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Abstract
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Mathematical Modelling of Spread of Vector Borne Disease In
Germany

by Suman BHOWMICK

The objective of this thesis is to develop the necessary mathematical model
to assess the potential spread of West Nile Virus (WNV) in Germany and
employ the developed tool to analyse another tick-borne disease Crimean-
Congo Hemorrhagic Fever (CCHFV).

Given the backdrop of global warming and the climate change, increas-
ing temperature has benefitted the vector population. The increase in the
temperature has a positive influence in the life cycle of the vector and the
increase in its activities. In this thesis, we have developed an Ordinary Dif-
ferential Equation (ODE) model system to understand the influence of the
periodic introduction of infectious agents into the local susceptible popula-
tion while taking account of influence of temperature. As results, we have
found an analytic expression of the basic reproduction number (Ry) and its
interplay with the temperature. The sensitivity analysis shows us the im-
portance of the ratio between the susceptible mosquitoes to the local host
population. As a central result we have extrapolated the temperature trend
under different IPCC conditions and found the condition under which the
circulation of West Nile Virus will be permanent in Germany.

The transmission of WNV is a spatiotemporal dynamic process. Differ-
ent factors have an immense influence on the spatial spread. The movement
of the interacting species is one of the key factors that facilitates the poten-
tial spread of the disease dissemination in new places. We have introduced a
metapopulation model including both the vector and host movements. Our
results have shown that it is necessary to include the vector movement as
the vector movement speeds up the disease transmission process in the local
host population. We have analysed the movement matrices of the vector-host
population and mathematically derived the Ry of the patchy model. Math-
ematically we have developed different control methods. We have simulated
the possible geo-spatial spread of WNV on a map.

Furthermore, we have utilised the developed mathematical models to
examine different scenarios under which CCHFV can potentially establish
in a naive population along with we mathematically derived different control
scenarios to manage the burden of tick infection.

Keywords: ODE, Epidemiology, Network, Metapopulation Model, Sen-
sitivity Analysis
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Ziel dieser Doktorarbeit ist ein mathematisches Modell zu entwickeln, um
eine mogliche Ausbreitung des West-Nil-Virus (WNV) in Deutschland zu si-
mulieren und zu bewerten. Das entwickelte Werkzeug soll auch auf eine weite-
re, durch Zecken iibertragene Krankheit, dem Krim-Kongo-Hadmorrhagischen
Fieber (CCHFV) angewendet werden.

Die durch den Klimawandel verursachte globalen Erwérmung unterstiitzt
auch die Verbreitung und Entwicklung verschiedener Vektorpopulationen.
Dabei hat eine Temperaturerhéhung einen positiven Einfluss auf den Lebens-
zyklus des Vektors und die Zunahme der Vektoraktivitdt. In dieser Arbeit
haben wir ein Differentialgleichungsmodell (ODE) entwickelt, um den Ein-
fluss eines regelméfigen Eintrags von Infektionserregern auf die empfiangliche
Population unter Beriicksichtigung des Temperatureinflusses zu verstehen.
Als Ergebnis haben wir einen analytischen Ausdruck der Basisreprodukti-
onszahl (Rp) und deren Wechselwirkung mit der Temperatur gefunden. Eine
Sensitivitdtsanalyse zeigt, wie wichtig das Verhéltnis der anfélligen Miicken
zur lokalen Wirtspopulation ist. Als ein zentrales Ergebnis haben wir den
zukiinftigen Temperaturverlauf auf Basis der Modellergebnisse des IPCC in
unser Modell integriert und Bedingungen gefunden, unter denen es zu einer
dauerhaften Etablierung des West-Nil-Virus in Deutschland kommt.

Die Ubertragung des WNV ist ein rdumlich-zeitlicher dynamischer Pro-
zess. Verschiedene Faktoren haben einen wesentlichen Einfluss auf die rdum-
liche Ausbreitung. Die rdumliche Bewegung der an der Infektionskette be-
teiligten Arten ist einer der Schliisselfaktoren, welche eine rdumliche Aus-
breitung des Virus ermoglicht und erleichtert. Wir haben ein Metapopu-
lationsmodell entwickelt, welches sowohl die Vektor- als auch die Wirts-
bewegungen umfasst. Unsere Ergebnisse haben gezeigt, dass es notwendig
ist, die Vektorbewegung einzubeziehen, da die Vektorbewegung den Krank-
heitsiibertragungsprozess in der lokalen Wirtspopulation beschleunigt. Da-
zu haben wir unser Modell um ein sogenanntes Patchy-Modell erweitert,
die Bewegungsmatrizen der Vektor-Wirt-Population analysiert und den Ry
Wert Modells mathematisch abgeleitet. Wir haben auf mathematische Art
verschiedene Kontrollstrategien {iberpriift und haben die rdumliche Verbrei-
tung von WNV auf einer Karte dargestellt. Dartiiber hinaus haben wir die
entwickelten mathematischen Modelle verwendet, um verschiedene Szenari-
en zu untersuchen, unter denen sich CCHFV méglicherweise in einer naiven
Population etablieren kann, und wir haben verschiedene Kontrollszenarien
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mathematisch abgeleitet, um die Belastung von einer Infektion durch Zecken
zu bewiltigen.

Schlagworter: ODE, Epidemiologie, Netzwerk, Metapopulationsmodell,
Sensitivitdtsanalyse
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CHAPTER

Introduction

1.1 Epidemics and Modelling

Disease is an important aspect of one specie’s evolution. It paves the way
to make sure the survival of the fittest. In the ancient time, the Hindus,
the Israelites had dealt with the life threatening plagues (“Plague in An-
cient India” 1899; Zias, 1991). Throughout history, people from different
civilisations believed that epidemics carry ethereal messages. Epidemic has
always touched people’s life. Often it paved its way towards a serious issue
for societies and therefore, the comprehension and hence to predict its clutch
in the society became a research subject of paramount interest.

In the medieval time, the spread of black death from Asia throughout
Europe in waves is estimated to have caused the death of around one-third of
the population of Europe and later it was followed by Great Plague of London
in 1665-1666 (Brauer, 2017). Although the work presented (Noble, 1974) is
comparatively simpler in the current modelling framework, but it was indeed
an influential effort. The initial attempts to give a mathematical form to
the potential spread of smallpox by D. Bernoulli in 1760 is well documented
in the works of (Hethcote, 2000) .

The early 20" century witnessed the inception of modern mathematical
advancement in modelling the epidemics (Serfling, 1952). In 1906 (Hamer,
1906), a discrete-time model was developed and then in 1911 a continuous
ordinary differential equation (ODE) (Ross, 1911) model was constructed to
understand the spread of Malaria in India. The seminal works conducted
by Kermack and McKendrick (Kermack, McKendrick, and Walker, 1927),
See Tillett (Tillett, 1992), for the discussion on mathematical models that
combine epidemiological data and other data and the usefulness of such an
analytic framework for the evaluation of public health strategies. In (Ker-
mack, McKendrick, and Walker, 1927), the authors first derived the exis-
tence of an epidemic threshold i.e. a disease requires a crucial infection rate
beyond which the disease can spread. Modelling of infectious disease be-
came a primary scientific research ground after the release of the influential
book of Bailey, 1957. With the passage of time, the modelling efforts in the
spread of infectious agents incorporate different aspects like demographic
structures, age structures, disease-vectors and quarantine (Hethcote, 2000).
Additionally, the usage of game theory in the vaccine strategies is commend-
able (Bauch and Earn, 2004). Using Partial Differential Equations (PDE)
to model the dissemination of epidemics is a useful modelling technique to
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understand the spread of disease in the space (Capasso, 2008). The availabil-
ity of the accessible contact data of the host in recent years has brought in
higher resolution to understand the mixing patterns (Mossong et al., 2008).
Network analysis and metapopulation analysis have become necessary tools
to retrieve the adequate information on the spread of disease (Wasserman
and Faust, 1994). Well known mathematical concepts ranging from Graph
theory (Bollobés, Saito, and Wormald, 1985) to cellular automata (Fu and
Milne, 2003) are being applied to the disease modelling as there has been a
link amongst the individuals who are associated with their capacity for the
spread of epidemic (Keeling and Eames, 2005).

In the midst of growing population, the demand for the foods also have
increased multifold and this has caused the rapid growth of industrialised
animal, poultry farming. Livestock and the poultry epidemics are the major
economic losses in the modern day economy. For example, the foot-and-
mouth disease in the UK had brought severe economic losses and prob-
lems (Kitching, Hutber, and Thrusfield, 2005). In order to deal with the
infectious diseases in the poultry and the livestock, various mathematical
methods from the human epidemiology have been utilised. Network anal-
ysis also has been successfully employed to monitor the possible outbreaks
and to mitigate the outbreaks while accounting the livestock trade movement
data (Christley et al., 2005; Kao et al., 2006; Dubé et al., 2011; Bakran-Lebl
et al., 2016). Metapopulation models which exhibit the analogy with the
different farms or habitat patches can ideally be the appropriate choices for
the modelling attempt (Hess, 1996; Keeling et al., 2010a). These collective
modelling endeavours can provide necessary tools to support for the proper
planning of surveillance and vaccination strategies in livestock disease man-
agement.

The modelling endeavours in epidemiology can be divided into two cat-
egories: data driven predictive-forecast models and the conjectural models
with the bolster from the theoretical aspects. Predictive models amalgamate
the necessary information pertaining to the disease for the purpose of fore-
casting, whereas the conjectural models are being utilised in the context to
apprehend the basic principles, characteristics of the spreading mechanism.
Lucidly speaking, these models try to capture the know-how of the dissem-
ination process in the population. In this kind of modelling effort, often
the modeller makes use of elementary assumptions to construct the local
dynamics and aims for the macroscopic picture of the process. Conjectural-
theoretical models are akin to the models in mathematical physics or the-
oretical physics for the purpose of perusal of the proposed problem aligned
with certain conjectures or assumptions. However, during the course of such
modelling attempt, often many details of the real problem- such as individual
behaviour, infection pathways etc are being approximated with proper rea-
sons for the purpose of constructing a mathematically tractable and feasible
model.

In this effort, we have utilised the conjectural models in combinations
with the real weather data in order to gain the necessary insights of course
of a disease outbreak in Germany.
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1.2 Building Blocks of Epidemic Modelling

Modelling attempt through Ordinary Differential Equation (ODE) has grown
into a crucial factor in epidemiology, where the ODE models are employed
to facsimile the interactions amongst the individuals of a homogenous or
stratified population. Besides, working as a building block in epidemiological
modelling, ODEs can imitate the transiting health status of populations
which change continuously. A complex model of an epidemic dissemination
combines multiple operational aspects of disease transmission. ODE based
complex systems of models are flexible; virtually any number or type of
operational compartments can be combined into one single model system.
Modern ODE based models are quite ubiquitous and elementary in nature
and often employed to construct more complex models of systems. As an
analogy, we can often perceive the local ODE equations as a brick of a house
which is a complex model system. Reviews on such modelling effort can be
found in (Keeling and Rohani, 2008; Diekmann and Heesterbeek, 2000).

The mathematical roots of continuous ODE based model go back to (Ker-
mack, McKendrick, and Walker, 1927; Kermack, McKendrick, and Walker,
1932; Kermack, McKendrick, and Walker, 1933). These works had built
the modern day foundations of mathematical modelling endeavours based
on ODE model systems. These works had an immense influence on the de-
velopment of mathematical models of disease spread and still applicable. In
these seminal works, the main assumptions are that population remain con-
stant and disease induced death is being included. This is compatible with
the course of an epidemic being brief compared with the life time of an indi-
vidual. Compartmental models for the disease transmission have turned out
to be a helpful tool to predict the disease progression and the potential to
evaluate the public health policies and interventions. Commonly speaking,
compartmental models describe the disease dissemination through a popu-
lation of concern by identifying the rates of progression of a populace from
susceptible to, infected with and recovered from the disease. There might be
some intermediate stages too. The authors in (Capasso and Paveri-Fontana,
1979) developed a simple deterministic mathematic model to decipher the
spread of Cholera in a town and it gave some good suggestions like sanita-
tion, hygiene practices for the public health policies.

The transition rate from the susceptible state to the infected state is
often termed as the force of infection or incidence rate and the transition
rate from the state of infected to recovered from disease is termed as the
recovery rate (Liu, Hethcote, and Levin, 1987). Usually the incidence rate
is often considered as a bilinear term but there has been a significant ex-
plorative work regarding alternative nonlinear incidence rates. These al-
ternative forms of incidence rates are usually expanded to characterise the
behaviour, such as crowding of infected individuals or avoidance or the sat-
urations (Liu, Hethcote, and Levin, 1987; Ruan and Wang, 2003; Alexander
and Moghadas, 2005; Driessche and Watmough, 2000) or to include the
multi-stage infections (Krylova and Earn, 2013).

The potential and the confirmed role played by the environmental vari-
ables and climatic conditions in shaping the course and the progress of an
epidemic is well understood. Infectious disease can be influenced by the
climatic conditions through their effects on abundance of the vectors such
as mosquitoes (Rogers and Randolph, 2006) and ticks or the survival of
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pathogens outside the host (Lowen et al., 2007). Thereupon, the global
warming, changes in the climate due to the anthropogenic reasons affect the
burden of infectious diseases (Metcalf et al., 2017; McMichael, Woodruff, and
Hales, 2006). So, it is of utmost important to accommodate such weather
driven factors into the modelling efforts to understand potential and the
confirmed shape of the epidemics.

The heterogenous influence of climate shift on temperature and precip-
itation may have readily effect on the spread of various disease, especially
the disease like West Nile Fever, Dengue etc. Temperature influences on
the temporal changes in vector development, vector activity (Mulatti et al.,
2014; Hartley et al., 2012; Spanoudis et al., 2018; Lalubin et al., 2013). Con-
sequently, the risk of mosquito-borne diseases such West Nile Fever (WNF)
also follows a seasonal pattern that correlates with temperature. WNV
is is a neurotropic mosquito-borne virus which belongs to the Flavivirus
genus (Colpitts et al., 2012).  WNV is maintained by an enzootic cycle
which includes birds and ornithophilic mosquitoes of the Culex genus and
the Culex pipiens complex from the same genus is considered the most impor-
tant vectors in Europe (Kramer, Li, and Shi, 2007; Zeller and Schuffenecker,
2004). Some birds are among the most competent amplifier hosts as they de-
velop enough serum viremia to infect efficiently feeding mosquitoes (Dohm,
O’Guinn, and Turell, 2002). In the backdrop of global warming and the cur-
rent climatic situation, it appears that WNV is expanding its geographical
range in Europe, while triggering an increase in the numbers of epidemics
or sporadic cases in birds, humans and equines (Semenza and Suk, 2018;
Veronesi et al., 2018; Barrett, 2018).

The impact of the temperature and the other climatic factors have been
studied at the continental level and for selective countries in Europe (Morin
and Comrie, 2013; Harrigan et al., 2014; Marini et al., 2018; Rubel et al.,
2008; Abdelrazec and Gumel, 2017; ). However, at the country level the
effect of rising temperature and coupling of seasonality are not analysed
systematically. Moreover, it is evident that the directed and periodic spread
of WNYV into a naive population can possibly be described by the feasible
roles of a transporting agent (e.g. migratory birds) which introduces the
WNV into that population. The following unanswered questions remain:

e What is the impact of rising temperature on the potential infection
dynamics?

e What is the impact of migrating birds on the infection dynamics in
the concerned places?

We address these questions in Chapter 2, where we derive a model for
infection dynamics of WNV incorporating the potential role of the migratory
birds in Germany.

There have been significant eco-epidemiological and public health-related
questions pertaining to infectious disease transmission where the spatial com-
ponent is very important. In that situation, a simple mechanistic model can
not possibly explain the spatial features of disease dissemination. Although
the ODE models discussed above while including the environmental factors
provide a powerful tool to understand and predict the course of epidemics
locally (Mordecai et al., 2017; A. Rvachev and Longini, 1985; Kraay et al.,
2018; Heffernan, Smith, and Wahl, 2005; Kioutsioukis and Stilianakis, 2019;
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Ewing et al., 2016; Yu, Madras, and Zhu, 2018; Bhowmick et al., 2020; Cailly
et al., 2012; Eikenberry and Gumel, 2018; Tien and Earn, 2010; Lessler and
Cummings, 2016), these models often can not bring the necessary informa-
tion related to the potential spread or the influx of the infection from the
surrounding habitat patches. During the spread of an epidemic, often the
propagation reveals that the effect of influx of infected population from one
habitat patch to another one is very significant. Therefore, the analysis of
spatial spread of epidemic has drawn a significant attention during the last
years. It is quite essential to represent the locale of hosts and the course of
transmission while taking account of spatially heterogenous interventions.
In few occasions, the location of the host (plants) is well defined but for
the animals and humans, it is better to average the mobility. Fundamental
works on spatial models can be found in (Tuite et al., 2011; Bengtsson et al.,
2015; Murray, Stanley, and Brown, 1986; Murray and Seward, 1992; Keel-
ing and Grenfell, 1998; Capasso and Maddalena, 1981; Viboud et al., 20006;
Thieme, 1977; Gilarranz, 2020; Riley et al., 2015).

There are different classes of deterministic spatial models that can be
described according to different modes of infection spread, host-vector distri-
butions, and their interactions. Distinct models can be called upon as an
individual-based model, metapopulation model, or network-based model.
Individual-based models (Espindola et al., 2011; Perez and Dragicevic, 2009)
explicitly represent every individual host while governed by some set of
rules and simulation algorithm and usually computationally heavy. Through
metapopulation models one can track the number of the interacting popu-
lations at different locations according to their health status. Often, in this
modelling effort, the underlying assumption is that each location is con-
nected to some or all other patches (Keeling et al., 2010a; Watts et al., 2005;
Keeling and Gilligan, 2000; Gog, Woodroffe, and Swinton, 2002; Colizza and
Vespignani, 2008; Colizza et al., 2006; Juher, Ripoll, and Saldana, 2009). In
case of network based model, commonly each node can be defined as an
individual host and is connected to a small subset of other hosts (Keeling,
2005; Volz and Meyers, 2009; Barabéasi and Albert, 1999a; Bajardi et al.,
2011; Kiss, Miller, and Simon, 2017; Pastor-Satorras et al., 2015).

It is often difficult to analyse the data from those ODE based models
that don’t include the spatial aspect and then it is challenging to find the
aggregated spatial attributes of epidemic transmission such as wave. Ad-
ditionally, with the advent of modern day technologies and available high
spatial resolution data, it is generally required to include the spatial spread
to plausibly explain the observed data.

For this reason, a significant amount of modelling work has been done
to understand the spread of the epidemic has taken the refuge of spatial
modelling approaches. In the first instance, nonlinear Integral Equations
(IE) were used to describe the final state of the epidemic in a spatial model
and it was a generalisation of D. G. Kendall’s pandemic threshold theo-
rem (1957). Different types of spatial models including the metapopulation
models formulated as a set of simple ODEs or Stochastic Differential Equa-
tions (SDEs) or IEs are employed to investigate the geographical spread of
disease (Thieme, 1977; Marcati and Pozio, 1980; Mockus, 1998).

It is to be noted that the previously mentioned deterministic modelling
efforts do not necessarily make disjoint sets of efforts. We can represent each
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habitat patch as a node and the connecting strength is being governed by
some algorithm.

What is still missing in the context of spatial spread of WNV in Germany
is the closed mathematical framework to accommodate the multi-species
model. As a central element, this framework must include the spatial struc-
ture and ability to predict the potential probable cases of WNV in Germany.

Main questions in this context are the following:

e What might be the possible course of WNV transmission in Germany?

e How can we formally represent the spatial features of the potential
spread of WNV in Germany?

e What could possibly be the mitigation strategies?

We address these questions in Chapter 4, after introducing a spatial de-
terministic metapopulation model formulated as a set of locally temperature
driven ODE model in Chapter 2 while including the network features.

The model is able to answer the above posed questions. We believe that
providing such a model contributes a key element to construct other various
mathematical models.

Beyond the mosquito-borne diseases (MBD), there is an effort to utilise
the same deterministic modelling approach to understand the tick-borne dis-
eases (TBD). It is to be noted that while modelling MBD and TBD, math-
ematical approaches and formal modelling paths are similar with the excep-
tion of the TBD. In TBD, the modelling effort is more challenging due to
the presence of multiple transmission routes (Hoch, Breton, and Vatansever,
2018; Hoch et al., 2016; Matser et al., 2009). Another aspect that utilises
one assumption is that ticks are capable to infect their potential hosts in
their lifecycle. With the purpose to model the transmission dynamics of
the ticks, it is often assumed that various life stages of the ticks will delay
the transmission but the qualitatively speaking the potential transmission
dynamics will remain the same in the equilibrium (Rosa and Pugliese, 2007).

As a key factor, this framework must incorporate the modelling assump-
tions and the necessary tools to include the different transmission routes.

Fundamental queries in this subject are the following:

¢ What are the sensitive parameters for the potential spread of disease
(CCHFV in our case)?

e What are the control measurements for the different geographical re-
gions?

¢ What is the burden of various transmission routes in different coun-
tries?

We put on an effort to answer to the above said queries in Chapter 5. It is
our understanding that the modelling effort can potentially be exploited to
expand and to include the environmental variables and different age struc-
tures.



CHAPTER

Mathematical Theory

In this chapter, we recapitulate the mathematical formalism that is being
employed to model infectious disease and metapopulation-network mod-
els. We describe the mathematical framework to analyse the epidemics,
metapopulation-network models and put an effort to draw the outline of
several relevant results of earlier research. We address these models in Sec-
tions 2.2 and in Section 2.3. These sections give an overview over some
important results of modern metapopulation-network theory.

2.1 Mathematical Models in Epidemiology

In prior to the formulation of the models for the spread of epidemic, we shall
distinguish between conjectural-theoretical and forecasting-predictive data
driven models. Conjectural-theoretical models are utilised to accommodate
conceptual findings such as the threshold values or testing theories or to
get the insight of the disease mechanism whereas the predictive models are
employed to understand different facets of the disease transmission that con-
tribute to predict the certain spreading process. These kinds of models can
be utterly complex and computationally heavy and beyond of this thesis,
hence we concentrate in the usage of theoretical models. In the following
sections we briefly report some basic mathematical properties of different
epidemic models.

2.2 Deterministic Mathematical Models

The main objective of this section is to give a prelude on the basics of
deterministic compartmental modelling through implementation. Here, we
reformulate some well known models and try to derive their solutions. The
population is subdivided according to their health status and the subdivided
populations are termed as compartments. We discuss about the employment
of such compartments to describe the fundamental models in the field of
epidemiology.

2.2.1 SI

Let us assume a population of N individuals. In the simplest setting, the
health status of each individual is either susceptible (S) or infected (I).
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Birth or death in the population is neglected. Susceptible individuals get
infected, if they are in contact with an infected individual. Here, the classes
susceptible and infected are termed as compartments as described before and
the increase in the infected compartment follows the local reaction scheme:

S+1—21

Assuming that « is the infected rate through which new susceptible become
infected, we obtain the corresponding differential equation model

ds

— = —aSI 2.1
o s (2.1)
dI

a I

7 asS

where S and I are the numbers of susceptible and infected individuals re-
spectively. The model Eq. (2.1) is called SI-model. The total population is
N = S + I. Therefore, Eq. (2.1) can be reformulated as:

drl

— =a(N-1)I 2.2
a1 (2.2
i.e. a logistic differential equation. Hence, in the limit ¢ — oo the whole
population is infected (I(co) = N) eventually. A solution of the model

system Eq. (2.1) is shown in the Fig. 2.1

1000
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250

0 25 50 75
Time
- Susceptible - Infected

FIGURE 2.1: Solution of the susceptible-infected (SI) model
Eq. (2.1). Parameters: a = 0.1, N = 1000, S(0) = 950,
I(0) = 50.

2.2.2 SIR

In contrast to the infection mechanism introduced in the previous section,
many epidemics actually accommodate an immunised state, where these
immunised individuals have no contribution in the disease spread. Such
examples can be found in (Kermack, McKendrick, and Walker, 1927; Ker-
mack, McKendrick, and Walker, 1932; Kermack, McKendrick, and Walker,
1933). In such situation, individuals recover from the disease after being
infected for a certain period of time. This characteristic is modelled by
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introducing an additional compartment for the recovered population. The
infection scheme is then extended to include the recovered compartment as
susceptible-infected-recovered (SIR) and the model system can be formu-
lated as:

dS

dl

i aST —~I1
dR

= N

dt 7

where S, I and R are the numbers of susceptible, infected and recovered
individuals respectively. The model Eq. (2.3) is called SIR-model and « is
the infection rate and + is the recovery rate. A typical solution of Eq. (2.3)
is shown in the Fig. 2.2.
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- Susceptible = Infected = Recovered

FIGURE 2.2: Solution of the susceptible-infected-recovered
(SIR) model Eq. (2.3). Parameters: o = 0.1, v = 0.02,
N =1000, S(0) =950, I(0) =50, R(0) = 0.

There is no closed form solution for the system Eq. (2.3), but some
fundamental conclusions can be obtained analytically.

This SIR model Eq. (2.3) show more complex features compared to the
ST model Eq. (2.1). Let us assume (S(0), 1(0), R(0)) is the initial condition.
We first analyse the fixed points of the system, i.e. (S*, I*, R*) where

as* arx dR*

g =—aS*I" =0, 7 =aS* " —yI" =0, W:’yf =0 (24)

It follows from the last equation that I* = 0 at the fixed point, where the
values of S* and R* should follow this relationship S* + R* = N. Therefore,
(S8*,0, R*) is a fixed point. In the early phase of an infection, the stability of
the fixed point can be analysed in the following manner. All the individuals
are susceptible in the inception and consequently I* = N —S*. An outbreak
can occur, iff dI/dt > 0, i.e.

dl

= aS" (N =S = (N = 57) = (N = §)(a$" =7) >0.  (25)
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It readily follows from Eq. (2.5) that the number of infected grows, if
aS*/y > 1. (2.6)

Eq. (2.6) is crucial in epidemiology as it describes a threshold for the po-
tential spread of an infection. This dimensionless metric is called the Basic
Reproduction Number Ry. Recall that S =~ N in the fixed point in the be-
ginning of the epidemic. Thus, it follows that the condition for an outbreak
is

Ro = N% > 1 (2.7)

A dimensionless quantity of central importance in the field of epidemi-
ology is the so-called basic reproduction number, Ry, which is the expected
number of new infections engendered by a single infected individual intro-
duced into a fully susceptible population. One of the main goals in epidemi-
ology to curtail the magnitude of Ry under the critical value Ry = 1. It can
readily be observed that from Eq. (2.7) that this can be achieved through
reducing the infection rate a or by increasing the recovery rate v through
proper treatment.

When we analyse the late phase of the SIR dynamics, we can observe
the difference between the SI model described in Section 2.2.1 with the SIR
model. In case of an SIR like outbreak does not necessarily infect the whole
population, even if Ry > 1. The reasoning can be attributed to the fact
that there is a critical mass of susceptible individuals in order to keep an
infection alive Eq. (2.6). The accumulated number of infected individuals in
an infection process is disposed of the number of recovered at the end of the
infection as every recovered has to be in the infected state in the first place.
An important measure throughout this work is therefore the outbreak size
R.

To compute the outbreak size, we deal with the second fixed point of
Eq. (2.3), i.e. the fixed point for t — oco. At this stage of the infection, there
are no infected and a fraction of the population is recovered. So, the fixed
point is given by (N — Rx,0, Rx). A straightforward way to obtain the
outbreak size R, is to use the model equations in Eq. (2.3) and compute

the following differential
as o

drR ~ 5

and separate the variables This gives us the following integrals

N-Reoqs o [Re
fo S

We integrate from the initial condition at ¢ = 0 to the final condition at
t — 0o, where Soo = N — Ry. Using that R* =0 at ¢t = 0 gives

Roo = S* — Se 71t (2.8)

This transcendental equation can be solved numerically using a Newton-
Raphson technique.

Additionally, if S(0) = N, then N—S(o00) is the final size of the outbreak

R(o0 S(oco
A _ 1St

and the fraction ultimately infected is f = . In terms of the



2.2. Deterministic Mathematical Models 11

latter, we get
log(1—f)
f

The following shows the relationship between final size and Ry:

Ry =

o o -
1) ~ o
S 3 S

Fraoction Infected
o
(&)1

o
o
S

FIGURE 2.3: Relative outbreak size vs. basic reproduction
number. Note that even for supercritical Ry the outbreak
size is in general smaller than the total population.

The analysis of the late phase of an epidemic also yields information
about potentially infected and recovered populations. Let us consider the
second equation of Eq. (2.3).

dI

— =aSl —~yI 2.10
o =Sl = (2.10)
In the late phase of an SIR-type epidemic, the fraction of infected is actually
small. Given sufficiently large values of Ry, the fraction of susceptible is also
small in this phase (see Fig. 2.3). Thus, we neglect the quadratic term in
Eq. (2.10). This gives % = —~I, which yields

I(t) = I1(0)e . (2.11)

Therefore, the infection decays exponentially for large ¢ and the inverse re-
covery rate 1/v defines the characteristic time of the epidemic.

An SIS model is also conceptually similar to an SIR model with the
difference where the infected individuals return to the susceptible state after
a certain period. SIS and SIR model share similarities as they’re both single-
event model. The main difference is that SIS models show an endemic state
for t — oo, i.e. both S and I take finite values in the long term so that
fraction of infected remains in the system permanently.

2.2.3 SEIR

For certain crucial infections, there is a significant incubation period during
which the susceptible individuals are infected but not yet infectious them-
selves. Over that time period, the individual is in compartment E (for ex-
posed). There is a difference between infected and infectious, in general.
Categorically, infected individuals are invaded by a pathogen and act as
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hosts for its multiplication. On the contrary, only the infectious individuals
can infect others and infected individuals are not necessarily infectious (Rolle
and Mayr, 2006). The infection mechanism is now extended to include the
exposed compartment as susceptible-exposed-infected-recovered (SEIR) and
the model equation can be formulated as:

as

i —aS1 (2.12)
Cil—f = oSl —~vFE
% = ~F —ul

where S, F/, I and R are the numbers of susceptible, exposed, infected and
recovered individuals respectively. The model Eq. (2.12) is called SEIR-
model and « is the infection rate and ~ is the incubation rate, p is the
recovery rate. A typical solution of Eq. (2.12) is shown in the Fig. 2.4.
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FIGURE 2.4: Solution of the susceptible-infected-recovered

(SIR) model Eq. (2.12). Parameters: o = 0.1, v = 0.5,

pw = 0.2, N = 1000, S(0) = 950, E(0) = 40, I(0) = 5,
R(0) =5.

Here, the basic reproduction number can be explained as the product of
four elements and can be expressed as:

Ry = (Number of contacts per unit time)(Disease transmission per con-
tact) (Duration of infection) (Surviving exposed stage). Additionally, it can
also be interpreted through the product of model parameters as infection
rate of one person in a population of Sy susceptible (where Sy is the initial
susceptible population) multiplied with mean time in 1.

2.2.4 Next Generation Matrix

The basic reproduction number Ry is arguably the most important metric
in the field of epidemiology. It is a quantity that helps to provide insight for
emerging infectious diseases in outbreak situations. Its value provides the
necessary information when designing control interventions for established
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infections. From a theoretical perspective Ry plays a vital role in the analysis
of stability of the infectious disease models. In the frame work of mathe-
matical epidemiology, one can divide the population into a finite number of
discrete categories and can construct a matrix that includes the numbers of
newly infected individuals in the various categories in consecutive genera-
tions. This matrix, usually denoted by &, is termed as the next-generation
matrix (NGM). It was introduced in (Diekmann, Heesterbeek, and Metz,
1990) who defined Ry as the dominant eigenvalue of K.

The disease dynamics are produced by a system of nonlinear ordinary
differential equations (ODEs) that describes the changes with time for all
sub-populations. To compute Ry, one can use the states that apply to in-
fected individuals i.e. to begin with those equations ascribing the production
of new infections and the changes in the states amongst the infected indi-
viduals. This can be defined as the infected subsystem. The first step is to
linearise the infected nonlinear subsystem about the disease-free equilibrium
(DFE). Epidemiologically speaking, this process reflects that the potential
for initial spread of an infectious agent when it is introduced into a fully
susceptible population and this is what characterises Rg. One can decom-
pose this Jacobian matrix (K = F + V) into two parts: F, where F is
the transmission matrix (describing the production of new infections) and
V is the transition matrix (describing changes in state). The next step is
to compute the dominant eigenvalue or, the spectral radius p of the matrix
—FV~L. However, this decomposition described in (Diekmann, Heesterbeek,
and Roberts, 2010) and later in (Driessche and Watmough, 2000; Driess-
che and Watmough, 2002) do not typically lead to the NGM as introduced
in (Diekmann, Heesterbeek, and Metz, 1990). The reason can be attributed
to the fact that the decomposition relates to the expected off-spring of indi-
viduals of any epidemiological state and not just only epidemiological new-
borns. As an example, an exposed state and a consecutive infectious state
are both considered to be infected states but the switching from the exposed
state to infectiousness does not involve a new infection occurring. This may
lead to confusion. To distinguish, we call Kz = —FV~! as the NGM with
large domain. One must bear with the fact that p(Kz) = p(K). Usually,
the dimension of K is lower than that of Kr, and it makes the computa-
tions to find Ry is easier. In some cases, a further dimension reduction is
possible. It happens when det() = 0 and is termed as lower-dimensional
matrix the NGM with small domain, and denote it by Ks. In this case also
p(Ks) = p(K).

In a nutshell, we can write down the formula to find K., £ and Kg as
following;:

Ke=-Fv! (2.13)

K=VK,v (2.14)

Where where W is an arbitrary matrix composed of unit column vectors (e;)
such that the ith row of the transmission matrix is not zero.

For the small domain, the transmission matrix (F) is scaled into two
separate vectors (£2, A). A row vector (€2), and a column vector (A) are
defined to satisfy F;; = Q;A; and

Ks=—-QV~IA (2.15)
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2.2.5 Climate Variability and Seasonality

In contrast to the elementary models described in Sections 2.2.1, 2.2.2, 2.2.3,
quite often the model parameters are explicitly or implicitly depend on dif-
ferent climatic variables. Seasonal patterns in disease dynamics exhibit pro-
nounced variability across different geographical regions, showing single or
multiple peaks at different times of the year. Multiple mechanistic mod-
els of disease transmission have included rainfall as a driver by focusing on
multiple possible transmission pathways and the inclusion of other weather
factors (Lemaitre et al., 2019; Baracchini et al., 2017; Siraj et al., 2017; Ri-
naldo et al., 2012; Chowell et al., 2019). Various studies give evidence of
a link between vector-borne disease outbreaks and climate driven weather
anomalies (Morand et al., 2013). In case of modelling, the simple SIR model
(Eq. (2.12)) always predicts the damped oscillations towards pathogens ex-
tinctions if the magnitude of Ry is too small and this is at odds with the
recurrent outbreaks observed in many real pathogens (Babad et al., 1995;
Conlan and Grenfell, 2007). Seasonal force of epidemics due to the climate
driven factors are the main factor to keep the disease cycle alive and kicking
as well as the seasonal contact rates to facilitate the epidemics cycle. In the
simplest settings we can observe the consequences of this by considering a
sinusoidal forcing on « according to a(t) = ap(1+ aj cos(2nt)) in the model
Eq. (2.3) with the vital dynamics i.e. including the birth and death. Then
we have the following system of ODEs:

as

il uN — a(t)SI — uS (2.16)
dl

— = I —~I —ul

7 a(t)ST —~I —p

dR

S T uR

dt v K

with u being the birth and death rates (which we assume to be equal), and
N is the total population. It is to be noted that the model Eq. (2.16) is not
a SIR rather it is a generalisation of SIR model Eq. (2.3).

We should keep in mind that the individuals are born in the S-state, and
can die in any state. The birth and death rates are set equal to maintain
the constant population size.

A typical solution of Eq. (2.16) is shown in the Fig. 2.5.
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FIGURE 2.5: Solution of the susceptible-infected-recovered

(SIR) model Eq. (2.16). Parameters: p = 1/70, oy = 400,

a; =0.6, v = 365/14, N = 1000, S(0) = 990, I(0) = 10,
R(0) =0.

2.2.6 Differential-Difference Models

The models presented in Sections 2.2.1, 2.2.2, 2.2.3 illustrate only the very
basic characteristics of epidemic dynamics. However, it is also one of the
main aim in the field of epidemiology to have an understanding of the modes
of the transmission dynamics. The transmission dynamics can lean on the
detailed structures and causes complex mechanism. Often this dynamics is
not continuous and suffers from several discontinuities like irregular vector
activities, host behaviour, the movements or, the migration of vector-host
species.

Differential-difference model has recently gathered plethora of applica-
tions because of its ability to describe many real life problems from fluid
mechanics to ecology. In fact, the differential-difference model is particu-
larly preferable to depict discontinuous phenomenon and is the preferred
model to describe the interplay of the continuous and discontinuous pro-
cesses (Cooke, 1963; Bellmann, 1963). In this section we shall outline some
of the main features and application before proceeding to the next section
on the spatial models.

Seasonal appearance and then the disappearance of pathogens is actually
a complex phenomenon. This mechanism can facilitate the pathogens either
to persist or to extinct in the long term. In different eco-epidemiological sce-
nario, the wet winter and spring growing seasons alternate with the hot, dry
summers, during which the host species grows and it can help to increase the
activities of the vector. In this condition the usage of differential-difference
modelling approach is more suitable to describe the punctuated seasonality of
this system and multi host-pathogens or vector system. In the transmission
season, ODE models are the effective model governing the multi-population
interactions and in the dormant season the population growth and the multi-
population interactions are described by the difference equations (Moore et
al., 2011a; Borer et al., 2009; Borer et al., 2007).

Continuous ODE model systems can give a reasonable description of the
transmission in a continuous scenario but during the punctuated seasonal



16 Chapter 2. Mathematical Theory

transmission, mathematical models constructed with the help of the Differ-
ential Difference model system are closer to reality compared to the ODE
model only. We will notice the employment of such modelling technique in
the Section 2. In spite of providing specific knowledge about the potential
outbreaks, locally based ODE models are not feasible enough to include the
flow and transportation of the infectious agents or pathogens and to model
the spatial transmission of epidemics. In the next section, we briefly report
important results in the complex metapopulation network research and fo-
cus on the interplay between the metapopulation network and epidemics in
Section 2.3.

2.3 Spatially extended models

Abundant number of biological and biophysical systems show characteristics
at multiple spatial, temporal or population scales (Herring, 1991). Coarser
methods such as PDE, IE are typically fast to simulate and easy to code.
These methods can include a spatial structure. Whilst in that scale, many
individual-level details that required low concentration or small spatial scale.
However, to simulate at such individual level throughout a large domain is
computationally is very challenging.

This spatial dimension acts as a crucial agent in many eco-epidemiological
phenomena as we understand that things are distributed through space in
a heterogeneous manner and thus creating differentiation, segregation and
discontinuities. If we select the geometric approach then we can potentially
use the functionalities of a geographic information system (GIS) in order to
create the connections amongst the different layers of information pertain-
ing to the sundry aspects of the eco-epidemiological phenomena to study
and to establish the evidences of possible spatial regularities in this work.
Each of the spatial models has its own specific advantages and integrates
in its own way the spatial features of the eco-epidemiological phenomena
being studied. While the statistical approach concentrates on the covaria-
tion mechanisms of the eco-epidemiological phenomena, and therefore, space
can be included in the analysis as the statistical mean. Dynamical models
can incorporate spatial features like landscape data, water bodies, etc that
act in similar ways to intervene as a frame for the studied objects and also
through interacting features of the models. Hence connecting the dynamics
of different interacting entities. =~ When the cellular automata are employed
to represent geographic space, the main driving force of the change is spatial
as any potential change can be measured based on the neighbourhood con-
figuration. Each of these modelling frameworks can be used with the goal of
describing, exploring or explaining. The lines that separate these approaches
are not always simple to distinguish and depend actually on the researchers.

2.3.1 Metapopulation models

The models and the results discussed are so far based on a single habitat
patch i.e. modelled on a single dwelling region and the disease dynamics are
contained in a single zone. In several systems, however, the internal contact
features are unknown, but the contacts amongst the different subpopula-
tions can be made available or readily available for the further analysis. A
subpopulation can assume to be a city in a mobility network, an agricultural
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holding in a livestock trade network or a habitat in ecology, for example.
A metapopulation is a set of subpopulations which can be connected by
migration process (Grenfell and Harwood, 1997; Hanski, 1998). Recent lit-
eratures have revealed the profuse usage of metapopulation approaches to
model large scale disease outbreaks (Bajardi et al., 2011; Colizza et al., 2000;
Colizza and Vespignani, 2008; Lentz, Selhorst, and Sokolov, 2012), such as
influenza (Balcan et al., 2009) and SARS (Hufnagel, Brockmann, and Geisel,
2004).

The computation of outbreak thresholds in the context of metapopula-
tions was addressed in (Arino, 2017; Arino, Ducrot, and Zongo, 2012; “Dis-
eases in Metapopulations”; Colizza et al., 2006; Colizza and Vespignani,
2008). The impact of the movement matrices on disease spread in metapop-
ulations was addressed in (Lentz, Selhorst, and Sokolov, 2012) Although
metapopulation approaches provide a useful tool for the modelling of epi-
demics, they systematically overestimate the outbreak size when compared
to individual resolved approaches (Keeling et al., 2010b).

In the backdrop of epidemics every subpopulation has a different infection
status, i.e. a distribution of S, I and R (Please see the Fig. 2.6).

Subpop i

FIGURE 2.6: Several metapopulations i, j, k and [ of differ-
ent size and infection status. The infection status is rep-
resented by the local colour distribution. The edges (i, j),
(k,1) indicate migration from 4 to j and k to [ respectively.

In the context of local infection model, we incorporate a migration term
so that the general from of an SIR-infection-model can be formulated for a
subpopulation ¢ as

% :F(SialiaRi)+M(Si7[iaRivsj7IjaRj77_) (2'17)
The first term F' in Eq. (2.17) is a local reaction term, while the migration
M to other subpopulations could depend on the local distribution and the
infection status of other subpopulations connected to i. Additionally, the
migration between subpopulations could occur on a time-scale 7 different
from the time-scale of the local infection. The impact of these time-scales
on disease spread was analysed in (Lentz, Selhorst, and Sokolov, 2012). We
investigate the interplay between metapopulation-network properties and
disease outbreaks in Section 4.
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CHAPTER

West Nile Virus Spread in Germany - Local
Spread Model

This chapter contains the materials from the paper: "Locally temperature -
driven mathematical model of West Nile Virus spread in Germany” (Bhowmick
et al., 2020).

3.1 Background Story

In this chapter we formulate an ODE based dynamic model to describe the
spreading process of WNV in the presence of migratory birds in Germany.
WNYV is an arthropod-borne virus (arbovirus) transmitted by the bites of
infected mosquitoes. It can also infect horses and humans. In some cases it
can be fatal too. Birds are actually the natural reservoir, and humans and
other mammals are dead-end hosts who do not have any active role in circu-
lating the disease. In 2018, WNYV detected for the first time in Germany and
there has been a reported case of seroconversion of an exposed veterinarian.
So it readily shows the importance of evaluation of the circumstances, under
which WNV may establish in Germany or in some zones of Germany. Thus
it paves the way for the modelling endeavour.

3.2 Introduction

The main vector responsible for spreading WNV among birds and from birds
to humans and mammals are mosquitoes of the Culex pipiens complex (Zeller
and Schuffenecker, 2004). Many European countries have an abundance of
Culex pipiens and Culex pipiens s.l./C. torentium mosquitoes, which are
effective WNV vectors and these vectors are also present in Germany and
the susceptibility is well documented in (Ziegler et al., 2019). During the last
couple of years, there have been severe outbreaks in the Balkan area (Bakonyi
et al., 2013; Escribano-Romero et al., 2015).

Temporal changes in vector development, vector activity and the WNV
transmission potential (Mulatti et al., 2014; Hartley et al., 2012; Spanoudis
et al., 2018; Lalubin et al., 2013) are all influenced by temperature. In
the current climatic situation, it appears that WNV is expanding its geo-
graphical range in Europe, while escalating an increase in the numbers of
epidemics or sporadic cases in birds, humans and equines (Semenza and Suk,
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2018; Veronesi et al., 2018). Global warming may speed up the transmission
of WNV infections in the coming years (Barrett, 2018).

The active role played by the migrating birds in introducing new viruses
to Europe has often been shown (Calistri et al., 2010). Migratory birds
can possibly carry viruses northward to their breeding sites in Europe when
they get the infection during the spring migration. In (Michel et al., 2018),
the authors have reported WNV neutralising antibodies against WNV in
migratory birds in Germany.

The numbers of reported cases of WNV in animals and humans are shown
in Fig. 3.1. It seems that there is a constant rise in the reported incidence
of both animal and human cases in the EU, as well as there is a possible
dissemination of cases to the new locations.
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FIGURE 3.1: (A) Human cases and (B) animal cases.

In the present chapter, we model the dynamics of WNV transmission
using an ODE based compartment model, where each population is repre-
sented as groups of susceptible, exposed, infected and recovered accordingly
to their health status. Such modelling paradigm is a popular choice amongst
the mathematical modellers and this type of model have been used already
to model different vector borne diseases (Wonham, De-Camino-Beck, and
Lewis, 2004; Castillo-Chavez et al., 2002) while incorporating also seasonal-
ity and weather driven factors (Lou and Zhao, 2010; Wang and Zhao, 2017;
Abiodun, Witbooi, and Okosun, 2017; Okuneye, Abdelrazec, and Gumel,
2018; Rubel et al., 2008; Laperriere, Brugger, and Rubel, 2011) to make
it more feasible. It is known that migratory birds are a reservoir of WNV
and can introduce the virus to Europe (Peterson, Vieglais, and Andreasen,
2003; Figuerola et al., 2008; Bakonyi et al., 2006) during the migration pe-
riod. Therefore, we model the dynamics of the infection process as well as
the population dynamics of vectors and hosts, the latter including migra-
tory birds after following the footsteps of (Bergsman, Hyman, and Manore,
2016).

3.3 Mathematical model

We use an SEI (susceptible - exposed - infected) type model for the mosquito
species as vectors for WNV. For the birds species, we use an SEIR (suscepti-
ble - exposed - infected - recovered) model. We include logistic growth in the
interacting population. For the population dynamics, we use the following
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equation
dP P
dP P
:>% = (b—(b—m)K>P—mP,

where P stands for the population (bird or mosquito), and b, m and K stand
for birth rate, death rate and carrying capacity, respectively.

Life cycle of a mosquito comprises of both aqueous and terrestrial stages
but the transmission process (biting) happens only in the terrestrial stage.
So, we consider only this stage of the mosquito life cycle. Additionally,
the life cycle of a mosquito is primarily temperature driven. Therefore, the
main driving parameters of the model are all explicitly temperature depen-
dent. The transmission mechanism of WNYV is a continuing cycle between
mosquitoes and birds. A vector (mosquito) bites an infected host (bird) and
gets infected by WNV after having a blood meal and the virus amplifies
within the host and is transmitted to another birds. Other vertebrates are
dead-end hosts and they do not have active role in spreading WNV. The
birds can develop clinical disease, e.g. encephalitis, but the infection may
also remain inapparent (Gamino and Hofle, 2013; Michel et al., 2018). That
is why we divide the infected bird population into clinical and subclinical
birds. We assume that the subclinical birds will remain susceptible to the
disease even after they recover from WNV, while birds that survive a clini-
cally manifested WNV infection are considered protected from re-infection.
In addition, we include migratory birds in the model. They act in a similar
manner like the local birds, but periodically introduce the disease from other
endemic areas.

A summary of the infection cycle is given in Fig. 3.2.
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3.3.1 Compartment Model

For the mosquitoes that serve as vectors for WNV, we use the following
system of ordinary differential equations (ODEs):

dSn

Sm c2Svlpe
— = (by Ny — S 1-— — 3.2
dt (barNag =g M)< KM> Kg (3:2)
_aSulpsc
Kp

dE c2Sulpe  c1Swvlpsc

— — Ey — E
7t Kp + Kr Ym BN — my B
dl
TQM Y En — ma I,

where Sy, Fyr and Iy represent the susceptible, exposed and infected mosquito
population, respectively. The total mosquito population is given by Ny =
Sy + Ear + Iy, Transmission parameters are c¢; from infected subclinical
local birds to the mosquitoes and ¢y from infected clinical local birds to the
mosquitoes. An overview over all parameters and their values is given in
Table A.1.

Please note that crucial parameters of the system Eq. (3.2) are all temper-
ature dependent. This applies for the birth rate, by; = bys(7T'), and mortality
rate, mpr = mps(T'), as well as the transmission coefficients ¢; = ¢;(7") and
ca = co(T'). We choose the functional relationships for by (T") and mps(T)
according to (Laperriere, Brugger, and Rubel, 2011; Rubel et al., 2008). The
extrinsic-incubation period (y57(7)) for mosquitoes are also temperature de-
pendent (Reisen, Fang, and Martinez, 2006; Dohm, O’Guinn, and Turell,
2002; Kilpatrick et al., 2008; Eldridge, 1968; Rubel et al., 2008), where T
represents the temperature. We have not included the hibernating phase
of the adult blood feeding mosquitoes to keep the model simple (Eldridge,
1968; Spielman, 2001).

Similar to the mosquito population, we model the dynamics of the local
bird population using the following system of equations:

dSp Np (B3 + Ba)ImSB
B _ bg — (b — mp) =2 | Ng — mpSp — 3.3
o 5 — (b mB)KB B —mpSB Ko (3.3)
dEBc BalniSB
= — mpEpc — o E
dt Kg mpLupc — YBCLBC
dEpsc _ P3luSp o s — >
dt Kg BLBSC —YBSCcLBSC
dIpc
o vBcEBc —mplpc — aulpe — dpclpe
dl
stsc = "BscEpsc —mplpsc — aslpsc + v3Rpsc — dpscIpsc
dR
dfc = aylpc —mpRpc
dR
jtsc = a3lpsc — v3Rpsc —mpRBsc,

where we distinguish between clinical (BC') and subclinical (BSC') birds.
For the local bird population, Sg, Egc, Epsc, Isc, Ipsc, Rec, Rsc, NB
stand for susceptible, exposed (clinical and subclinical), infected (clinical
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and subclinical), recovered (clinical and subclinical) and the total bird pop-
ulation, respectively. As above, the remaining parameters are explained in
Table A.1.

The wild bird population is a natural reservoir for WNV (Reed et al.,
2003a; Malkinson et al., 2002). It is known that migratory birds also may
have an active role to the spread of WNV along their paths of migra-
tion (Rappole and Hubélek, 2003; Lopez et al., 2008). Observational studies
indicate that individuals infected with WNV may delay the departure for the
migration and therefore, increase the persistence of the disease (Rappole and
Hubaélek, 2003). In our current work, we include the possible introduction
of WNV into the local bird population by migratory birds in Germany.

The appearance of migratory birds is rather a complex seasonal phe-
nomenon. We imitate this mechanism by modelling the presence of migra-
tory birds in the summer months, while their population size is set to zero in
winter. The hypothesis we assume is that the migratory birds are active for
the season of migration and after that their active population becomes zero.
Given a migration period 7 of half a year and setting the day of migration to
Germany 79 = 0, migrating birds are present, if, T € [27, 27+ 1] with 7 € Ny.
Consequently, we set the compartments Sg,, = Epm = Ipm = Rpm = 0, if
T ¢ (27,27 4 1] (the compartments are similar to the local birds compart-
ments). Migrating birds might return to Germany from endemic areas in
every season. So, we introduce a single infected migrating bird into Ger-
many every season of migration.

Once migratory birds are present in Germany, we assume that they be-
have like the local bird population and they have an active role as a spreader
of WNV. Therefore, we use a similar model for migratory bird population
3.4 as we do for the local bird population in Eq. (3.3). Our model in-
cludes local and migratory birds for one location and incorporates seasonal-
ity as described by (Moore et al., 2011b). The resulting model system is a
Difference-ODE model system. We obtain the following equation system for
the migratory bird population:

ds N

B — N bpm — (bm — mBm) o™ | Npm — mpmSpm  (3.4)

dt KBm

_ BsImSBm
KBm

dFE IS

dfm = WBmBm - mBmEBm - VBmEBm
dl

CZm = YBmEBm — @9lBm — MBmIBm — dBmIBm
dR

dfm a9lpm — mpmBBm.

Due to the inclusion of migratory birds, the equations for the mosquito
population Eq. (3.3) have to be modified to include the potential role of the
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migratory birds in spreading WNV. For the mosquito population we get

dS Sm c2Sulpe
GOM - (py Ny — 1- - .
7 (bar N mMSM)< KM) K5 (3.5)
_aSulpsc  c3Sulbm
Kp Kpm

dE c2Svlpe  caSulpsc  c3SulIpm

- — By — muyE
dt Kz | Kp | Kg, MEM T mubBM
dl
7]24 Y EM — marIy

Table A.1 summarises all the associated model parameters of equations
Eq. (3.3), Eq. (3.4) and Eq. (3.5). The transmission coefficients ¢, ¢z, c3, 3,
B4, b5 are considered as the product of the biting rate and the probability
of transmission between mosquito to bird and bird to mosquito according to
refs. (Laperriere, Brugger, and Rubel, 2011; Rubel et al., 2008).

3.4 Basic Reproduction Number R

Basic reproduction number Ry is an epidemiological metric that contains
the necessary information about the parameter conditions for a disease to
persist in the population. If Ry < 1, the infection will become extinct and
if Ry > 1, the disease will be established in the population and the inci-
dence will increase. For the purpose of calculation of Ry, we follow the next
generation matrix approach as proposed by (Diekmann, Heesterbeek, and
Metz, 1990). The authors have proposed to formulate the ODEs epidemic
system by splitting the state variables and the entering fluxes related to the
infectious agents. T; is the flux of newly infected in compartment ¢ and 3;
is the flux of entering or leaving fluxes related to the compartment i. With
such a partition after considering the infected individuals, one can write
these equations written in the form dﬁi = Ti(z) — X;(x), in this splitting,
T; is the rate of appearance of new infections in compartment ¢, and ¥; is
the rate of other transitions between compartment ¢ and other infected com-
partments. Now define F = [8%79%0)} and V = [3%‘75:0)}7 where xzg is the
disease-free equilibrium (DFE ). F is a positive matrix and V', an M-matrix,
i.e an M-matrix is a Z-matrix with eigenvalues whose real parts are nonneg-
ative. Matrix K = FV~! has (i, ) entry equal to the expected number of
secondary infections in compartment ¢ produced by an infected individual
introduced in compartment j. Thus I is the next generation matrix and
according to the authors Ry = p(FV™1), evaluated at disease-free equilib-
rium (DFE ) is defined to the basic reproduction number and p denotes the
spectral radius.

We first put our model system Eq. (3.2) and Eq. (3.3) in the matrix form
and then we linearise the model equations involving only the exposed and
the infected states around the disease-free equilibrium (DFE). The mecha-
nism of linearising around the DFE mimics the fact that Ry describes the
initial spread of an infection to a completely susceptible population. Then
the linearised matrix can be decomposed into two matrices F and V, where
F is the transmission part and V stands for the transition part. The DFE
point for the bird population is (Sg, Epc, Epsc, Isc, IBsc, Rec, Resc) =
(5%,0,0,0,0,0,0), similarly for the mosquito population it is (S, Enr, Iar) =
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(S74,0,0) and for the migratory birds, it is (SBm, EBms IBm: BRBm) = (SHm,,
0, 0, 0). Simple algebra takes us to the DFE as Ey = (K, 0, 0, Kp, 0, 0,
0, 0,0, 0, Kpm, 0, 0, 0) including the migratory bird population. We take
account of the system Eq. (3.3) and Eq. (3.4) which include the infectious
terms as the difference of T;, the new infection terms at the compartment 4
and 3J; is the transition from compartment ¢. For the moment, we focus only
on local birds and include migratory birds later. Hence, we get the following
vector system as:

c2Smlpe | c15uIBsc

Eu Kp 0 Kp ’YME;EVI-&-MMEIM
Iy —YmEn+marIng
i Epc _ % _ mpEpc+ycEBC
dt | EBsc B3In Sp mpEpsc+vpscEpsc
Ipc T Kp —yBcEpc+mplpc+aslpe+dpclpe
Ipsc 0 —vBscEpsctmplpsctaslpsct+dpsclpsc
v3Rpsc

Computing the Jacobian matrices of F and V at the DFE gives the
following matrices:

0 0 00 Kp Kp
0 0 0 O 0 0
0 B4 00 0 0
-
Lee™ 10 83 0 0 0 0
0 0 00 0 0
0 0 0 O 0 0 |
Yv+mar 0 0 0 0 0
—YM mpar 0 0 0 0
) o 0 0 Ypc+mp 0 0 0
Loc = 0 0 0 YBsc+mp 0 0
0 0 —YBC 0 ast+mp+dpo 0
0 0 0 —YBSC 0 az+mp+dpsc

The index Loc indicates that we are taking account of local bird population
only. We multiply Vi, after finding the inverse of Vi,., and VL_OIC and
then calculate the largest eigenvalue of the resulting matrix. The basic
reproduction number is then given by Ro 0. = p(F. LOCVL_OIC), where p is the
largest eigenvalue of the matrix F, LOCVL_Olc.

This gives
YBC 1
284
R _ 1 v Ky YBC +mp oy +mp + dpc
0,Loc —
my Y +my Kp 4 YBSC 1 155
YBSc +mp asz+mp +dpsc
(3.6)
Eq. (3.6) can be expressed as follows:
Ro.1oc = \Vmomd [0BcépeTaie—spo + oBscépsotmepsc],  (3.7)
| _ ol _ K _ v —
where £y = 70, om = SoERL 0 = Ky OBO = Spiiags $BC S
1 _ BSC 1

catmpidge’ ™M«—BC = c2fs, opsc = YBso+mp’ EBsc = astmetdgse’
TM«—BSC = C133.

Eq. (3.7) represents sum of the product of number of clinical and sub-
clinical bird infections caused by a single infected mosquito and the number
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of mosquito infections caused by local birds including clinical and subclinical
birds (Driessche, 2017).

The biological meaning of the terms in Eq. (3.7) can be interpreted as fol-
lowing. £, is the life-span of a mosquito, o,y is the proportion of mosquitoes
that survive the incubation period, ¢ is the number of initially susceptible
mosquitoes per local bird population at the disease-free equilibrium, opc¢ is
the proportion of clinical birds that survive incubation period, ¢ is the
clinical bird’s infectious lifespan, Tp;« ,pc is the product of transmission
probabilities between clinical birds to mosquitoes and mosquitoes to clinical
birds. The meaning of the parameters related to the subclinical birds are
similar.

Analysing Eq. (3.7) further, we are able to determine the level of control
required to prevent transmission. Here, the ratio of mosquitoes to bird at
Ey, ¢ is an important threshold. Equating Ro 1. to its critical value 1, we
get the following the critical value of ¢.:

1
~ Uyown [0BEEBCTM s BC + OBSCEBSCTM s BSC)

Pe (3.8)

Above this threshold, an outbreak can occur. Therefore, reducing the rela-
tive mosquito to local bird density should be a way to prevent a potential
outbreak of WNV infections in the study area.

The calculation of Ry while incorporating the seasonal appearance of
migratory birds are included in the Appendix Eq. (A.1), Eq. (A.2), Eq. (A.3)

¢(oBcéBoTM«—BC + 0BSCEBSCTM——BSC)+
Roviig = o | Cvom (3.9)
®Bm(TBmEBMTM«—Bm,)

The relationship between Rg 10, and Ro a4 is as follows:

R%,Mig = R%,Lac + 0Bm (0 BmEBMTM s Bm) (3.10)

All the expressions in Eq. 3.10 are positive and it is evident that R(Q)’ Mig >
Ra Loc- We notice that 7y By, is temperature-dependent and represents
the product ¢3(T")55(T"). Therefore, the increased value of Ry is governed by
the mosquito biting rate, by the ratio of mosquito to migratory bird density
and the probabilities of disease transmission from mosquitoes to migratory
birds and vice versa.

Eq. (3.9) can also be described as a combination of three different basic
reproduction numbers where R(()BC), RéBSC) and RéMig ) are the involvements
of clinical, subclinical and migratory birds separately. These are given by
the transmission between mosquito-clinical and clinical-mosquito, mosquito-
subclinical and subclinical-mosquito and mosquito-migratory birds and mi-
gratory birds-mosquito, respectively.

3.4.1 Temperature Data

Many model parameters including transmission rates, mortality and birth
rates of mosquitoes are all temperature-dependent. We have utilised the tem-
perature data from 1/1/2007 to 1/1/2017 from the DWD server (Deutscher-
Wetterdienst, 2017) to adapt the model to the climatic situation in Germany.
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FIGURE 3.3: Weather stations

The considered weather stations are depicted in Fig. 3.3. The time res-
olution of the downloaded data is 1 day. The temperature T is considered
as a function of time, i.e. T'= T'(t), where ¢ represents the time. Hence, the
temperature-dependent model parameters are also functions of time.

3.5 Simulations and Results

3.5.1 Infection Curves

We solve the model system (Eq. (3.3), Eq. (3.4), Eq. (3.5)) numerically
utilising an implicit Euler scheme with a time step of day in R (R Core
Team, 2018) to comply with the intervals for which the weather data are
downloaded. Our model simulates mosquito and host infection states for
the period of 2007 — 2017. Since the model parameters depend only on
the temperature, no additional input is required for running the simulation.
The initial conditions are 1,000 mosquitoes, 500 local birds and 50 migratory
birds on each site during the simulation are selected according to (Rubel et
al., 2008; Laperriere, Brugger, and Rubel, 2011). All mosquitoes and birds
are susceptible except for one infected migratory bird. Seasonally, a new
single infected migratory bird is introduced into the population to model
the import of WNV from endemic areas. Note that due to the population
growth dynamics (Eq. (3.3), Eq. (3.4), Eq. (3.5)), both birds and mosquito
population grow over time.

3.5.2 Single season simulation

Culex mosquitoes are the primary vectors of WNV in summer for the trans-
mission to birds, but they are also the overwintering reservoir too. According
to the authors in (Rudolf et al., 2017; Wallace, 2008; Reisen et al., 20006), it is
obvious that WNV persists in mosquitoes throughout the winter episode in
Europe. Therefore, we keep the number of overwintering mosquitoes as 1%
of the initial condition according to (Rubel et al., 2008; Laperriere, Brugger,
and Rubel, 2011)to accommodate this phenomena. Given the fact that the
procured data starts in winter time, the initial susceptible mosquito popu-
lation is set to be Nsmin, where Nas pmin denotes the minimum number of
hibernating adult mosquitoes. This concept is used to avoid the condition
that due to the weather driven system, the mosquito population may become
extinct during the simulation (Laperriere, Brugger, and Rubel, 2011; Rubel
et al., 2008). We take a subset consisting of 12 weather stations from the
downloaded data (Fig. 3.3) from the northern, southern and central zones
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in Germany. A map with their locations is shown in the Fig. A.1. They
show significant differences in temperatures and this is the reason to subset
the weather data. When we run the simulation for these locations for one
year, we observe that there is a significant difference in the total numbers
of infected local birds and mosquitoes between the northern and southern
zones. The plots in Fig. 3.4 show the infected local bird population for the
subset data in Germany for one season. Due to the low temperature in the
north, the infection spread is comparative lower as well as the growth of the
vector population. In the south, due to its comparatively high temperature,
there is an increase of the growth of the mosquitoes and henceforth on the
infection process.
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0
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TIME

FIGURE 3.4: Infection curves of the local bird population
for different locations in Germany. Outbreaks are typically
larger in southern regions.

3.5.3 Multi-season simulation

With the purpose of demonstration of different infection dynamics happening
in Germany, we choose two locations: Lahr (48°20' N 7°52'E) and Greifswald
(54°5' N 13°23'FE) and they are referred in Fig. 3.5 To assess the potential
role of migratory birds introducing WNV on the local spread of the disease,
we keep the same initial conditions in the simulations. The simulated time

FIGURE 3.5: Lahr in the Southwest and Greifswald in the
Northeast are pointed in the map of Germany.

series shows that the infected mosquito population is governed by tempera-
ture, whereas the infection dynamics is different in the bird population for
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F1GURE 3.6: Upper panel: Infected mosquito population.

Middle panel: Infected subclinical bird population. Lower

panel: Infected clinical bird population. Locations are (a)
Greifswald and (b) Lahr. Note the difference in scales.

these two different locations. The time series of the clinical and the sub-
clinical birds differ substantially for the two locations Greifswald and Lahr.
The strong correlation between the growth of infected adult mosquitoes and
temperature, i.e. higher temperature yields eventually a higher amplitude
in the infection curve for the host and the vector population can be observed
from Fig. 3.6. We notice that the growth of the infected adult mosquito pop-
ulation is solely driven by the environmental factor, but for the local birds,
we observe differences for the two subclasses of clinical and subclinical birds.
In the process of infection dynamics, a fraction of the subclinically infected
birds, once they have recovered, is again susceptible to the disease and get
infected again. Therefore, they boost the infected subclinical population and
keeps the disease cycle going on.

We can observe the similar qualitative characteristics in the infection
curves for both locations considered in the model despite having the differ-
ences in scales. Seasonal peaks in the host and vector species attribute to the
fact that larger numbers of infectious mosquitoes will cause larger numbers
of infected local birds.

3.5.4 Impact of bird migration

In this section we explore the impact of the presence of migratory birds on
the infection cycle in the local bird population. Fig. 3.7 depicts the influence
of migratory birds on the disease dynamics. It is interesting to notice that
during the time frame of the simulation, the infection peak in the migratory
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birds is followed by the peak in the local bird population. Similar pattern
can be observed in both locations, Lahr and Greifswald.
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FIGURE 3.7: Simulated time series of the clinical and mi-
gratory bird population. Locations are Greifswald (a) and
Lahr (b).

Presence of an infected migratory bird can trigger the infection process
in the local mosquito population. Mosquitoes after taking the blood meal
from the infected migratory birds, transmit the infection to other birds,
thus establishing the disease cycle. The periodic arrival and the presence of
migratory birds boosts the dynamics of the infection cycle.

Basic reproduction number Ry is a function of temperature (7') and
time (t). To illustrate this fact, we choose Greifswald to simulate the sea-
sonal course of Ry. We show Ry (according to Eq. (3.10)) for the relevant
temperature range in Fig. 3.8. During the winter season, the activities of
mosquitoes are low and due to this reason, the disease transmission process
is discontinued and this is coupled with the absence of migratory birds.

15

Summer Starts
20 25
Temperature [°C]

30

RO = Without Migratory birds With Migratory birds

FI1GURE 3.8: Simulated Ry vs temperature in Greifswald.
The presence of migratory birds increases Ry by 25% on
average.

As predicted by Eq. (3.10), we observe that Ry a4 for migrating birds to
be increased by a factor of \/ &Bm(0BmEBmTM«—sBm) compared to Ro roc-
It is clear from Fig. 3.8 that the presence of migratory birds in Greifswald
escalates the magnitude of Ry by approximately 25%, depending on the
exact temperature. In both the places, Lahr and Greifswald the increased
values of Ry, are in accord with our conjecture that migratory birds act as
an active catalyst for the spread of WNV. The temporal course of the basic
reproduction number for both locations is shown in Fig. 3.9.
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FIGURE 3.9: Simulated time evolution of Ry in Greifswald.

Fig. 3.9 shows the time evolution of Ry and it is clear from the figure
that the presence of migratory birds in Greifswald escalates the magnitude
of Ry. Therefore, the meaning of Eq. (3.9) after solving numerically for each
model time step and averaging it (Rg) over the years can be described as
the average number of secondary infections caused by the introduction of
a single infected individual into an entirely susceptible population at the
time of bird migration (summer or spring) in a year in the presence of the
migratory birds (Rubel et al., 2008). It should be noted that during the time
of migration i.e. when the migratory birds are present in Germany, increase
in the magnitude of Ry is accentuated and in the winter the magnitude
decreases.

3.5.5 Sensitivity Analysis

Here, we explore the sensitivity of the infection outcome with respect to the
different model parameters. We perform the simulations to observe the im-
pact of different parameters on the disease dynamics and we represent them
graphically. We mainly focus on three mosquito parameters: mosquito mor-
tality rate (mas), mosquito birth rate (bys) and overwintering of mosquitoes,
mosquito to local bird ratio (¢), respectively. For this purpose, we change
the above said parameters values by —50% and —25% from the reference
value. Let’s explore the influence of mosquito mortality (mjs) on the poten-
tial spread.
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We notice that the lower the mosquito mortality, higher is the ampli-
tude of infection on the local birds while accounting the —50% and —25%
reduction and the reference case. Fig. 3.10 shows the impact of the reduc-
tion in the mosquito mortality yields the positive influence on the infected
population.

The ratio ¢ = S};/S} between blood feeding mosquito and local bird
population is an important parameter to look through (Colborn et al., 2013).
Following (Wonham, De-Camino-Beck, and Lewis, 2004), ¢ can also play the
role as an indicator of WNYV in case of a real outbreak. Three different values
of ¢ are chosen and the values are ¢1 = 10, ¢o = 20, ¢3 = 30 respectively for
the three simulations for the demonstration purpose. The result is depicted
in Fig. 3.11. The impact of ¢ on clinical and subclinical population WNF-
infected local bird populations are clearly visible. With a higher availability
of blood meals and bites per mosquito, the infection spreads quicker than
the lower value of ¢.
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Simulated time series of WNV-infected clinical (a) and sub-
clinical (b) local bird population.
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We explore the influence of mosquito birth rate bys, mosquito mortality
mps and mosquito to local bird ratio ¢ on the basic reproduction number
Ry. In Fig. 3.12 we show Ry over time for Greifswald for different values of
the mentioned parameters.

Red dots in Fig. 3.12a refer to the reference case (as in the main text),
blue dots refer to a reduction of the mosquito birth rate by; by 25 %, and
black dots refer to a reduction of 50 %. It is noticeable from Fig. 3.12a that
the reduction of by; impedes the growth of the mosquitos and it disrupts the
disease transmission consequently. Reduction of by is reflected in a decrease
of Ro.

Red dots in Fig. 3.12b refer to the reference case (as in the main text),
blue dots refer to a reduction of the mosquito mortality my; by 25 %, and
black dots refer to a reduction of 50 %. It is noticeable from Fig. 3.12b
that the reduction of mj; causes an increase in the transmission of the
infection amongst the local bird population and escalates the the value of
basic reproduction number Ry.

Red dots in Fig. 3.12c refer to the value ¢1, blue dots refer to ¢ and
black dots refer to ¢s3, where the values of ¢; (i = 1,2,3) are the same
as mentioned before. It is noticeable from Fig. 3.12c¢ that the increase of
¢ yields in the increase in Ry. We see from Fig. 3.12 that decreasing the
mosquito mortality increases Ry. Similarly, we observe that increasing ¢
also increases Ry. This follows also from Eq. (3.9).
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FIGURE 3.12: Time evolution of Ry and the impact of (A)
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3.5.6 Impact of climate change

To understand the effect of climate change on the spread of WNV in Ger-
many, we first employ the simple extrapolation of temperatures over 20
years, after fitting the temperature data to a simple trigonometric function
of the form a + bcos(f — ¢) in the Fig. 3.13a and the predicted temperature
data with the inclusion of linear trend under RCP8&.5 condition is shown in
Fig. 3.13b. For the trend we use a slope of 4.6°C in 80 years, i.e. 0.0575°C
per year.

We can notice the convergence of the local infected bird population to a
completely susceptible population in the long term dynamics in Gerifswald.
It can be attributed to the fact that the transmission has stopped rapidly
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FIGURE 3.13: Daily weather data of Greifswald during 2007
to 2017 and the predicted temperature data with the inclu-
sion of linear trend under the RCP 8.5 condition

and a permanent WNV transmission cycle is not established in the local bird
population where as in Lahr the situation is entirely different. Our simula-
tions predict that the converging population will adopt a cyclic behaviour,
thus indicating that there will be a continuation of transmission for a long
period. And this is the same for the mosquito and local bird populations.
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FIGURE 3.14: Phase space plots of local bird populations

for two locations in Germany. (a) Greifswald, north and (b)

Lahr, south. Time period is 2007-2027 using simple temper-
ature extrapolation.

It is to be noted that the given the backdrop of increase in the global tem-
perature (Hansen et al., 2006), activities of mosquitoes and the risk of WNV
transmission will gradually increase (Semenza and Suk, 2018). Therefore, we
include the growth of temperature as a linear trend in the fitted temperature
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in our model, under the assumption that the annual average land temper-
ature is projected to increase by 4.8°C per 100 years under Representative
Concentration Pathway (RCP)8.5 (Team, Pachauri, and Meyer(eds.), 2014;
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FIGURE 3.15: Phase space plots of local bird populations

for two locations in Germany. (a) Greifswald, north and

(b) Lahr, south. Time period is 2017-2100 using tempera-

ture extrapolation with a linear trend according to climate
change.

The results of this simulation are shown Fig. 3.15. The phase plots are
strikingly similar to the phase space plots of Lahr in Figure 3.14. This sug-
gests that the WNV infection cycle may also establish in Northeast Germany
in the nearer future under the RCP8.5 conditions.

3.5.7 Potential Spatial Distribution Map

For the purpose of assessing the potential risk associated with a continuous
spatial transmission of WNV, we plot the sizes of potential outbreaks on a
map of Germany in Figure 3.16. Our simulations suggest that the southern
and the central zones of Germany might suffer a higher proportion of estab-
lished WNV infections, while in the northern part, the risk of established,
continuous transmission is comparatively lower. We observe that the po-
tential spatial distribution map (Fig. 3.16) includes the regions where WNV
outbreaks occurred in birds and horses in Germany in 2018 (Schréder and
Klo8, 2004) with a large number of infected birds as predicted by our model.
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end of the outbreak season for birds.

3.6 Conclusion of this section

The presented work here left us with some critical observations. It is readily
understandable that the threat of WNV spread in the new areas in the
northern Europe are looming large and is a matter of concern. Our findings
from the simulations give us certain insights of the potential spread of WNV
in Germany given the backdrop of large number of reported cases in Germany
and its neighbouring countries. Our main observations are the following:
First, the impulsive system of Eq. (3.2), Eq. (3.3), Eq. (3.4) system shows
the potential role of migratory birds in WNV dissemination in Germany. The
expressions of basic reproduction number in Eq. (3.9) helps us to quantify the
same. Additionally, the seasonal flux of infected migratory birds to Germany
from other endemic areas keeps the disease cycle active and persisting.

Second, the sensitivity analysis gives us the clues about the model param-
eters that govern the potential spread of the infection in Germany. Mosquito
to local birds ratio (¢), mosquito mortality (mjs) and the mosquito birth
rate (bys) are found to be most influential parameters. This implies that the
targeted reductions in the suitable habitable mosquitoes and applying the
necessary herbicide should be efficient to curb the bite of WNV.

Third, there is a clear difference of the infection profiles in the northern
areas of Germany and the southern areas of the same. Given the higher
temperature in the southern zones, there is higher potential that WNV will
spread quicker than the northern areas having comparatively lower temper-
ature. Our simulations infer a large difference of the infection sizes at the
end of the season between the north and the south of Germany.

Fourth, we use the simple trigonometric interpolations for the purpose of
predicting the possible future outcomes. The simulations that we perform
after converting the model system to a non-autonomous model system, show
us that in the south WNV will be able to establish its foothold after one
season but in the north the population will become completely susceptible
after introducing an infected agent. It should be noted that the linear trend
of temperature growth is assumed to be the same for north as well as for
south.

Finally, the observations above raise two questions for the context of
WNYV spread in Germany. 1. What are the changes we can witness in
the spread of WNV in Germany when we incorporate the climate change
situation into our model? 2. How the potential density of the infected
birds will appear on the spatial scale over Germany? In order to answer
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those questions, we first interpolate the temperature data including the linear
trend as predicted by IPCC and find that under RCP4.5 conditions, the
disease transmission stops in the northern regions of Germany but in RCP8.5
conditions, WNV will potentially establish its foothold even in the northern
regions in the future. To answer the second, we decide to project the densities
of the infected birds on the spatial scale while the bubble sizes correspond
to the possible infection sizes around Germany.

Our main findings are that the presence of migratory birds returning
from the endemic areas to Germany can accentuate the cases of WNV, and
steady growth in the global temperature will work as an additional fuel to
the spread and establishment of WNV in Germany.
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CHAPTER

Spatial Spread Model: Coupling Network
and Metapopulation Model

This chapter includes the materials from the communicated paper named
”Can a patchy model describe the potential spread of West Nile virus in
Germany?” (Bhowmick et al., 2021) The paper is under the review in the
Ecological Modelling.

The previous chapter has demonstrated that the temperature driven
ODE based model provides the necessary framework to comprehend the
mechanism behind the spread. Given the time series of the temperature
data, the ODE based model is able to capture plausible infection dynamics
while incorporating the environmental stochasticity. The potential of such
an ODE based local dynamical model lies in the plethora of methods that has
been developed in the last decades (Wonham, De-Camino-Beck, and Lewis,
2004; Castillo-Chavez et al., 2002; Rubel et al., 2008; Laperriere, Brugger,
and Rubel, 2011; Bergsman, Hyman, and Manore, 2016). As depicted in
Sections 3.3 and 3.5.7, the locally temperature driven model can predict a
spatial distribution that involves the actual cases of WNV in Germany.

Populations are assumed to live in different habitat fragments, called
patches and accordingly, disease or population dynamics are happening in
different patches can be different. Immigration from other patches can lead
to a distinct dynamics over all when compared to a single patch. In a
sense, the population spreads the risk of disease dissemination by spatial
connection. Nevertheless, the locally ODE based models readily can not
include immigration of infected agents from one habitat patch to another
one. According to (Boulinier et al., 2016; White, Forester, and Craft, 2018),
host and the vector movement of the interacting populations are of equally
concern. This chapter addresses some of the theoretical problems owing to
spread of epidemics in the patchy environment.

4.1 Introduction

Different factors such as vector and host movements, pathogen transmission
heterogeneity, environmental factors etc. (VanderWaal and Ezenwa, 2010;
White, Forester, and Craft, 2018) influence the spatiotemporal process of
West Nile Virus (WNV) dissemination. Previously reported studies have
revealed that the increase in the temperature and the host-vector mobility
helps the spread of mosquito-borne diseases (Boulinier et al., 2016; Shapiro,
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Whitehead, and Thomas, 2017). The summer of 2018 had facilitated the
favourable meteorological conditions for the potential geographical spread
of WNV in Germany and perhaps WNV had been introduced by the wild
birds as they can act as amplifying hosts (Ziegler et al., 2019). Migratory
birds may play a significant role as a transporter to new regions along their
major flyways across the globe (Rappole, Derrickson, and Hubélek, 2000;
Reed et al., 2003D).

There has been an increase of WNV cases in Germany after the first
reported case of WNV in the following seasons (Ziegler et al., 2020). The
activity of WNV was reported in the Eastern part Germany to the Northern
zone of Germany. The combination of phylogenetic analysis and the geo-
graphical reach of WNV in Germany from north to the south reveals that
WNV may have been introduced to Germany from Czech Republic already
before 2018 (Ziegler et al., 2019). These show that there is a further risk of
potential spatial transmission of WNV in Germany.

In (Hadfield et al., 2019; Janousek, Marra, and Kilpatrick, 2014; Fitzgib-
bon et al., 2019), the authors quantify the importance of movement of live-
stock and the dispersal of vector in the disease transmission. In our current
work we are interested in the spatial spread of WNV under the effect of host
and vector mobilities. Most WNV spread models are mathematical deter-
ministic compartmental ODE based models (Durand, Benoit et al., 2010;
Wang, Wu, and Zhao, 2019; Bowman et al., 2005). However, these ODE
based models do not necessarily include the mobility patterns of the hosts
or vector or both, temperature or landscape data types. For the comprehen-
sion purpose, we introduce different contact networks which are formulated
with the help of distance based networks. We explore this heterogeneous
model with the purpose to explain how WNV will be transmitted across
spatial scales that can be rendered into local surveillance and action. Moti-
vated by this, we endeavour to systematically examine the potential spatial
spread of WNV in Germany.

4.2 Spatial Model

In this section we extend our previously developed temperature driven local
model (Bhowmick et al., 2020) into a metapopulation model with associated
networks. The usage of a metapopulation model is necessary given that
the migratory birds have an important role in potentially introducing WNV
and spreading it in its migratory routes (Swetnam et al., 2018; Duggal et
al., 2019). We describe the model equations in this section after including
the migrations of the interacting populations. For the mosquito population
(please see Eq. (3.2) for the local model without the movements amongst
the patches), the metapopulation model equation system is following after
we include the movements between the patches.
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= [bMiNMi - mMiSMi] [1 - SMz/KMz] - - (CQiIBCi + CliIBSCi)
dt KBi
D S S
J J
dEMi M;
+ m,-jEMj — ZszEMl
J J
dIMi
7 = 'YMEMi — mMiIMi + Z mijIMj — Z mjiIMi (4.1)
J J

This was the metapopulation model for the mosquitoes including the
movement between two arbitrary patches j and 7 and m;; represents the
rate of migration and it is assumed here that m;; = 0. Let us assume that
M is the movement matrix of mosquitoes and the elements of M are defined
as (M);j = myj for i # j and My; = — Z?:l M.

The metapopulation model system for the local-bird population after
including the migration amongst the patches is following

dSp; N, (Bs; + B4;) 10, SB
7 — b — b o ) 7 _ S — 7 7 7 1
o [ B, = (bg, —mp,) KBi] mp, S, Kn,
+ ZpijSBj - ijiSBi
J J
dEpc, Ba; I, SB;
o T —mp,Epc, —vBc,EBc; + Zj:pz‘jEBCj
- ijiEBCi
J
dEBsc; B3, 10, 5B,
—0 - T Kn —mp,Epsc, — vBsc, EBsc; + Zj:pijEBSCj
- ijiEBSCi
J
dlpe, E I I dpo. T I I
u = BaEo —mplpe; — aslpo; — dpolse; + zj:pzj BC; — zjjpji BC;
dlpsc, _ E I I R dpsc. I

+ ZpijIBSCj — Y piilsse,
J J

dRpc;
o a4, Ipc; — mp,Rpc; + % pijRBc; — Ej pjillBC;
dRpsc;
7 = ag,Ipsc; — mp,Rpsc, —vsRpsc; + Ej pijRBCc; — Ej pjiRBc;

Here, p;; represent the rate of migration between two arbitrary patches
j and 7 of the local birds and and p;; = 0. Let us assume that P is the

(4.2)



4ghapter 4. Spatial Spread Model: Coupling Network and Metapopulation
Model

movement matrix of local birds and the elements of P are defined as (P);; =
pij for @ # j and P; = — Z?:l pji- The readers may have a look at the
Eq. (3.3) for the local model without the movements amongst the patches
and to notice the local infection model system.

with the initial conditions
(5B,(0), Sar(0) > 0 and Epc,(0), Epsc,(0), Ipc;(0), Isc,(0), Rpc,(0),
RBSCi(0)7 EML'(O>7 IML'((D = O)'

Let
\ Baidng; _ Bal 5 — calpe; _ cilpsc
1 KBZ 777Z KBZ 2 KB,L /'LZ KBZ
A = [bar; Nty — mag S [1— Swry / K]
Npg.
II; = |bg, — (bg, —mBi)KBZ (4.3)
B;

Adding up Eq. (4.1) and Eq. (4.2) gives us equations for the total mosquito
and birds populations, respectively, in patch ¢ = 1,...,n : while using the
notations introduced above, we get

dNp.
dtBl = 1I; = mp,Np, —dpc,Ipc; — dpsc;IBsc;
+ | Doz - ) piiZi (4.4)
Z J J
ANy,
= NmmanNa+ Y| D maYs =) mai (4.5)
Y J J

Here, Y; = {Sum,, En,, Ing, } and Z; = {Sp,, Epc,, Esc,, Ic:. Issc,, Rc,, RBsc, }-
Let the total bird and mosquito population be denoted as Np and Nj;, re-
spectively. Then after adding the population over all the patches, we get

the following

dNp

7 Z (IL; —mp,Np, — dpc,Ipc, — dpsc;IBsc;)

i

Do DopiZi =D piiZi (4.6)
Z j j

7

_l’_

The double sum in Eq. (4.6) sums up to zero, i.e. >, [ZZ (Z] pijZi— 2, pjiZi)} =
0. Since Ipc, < Np, and Ipsc, < Np,, it follows that

d];fi < ;Hi—;mBiNBi (4.7)

Z H,L _Z(mBZ —{—dBC’i +dBSCi)NBi <
7

7

and thus,

dNp, .
Zﬂi—lrgiél (mp, +dpc, + dpsc,) N, < 7 < Zni_ min (mp,;) Np,
(A
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From here, we can claim that Vi > 0,

Zi 1;

b
maxi<i<n (mp, + dpc, + dpsc;)

Zi IL;
min;<i<n (M3;)
(4.9)
In a detailed manner we can also perform the following calculations to show
the boundedness beside what we have shown before. From Eq. 4.6, we can
get

min ,Np(0)

NB(O>:| < NB(t) < max

AN INp
olVp _ i < ST — mp Ng. 41
di "t —Ei: B VB (4.10)

If we apply the standard comparison theorem (Lakshmikantham, Leela, and
Martynyuk, 1989) then we can get

Np,(t) < Np,(0)e™ 25t 4 Z"mHi(l — T Zimat) (4.11)
B.

% i

Therefore, the total population of local birds is bounded. similarly, we can
also get the similar expression for the total mosquito and it is also bounded.

A
Na(t) < Nag, (0)e Zomt 4 Zo (g _ = Xomnty - (4.19)
i
In a similar fashion, when we construct the metapopulation model system
associated with the migratory birds (please see Eq. (3.4) for the local model

without the movements amongst the patches) and it is following

dSpm; |, (b, —m )NBmi o S P50 SBm,
dt Bm; Bm,; Bm,; KBmi Bm; P Bm; KBmZ
+ > tiiSBm, — Y _tiiSBm,
J J
Tm = Tmim — MBm; EBmi — YBm; EBmi
+ D tijEpm, — Y _tiEpm,
J J
dIBm.
+ Z tijIpc; — Z tiilpe;
J J
dRpm,
TW = a9, 1Bm; — MBm; BBm,; + Ej:tinBm]- - Ej:tjiRBm,-

(4.13)

Here, t;; represent the rate of migration between two arbitrary patches
j and ¢ of the migratory birds and and ¢; = 0. Let us assume that T is
the movement matrix of migratory birds and the elements of T" are defined

as Tj; = t;j for i # j and (T)y = — Z;L:l tji. In a Matrix form the above
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Eq. (4.13) can be written as
Sem = ¥ — diag(§+ mpm)SBm + TSBm
Epm = diag(€)Sp — diag(ysm + mp)Em + TEpm
Ipm = diag(Ypm)Epm — diag(ag + mpm + dgm)Iem + Tlpm
Rp, = diag(ag)Ipm — diag(mpy,)Rem + TRBm (4.14)

Symbolically speaking, if we denote the dependent variables as Zpy,, where
ZBm = (SBm; EBm, IBm, RBm), respectively, then Zpy, = (Zpm,, ...,Zan)T
and

KBm

v, = me,' - (mel - mBmi) §’L =7 (415)

)
)

For a detailed descriptions of the model parameters please see the Table A.1
and the Section 3.3.1

Similarly, we can reframe Eq. (4.1) and Eq. (4.2) into the matrix form
as follow:

SmM = A —diag(é+ pu)Sm + MSy
Eqy = diag(d + p)Sm — diag(yar + mar)Em + MEy
Inv = diag(ym)Eum — diag(ma)In + My
(4.16)

Similarly, if we denote the dependent variables as Zy, where Zy = (S,
En, Int, Rm), respectively, then Zy = (Zay,, ..., Zar, )T . The birth terms are
described in Eq. (4.3). For the local birds:

Sp = II-—diag(\+n+ mp)Sp + PSp
E]::,C = diag(n)SB — diag(’YBC + mB)EBC + PEpgc

Egsc = diag(\)Sg — diag(vpsc + mp)Epsc + PEpsc
Igc = diag(ypo)Esc — diag(ay + mp + dpc)Isc + Plac
Insc = diag(vpsc)Ensc — diag(as +mp + dpsc)Issc + diag(ys)Rasc
+ Plgsc
Rpc = diag(aus)Ipc — diag(mp)Rpc + PRac
Rpsc = diag(as)Ipsc — diag(mp + v3)Resc + PRasc, (4.17)

4.3 Network Generation: Constructing Movement
Matrices

4.3.1 Vector Mobility Model

It is rather complicated to describe the exact mobility pathways of mosquitoes
and their movement along the geospatial co-ordinates. However, we can ex-
plore the estimation about the flight range of Culex mentioned in (Myhre and
Akre, 1994; Verdonschot and Besse-Lototskaya, 2014; Vinogradova, 2000).
After following (Verdonschot and Besse-Lototskaya, 2014), we have observed
the detailed flight range of Culex Pipiens and the average maximum distance
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(m) is 9695, minimum of maximum distance (m) is 350, maximum of max-
imum distance (m) is 22,530 and the dispersal capacity is strong. The
authors in (Verdonschot and Besse-Lototskaya, 2014) defined strong as the
dispersal capacity is greater than 2km. Given their dispersal capacity, it
will be better to include the precise and daily movement of the mosquitos.
We will show that the mosquito movement matters in case of spreading the
disease from one site i to the neighbouring site j. Let the distance between
two patches be (i and j) as D;j, then according to (Alcalay, Tsurim, and
Ovadia, 2017), the dispersal rates between two sub-populations (M; ;) are
assumed to follow negative-exponential distribution. But in our modelling
effort, we follow the distribution proposed by (Moulay and Pigné, 2013) as
it was relatively simpler. Here, we have used the fact that Culex pipens
have strong dispersal capability, henceforth the D,,., used by (Moulay
and Pigné, 2013) is different than what we have considered (Verdonschot
and Besse-Lototskaya, 2014) but the dispersal probability is a function of
the linear decreasing distance as in (Moulay and Pigné, 2013). According
to (Moulay and Pigné, 2013), Dyq, is defined to be the maximum interac-
tion radius of mosquitoes. The dispersal network with such linear dispersal
kernel is calculated as follows:

Algorithm 1 Mosquito movement network algorithm

1: procedure MOSNET(¢, j) > Routine to create link between ¢ and j

2: D;j < FEuclidean_Distance(i, j) > Euclidean distance between 4
and j

3: Dpar < Maximum__Distance(i,j) > Maximum distance between 14
and j

p(Dyj) + =5
Prand < Tand(0,1) > Generate a random number between 0 and 1
if prang < p(Di]’) then
Create an undirected link between ¢ and j
end if

end procedure

As an example of such generated mosquito network after using the Al-
gorithm: 1 is shown in Fig. 4.1.

FIGURE 4.1: One realisation of the stochastic network of
mosquito

Due to the uncertain and dynamic nature of mosquito movements and
activities in a habitat patch, their structural and behavioural movements are
not deterministic in nature. Henceforth, to employ deterministic networks
for modelling and analysis of the potential spread of WNV may not be
appropriate and the stochastic networks will be apt for this situation.
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4.3.2 Host Mobility Model
Local Bird Mobility Model

Local birds can fly long or short distance in foraging for resources and often
require to alternate between the searching for foods and finding potential
mates (Beal, 2018; Butler, Templeton, and Fernandez-Juricic, 2018; Cohen
and Todd, 2018), consequently, benefitting from it. It is rather a complicated
process to decipher their movements and flight patterns. As a result to
construct a network including the exact pathways of the local birds is itself a
challenging issue. So we decide to follow the seed dispersal model (Da Silveira
et al.; 2016; Donoso et al., 2016-12-01; Levey, Tewksbury, and Bolker, 2008;
Bannos-Villalba et al., 2017). We have used the seed dispersal as a proxy for
the movement network of the birds. The dispersal probability is of Weibull
distribution type (Carlo and Morales, 2008; Nathan et al., 2008; Nogales
et al., 2012; Calvino-Cancela et al., 2006; Herrmann et al., 2016; M., Bicca-
Marques, and Chapman, 2018).
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FIGURE 4.2: Dispersal probability of the bird

To construct the movement matrix (P) of the local birds (both the clinical
and subclinical), we have made use of similar routine just the way we have
constructed the mosquito movement network (M) in Algorithm: 1. It is to
be noted that the probability that a subclinical bird will fly from one habitat
patch to another habitat patch is higher compared to a clinical bird and we
have utilised it while performing the simulations.

FIGURE 4.3: One realisation of the stochastic network of
local bird

An example of such generated local bird network is shown in Fig. 4.3.
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Migratory Bird Mobility Model

Power-law behaviour is ubiquitous in various topics. Its presence can be no-
ticed in the frequency of use of words (Zipf, 1950) in any human language
to wars (Roberts and Turcotte, 1998; Kuby et al., 2009). Additionally, we
can observe the examples of networks with power-law degree distributions
as links in the world-wide-web (Barabdasi and Albert, 1999b), or, scientific
citations (Solla Price, 1965). According to the authors in (Newman, 2005;
Moon et al., 2019), power-law can exhibit frequent short-range disease trans-
missions with incidental long-range disease transmission routes and this kind
of nature can be found in the patterns of migratory birds flight paths. Even
to model the spatial dynamics of different infectious diseases, power-law
transmission is employed in several occasions (Meyer and Held, 2014). For
a rigorous mathematical description on the power-law generated networks,
one can follow (Voitalov et al., 2019; Newman, 2003; Albert and Barabasi,
2002). With such knowledge in our hands, we have established the move-
ment matrix (V) of the long dispersal bird using a similar routine as we
have done for the mosquito movement network and the local bird movement
network in Algorithm: 1. It should be mentioned that to construct the dis-
persal networks of the migratory birds also, the distance function that we
have used is Haversine distance.

FIGURE 4.4: One realisation of the stochastic network of
migratory bird

An example of such generated migratory bird network is shown in Fig. 4.4.

4.4 Mathematical Results

4.4.1 Disease-Free Equilibrium

To find the disease-free equilibrium (DFE) Ej, we consider the following
matrix system

A —diag(6 + p)Syv + M Sy
IT - diag(A+n+mp)Sp+PSp = 0 (4.18)

or, in compact form as

HS =0 (4.19)
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where
_ |diag(é 4+ p) — M 0 Sm] o A
H= 0 diag(A\+n+mp) — P 5= Sp 2= I1

, the detailed mathematical expressions of A, §, u etc. are described in
Eq. (4.3), Eq. (4.15). Since all off-diagonal entries of H are nonpositive and
the sum of the entries in each column of H is positive, H is a nonsingular
M-matrix, H~! > 0 (Berman and Plemmons, 1979). Therefore, the linear
system Eq. (4.19) has a unique positive solution S¥ = (5341, SJOWQ’ o SR/In’
5%, 8By -y SB ) = H Q> 0Vi.

4.4.2 Basic Reproduction Number R, of the patchy model

To compute the basic reproduction number, we will use the Next generation
method used by (Driessche and Watmough, 2002). Using the notation used
in (Driessche and Watmough, 2002), we can decompose the model system
Eq. (4.1) and Eq. (4.2) as F(Z) — V(Z). F(Z), V(I) represent as the
flow of new infections and the remaining transfers within and out of the
infected classes, respectively and the bold symbols symbolise that the ele-
ments are all vectors. For convenience and not to be repetitive about the
matrix calculations of basic reproduction number, we only demonstrate the
calculations related to the subclinical bird population as v3, = 0 will give
the Ry, connected with the clinical bird population.

c1,IBsc, Sm B3, Iny SB1 T
‘7:' T = 1T1117 O? 1[(73117 731RB»9017 ey
BSC( )_ ClnIBSCnSAIn 0 63n]MnSBn R
Kg, ) ) Kz, ,  V3.4vBSC,

Using the notations used before, we have

T
Sy, 0, MSpi, v, Rpscis - }

Frse(T) =

Bsc(Z) [MnSMn, 0, AnSBn, 73.RBSC,

—YMEny —mag By + X ma By — X myi By
Y Eny —muy Ivy + X maiIng — X mga g
-vBscy Epsc; —mp Epscy + X p1jEBso; — X pj1EBscy
vBscy Epscy —mByIBsc; — a3y Ipsc; —dBscyIpso, + X pijlesc; — X pjilesc,

Vssc(T) = —
“YMEmy, = mymy Evy + X mni By — X mgn By,
YMEry = M Ingg, + X Mgl — X myn I,
-vBscnEBsc, —mB, Epsc, + X PnjEpsc; — X PinEpscy,
lvBsc, EBsc, — mB,IBsc, —a3,IBsc, —dBsc,IBsc, + 2 Pnj Ipsc; — > rinlBscy,
: _ [9Fmsc _ [9VBsc
Letting Fpsc = | W |(50’0)] and Vpsc = | W ‘(SO’O)] as the

Jacobian matrices evaluated at the disease free equilibrium (S°, 0). Here, W
represents the infectious and infected compartments i.e. W = E, I, Egsc,
Igsc. Following (Driessche and Watmough, 2002), the matrix NGMpsc =
FpscVg, éc is the next generation matrix for the subclinical birds and it is
well defined.
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The elements of the Jacobians have the following forms

Opi  Opg  Opg 0N 0N O\ 0

OEy, OIy, 0Epsc, OFEym, O0Fpsc, Olpsc,
i O O o\ o\ o\ o
- = =0, 1#]

OF .

J

Ol B OEpsc, 0E, B dEBsc; - dpsc;

ORpsc;, ORpsc, ORpsc, ORpsc,

OEy, OE;,  0Fpsc, Olpsc,
9Rpsc, _ ORpsc; _ ORpsc, _ ORpsc, _ 0. i
OE. 8E1j 8EBgcj 8IBgcj ’

J

=0

The partial derivatives are evaluated at (SO, 0). Matrices Fpsc and Vpsc
are 4n X 4n.
If we write down the block matrices, then we have the following:

F = 4.20
mse = g, (4.20
[ OA1 0 o2 0
where, F11 = diag (8]Ml SByseees 611»;; SBn>,
F22 - dlag (WSMI’ ..... 5 aIBSCn SMn) VBSC == [VBSClJ], Where
VBSCiJ- = diag [—mij —Mij  —Dij —pij] P iFE] (4.21)
and
MM+ My —YM 0 0
V . 0 mMi+Z mij 0 0
BSC;; — 0 0 YBSsc;+mp,+>_pji —YBSsc;
0 0 0 mp,+as,+dpsc,+>_pji
(4.22)

Similarly the next generation matrix (NGMpe) associated with the clin-
ical birds is FBCVBfé. It is to be noted that a simple juxtaposition of
two block matrices NGMpe and NGMpse will give us above mentioned
NGM for the whole model system Eq. (4.1) and Eq. (4.2). The calculations
performed for the non-spatial case in the Section 3.4 can demonstrate the
simpler computations of NGM and the juxtapositions of two block matri-
ces NGMpe and NGMpsc. After including clinical and sub-clinical birds
in different patches, unified next generation matrix (NGM) of the system
Eq. (4.1) and Eq. (4.2) is NGM = [ NGMpe NGMgsc |.

So, the basic reproduction number is
Ro = p(NGM) (4.23)

where p is the spectral radius of the matrix NGM. The analytical closed
form of spatial R is cumbersome to continue with but the non-spatial Rg
is relatively simpler to find and one can clearly observe the additive charac-
teristics of Ry mentioned in Eq. (3.7) and the additive feature remains the
same for Eq. (4.23). Additionally, one can also observe the inclusion of the
migration rates of the vector and the host populations into the Jacobians
and consequently, into the NGM. According to Driessche and Watmough,
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2002, the local stability of the disease free equilibrium Eg = (S°,0) is gov-
erned by Rg. If Rg < 1, then Ej is asymptotically unstable and unstable
whenever Ry > 1.

4.5 Simulations and Results

The study area comprised of 11,054 German Gemeinden (Municipalities).
We use the deterministic metapopulation Eq. (4.16), Eq. (4.17) and Eq. (4.14)
to apprehend the WNV transmission in the local bird populations in each
Gemeinde. We explicitly demonstrate the vector population and the mo-
bility in the simulations. But we do not have the either the population
distribution of birds or the mosquito across the different Gemeinden level.

Keeping this in mind we at first keep all the local birds initially suscepti-
ble in all the Gemeinden then we introduce I, number of infected migratory
birds in selected Gemeinden. The first case of WNV was detected in Halle,
a city in Saxony-Anhalt, Germany (Ziegler et al., 2020; Michel et al., 2018).
This is why for the first season simulation the infection is seeded in the city
Halle.

Three different contact networks are incorporated for the simulations in
between-Gemeinden movements of vectors and the hosts.

(I) The vector network, representing the mosquito flies

(IT) The local birds network, represents the movements of the local birds
in a habitat patch and

(III) The migratory birds network, represents sporadic movements of the
migratory birds ranging long distance flight pathways.

The nodes are the centroid of Gemeinden and the links amongst them are
formed after employing all the different algorithms (please see 4.3.1, 4.3.2,
4.3.2 for detailed descriptions) are devised for the network generations. In
the Fig. 4.5, we plot the migratory birds pathway being constructed through
the power-law distance based kernel. In order to mimic the presence of the
migratory birds in Germany, the network associated migratory birds are
active for six months and the rest of the year it remains inactive.

In the simulations, we observe the spread of infection of each newly
infected Gemeinden. Previously, WNV free Gemeinden might be infected
through different networks that we have considered. In order to facilitate
the stochastic nature the network generation process, we have evaluated
the results after multiple realisations i.e. under different networks of the
interacting species. We have considered 10 realisations of these stochastic
networks while performing the spatial spread of WNV in Germany. After
that, we register the cumulative number of infected birds, both the local and
the migratory birds in each season of WNV circulation per Gemeinden in
Germany and average it per realisation as presented in Fig. 4.6.
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FicUre 4.5: Dispersal networks for power-law distance
based kernel of migratory birds in Germany described in the
section 4.3.2.
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FIGURE 4.6: (a) Potential spatial spread of WNV in Ger-

many after season 1 (b) Cumulative reported cases of WNV

in Gemeinden, Germany in 2018, data from (7'S75) (c) Po-

tential spatial spread of WNV in Germany after season 2 (d)

Cumulative reported cases of WNV in Gemeinden, Germany
in 2019, data from (75I5).
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Simulated infection dissemination data can help us to project the spa-
tial spread of WNV on the map of Germany. Complementarily to Fig. 4.5,
we include in Fig. 4.6 further simulation results on the temporal and spa-
tial changes of WNV. We compute the cumulative number of infected birds
within each region while assuming that the disease moves from the seeding
zone to the other places through the combinations of the different spatial dis-
persal networks after running the simulations i.e. when we include multiple
realisations of stochastic network generation process. In the Fig. 4.6a and
Fig. 4.6b, we can visualise the spatial distribution of potential WNV cases
while incorporating the probable spatial transmission of WNV in Germany
and the cumulative reported cases of WNV in the year 2018 according to
the counting per Gemeinden polygon (7575).

Here, the Gemeinden polygons are defined as the geometric boundaries or
the shapes of each municipalities in Germany. We simulate the same for the
next season. It appears that by the end of the WNV season 1, apparently the
spatial spread of WNYV infection is mostly restricted within the eastern zone
of Germany with some spontaneous cases in the north and in the southern
zones.

Fig. 4.6¢c depicts the simulated possible spatial spread of WNV in Ger-
many and in Fig. 4.6d, cumulative reported cases of WNV in the year 2019
according to the counting per Gemeinden polygons are noted. It is interest-
ing to notice that WNV is circulating in the previously detected Gemeinden
along with newly infected zones in the contiguous regions of Germany. We
can infer that the bite of WNV is far reaching in Germany with the cases
of WNV on the move through the spatial dispersal of migratory birds. The
spatial transmission of WNV range with the theoretical predictions and this
depicts the dependence of spatial spread of WNV into the newer zones and
the flyways of migratory birds, even though the newly infected zones are rel-
atively far geographically. It is to be noted that in mechanism of infection
dynamics, a fraction of the local bird population which are subclinically in-
fected can recover and susceptible to the WNV and can be re-infected while
flying from one habitat patch to another one. Therefore, this process in-
creases the infected subclinical population and keeps the disease cycle alive
in the local scale and the higher migration rates of the subclinical birds facil-
itates the potential dissemination of WNV in Germany. Finally, we would
like to mention two things.

(I) Subclinical transmission should accelerate the disease dynamics al-
though the qualitative behaviour of the potential geographical distri-
bution of WNV cases may not be affected. Please see the Sections
3.5.3 and 3.5.7 for the local model as the similar features can be ob-
served in the patchy model too.

(IT) We can remark that our deterministic metapopulation-network mod-
elling approach permit us to measure the significant role of migratory
birds dispersal in the spatial spread of WNV in Germany.

4.5.1 Structural Similarity Index (SSIM)

With the intention to compare and qualify the spatial predictions of the
simulations with the real reported case scenario, we utilise the structural
similarity indexr. The Structural SIMilarity (SSIM) index (Zhou Wang et
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al., 2004) is a method through which one can measure the similarities be-
tween two images, but it can also be applicable in comparing the structural
properties of any other 2-dimensional data, i.e. the spatial distribution of
WNYV cases in our case. The computing formula for the SSIM is following:

(2M3:Hy + Cl)(zaa: + 02)

SSIM(z.y) =
(@,y) (,u;%,u%/ +c1)(02 + UZ + ¢2)

(4.24)

where x and y are appropriate-sized windows of the images to compare,
e and g, are the average of x and y, o2 and 05 are the variances of x and
y while o, is the covariance of x and y. Here, x and y are two nonnegative
image signals. In our work, we have assumed the values of x and y are to
be 8. The parameters cl = (k;L)?,co = (k2L)? are two variables to stabilise
the division with a weak denominator, where L is the dynamic range of
the discrete pixel values. The two additional parameters are k; = 0.01
and ko = 0.03 by assumption. To obtain a similarity metric between two
outputs, the SSIM values are averaged over all possible subsections of the
images, defined by sliding windows of size 8 x 8 pixels in our work. The
range of the value of the SSIM index is between 0 and 1. Two images are
nearly identical when their SSIM is close to 1. For each epidemiological week
in the period we compute the SSIM between the reported WNV cases and
the simulated scenarios.

To understand the difference between the simulated and the observed
data, we have used structural similarity (SSIM) index (Massaro, Kondor,
and Ratti, 2019) in each epidemiological season, with the proper choices
for mosquito to bird ratio (¢) and compare their distribution in Fig. 4.7.
We compute SSIM score for each epidemiological season during the WNV

Season 1 — —

Season 2 — —

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Structural Similarity Index

FIGURE 4.7: Spatial analysis of model outcome and the re-

ported cases of WNV in Germany during the 2018 — 2019

outbreaks. The variations come after running different real-
isations.

outbreaks in Germany after 10 different realisations of the potential spatial
spread of WNV in Germany. In these realisations, due to the stochastic
nature of our network generating algorithms, different network structures or
geographies are being utilised of the interacting species. We endeavour to
compute the SSIM score for each epidemiological season of WNV outbreaks
in Germany after aggregating the cumulative number of infected local birds
per Gemeinden polygon. The distribution of SSIM scores or index are shown
as boxplots for each epidemiological season. These boxplots can help us
to understand the strength of our model while accounting the minimum,
1%t quartile, median and 3™ quartile and the maximum of computed SSIM
values. It is noticeable the range of SSIM scores in the second season is
comparatively smaller to that off in the previous season. We have used the
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following algorithm (Algorithm 2) to produce the boxplots associated with
the outcomes from the simulations and the reported cases per Gemeinden in
Germany.

Algorithm 2 To Calculate SSIM Array
1: procedure SSIM__ARRAY(Im__A,Im__B) > Compute SSIM Scores

2: Im_A > Cumulative reported cases of WNV per Gemeinde

3: Im_B i > Cumulative simulated cases of WNV per Gemeinde per
10 realisations

4 SSIM; + STRUCTURAL _ SIMILARITY(Im_ A, Im_ B_i) > Python

function (Walt et al., 2014)
5: Return SSIM;
6: end procedure

We can notice that in the initial phase of WNV spread in Germany, the
model performs well while approximating the observed spatial dissemination.
In the following season though the performance of the model is slightly worse
compared to the results from the previous season. This actually highlights
the challenges and the complexities of such spreading process. Neverthe-
less, the performance of the model is satisfactory in the backdrop of limited
information that we have at this stage of our current study.

4.6 Conclusion of this section

We analysed the potential spatial spread of WNV in Germany through the
combinations of the movement matrices of interacting species. Our main
observations are following: First, the importance of the movement of the
vector in the spatial transmission of WNV and its role in escalating the
value of Ry (Please see the mathematical forms of Eq. (4.20), Eq. (4.21),
Eq. (4.22) as they include the migration rates of the vector population and
it is absent when we discussed the same for the local model in the Section
3.4 and the migration rates of the vector population will be included in
Eq. (4.23)). This implies that a lot of information will be lost while modelling
such a global spatial spread of vector-borne disease if we ignore the vector
movement entirely in the local scale.

Second, the significant role played by the migratory birds is demonstrated
through devising the networks generated through the similar algorithm 1 as
described in section 4.3.2. Transmission of WNV in Germany can likely
be estimated through the trajectories of the migratory birds in Germany
and consequently sustaining it through the favourable temperature and the
movements of local birds from one habitat patch to the other ones.

Third, the algorithm 2, employed to test the strength of our modelling
assumptions and the methodologies to compare with the real outbreaks of
WNYV in Germany, is able to catch the likely spread of WNV fairly well ( see
Fig. 4.7). SSIM score (Eq. (4.24)) is a handy tool to analyse the comparative
studies of the reported cases of WNV seasonally.

Finally, the observations above raise two questions for the context of
epidemics on networks:

1. How do the generated links of the migratory birds affect the WNV
outbreak in Germany?
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2. What is the role of the vector in transmission of WNV?

In order to answer these questions, we generated the flight networks that
allow for a spatial projections to comprehend the nature of WNV spread in
Germany and solved an infection model coupled with the vector mobility,
tailor made for such a case. Our main findings are that the links created by
the host populations are of utter importance and the local links created by
the vector populations are essential to sustain the bite of WNV locally and
hence it has an ever reaching potential.
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CHAPTER

Mathematical Model of CCHFV Spread And
I[ts Control

This chapter includes the materials from the paper : ” Ticks on the run:
A mathematical model of Crimean-Congo Haemorrhagic Fever (CCHF)-key
factors for transmission” (Bhowmick et al., 2022).

In the previous chapters we have demonstrated that the locally weather
driven ODE system can provide a deep insight into the processes behind
WNV spreading. Additionally, we incorporate the movement patterns of
both the vectors and the hosts (birds) to asses the potential spread of WNV
in Germany. Given the developed ODE model of WNV spread in Germany
in section 3.3, we can quantify the dissemination of epidemics locally and
spatially. Having the necessary toolbox of mathematical methods that has
been developed in the previous chapters, we model another potential disease
Crimean Congo Haemorrhagic Fever, a tick-borne disease that has followed
the same footprint of WNV, engulfing Germany. Fig. 5.1 depicts the in-
creasing trend of reported cases of CCHF in EU.

However, since CCHFV is a tick-borne disease, the mathematical formu-
lation of the model should be changed accordingly and the mathematical
treatment of the same shall be somewhat different than what we have anal-
ysed in the previous chapter (Matser et al., 2009). For tick-borne diseases,
the interpretation of Ry is less intuitive as there are different infected types
involved in transmission mechanism, that is, multiple hosts types and vec-
tors (Hartemink et al., 2008). This chapter describes and analyses some of
the theoretical challenges due to the complexities of such tick-borne disease
models.
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FIGURE 5.1: Reported human cases of CCHFV in EU.

5.1 Introduction

To begin with, we would like to highlight the difference between the model
developed in section 3.3 and our current effort. Particularly we show the
intricacies and the inherited challenges with the modelling endeavour that
can gauge the relative importance of different routes for the establishment of
a tick-borne disease. Fig. 5.2 shows the presence of multiple hosts along with
the different paths of CCHFV transmission and it represents the transmission
cycle of CCHFV. The thickness of the arrow represents the transmission
probabilities during the lifecycle of Hyalomma ticks. Usually in purely a
vector-host transmission model the average number of hosts infected by a
vector and conversely, the number of vectors infected by a host, is actually
averaged.

In this kind of model, when we take the product of the host to vector and
vector to host basic reproduction yields number of infected hosts but in our
model system having the presence of more number of hosts and vector species
along with the additional transmission paths which makes the usage of the
direct method futile but the mathematical formulations and the techniques
are being developed in the previous chapter principally the very same.

In this chapter, we derive an analytic expression for Ry for tick-borne
CCHFYV based on Next Generation Matrix (NGM) approach. We then pa-
rameterise the NGM for CCHF. The sensitivity and elasticity analysis of Ry
can provide the great details about the transmission parameters which can
be used for control while taking account of multiple host and interacting
population.
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5.1.1 Biological framework

Crimean-Congo Haemorrhagic Fever is a tick-borne zoonotic disease main-
tained in nature in an enzootic vertebrate-tick-vertebrate cycle caused by the
CCHFV (Logan et al., 1989; Gonzalez et al., 1992; Spengler and Estrada-
Pena, 2018). CCHFV persists in the ticks for their whole lifespan (Gargili
et al., 2017). It is transmitted within the tick population by transstadial,
venereal (transstadial transmission is defined to be the sequential passage
of parasites acquired during one life stage, through the molt to the next
stage and venereal transmission can be characterised as the infections that
are passed from one person to another through sexual contact)and by co-
feeding (Logan et al., 1989; Gonzalez et al., 1992). Ticks belonging to the
genus Hyalomma are the main vector and reservoir for the above said virus
(Gargili et al., 2017). CCHFYV is prevalent in wide geographical areas in-
cluding Asia, Africa, South-Eastern Europe and the Middle East (Zhang et
al., 2018; Chinikar et al., 2010; Messina et al., 2015). Several outbreaks of
CCHF have been observed in Europe, primarily in the Balkan and mediter-
ranean countries in the last decades. Given the high mortality rate of CCHF
amongst human, it carries a high threat towards the public health (Sas et
al., 2018). Due to the global warming and the increase in habitat suitabil-
ity of the ticks carrying (Hyalomma) CCHFV, a possible establishment of
Hyalomma is foreseeable for the coming years (House, Turell, and Mebis,
1992; Hansford et al., 2019; Okely et al., 2019).

CCHFYV is transmitted to human either by tick bites, by contact with
infected animal blood, body fluids. People involved in the livestock indus-
try and veterinarians are more vulnerable to CCHFV. Human-to-human
transmission occurs while having close contact with the blood, secretions,
organs or other bodily fluids of infected patients. Nosocomial infection (it is
described as a hospital-acquired infection) can also happen during the treat-
ment of the CCHFV infected patients. CCHF is considered as an important
vector borne disease as it creates a severe illness and a high case fatality in
humans (Chinikar et al., 2010).

A significant amount of effort has been taken to model tick borne diseases
but most of the mathematical work is primarily limited to some specific tick-
borne disease like Lyme disease (Lou and Wu, 2017) and some of them are



60 Chapter 5. Mathematical Model of CCHFV Spread And Its Control

general frameworks (Gaff and Gross, 2007). Only a handful of mathemat-
ical attempts have been taken to model the spread of CCHFV (Switkes et
al., 2016; Cooper, 2007). There are several epidemiological works explaining
various aspect of CCHFV and its Correspondlng biology and the Rlbonuclelc
acid (RNA)structure (Chinikar et al., 2010; Hawman and Feldmann, 201
Emmerich et al., 2018; Gargili et al., 2017) of CCHFV. In (Abbas et al

2017), the authors have used a distributed lag nonlinear model (DLNM) to
explore the relationship between the cases of CCHF and the temperature.
The authors in (Mostafavi et al., 2013) have used a Poisson regression anal-
ysis to explore the predicting factors of CCHF in Zabol and Zahedan, Iran.
The authors in (Hoch et al., 2016) have calculated the basic reproduction
number (Ry) to analyse the potential scenarios for determining the control
of CCHFV spread. Sensitivity analysis performed in (Hoch, Breton, and
Vatansever, 2018) for various parameter values revealed the importance of
transstadial transmission while including the different environmental fac-
tors. It also contains the different stage structures of Hyalomma and their
feeding behaviour but it does not include the dissemination of CCHFV in
humans. From the perspective of deterministic modelling, a limited number
of modelling endeavours have been carried out (Switkes et al., 2016). The
authors in (Switkes et al., 2016) have developed a deterministic system of
nonlinear differential equatlons including different transmission routes (SI-
SEIR type) and analysed the threshold parameters. This modelling effort
lacks the potent role of humans as humans are an integral part of the trans-
mission cycle and they play a major role in detecting the disease due to the
high case/fatality ratio in humans as well as the authors did not include the
complete possible control measures to curb the infection spread in different
geographical areas. Moreover, in case of transient epidemics ', the behaviour
of average system predicted by Ry can be different. Keeping that in mind
we calculate a recently described, epidemiological metric &y (Hosack, Rossig-
nol, and Driessche, 2008) that quantifies the reactivity, or epidemicity, of the
system. This can be helpful to understand the disease dynamics in countries
like Germany. Based on previously described models, we refine our model
by including human infections in our current work.

5.2 Mathematical Model

To model the dynamics of CCHFV infection what includes adult ticks, live-
stock, and human we have followed certain assumptions and these are follow-
ing: (1) Homogenous mixing is assumed among all the interacting population
at all stages and the CCHFV infection does not alter their movements, (2)
livestock has more contacts with adult ticks than with other life-stages of
ticks, (3) biting rates of ticks are assumed to be at constant rates in all in-
fection stages (susceptible, exposed and infected), (3) CCHFV infection in
Hyalomma ticks does not affect the birth or death rates of ticks, (4) livestock
will not die of CCHFV infection (Gargili et al., 2017), but for humans we
included disease induced deaths (Sas et al., 2018). To simplify the model
and the complexity of the model, only the adult stage of ticks is included in
the model.

!i.e., outbreaks that can fade out in due course of time
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We have employed a compartmental model consisting of three interacting
populations: human, adult ticks and livestock (Fig. 5.3).
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FIGURE 5.3: Infection process among adult ticks, livestock
and human.

Our model has four different health status: the S classes are susceptible
individuals, the E classes are exposed — i.e. infected but non-infectious —
individuals, the class I are infectious ones, and R consists of recovered and
immune individuals. Only the individuals in the I class can potentially infect
the susceptible ones. In ticks, persistence of the virus is of life long (Papa
et al., 2017) . Thus, it does not include an R class. From the point of view
of population growth birth rates in the model system are constants, and in
the absence of CCHF, the susceptible populations converge to the disease-
free equilibrium point exponentially. In the adult tick population, we have
taken into consideration SEI dynamics since the tick remains infected for
life (Gargili et al., 2017), and for the livestock and human populations we
have considered SEIR type dynamics.

Overall, the scheme explained above yields the following system of dif-
ferential equations (a summary of the parameters and variables is given in
Tables B.1 and B.2):

For the adult tick population we have:

dTs o1 TsLy  o3TsTy

— = — — — upT 1
dt mr L T HT=S (5-1)
dTE O‘lTSL[ O‘QTsT[

A — — urTy — epT,

at T + T urlp —erlg

dTry

— = T — purT

i €rlp — purdy

Before I present the livestock model equations Eq. (5.2), the description
of the parameters defined in Eq. (5.1), are following: reproduction rate is
77, mortality rate is pup, livestock-to-tick infection transmission rate is o7y,
non-systemic transmission rate is oy (through co-feeding), 1/er is incubation
period in tick, L is the total number of livestock.
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The livestock population is described by the following system of equa-
tions:

dLS O'3L5T[
il A — —urL 2
dt L L HLES (5:2)
dLE O‘3L5T]
= —erLg — up L

dt I eLLp — ULLE
dL
q L' — epLp—apL;— purLy

t
dLgr
— = Ly —upL

i arpliy — prLLR

The model parameters associated with Eq. (5.2) can be described as fol-
lowing: 7y and py are the reproduction number and the mortality rates,
respectively. o3 is the transmission rate from tick to livestock, 1/ay is the
recovery period of livestock, 1/ey, is incubation period in livestock.

The human population is described by the following system of equations:

dHg o4HsTyr  os5HgLy

Rl - — unH .
dt o H H pEHS (5:3)
dHE o4HsTT o5HgLy

ke —enHp — unH

It I% + I% €HIlp — pHIE

dH

ditl = eyHp —agHr —pgHr — g Hy

dH

TtR = apgH;—pugHpg

Now, I describe the model parameters defined in 5.3. 7y and ppy are the
reproduction number and the mortality rates, respectively. 1/ap is the
recovery period of human, 1/ey is incubation period in human, o5 is the
transmission rate from livestock to human, o4 is the transmission rate from
tick to human, 0z is the CCHF-induced death rate.

5.2.1 Basic Reproduction Number R,

We would like to know under which condition the virus can spread in an
initially susceptible population, when a single infected individual is intro-
duced. The epidemiological metric Ry can help us to find this. We first
find the disease free equilibrium FEj, which is a fixed point of the system
Eq. (5.1), Eq. (5.2), Eq. (5.3). It is given by

T

Ey=(Tg,0,0,L%,0,0,0,Hg,0,0,0) = <
ur

,0,0,22,0,0,0,0,ZZ,0,0,0,0) .
If the disease free equilibrium FEj is stable, the disease dies out before it can
infect individuals, and it can spread over the population if Ej is unstable.
The stability condition for Ey can be as Ry > 1 (Keeling and Rohani, 2011).
To compute the basic reproduction number, we use the Next Generation
Matriz method (NGM) as described in 2.2.4. We find the matrices related
to the new infection (transmission matrix) F and the remaining transfers
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(transition matrix) V as

0 =& 0 = 0 0
0 0 0 0 0 0
Lto
F_ 0 SL 20 0 0 0
0 0 0 0 00
0 oo Mmoo
0 0 0 0 0 0
and
er + pur 0 0 0 0 0
—er T 0 0 0 0
v — 0 0 er+puL 0 0 0
a 0 O —er, ar +pur 0 0
0 0 0 0 eyg+pug 0
0 0 0 0 —ey apg+0H+ 1H
For the next generation matrix K, = —FV ™!, we get
TgeTUQ Tgag TgeLOj T’g.al 0 0
T(er+pr)ur  Tur  Llap+pr)(er+pr)  Llap+pr)
0 0 0 0 00
L’éeTag Lgag
Kr = L(ertur)pr  Lpr 0 000 , (5.4)
0 0 0 0 0 0
Hgeroy Hgoq Hgepos Hgos 0 0
Llertpr)pr  Lpr  H(ap+wrp)(ep+ur) H(ap+ur)
0 0 0 0 00

and according to (Diekmann, Heesterbeek, and Roberts, 2010), the next
generation matrix (Kz) can further be reduced. as one can observe that
det(K) = 0 and thus facilitates further reduction of K, in lower-dimensional
NGM matrix with small domain as mentioned in the section 2.2.4. Therefore,
after using the Eq. (2.15), we can get the following:

’I”g.eTO'Q TgeLal

T(ELT*'FMT)MT L(ap+pr)(eL+ur) 0

. eTo3

K=\ errmmmr 00 (5.5)
HEET0'4 HE-ELUS 0

Ller+pr)pr  H(op+pr)(eptur)

The matrix K Eq. (5.5) can be biologically interpreted as

Tick — Tick Livestock — Tick 0
K= Tick — Livestock 0 0
Tick — Human Livestock — Human 0

; (5.6)

where X — Y means population X is infecting population Y.

It is to be noted that the epidemiological metric Ry is defined to be the
spectral radius of the NGM Eq. (5.5) and the spectral radius of a square
matrix is the largest absolute value of its eigenvalues. It holds the key to
understand the possible spread of CCHFV in the naive population. We can
decompose the total basic reproduction number Ry into different contribu-
tions. These are infection from tick to tick via co-feeding (R7) and infection
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from tick to livestock Ry 4. For the entire model system we get

R R\ 2
Ry = TT \/<2T) + Rpa ) (5'7)

where

T er oy 1
Rr=|l——+——"——— 5.8
g [T (er+ pr) NTHT} (5:8)

is the contribution of tick-to-tick transmission due to co-feeding and

T er, o1 1 I er o3 1 } (5.9)

i [ L (ep+pp) pr (ar +pz) | L (ex+pur) pe pir
is the contribution of tick-to-livestock transmission. If we exclude the trans-
mission through co-feeding then the basic reproduction number is simply

0 = VRpa, where the index w stands for without co-feeding. The epi-
demic threshold is the critical point, where Ry = 1. It follows from equation
Eq. (5.7) that at the critical point the contributions of both transmission
ways simply add up, i.e. Rg + RgA = 1. It is also interesting to note
that in the critical threshold value, possibly the weightage of two different
transmission modes may have the equal roles.

The terms in Eq. (5.8) can be described as the following: - is the
probability that an adult tick will survive the incubation period and become
infectious through co-feeding, #% is the lifespan of an adult tick, 5—; is the
probability of CCHFV transmission from an adult tick to another adult tick
after co-feeding in its lifetime, 7% is the ratio between the birth rate of
adult tick and the total number of adult ticks. In the same way the terms

in Eq. (5.9) can be followed: eLiLML is the the proportion of livestock that
1

will survive the incubation period and become infectious later on, T
livestock’s infectious lifespan, Z—; is the probability of CCHFV transmission
from the livestock to an adult tick in its lifetime, Z—i is the probability of
CCHFV transmission from an adult tick to livestock in its lifetime, 7% is the
ratio between the birth rate of adult tick and the total number of livestock
and 7 is the ratio between the birth rate of livestock and the total number
of livestock. The factor % actually means that CCHFV can transfer only
from the adult ticks and livestock to humans but not in the other way.
Finally, employing the parameter values provided in B.2, we find the

following figures for the basic reproduction number Eq. (5.7)

is

Ry = 3.4, (5.10)

where the contributions are for the co-feeding Ry = 1.2, and for the tick
to livestock infection Ry = 7.5, respectively. The chosen parameters are
the minima of the respective parameter ranges. When we perform the same
calculations with the maximum values of the parameters, we get Ry = 2.4,
R4 =10.75, and Ry = 4.9, respectively.

5.2.2 Inclusion of human-to-human transmission

CCHFYV is a viral zoonosis with the potential cases of human-to-human
transmission (Ergoniil, 2006) with case fatality rates from 5% to 80% (Sas
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et al., 2018). Human-to-human transmission can also occur through the con-
tact with body fluids of patients comprising CCHFV during the first 7-10
days of illness (Bente et al., 2013). There are reported cases of nosocomial
spread of the disease (Naderi et al., 2013; Yadav et al., 2016; Pshenichnaya
and Nenadskaya, 2015; Conger et al., 2015; Gurbiiz et al., 2009) and through
possible sexual transmission (Pshenichnaya et al., 2016; Ergonul and Bat-
tal, 2014). CCHFV can represent a potential threat for humans who has
unprotected contact with other body fluids (Bodur et al., 2010). To in-
clude the nosocomial spread of CCHFV and human-to-human transmission
of CCHF, we have included another transmission route as human-human
transmission (Garrison, Smith, and Golden, 2019) as depicted in Fig. 5.4.

FIGURE 5.4: Infection process among the adult ticks, live-
stock and human including human to human transmission.

So, our model Eq. (5.1), Eq. (5.2), Eq. (5.3) system changes into the
following;:

dHS J4H5T[ O’5H5L[ JGHsH]

_ _ _ - — uyH 5.11
dt Ty o g hefls (61D
dHE O’4H5T[ 0’5HSL[ UﬁHSH]

—2 = —enHp — pupH
at % + I% + Joi egllp — pgHE
dH

ditl = egHp —aygHr — pgHr — o Hyp

dH

TtR = agH;—pupHg

The next generation matrix (Kr), associated with the above mentioned
system is the following:

Tgeroa Tgoo Tgero1 Tgo1

_ o L < 0
T(ert+pr)nr  Thr L(ep+up)(eLtnr) L(ar+nr)
0 0 0 0
Liego Lio
S€T93 S93
—_— = -2 0 0 0
’C[, = L(ertur)nr Lur
0 0 0 0 0

Hyepoy Hjou Hyepos Hyos Hyepog

Hyog

o © O© O

L(6T+“T)“TO Lu l‘I(OKLJruL)(eLJruL%J H(OLLﬂLLé H(‘)‘H+5H+“H>(€H+HH2) H(@H¥5H+MH)0
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According to (Diekmann, Heesterbeek, and Roberts, 2010), the next gen-
eration matrix (Kr) can further be reduced to

TgeTag TgeLal
T(ELT*'FHT)MT L(ar+pr)(er+pr)
— _ Lg€TI3 12
K L(er+ur)pr 0 0 (5.12)
SETO'4 ngLa'g, H’geHaﬁ

L(er+pr)pr  H(ap+pr)(er+pr)  H(ap+op+pm)(ea+im)

with spectral radius
Ro = max [RH,RLA] (513)

where

TH 06 eH 1
Ry=|—— 5.14
H H pg (eg+ pg) (ag +0g + pm) (5.14)

The matrix I Eq. (5.12) can be biologically interpreted as

Tick — Tick Livestock — Tick 0
K= Tick — Livestock 0 0
Tick — Human Livestock — Human Human — Human

(5.15)

5.2.3 Tick-Human Model without livestock

According to the authors in (Bente et al., 2013; Vorou, 2009; Switkes et al.,
2016), many of the reported cases of CCHFV are actually due to the biting
of the adult ticks. Following (Yilmaz et al., 2009), a survey conducted in
Turkey shows that among all the reported cases, 68.9% cases had a history of
tick-bite or the contact with ticks and 0.16% cases of nosocomial infections
The authors in (Mourya et al., 2019) mentions that due to the occupational
exposure, infected tick bites and crushing the infected ticks with bare hands
can potentially transfer the CCHFV. The findings in (Atkinson et al., 2013)
notifies that the high number of patients only tested for CCHF due to po-
tential exposure via tick bite along with asymptomatic cases of CCHF in
Tajikistan. Therefore, after ignoring the disease transmission between the
livestock and the tick and including only the interaction between the human
host and the adult tick while incorporating the nosocomial transmission and
co-feeding, we obtain the following ODE system:

dT
d—ts =T — L%TI — urTs (5.16)
dT
7df = 7027:;?T1 —urly —erTg
dT
d =erly — pr1]

dt
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dHS 0‘4H5T[ . O'6H5H[

— = — — H 5.17
dt TH H H HHILS ( )
dHE U4H5'T] UGHSHI

— = —eyHgp — H

at T + I% eHilg — pgilE

dH

—dtl = egHp—apgH;—pgHr —0gH;

dH

TtR = apH;—pgHpg

Next generation matrix (7) associated with Eq. (5.16), Eq. (5.17) is
given by

T’geTag TD;O'Q

T(er+pr)ur  Tpr 0 0
0 0 0 0
Krn = Hieroy Ho4 Hiepos Hiog
H(er+pr)pr Hpr  H(ag+dg+pwm)(eg+pr) H(ag+og+um)
0 0 0 0
RTH = Imax [RH, RT] (5.18)

5.3 Simulations and Results

5.3.1 Infection curves

We first try to plot the infection curves of the model system Eq. (5.1),
Eq. (5.2), Eq. (5.11) and 5.2.3 using the parameters given in Table B.2.
Fig. 5.5a depicts the infection dynamics incorporating human-to-human spread
and Figure 5.5b demonstrates the model system in 5.2.3 in the absence of
livestock. In order to find the infection profiles of adult ticks (77), livestock
(Lr) and human (Hy) in our model Eq. (5.1), Eq. (5.2), Eq. (5.11)) and
5.2.3), we assume that 5% of the infected population for adult ticks, livestock
and 0.5% for human as the initial condition.
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FIGURE 5.5: (a) Infection curves of multi-vector model what

includes the nosocomial spread of CCHFV. The infected pop-

ulation (77, Ly, H;) converge to an endemic steady state. (b)

Number of new infections caused by CCHFV in the adults

ticks and human as the model system in 5.2.3 converges to
an endemic state.

Infection curves of each infected compartments in the Fig. 5.5 reveals that
the model system Eq. (5.1), Eq. (5.2), Eq. (5.11) and Eq. (5.16), Eq. (5.17)
converge to an endemic steady state. After a tedious calculation, the endemic
state is found to be (14,71, T7,Ls, Ly, Ly, Ly, HS, Hy,, H , HY,) = (3£ —

HT
(ertun)T; wrl} o g prr lertp)ly pr orli p_ o pp Lot ton) By
er ) ep ) ) er, ) ' 0 ) ex )
(O‘4TI*+O'5L?)P OJHH; _ 7L o (eL+NL)(aL+ML) oy
BT RoiT tos ) p ) Where, A = Jb, B = ==l O, Po= 00

Q= (eatpm)(entpnton) px _ (027TT _ (uT+eT)uT> ( er ) « _  o3WTy
pr 5 I — )

eHILH Tur er er+ur I = C+o3BTy}
C = (ap+pr)le+pr)L H* — (04Tf+o5L7)P Jo (eg+pm)(ag+pa+in)
- er, ) I — EH+Q(U4TI*+O'5L?)’ - ey :

The simulations results show us that the number of infected adult ticks,
livestock and human decreases with the time after a season but it eventually
goes into an endemic state with a small number of infected individuals in the
multi-vector system. It is noticeable that with the inclusion of transmission
route from the livestock to human, the difference of the number of infected
human cases is ~ 35%. We duly note that due to the lack of data regard-
ing CCHFV, the considered model parameters in the Table B.2 are for the
purpose of demonstration only. The values of Ry and Ry 4 are greater than
unity, therefore, the cases of CCHF will likely persist in the population.

After following (Nguyen, Mahaffy, and Vaidya, 2019), we replace the
host-specific transmission rate (o4 — (04,06 — (o) and calculate the value
of Ry where ¢ € [0,1].
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FIGURE 5.6: Relationship between basic reproduction num-
ber (Ry) and the scaling factor ({).

Fig. 5.6 shows graphically the impact of ( on Ry. It is interesting to
notice that when the value of ¢ = 0.17, the value of Ry is less than 1.
Fig. 5.6 gives us with the suggestion that reducing the contact rate below
17% may be helpful to decrease the threat of CCHF in the population during
the CCHFYV infection between human and infected ticks.

5.3.2 Parameters and its impact on the persistence
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1/ur Tick survival time (Days)
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FIGURE 5.7: (a) Impact of adult tick survival time on Ry 4.

Ry 4 drops below 1 provided the infected tick survival time is

sufficiently small and (b) Effect of adult tick mortality (ur)
on Ry 4 and Ry

Using the values in Table B.2, Fig. 5.7a shows the impact of decreasing the
survival time of adult ticks. If Ry 4 can be reduced below 1 then survival
time of adult ticks is decreased too.
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FIGURE 5.8: (a) Impact of adult tick birth rate (wr) on
basic reproduction number (Rp4) and b) Impact of adult
tick birth rate (wr) on basic reproduction number (Ry)

Fig. 5.8 depicts that with the increasing birth date of the adult ticks (7p)
produces an increase in Ry 4 and Rr.
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FIGURE 5.9: Impact of livestock birth rate (7z) on basic
reproduction number (R 4)

Fig. 5.9 depicts that the increase in the livestock growth rate increases
the value of Ry 4. Domestic livestock are the main hosts of CCHF and they
may serve as hosts for virus amplification. Another reason can be attributed
to the fact that an increase in the number of susceptible population escalates
the magnitude of basic reproduction number.
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FIGURE 5.10: (a) Impact of tick to tick transmission rate

through co-feeding (o) on basic reproduction number (Ry, 4)

and (b) Effect of tick to tick transmission rate through co-
feeding (o2) on (Rr)

In Fig. 5.10, we explore the effect of disease transmission through co-
feeding (o2) on the persistence of CCHFV in the livestock and in the adult
tick population. It is evident from the Fig. 5.10b that the increase in o9
has the linear effect in the magnitude of Rp. This can possibly explain the
persistence of CCHFYV in the adult tick population through co-feeding.
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FIGURE 5.11: Impact of o3 (transmission rate of CCHFV
from the adult tick to livestock) on Ry 4.

Fig. 5.11 depicts the lower transmission rate from adult tick to livestock
can bring the reduction in the value of R 4. Therefore, the decrease in the
transmission rate between adult ticks and livestock is also an important way
to reduce the burden of CCHF.
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FIGURE 5.12: Relationship between adult tick density and
livestock density on the predicted area of CCHF persistence.

The curve described by Rp4 = 1 can give us the clue (Fig. 5.12) that
the required combinations of expected livestock densities that will lead to
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the persistence of CCHF. The Rp4 = 1 curve shows the possible expected
threshold values of the densities of the interacting populations for CCHFV
to persist. Above it, CCHFV will persist and below it will not, according to
the simulation.

5.4 Control strategies

Our mathematical epidemiological model can be employed to analyse dif-
ferent control measures that can be used by policy makers to decrease the
epidemic size and the duration of such outbreaks. As it is a multi-host model,
it can create intricacies to explore all possible control strategies which are
difficult to undertake. This gives us with the option of aiming at the par-
ticular host types only, such as vector control, social distancing, vaccinating
the livestocks etc. In this situation the usage of Target reproduction number
Ts? is more useful compared to conventional Ry (Heesterbeek and Roberts,
2007). For the convenience we follow the same notations like in (Shuai,
Heesterbeek, and Driessche, 2013), the target reproduction number 7s with
respect to the target set S is defined as

Ts = p(ICS (I—/c+lcs)*1) (5.19)

where, Kg is the target matrix and defined as in (Shuai, Heesterbeek, and
Driessche, 2013) ie. [Kslij = Kj; if (4,7) € S and 0, otherwise. T is the
identity matrix and p is the spectral radius of the matrix. This metric is
handful to investigate the various control measures when targeting the subset
of different types of host. Let us denote K Eq. (5.12) as following for the
convenience.

K11 Kio 0
K=| Ka 0 0 (5.20)
K31 K3 Kz

There are several options through which we can effort to curb the bite of
CCHFYV. Different disease control strategies are illustrated below:
Livestock Sanitation: The usage of acaricide is a common technique
to lower the tick burden on the livestock. Then the target set is & =
{(1,2),(2,1),(3,2) }. After following (Shuai, Heesterbeek, and Driessche,
2013) target reproduction number 7s with respect to S (i.e., the type repro-
duction number targeting the host type 1) is using Eq. (5.19), we have;

K210 Kz 0 e
pl| =& 00 =\ T
1=Ku 1—-Kp

0 Ki 0

provided K11 < 1. So, in this case the Ts (target reproduction number) is
1/11%27%211. If we can control the magnitude of Tg, then we will be able to

2 Target reproduction number Ts is defined to quantify the measurements to control the
infectious diseases with multiple host types. In our modelling framework Target repro-
duction number Ts is more useful compared to conventional Ry Heesterbeek and Roberts,
2007.
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control the cases of CCHFV transmission under the constraints as defined
by the target set S.

Human Sanitation & Isolation: It is always advisable to make use of
proper clothing etc while in the grazing field or to take precautionary mea-
sures when slaughtering, as well as during taking care of CCHFV affected
patients. Here the target set is S = {(3,1),(3,2),(3,3) }. Target repro-
duction number 7Ts with respect to S (i.e., the type reproduction number
targeting the host type 2) is

0 0 0
P 0 0 0 K33
a b K33
0= Iy o Ki2K9 K91 K39
K1 —1 (Kll _ 1) (II<(1121K21 + 1) (Kll _ 1)(K12K21 + 1)

Ki2K3, K3s

b= +
(Kll _ 1) <K12K21 + 1) I[({1121K21 + 1

Here, Ts is K33. So, if we can focus only on the magnitude of K33, then
under the constraints of S, we can reduce the cases of CCHFV.

Combined Control: When we combine both the control options then
our target set is S = {(1,2),(2,1),(3,1),(3,2),(3,3) }. Target reproduction
number Tg with respect to S is

0 K 0

Ko 18 0 Ky2K9

P —kn = max ¢ Kag, 1Ky,
T K32 Ks3

Here, 75 is the maximum of K33 and \/[ffifgfll and it is also quite obvious

from the previous results too.

Isolation: 1t is difficult to prevent or control the CCHFV infection cy-
cle in livestock and ticks, as the tick—animal-tick cycle is un-noticed, and
CCHFYV infection in livestock is not evident with the clinical signs. Addi-
tionally, the abundance of tick vectors is widespread and great in number,
which makes it necessary for efficient tick control strategy. This could may
be possible only in structured livestock farms. This makes to control tick
population with the use of acaricide realistic only in well-managed livestock
farms and this is uncommon in the regions (Atif et al., 2017; Baghi and
Aghazadeh, 2016). In those regions where it may not be possible to make
use of proper sanitation due to some economic issues, then in that condition
only isolation is the option. In this situation the target set is S = {(3,3) }.

0 0 0
0 0 0

p K K 1<M K32) B k31 _ (% K32>K33 K = K33
B\ oo (B2 ) Rl WA .

Here, 75 is K33 and this is very interesting to note for a country like
Afghanistan where the resources are scarce.
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5.5 Sensitivity analysis

Here, we carry out sensitivity analysis of the model parameters to deci-
pher the influence of different parameters on the model output. It can be
described as how uncertainty in the output of a mathematical model can
cor-relate to the different sources of uncertainty in the model input param-
eters (Iooss and Saltelli, 2017). In this method we systemically vary the
model input parameters to determine their effect on the model output.

5.5.1 Model sensitivity analysis

Having the aim to understand the effect of the input parameters on the model
outcome, we perform the sensitivity analysis after computing the Partial
Rank Correlation Coefficients (PRCC) with 1000 simulations per run for
each of the model input parameter values sampled by the Latin Hypercube
Sampling (LHS) scheme. The underlying assumption of this model that
there is a monotonic relationship between the model input parameters and
the model outputs.
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FI1GURE 5.13: PRCC Analysis

To perform the PRCC sensitivity test, we take account of cumulative hu-
man cases of CCHF occurring during a simulation experiment as the model
output of interest without the human-to-human spread. The advantage of
this considered model output is that it captures effects of model parameters
on both the persistence of CCHF and the overall impact of CCHF outbreaks
over time in human. PRCC sign depicts the qualitative relationship be-
tween the model input parameters and model output of interests. A positive
PRCC values means that while the corresponding model input parameters
increases, the model output will also increase and on the other hand a neg-
ative PRCC value suggests a negative correlation between the model input
and output (Zi, 2011) and values near zero indicates little effect on the model
output.
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5.5.2 NGM sensitivity analysis

It is possible to measure the impact of parameters on Ry directly while using
Eq. (5.15). Sensitivities and elasticities are measures of how infinitesimal
changes in the individual entries of a stage structured population matrix
will affect the population and the quantification of projection results on the
parameters. After observing that Ry Eq. (5.13) can be taken as a function
of K[X,Y] Eq. (5.15), we denote

ORy

=" 21
XY = 5RX, Y] (5.21)
as the sensitivity of Ry and
8[111 Ro]
=K X,Y)—5 22

as the elasticity of Ry. We can conclude that elasticities are proportional sen-
sitivities (Lesnoff, Ezanno, and Caswell, 2003) measuring the proportional
change in Ry while given an infinitesimal one-at-a-time proportional change
in L[X,Y]. After following (Polo, Labruna, and Ferreira, 2018), we per-
form the sensitivity and elasticity analysis of Eq. (5.15) in R R Core Team,
2018 employing the package popbio Stubben and Milligan, 2007 which is an
R version of the Matlab code for the analysis of matrix population models
illustrated in (Caswell, 1989).
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FIGURE 5.14: (A) Sensitivity and (B) elasticity matrices for
Eq. (5.15)

From the Fig. 5.14, we can notice that the value of Ry Eq. (5.13) is
sensitive to the alteration in Ko, K91, K32 and K3; of the elements from
the matrix I (5.15). These entities correspond to the number of attached
infected adult ticks by an infected livestock and the number of infected live-
stocks by an infected adult tick, followed by the number of infected humans
bitten by an infected adult tick and the number of infected humans produced
by a single infected livestock. It is also interesting to notice that the number
of infected adult ticks produced by a single infected tick through co-feeding
(K11) is also a sensitive parameter according our sensitivity analysis. Elas-
ticities are actually proportional sensitivities which gauge the proportional
change in Ry Eq. (5.13), given an infinitesimal one-at-a-time proportional
change in the elements of the matrix L (5.15) with the presumption that
K is growing or decreasing at a constant rate (Caswell, 1989). Fig. 5.14
depicts the elasticity of Ry with respect to the matrix elements K[X,Y].
The elasticities of the matrix elements K11, K12, K13 and K94 adds up-to
approximately 90.3%. Explanations of elasticities give us a metric that il-
lustrates the relative importance of disease cycle both within and among
the host-tick population. However, we insist again that elasticities are for-
mulated on infinitesimal, one-at-a-time changes, with the information that
the multiple changes are additive and the effects of changes of K[X,Y] are
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assumed to be linear (Caswell, 1989). The interaction between the infected
adult tick and the livestock are the prime factor driving the CCHF cycle.

5.6 Model Fitting

To pertinent with our mathematical work with the reported cases in the
different countries, we endeavour to validate the robustness of our ODE
model Eq. (5.16), Eq. (5.17), we fit it to the actual CCHFV incidence data
from six different countries. To solve this data fitting process, we take the
help of MATLAB® (MATLAB, 2019) differential equation solver ode45 to
approximate the solution for a trial set of parameter values with the fixed
initial condition. Then the fitted value is taken as input to an optimisation
algorithm what updates the estimation of the parameters with each itera-
tion. The time series of the estimated infected human population from the
model Eq. (5.16), Eq. (5.17) is denoted by the vector P and the reported
cases are denoted by P. We use Matlab functions fminsearch and lsqcurvefit.

1. We find the estimates of the model parameters that minimises F; =

|(P - P) |2 for each population.

2. Now holding the local parameters same for the infected human popula-
tion, we then find the model parameters that minimises £ =), ||(P —
P)|3

3. Repeat the steps(1) and (2) until either
(a) The changes in the objective function £ =), || (P—ﬁ) || is below

predefined tolerance T'ol or,
(b) The number of iterations exceeds a limit M ax r¢eration

It is to be noted that initial guess of the parameters plays an important role
in convergence of Matlab optimisation functions.

FIGURE 5.15: The comparison between the reported human
CCHFV cases in Afghanistan, Bulgaria, Kosovo, Turkey,
Pakistan and Iran and the simulation of H;(t) from the
model.
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Fitting Eq. (5.16), Eq. (5.17) to reported case is important for the mod-
elling purpose as it does give an opportunity to procure the base transmission
parameters for the purpose of perusal in the different scenarios. The simula-
tion of human CCHFV cases in different countries is shown in Fig. 5.15.Few
things can be noticed from Fig. 5.15. For example in Bulgaria and in Kosovo,
increased awareness towards the perils of CCHFV perhaps has helped to de-
crease the cases but in case of other countries it appears that this is not the
current situation. Moreover, our fitted model simulations (Fig. 5.15a, 5.15d
and 5.15e) demonstrates that given the current trend of the CCHFV cases
in Afghanistan, Pakistan and Turkey, the number of human CCHFV cases
will increase steadily in future. Therefore, if no further effective preven-
tion and control measures are taken, the disease will not vanish. The visual
representations of the fitted transmission parameters are shown in Fig. 5.16.
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FIGURE 5.16: Fitted transmission parameters

The Fig. 5.16 is very interesting in terms of estimations of the parameters
associated with the spread of CCHFYV in different countries. It also depicts
the heterogeneous nature of the dissemination of CCHFV. Given the high
prevalence of CCHFV in Afghanistan, different routes of CCHFV transmis-
sion share equal burden whereas the nature of CCHFV is different in the
Balkan countries. This should help the policy makers to focus only on the
necessary measures specific to a country of concern.

5.7 Clustering of transmission parameters

Thematic query is how are the fitted transmission parameters differ from
the country to country? Can we characterise them country-wise? Having
that as our inspiration, we take steps to find the cosine similarity index3
amongst the fitted transmission coeflicients to inquire about the circulation
of CCHFV transmission. Cosine similarity index is a metric of similarity
between two non-zero vectors that measures the cosine of the angle between
them. It is quite useful to determine the similarities amongst the different
infection profiles of different considered countries in terms of transmission
parameters.

3Cosine similarity index is defined between two nonzero vectors A and B as
n o A-B.
=1 ‘i

NN -

where A; and B; are components of vector A and B respectively.
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FIGURE 5.17: Differences among the parameter sets of the
considered countries. (A) Cosine similarity of the distance
matrix (B) Spatial embedding of distance matrix.

From the Fig. 5.17a it is evident that the disease transmission param-
eters are not equal. We can clearly observe that Afghanistan is the most
affected country and the transmission parameters (see Fig. 5.17a). amongst
Afghanistan, Pakistan, Iran and Turkey are very similar compared to the
Balkan countries Bulgaria and Kosovo. We are interested to infer about the
CCHF infection profiles of different countries of concern. So we evaluate
the multidimensional scaling to infer about the high-dimensional parameter
space of the fitted transmission parameters. Fig. 5.17b depicts a 2 dimen-
sional spatial embedding reflects the cosine distances of the parameters. It is
evident that infection profiles of South Asian countries are entirely different
from the Balkan and Middle Eastern countries. Possibly this information
should be helpful to the policy makers, health workers to act on the appro-
priate eradication process of CCHFV accordingly.

5.8 Conclusion of this section

The current work in gives us the opportunity to asses some interesting obser-
vations and raise some acute questions too. During the last few years, there
is a surge of CCHFV cases with an expansion beyond its global range (Wikel,
2018; Barzon, 2018). Several factors could attribute to this cause such as
the variation in environment and movement of the hosts carrying Hyalomma
ticks to newer geographical areas. It is immediately comprehensible that the
potential threat of CCHFV cases in the new areas in the northern Europe
are impending and is a matter of concern.

Here, we construct the CCHF transmission dynamics models (determin-
istic ODE models) including the interactions amongst the adult Hyalomma
ticks, livestocks and human. Afterwards we extend our basic multi-vector
model while incorporating the nosocomial spread of CCHF to investigate the
potential impacts of human-human transmission on the disease dynamics.

Our findings from the numerical simulations and mathematical analysis
give us some definitive insights of potential cases of CCHFV in Germany.
Firstly, our model depicts the importance of inclusion of CCHFV trans-
mission through co-feeding and its sustainability in adult tick population
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through co-feeding. It escalates the value of the basic reproduction number
and Eq. (5.7) quantitatively depicts the increased value. The model predicts
that even the reduction of 18% of contact rate between the adult ticks and
the livestock can be helpful to reduce Ry. In the absence of Livestock, Tick-
Human model in Section 5.2.3, we notice the reduction in 37% of contact
rates which can help in reducing the value of the basic reproduction below
1. There is an increase of approximately 35% in human CCHF cases due
to contact with infected animal blood etc. Simulations depict that in case
of multi-vector model system, the livestock has a significant role in disease
transmission compared to only tick-human model. These additional path-
ways increase Ry of CCHF, along with influence in the infection profiles of
the muti-vector system and they also have a dominant role in CCHF control
measures.

Secondly, the mathematical treatise on the control measures provides us
with the acumen knowledge of the different control strategies and their fea-
sibilities in different conditions. We know that the profuse usage of acaricide
can detrimental impact on the environment and in some poor regions this
may not be feasible. Our mathematical analysis reveals that human sani-
tation and isolation are also the effective ways to reduce the CCHF cases
in human along with the acaricide treatment as mention in (Leblebicioglu
et al., 2015).

Thirdly, we fit the reported cases of CCHF through our ODE based
model Eq. (5.16), Eq. (5.17). The fitted solutions of different countries
intrigue us with the following question: Are all the infection profiles of dif-
ferent countries the same? Does the geographical locations have an impact
on the transmission parameters? To answer that we figure it out that spa-
tially embedded multidimensional scaling can provides us the solution of
this puzzle with the help of cosine similarity index amongst the transmission
parameters. Spatially embedded multidimensional scaling shows us that the
infection dynamics and transmission cycle are different for Balkan countries
from the south Asian countries. This can possibly help the policymakers to
emphasise that different countries need different control strategies.

Our current explorations are not exhaustive and it has an ample space
for the possible explorations. For example to include the seasonality in the
currently developed model to explore the seasonality in human incidence
and the dependence on the ambient temperature (Abbas et al., 2017) or, to
include the movement of animals and the migration of human during the
time of Eid-ul-Azha as it is an important factor (Atif et al., 2017) to give
finer resolution of the model in the spatial scale.

In spite of having its own limitations, our proposed models have its own
merits. The analytical expression of Ry and the mathematically sound explo-
rations of control strategies make our current work so significant in the field
of epidemiology. Our work highlights the potential causes and mitigations
of CCHF spread.
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Conclusion

In this thesis we have constructed a necessary mathematical modelling frame-
work to understand the potential and the eventual spread of WNV in Ger-
many. In the backdrop of rising temperature globally and consequently in
the increasing activities of the vectors (mosquitoes and ticks), we are fac-
ing the developing challenges from the zoonotic disease(eg. WNV, CCHF
etc.). In the chapter 1, we readily raise the challenges pertaining to the
issues related to the potential spread of WNV and CCHFV in Germany. To
address such concerns, we have used some the well established mathematical
tools what we have briefly mentioned and introduced in the Chapter 2. The
modelling framework is comprised of a mechanistic model of Discrete-ODE
hybrid type of in the Chapter 3 and the inclusion of stochastic movement
matrices afterwards while the vital model parameters are temperature de-
pendent elaborated in the Chapter 4. The influence and the importance of
temperature on the transmission of WNV has been demonstrated for the
local spreading model and the future projections show that the WNV can
potentially establish its foothold in Germany under the sundry IPCC con-
ditions. As a central result, we show that the concept of basic reproduction
number (Rp) can be extended from an ODE based mosquito-borne model to
a spatially explicit model and thence to a tick-borne disease.

Detailed information about the model parameters governing the disease
dynamics is not well known in most real-world epidemic outbreaks. It turns
out that with the proper sets of assumptions and the inclusions of the various
weather driven factors can possibly help to break the deadlock while endeav-
ouring such modelling effort at least qualitatively. Such modelling mantra
can help to understand the reach and the limits of such localised modelling
attempt. However, in case of spatial spread of an epidemics within a certain
period across large geospatial scale, the contact matrices of the interacting
species can be of utter importance in this context. Similar to that of infec-
tion parameters, the derivation of such contact matrices of the host-vector
populations can also be a daunting task but with certain distance rules based
dispersal formulae can potentially be the saviour. Although these contact
matrices form complex networks, it emerges that a lot of times, the struc-
tures of links or the routes connecting the different nodes of habitat patch
can potentially define the mechanism of spreading process in a global scale.

In the Chapter 2, we first analysed the local spread of WNV in Ger-
many while taking account of the effect of the temperature in the model
parameters. We immediately show the active role of the migratory birds
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as a periodic transporter of WNV and hence sustaining the disease cycle in
WNYV in Section 3.3.1 in Germany. In Section 3.4, we observe the presence
of the migratory birds actually accentuate the value of Ry in a multifold
magnitude and the seasonal appearance of them actually keeping the dis-
ease dynamics alive as we can notice it in Section 3.5.4. Sensitivity analysis
as discussed in Section 3.5.5, reveals the significant parameters that will play
the significant role in propagating WNV in the local bird population. Under
the various IPCC conditions we have shown that WNV will be established
even in the northern Germany. With the purpose of spatial projections of the
bites of WNV over Germany, we purposefully demonstrated the potential
density of the locally infected birds population.

While modelling the spatial spread of epidemics, one should take ac-
count of the net flux of the interacting populations from one habitat patch
to another one and this is an important aspect to include the modelling
hypothesis. We take such an endeavour in this thesis in the Section 4.2.
Distance based dispersal kernels are being used to find the contact matri-
ces as discussed in the Section 4.3 and most importantly the inception and
hence the trail of the WNV infection spread can be found in the routes of the
migratory birds as generated in the Section 4.3.2. We are able to find the
geographical stretches of WNV in Germany through our metapopulation-
network model as we have described in the Sections 4.2 and 4.3. The far
reached expansion of WNV has been projected through geospatial simula-
tions in the Section 4.5. As we know that the model validation is a job to
confirm that outputs of a model possess enough fidelity to the outputs of the
simulation generated process can give. Driven by the above said goal, we
also evaluate the potential strength of our metapopulation-network model
through structural similarities of the model outcome and the reported cases
of WNV in Germany. The SSIM scores are satisfactory as this is just the
inception of such a modelling effort.

Finally, the accumulated expertise on the mosquito-borne diseases has
been put to the test when the CCHFV, a tick-borne disease has been mod-
elled with the limited informations of the parameters settings as described
in the Section 5.2. Due to the lack of parameter values and the complexities
associated with the tick life-cycle (see Section 5.1), we undertake a simple
approach to explore that mathematical tools that have been gained in the
previous chapters of this thesis. Instead of increasing the complexities of the
deterministic ODE models, we aspire to decode the characteristics of the
different transmission routes between the host species and the ticks. The
analytical expressions of Ry developed in the Section 5.2.1 gives the clue to
the possible control and hence eradication based on different constraints as
mentioned in the Section 5.4. With the limited informations that we have at
our disposal, we have fitted the ODE based model to understand the burden
of different transmission parameters of geographically separated countries as
well as aligned in the Sections 5.6 and 5.7. The findings have shown that
the comparative weightage of sundry transmission parameters in the Balkan
area is radically different from those in the South Asian ones and henceforth
the eradication process should not be the same for all these countries.
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APPENDIX
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Ro,mig = p(Thig Mig)
RO,Mig = \/a1a7 + az0a8 + aszail (A.3)
where
_ Baym _ Bsvm
ar = ma (Ym+mar)? az = mar(Ym+mar)?
as = Bsvm ar = Ky eavse
mag (Ym+mar)’ Kp(aatmp+dpc)(vpc+mp)’
K K
ag = MC1YBSC aj] = MC3YBm

Kp(ast+mp+dpc)(vpsct+mg)’ Kpm(ag+mpm)(vyBm+mBm)

FIGURE A.1l: Subsetted weather data.
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Symbols

Interpretation

Source

Value

bp

mp

Kp

Ba

B3

YBC

YBSC

3

bBm

Kpm

Bs

c3

TYBm

Ky

c1

c2

YM

dpc

dpsc

dBm

Birth Rate of local birds

Mortality Rate of local
birds

Carrying capacity of local
birds

Transmission rate from in-
fected mosquitoes to clini-
cal local birds

Transmission rate from in-
fected mosquitoes to sub-
clinical local birds

Latency period of clinical
local birds

Latency period of subclin-
ical local birds

Recovery rate of clinical
local birds

Recovery rate of subclini-
cal local birds

Recovery rate of migratory
birds

Rate at which recovered
subclinical becomes
infected

Birth Rate of migratory
birds

Mortality Rate of migra-
tory birds

Carrying capacity of mi-
gratory birds

Transmission rate from in-
fected mosquito to the mi-
gratory birds

Transmission rate from in-
fected migratory birds to
the mosquito

Latency period of migra-
tory birds

Recovery rate of migratory
birds

Birth Rate of mosquitoes

Mortality Rate of
mosquitoes

Carrying capacity of
mosquitoes

Transmission rate from
infected subclinical local
birds to the mosquitoes

Transmission rate from in-
fected clinical local birds
to the mosquitoes

Incubation period
Disease induced clinical
bird death

Disease induced subclini-
cal bird death

Disease induced subclini-
cal bird death

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

2011;

2011;

2011;

2011;

2011;

(Bergsman, Hyman, and Manore, 2016)

Assumed

(Bergsman, Hyman, and Manore, 2016)

(Bergsman, Hyman, and Manore, 2016)

(Bergsman, Hyman, and Manore, 2016)

(Bergsman, Hyman, and Manore, 2016)

(Bergsman, Hyman, and Manore, 2016)

(Bergsman, Hyman, and Manore, 2016)

(Bergsman, Hyman, and Manore, 2016)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Laperriere, Brugger, and Rubel,
Rubel et al., 2008)

(Bergsman, Hyman, and Manore,
Rubel et al., 2008)

(Bergsman, Hyman, and Manore,
Rubel et al., 2008)

(Bergsman, Hyman, and Manore,
Rubel et al., 2008)

2011;

2011;

2011;

2011;

2011;

2016;

2016;

2016;

0.00342

0.0012

10000

£(T)

£(T)

0.667

0.567

0.182

0.182

2222

.003

.0014

.0014

100

£(T)

£(T)

0.1

£(T)

£(T)

100000

£(T)

£(T)

£(T)

.26

.26

TABLE A.1:

Model parameters
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H Variable Description of Model Variables (3.1), (3.2), (3.3) H

Ts Susceptible adult ticks
Tg Exposed adult ticks

Ty Infected adult ticks

Lg Susceptible livestocks
Lg Exposed livestocks

L Infected livestocks
Lg Recovered livestocks
Hg Susceptible humans
Hg Exposed humans

H; Infected humans
Hp Recovered humans

T Total adult tick population
L Total livestock population
H Total human population

TABLE B.1: Variables used in the model (5.1), (5.2), (5.3).

B.1 Mathematical Properties

Theorem 1 All the solution trajectories of the model system ( 3.1, 3.2, 3.3)
initiating inside I, will remain within the interior of T.

F:FTXFLXFH

I'r = {(TsvTE‘)TI) 0< T, T, TT < 7TT}
ur

'y = {(L57LE7L17LR) :0< Lg,Lg,L;, L < WL}
Hnr

'y = {(HS,HE,HI,HR) :0< Hg,Hg,H;,Hp < m}
HH
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Parameter Description Range Unit References
T Net flow rate into susceptible adult [2,6] Ticks X dsuy71 (Mpeshe, Haario,
tick population and  Tchuenche,
2011)
Ty Net flow rate into susceptible live- [0.5,1.5] Livestock X (Mpeshe, Haario,
stock population day71 and  Tchuenche,
2011)
TH Net flow rate into susceptible hu- [0.5,1.5] Humans X day ! (Mpeshe, Haario,
man population and  Tchuenche,
2011)
nr Death rate of tick population [0.07,0.21] day ! (Matser et al.,
2()()5))
wr Death rate of livestock population [1/3600, 1/360] dayf1 (Mpeshe, Haario,
and  Tchuenche,
2011)
LH Death rate of human population [1/365 x 60,1/365 x 40] day ™! (Mpeshe, Haario,
and  Tchuenche,
2011)
1/ep Incubation period of tick [1,3] day (Matser et al.,
2009; Shayan et
al., 2015)
1/ep, Incubation period of livestock [3,5] day (Matser et al.,
2009)
1/ey Incubation period of human [1,9] day (Shayan et al.,
2015)
o1 Effective contact rate: livestock to [0.11,0.33] day71 (Hoch, Breton,
tick and Vatansever,
2018; Matser et
al., 2009)
o9 Effective contact rate: tick to tick [0.01,0.04] day ! (Matser et al.,
2009)
o3 Effective contact rate: tick to live- [0.13,0.71] day ! (Hoch, Breton,
stock and Vatansever,
2018; Matser et
al., 2009)
o4 Effective contact rate: tick to hu- [0.25,0.375] day 1 (Mpeshe, Haario,
man and  Tchuenche,
2011)
o5 Effective contact rate: livestock to [0.001, 0.002] day71 (Mpeshe, Haario,
human and  Tchuenche,
2011)
o6 Effective contact rate: human to [0.5,0.75] day ! (Mondal, Hanif,
human and Biswas, 2017)
1/ag, Recovery period of livestock [14, 21] day (Mpeshe, Haario,
and  Tchuenche,
2011)
1/ayg Recovery period of human popula- [15,21] day (Papa et al.,
tion 2002; Shayan et
al., 2015)
oy Disease induced death rate [0.3,0.8] day ! (Schuster et al.,

2016; Shayan et
al., 2015)

TABLE B.2: Variables used in the model (5.1), (5.2), (5.3),

(5.11).

Theorem 2 The solution of the model system ( 5.1, 5.2, 5.3) is positive,

vt > 0.
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