.gob.ec/division-politico-administrativa/
https://CRAN.R-project.org/
https://CRAN.R-project.org/
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Using the information gathered by the passive surveillance system, a case-control
study was structured to identify factors associated with CSF occurrence. The retrospective
analysis used the variables collected historically by the surveillance system and the vacci-
nation campaign. The databases were merged using the individual identification of the
owner of the premises.

The variables included in the analysis were selected based on biological plausibility,
published literature, and considering their association with the occurrence of classical
swine fever. [15,23,24]. Subsequently, they were organised considering risk characteristics
according to the RiskSur Surveillance design framework (www.fp7-risksur.eu, accessed on
1 March 2021) [25] and grouped into population level, herd level and animal level.

Laboratory testing was performed at the National Reference Laboratory (headquarters
in Quito). Virus detection was carried out by a commercially available antigen ELISA
screening test (PrioCheck® CSFV), based on the double antibody sandwich (DAS) principle
with a sensitivity of 97% and a specificity of 99% [26], as well as by confirmatory test by
RT-qPCR using Roche® reagents [27] with a sensitivity and specificity of 95%.

The reporting criteria for a suspect case consisted of: (a) animals with clinical signs
consistent with CSF (high fever, anorexia, gastrointestinal, symptoms, general weakness,
and conjunctivitis), or (b) An epidemiological link to CSFV. Confirmed positive cases
were identified by the detection of antigens of CSFV (Ag Elisa, RT-qPCR); the others with
negative test results and lack of clinical signs were classified as controls (Figure 1).
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Figure 1. Spatial representation of the study area and location of cases and controls of CSF in Ecuador
study period 2014–2020.

2.3. Questionnaire

The passive surveillance system used a questionnaire (health-event-reporting form)
designed to obtain information provided by the owner of the animals and then registered
online by the official veterinary; the information includes: demographic data of the owners
and premises, geographic coordinates, chronology (dates of notification and follow-up),
animal species, vaccination declaration, clinical signs, presumptive syndrome, collection of
material, characteristics of samples, laboratory tests, animal population, animal movement
and probable origin of the disease.

The information was collected by trained NVS veterinarians following the data pro-
tection procedures of Ecuadorian authorities. The information recorded throughout the

www.fp7-risksur.eu
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country was continually monitored by the national surveillance team (headquarters), who
checked the data for completeness and errors. Additional information and descriptions of
the questionnaire is available on Supplementary material SM1.

2.4. Multivariable Logistic Analysis

All analyses were performed at the herd level and stratified according to CSF status
(case or control). Variables were organised by type; continuous variables were transformed
into dummies, setting their levels according to biological or legal cut-off points (Table 1).
Descriptive statistics assessed the distribution of cases and controls. The dichotomous
dependent variable used was the number of premises infected or not infected with CSF.
The evaluation of individual variables of the Ecuadorian surveillance system was based
on the association of each explanatory variable with the binary herd-level outcome, using
univariate logistic regression [28]. We avoided case-control matching due to the potential
of creating selection bias, losing precision and statistical power and not having a prior local
analysis of strong well-measured confounding variables [29].

Table 1. Description of variables influencing risk and their levels. Data available in Ecuador’s CSF
surveillance system from 2014 to 2020; levels grouped by risk characterisation.

Factors Influencing Risk Description of Variables Captured by the Surveillance
System Category

† Control program
Active national control program (vaccination and
mobilisation control) on the movement of interview. Dichotomous ¶

† Network community
Community to which the premise belongs according to
its parish location (42). 5 communities

† Year Year of the event. 2014–2020
‡ Introduction of new pigs Reception of pigs within 30 days of onset of clinical signs. Dichotomous ¶

‡ Administrative region
Region of the premise according with the
24 administrative provincial division. Amazon, coastal, highlands

‡ Time until notification
Number of days from onset of clinical signs to
notification to the NVS. 0–7, >7

‡ Other species Existence of species other than swine in the premise. Dichotomous
‡ Premise population Number of pigs on the premise. 1–25, 26–189, >190,
‡ Swill feeding

Evidence of feeding pigs with swill feed, home-made
leftovers. Dichotomous ¶

‡ Type of premise
Classification of premises according to production
category. Backyard, Family, Commercial, Industrial

‡ CSF vaccination declaration
Owner’s declaration of vaccination against CSF in its
premise. Dichotomous ¶

‡ CSF vaccination record
Official record of vaccination against CSF within the last
180 days. Dichotomous ¶

‡ Who makes the notification Person who contacted the NVS to make the notification. Owner, NVS, Sensor

§ Age
Age in months of the first suspected animal on the
premise, also the very first sampled. 1–2, 3–6, >=7

§ Breed Breed of the animals on the premise. Landrace (white), Indigenous (black).

Levels of risk characterisation: † Population level, ‡ Herd level, § Animal level. ¶ Dichotomous: having only two
possible values, 0 = No, 1 = Yes.

A multivariate logistic regression model was implemented to assess the association of
explanatory variables with the outcome, using a manual forward stepwise selection [30].
We included each variable in descending order of statistical significance in the univariate
models, considering a Chi-squared association to keep in the final model. For each insertion
of new variables, we observed the changes in the odds ratio (OR) and the significance
of each beta βi (Wald test), assessing them at each step. Collinearity was analysed using
variance inflation factors analysis [31]. The goodness of fit of the final model was measured
using the conditional R2 [32], Receiver operator curve (ROC), and Hosmer-Lemeshow
goodness of fit test (GOF) (p > 0.05) [33]; Additionally, we used the Bonferroni outlier test
and graphical analysis, looking for influential observations.
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2.5. Spatiotemporal Bayesian Analysis

The analysis used the population and cases were restricted to 2017–2020 due to the lack
of cadastral and vaccination information prior to the implementation of the official vaccina-
tion in 2017. Data were organised to contain the aggregated annual population over each
parish (1040) using time-series missing value imputation [34] for areas without information.
Variables were centred and scaled by dividing the centred value by the standard deviation.
The variables used to fit the model were the number of CSF vaccine doses applied per km2,
average temperature (◦C) and average precipitation (mm), constructing several models.
Temperature and precipitation were extracted from (https://worldclim.com/, accessed on
1 June 2022) at a spatial resolution of 2.5 arc-minutes (~5 km2).

Parish vaccination coverage was adjusted considering the population and the doses
applied against CSF, considering 1.55 as the average number of doses a pig receives in a
calendar year, according to the average lifespan from birth to slaughter (234 days) [35]. We
used penalised priority priors model complexity, specified by the divergence between a
flexible model and a baseline model; to define the spatial random effect, a neighbourhood
matrix from the polygon list was needed, based on regions (parishes) that share two or
more boundary points. The spatiotemporal model uses the disease count Yij observed in
area i and time period j, modelled as:

Yij ∼ Po
(
Eijθij

)
; i =1, . . . N; j = t1, . . . , tN (1)

where Eij is the expected number of cases and θij is the relative risk, both in the given area (i)
and time period (t) (Equation (1)). Three sets of components for log

(
θij
)

were considered.

log
(
θij
)
= α+ ui+vi (2)

where alpha represents an overall risk in the study region, ui is the correlated heterogeneity,
which models the spatial dependence between the relative risks, and vi is the unstructured
exchangeable component that models uncorrelated noise (Equation (2)).

log
(
θij
)
= α0+Ai+Bj+Cij+var1+var2+var . . . n (3)

where Ai represents the spatial group, Bj is the temporal group, and Cij is the space–time
interaction group (Ai = ui + vi) using the most popular model to spatially define disease, also
known as Besag–York–Mollié (BYM) [36], where the clustering component ui is modelled
with the conditional autoregressive distribution (CAR) [37], smoothing the data when two
areas share a common boundary given by the neighbourhood matrix (Bj = βtj). Using an
independent and identically distributed Gaussian random effect (iid). (Cij = δitj), where
ui + vi is an area random effect, βtj is a linear trend term in time tj, and δitj is an interaction
random effect between area and time (Equation (3)) [38].

To evaluate the models, we used the deviance information criterion (DIC) and the
posterior predictive p value. To suggest a parish that required a priority of care, we used
the priority index (PI) which is a risk-based percentage scale that ranks the units of analysis,
given by the fitted effects weighted by their probability and a cut-off value [39]. The models
were implemented using the integrated nested laplace approximation (INLA) [40]. We used
choropleth maps to represent the spatiotemporal distribution of the population, observed
cases, expected cases, infection risk (relative risk) and priority index.

All analyses were run in R V4.2.0 (https://cran.r-project.org/, accessed on 1 May 2022),
and the following packages were used: Tydiverse [41] for data preparation, ‘car’ [42], ‘stats’,
ResourceSelection’ [43], and ‘modEvA’ [44] to run the logistic models. For spatiotemporal
analysis, we used TSImpute [34], INLA to compute the Bayesian inference [45], and INLA-
outputs and rgdal [46] for geographic plotting.

https://worldclim.com/
https://cran.r-project.org/
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3. Results
3.1. Descriptive Analysis of the Variables Influencing the Risk

The full dataset contained 63 variables, most of which were used for administrative
purposes. Fifteen variables selected for the univariate analysis consisted of six dichotomous,
six nominal and three continuous variables. They were then classified into the population
level (n = 4), herd level (n = 9) and animal level (n = 2). Time until notification was
transformed considering a cut point of 7 days (one week) since the onset of clinical signs.
The pigs’ population on the premise was transformed, considering cut points of 25 and
190 pigs, and considering percentiles 75 and 95 of the national population due to previous
national limits for backyard and commercial premises. The age of the animals considered
cut-off points of 2 and 6 months due to the official CSF vaccination recommendation: first
dose is applied after 45 days and revaccination occurs at 180 days of age (Table 1).

The average time for official notification to the NVS was more than one week (9.3 days)
for cases and one week (7.0 days) for controls. The median premise population was similar
for cases (13.5 pigs) and controls. The mean age of pigs was similar for cases and controls
(~5 months) (Table 2).

Table 2. Descriptive measures of continuous variables from the 2014–2020 CSF risk factor analysis
in Ecuador.

Case Herds (n = 338) Control Herds (n = 916)

Mean ± SD Median (Q2,Q) Range Mean ± SD Median (Q2,Q) Range

Time until notification 9.29 ± 9.13 7 (3–13) 0–70 7.00 ± 13.37 3 (2–7) 0–201
Premise population 38.54 ± 101.95 13 (6–33) 1–1323 125.4 ± 893.54 13 (6–27) 1–13,804
Age (months) 5.06 ± 5.54 3 (2–5) 1–48 5.89 ± 7.69 3 (2–5) 1–72

Farmer vaccination declaration was higher for case herds (71%) than for control herds
(6%). Recording of vaccination (based on official records) was lower for cases than for
controls. Both cases and controls had a high percentage of swill feed use. The entry of
animals within the last 30 days happened in 39% of cases and 22% of controls. Only 5% of
the cases and 4% of controls have other species on the property (Table 3).

Table 3. Results of univariable logistic regression analyses, to assess associations of CSF during
2014–2020 in Ecuadorian swine herds. Variables are ordered by their level of significance.

Variable Category Total Cases (%) OR (Crude) 95% CI

CSF vaccination declaration No 959 98 (0.1) 1
Yes 295 240 (0.81) 38.34 *** (26.75–54.94)

Swill feeding No 216 13 (0.06) 1
Yes 1038 325 (0.31) 7.12 *** (4.16–13.29)

Time until notification 7 days 882 191 (0.22) 1
>7 days 372 147 (0.4) 2.36 *** (1.82–3.07)

Introduction of new pigs (last 30 days) No 920 207 (0.22) 1
Yes 334 131 (0.39) 2.22 *** (1.7–2.91)

CSF vaccination record Yes 710 157 (0.22) 1
No 544 181 (0.33) 1.76 *** (1.37–2.26)

Administrative Region Highlands 558 146 (0.26) 1
Coastal 311 112 (0.36) 1.59 ** (1.18–2.14)
Amazon 385 80 (0.21) 0.74 ‡ (0.54–1.01)
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Table 3. Cont.

Variable Category Total Cases (%) OR (Crude) 95% CI

Year 2019–2020 244 48 (0.2) 1
2016–2018 526 129 (0.25) 1.33 (0.90–1.97)
2014–2015 484 161 (0.33) 2.03 *** (1.39–3.01)

Age (months) 1–2 426 93 (0.22) 1
3–6 588 186 (0.32) 1.68 (1.25–2.27)
>=7 248 60 (0.24) 1.14 (0.77–1.68)

Control Program No 609 190 (0.31) 1
Yes 645 148 (0.23) 0.66 ** (0.51–0.84)

Who does the notification Owner 736 171 (0.23) 1
NVS 86 25 (0.29) 1.35 (0.79–2.27)

Sensor 432 142 (0.33) 1.62 *** (1.23–2.12)
Premise population >190 53 8 (0.15) 1

1–25 910 232 (0.25) 1.92 ‡ (0.88–4.8)
26–189 293 99 (0.34) 2.86 ** (1.27–7.31)

Network Community 1 219 53 (0.24) 1
2 157 57 (0.36) 1.78 * (1.11–2.87)
3 359 102 (0.28) 1.24 (0.83–1.87)
4 184 49 (0.27) 1.14 (0.71–1.83)
5 335 77 (0.23) 0.93 (0.62–1.43)

Breed Indigenous
black 93 20 (0.22) 1

Landrace 970 260 (0.27) 1.33 † (0.79–2.36)
Other species in the premise No 1205 322 (0.27) 1

Yes 51 17 (0.33) 1.37 † (0.76–2.49)
Type of premise Industrial 37 6 (0) 1

Commercial 356 106 (0.08) 2.19 ‡ (0.86–6.6)
Family 637 169 (0.13) 1.86 (0.75–5.56)

Backyard 224 57 (0.05) 1.76 † (0.68–5.53)

† Indicates an association p > 0.20, these variables were excluded in the multivariable models. Signif.: *** p < 0.001,
** p < 0.01, * p < 0.05, ‡ p < 0.1. CI: Confidence interval.

Historical case presentation decreased over the years, with the highest proportion of
cases (48%) occurring between 2014 and 2015 and the lowest (14%) occurring between 2019
and 2020. The proportion of cases (43%) and controls (45%) was higher in the highlands.
More than half of the case notifications (51%) were reported by the owner, followed by
health sensors (42%), which are volunteers selected by the NVS to enhance the surveillance
system directly from communities across the country. There was a higher proportion of
cases in the third community network, known for their high density of backyard produc-
ers and indigenous communities [47], located in the centre of the country. The highest
proportion of cases number was in commercial production (Table 3).

3.2. Description of Cases and Controls

The surveillance database contained 1254 questionnaires, 338 of which were confirmed
CSF cases. The premise categories were 50.79% family (637), followed by 28.39% commer-
cial (356), 17.98% backyard (224) and 0.03% industrial (37); the distribution of cases and
controls over time is illustrated in Figure 2. The highest case presentation corresponded to
October 2015 with 14 monthly cases, followed by March 2014 with 13 cases, and the lowest
corresponded to 2020 with ≤2 monthly cases.
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3.3. Multivariable Logistic Analysis

We ran 15 univariable models; twelve of the assessed variables were associated with
CSF (p < 0.20). We found a paradoxical fit (Type III error) opposite of the true effect [48],
produced by CSF vaccination declaration, giving an incorrect direction of association
and increasing the odds when the farmer declares vaccination (38.67 OR), instead of the
expected protective effect conferred by the vaccine. The administrative region showed a
higher risk in the coastal region; as this is associated with spatial dependence, we retired
from the model and included it in the spatiotemporal analysis. The univariable analysis is
presented in Table 3.

During the stepwise forward selection of variables, we evaluated eight models; thus,
variables that were not statistically significant (p > 0.05) had an incorrect direction of
association (self-declaration of vaccination) or that were at the animal level (age of animals)
were excluded. Variables that showed a strong association (p < 0.0001) in the univariable
model maintained their individual and model significance when adjusted in the final
multivariable model (Table 4).
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Table 4. Multivariable logistic regression model assessing the association of variables with the odds
of CSF between 2014 and 2020 in Ecuador.

Variable Category Estimate SE OR (95% CI)

Intercept −3.69 0.31
Swill feeding No - - 1

Yes 2.14 0.30 8.53 (4.92–16.11) ***
Time until notification 1–7 days - - 1

>7 days 0.89 0.14 2.44 (1.84–3.23) ***
Introduction of new pigs (last 30 days) No - - 1

Yes 0.69 0.15 2.01 (1.51–2.67) ***
Vaccination record CSF Yes - - 1

No 0.59 0.14 1.82 (1.39–2.38) ***

Model performance metrics: Chi-sqrt: >0.001, GOF Hosmer–Lemeshow: 0.99, AUC: 0.72, D2: 0.11, R2: 0.13.
Significance: *** 0.001. Level of risk characterisation: Herd level.

Factors that substantially increased the odds of CSF occurrence at the herd level were
swill feeding (OR 8.53), time until notification (OR 2.44), entry of animals in the last 30 days
(OR 2.01) and lack of CSF vaccination (OR 1.82) (Table 4). The final logistic model presented
good fit (GOF = 0.99, AUC = 0.72). Individual collinearity diagnostics for each variable
resulted in individual GVIFs below 1.062. There was no outlier with a significant influence
on model fitting, according to the Bonferroni outlier test (p = 0.006); also, there was no
correlation between residuals. Details of the manual stepwise model construction, analysis
and the predicted probability map of occurrence aggregated by parishes is available in
Supplementary material SM2.

3.4. Spatiotemporal Descriptive Analysis

The Ecuadorian administrative division has 1040 parishes; 16 were removed because
of them being islands and 18 were located in the Amazon rainforest with no record of
domestic pigs. The length of the neighbouring areas was 4024 (1006 for each year), with
271 (6.49%) imputed gaps. When comparing the imputed data with the original dataset,
they were not significantly different (t-test: p = 0.55). The final neighbour list contained
1006 parishes with an average of 5.71 parish neighbours. The average parish area was
198.03 ± 249.48 km2, with a range from 2.23 to 2429.64 km2. The annual average of
registered premises was 115,411.8, housing an average of 1,633,922 pigs.

The annual average of CSF vaccine doses was 2.4 million, and average vaccine doses
per square kilometre increased from 16 to 23 (2017–2019); the highest average vaccination
coverage was 81% in 2019. The number of applied doses increased from 1.8 million in 2017
to 2.4 million in 2020. The annual average of the premises was 115,411 (Table 5).

Table 5. Centrality measures of model variables (fixed effects) aggregated by parish distribution in
Ecuador.

2017 2018 2019 2020

Variable Average Median
(max) Average Median

(max) Average Median
(max) Average Median

(max)

Doses CSF/km2 15.74 2.31 (976.5) 23.78 4.15 (1057.6) 27.63 5.08 (1282) 23.0 4.2 (1477.3)

Population of pigs 1671.3 284 (224,448) 1948.7 391 (256,107) 2030.4 447 (254,042) 1867.1 434.5
(227,186)

Vaccine coverage % 60 64 (129) 71 80 (108) 81 100 (105) 70 73 (103)

What stands out in Figure 4 is the decline of the number of observed cases, correspond-
ing to 39 in 2017, 60 in 2018, 33 in 2019 and 13 in 2020; it is possible to observe a significant
reduction in the number of cases especially in the highlands over the years; the expected
cases figure is available in Supplementary material SM3.
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Figure 4. Representation of the number of observed CSF cases (number of positive premises) in
Ecuador grouped by parish from 2017 to 2020.

Figure 5 reveals that there was a marked higher density on the number of doses of
CSF applied by square kilometre in the western centre (Santo Domingo), the north (Carchi),
west south (El Oro) and the central highlands (Cotopaxi, Chimborazo), and this general
pattern repeated over the years; however, there were 105, 78, 52 and 62 parishes without
vaccination coverage in 2017, 2018, 2019 and 2020, respectively (note the white parishes
on Figure 5).
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Temperature and precipitation in Ecuador are modulated by the Andes mountains,
warmer temperatures in the Amazon and Coastal regions and cooler temperatures in
the highlands. There is a range difference of 11 ◦C in the coastal regions, 20.5 ◦C in the
highlands and 18.9 ◦C in the Amazon. Precipitation on the Amazon is almost three times
higher than the highlands and two times compared with the Coastal (Table 6).

Table 6. Descriptive measures of covariants of the spatiotemporal model in Ecuador.

Coastal Highlands Amazon

Covariate Mean ± SD (range) Mean ± SD (range) Mean ± SD (range)
Doses vac. km2 18.93 ± 69.83 (0–636.9) 19 ± 61.01 (0–976.5) 1.77 ± 2.99 (0–15.26)

Temperature (◦C) 24.36 ± 1.63 (15–26) 14.26 ± 4.43 (4.6–25.1) 20.60 ± 4.19 (6.8–25.7)
Precipitation (mm) 1362.24 ± 712.20 (122–3253) 1012.89 ± 434.16 (432–3824) 2718.53 ± 957.47 (722–4482)

3.5. Spatiotemporal Relative Risk

The annual average relative risk dropped from 4.01 in 2017 to 1.30 in 2020. Regarding
the doses of vaccine applied per km2, they behaved as an expected protective factor, which
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means that an increase in one SD in the doses applied per kilometre decreased the risk by
33%. Temperature was a risk factor, considering that an increase in one SD in temperature
degree increased the risk by 16.7%. Precipitation had no effect: RR = 1.00 (1.00–1.001)
(Table 7).

Table 7. Summary fixed effects of covariates on the estimated risk (RR) of CSF in a spatiotemporal
Bayesian model in Ecuador 2017–2020.

Covariate
Univariate Multivariate Relative Risk

Mean (0.95 % CI) DIC Mean (0.95 % CI) DIC RR (0.95 % CI)

Intercept – – – −2.26 (−3.30, −1.31) 1140 – –
Time (years) – – – −0.36 (−0.51, −0.21) – 0.70 (0.60, 0.81)

Doses by km2 −0.309 (−0.68,
0.02) 1188 −0.41 (−0.77, −0.09) – 0.67 (0.46, 0.91)

Temperature 0.158 (0.11, 0.21) 1140 0.15 (0.11, 0.20) – 1.17 (1.12, 1.22)
Precipitation 0.001 (0.00, 0.001) 1156
Adm. Reg. Coastal 0.822 (0.04, 1.57) 1160
Adm Reg. Amazon 1.95 (1.14, 2.76)

Adm. Reg.= Administrative region.

The proportion of variance explained by each component was 57% for the random
effect (iid), a major contributor to the explained variance, and 43% for the spatiotempo-
ral (besag). The DIC mean deviance was 1140 and the effective number of parameters
was 136.7.

The spatial distribution of risk at parish scale is shown in Figure 6; hot spots of
increased risk were spatially identified on the map, in the coastal southwestern and also the
south-eastern Amazon, reducing the risk over the years. Locations with a higher risk are
visually located in neglected parishes specially in the Amazon. The posterior distributions
of the covariates of the spatiotemporal model, as well as the annual average relative risk,
show a reduction during the study period (Supplementary material SM3).
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Figure 6. Spatiotemporal representation of the relative risk (RR) of CSF in Ecuador.

According to the priority index (PI), primary parishes of concern include Tundayme
located in the eastern Amazon, followed by Tachina in the north-western and Paletilla in the
southern zone (Figure 7). The provinces with higher risk, considering the average RR per
province in the year 2020, were Morona Santiago (3.68), Los Rios (3.12) and Santa Elena, (3.07);
the average relative risk intended to prioritise prevention and control activities by province
is available in Supplementary material SM3, and the individual parish RR details are in
Supplementary material SM4. Considerations about some of the limitations of the study
are available in the Appendix A.
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4. Discussion

When countries mount resource-intensive control strategies for a high-impact disease
such as CSF but fail to reach the goal of control and elimination, a deeper analysis of the
disease dynamics and the implemented control interventions is needed to identify strategic
intervention points. Despite the fact that, in general terms, many CSF risk factors are
known, their relevance in the specific setting of a pig sector and the respective control
program is ideally assessed using all available data.

Swill feeding is one of the main risk factors for CSF transmission; it is common and
rooted in the cultural tradition of backyard producers [49]. Therefore, it is very likely to
be a key disease driver in endemic areas of Andean countries. The Agricultural Health
Law of 2019 [50] established best practices for animal feed, but lacked specific regulations
on swill. Consideration needs to be given to promoting risk-reducing practices such as
heat treatment [51] and stricter regulations that prohibit the use of animal protein as a feed
source for pigs.

Vaccination misreporting could be related to the producer’s lack of knowledge re-
garding veterinary treatments linked with injections (vaccination, iron supplementation
in piglets, deworming or other). Fear associated with owners’ legal responsibilities and
misunderstandings during the interviews may also lead to misreporting [52]. In Indonesia,
vaccination against CSF resulted in an increased risk of CSF due to inaccurate vaccination
claims [24]; considering these facts, reporting behaviour could be further analysed as an
early target of the surveillance programme [53], suggesting that communication and health
education activities might be advisable to improve producers’ understanding of animal
disease prevention and control practices.

The increased risk of pigs at the age of 3–6 months (univariate model) could be
related to the fact that young animals may be more exposed to CSFV because this is the
age at which, in rural communities, they are moved to animal markets, using various
means of transport. Additionally, this reflects a complicated age from the immunological
perspective because maternal immunity fades out after three months [54], and animals
not vaccinated become susceptible just as animals vaccinated too early, where maternal
antibodies interfere with the vaccination. Nowadays, the established recommendation
for piglets first vaccination in Ecuador is at relatively early, 45 days, and revaccination
is recommended every 6 months. This practice might have to reassessed once targeted
sero-surveillance studies are conducted to clarify the effects of vaccination ages and herd
immune status.

Maternal-derived antibody (MDA) interference is the most common factor affecting
the induction of protective immunity against CSFV [54]; in Thailand, the vaccination
program has been implemented for decades without achieving eradication [55]. In addition,
emergency vaccination protocols implemented in very young piglets, especially during
an outbreak, could be further analysed. It would be necessary to evaluate diagnostic tools
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(rapid test) [56] that could detect non-clinical, persistent CSF forms in the field, as well as
apply vaccination serological monitoring tools [57].

Some cases occurred on premises with previous vaccination records, possibly related
to illegal movements of unvaccinated animals [47] or vaccination failures because of poor
handling and mismanagement, as evidenced in neighbouring Colombia [4,20]. The risk
associated with higher temperatures in the spatiotemporal analysis could also be linked to
problems in the vaccine cold-chain in regions such as the Amazon and the coast, which
represent a logistical challenge when addressing average temperatures above 20 degrees
Celsius, corroborating that vaccination strategies alone may not eradicate the disease [58,59];
Furthermore, possible antigenic alterations because of vaccination pressure and their effects
on the epidemiology of the disease could also be further analysed [60,61].

The identified individual parish risk could help identify neglected territories; as in
many developing countries with limited resources for disease control, prioritisation is often
done on the basis of historic surveillance information. Therefore, reduced surveillance sen-
sitivity may leave areas of high risk unnoticed. Our spatial model included all parishes and
considered the influence of their neighbours to improve the predictions [62]. Concepts such
as spatial RR or excess risk might be difficult to interpret outside the scientific community,
but the priority index (PI) could facilitate the understanding and communication of which
parishes should be prioritised.

The identification of the risk factors should respond to the initial demand of the NVS
and contribute to the implementation of a risk-based surveillance strategy for animal dis-
eases. As risk factors are specific for each disease, new studies could be implemented using
depurated data and methodology for prevalent diseases where their symptomatology could
be confused with CSF, such as the porcine reproductive and respiratory syndrome [63,64],
as well as prepare the surveillance system for re-emerging diseases such as African swine
fever, currently detected in Central America [65,66].

5. Conclusions

The purpose of the current study was to determine the risk factors and spatiotemporal
implications associated with CSF in Ecuador. The results show once again the complexity
that the CSF control program is facing, particularly if the pig sector is diverse and comprises
a large share of premises falling under the backyard category. Here, NVS faces risky
production methods combined with a reduced knowledge of disease prevention and
compliance with sanitary regulations.

One of the more significant findings from this study is the identification of swill
feeding, time until notification, introduction of new pigs and the lack of vaccination, as the
risk factors; the second major finding is the parish priority index based on spatiotemporal
risk. We hope these results would be useful to improve intervention focusing on specific
parishes countrywide.

The results highlight the importance of improving the overall surveillance system and
the need for better methods to inform decision-makers and stakeholders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15020288/s1, SM1, Questionnaire; SM2 Logistic regression
model; SM3 Bayesian model; SM4 Parish risk.
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Appendix A

Limitations and Further Remarks

To meet our aim of identifying risk factors and the most at-risk locations, we use only
the official information recorded over the years in official databases. Data limitations made
it necessary to refine the information by cross-checking it with physical and digital records
(when available). Visual information from photographs of each record was also useful to
confirm the existence of other animals on the property or the use of swill.

When analysing the possible spatial dependence of cases, due to the general knowl-
edge that disease presentation has been more intense according to proximity, the Bayesian
model consideriered spatially dependent data (aggregated parish information). Previous
exploratory work that detected spatial dependence [68], found spatio-temporal clusters
in the highlands-amazon and in the coastal region as in our work. The Bayesian model
allowed us to calculate individual parish risk and to explore other variables such as tem-
perature, vaccination coverage and not rely solely on the low resolution administrative
Provinces which do not match completely the natural regions.

This is the first study to analyse the risk factors with official data, it is hoped that the
problems detected and the recommendations to the NVS will improve the procedures of
the surveillance system; not only for CSF but also for other swine diseases and the general
surveillance activity of neglected animal diseases and motivate the continuity of these and
further analyses.
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