
Received: 25 November 2021 Accepted: 21 February 2022

DOI: 10.1002/jpln.202100393

R E S E A RCH ART I C L E

Plot-scale variability of organic carbon in temperate
agricultural soils—Implications for soil monitoring#

Christopher Poeplau Roland Prietz Axel Don

Thünen Institute of Climate-Smart Agriculture,

Braunschweig, Germany

Correspondence

Christopher Poeplau, Thünen Institute of

Climate-Smart Agriculture, Bundesallee 65,

38116 Braunschweig, Germany.

E-mail: Christopher.Poeplau@thuenen.de

#This article has been edited by Thomas

Scholten.

Funding information

FederalMinistry of Food and Agriculture

Abstract

Background: Detecting changes in soil organic carbon (SOC) stock requires system-

atic and random sampling errors to be kept to a minimum. Especially in soil monitoring

schemes based on soil profiles pits, it is important to understand if aminimum spatial shift

of that profile pit during resampling could render resampling errors causedby spatial vari-

ability negligible.

Aims:Weaimed at (1) quantifying the randomSOC stock error caused by aminimumshift

in sampling location of one profile and (2) assessing whether an increase in the number of

profile pits to three could significantly decrease the resampling error caused by spatial

variability of the relevant parameters.

Methods: Eight croplands and grasslands in northeast Germany were sampled. Three

sampling designswere compared: one profile resampled (1) by one, (2) by three profiles or

(3) three profiles resampled by three. In addition, 16 soil coreswere taken per site to char-

acterise overall plot-scale heterogeneity and assess general patterns of spatial depen-

dence of relevant parameters.

Results:Spatial dependenceof all assessedparameterswasweak.Accordingly, the resam-

pling of one profile by one induced a highmean absolute error of 5.1 and 7.6Mg C ha–1 at

a 0–30 cm depth for croplands and grasslands (7.5% and 8.5%). This error was reduced by

approximately 50%when three profiles were resampled by three profiles.

Conclusions: Even with the smallest spatial shifts possible, monitoring of SOC stocks

relies on replicated resampling to detect management or climate change-induced trends

in reasonable and relevant timescales.
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1 INTRODUCTION

The positive role of soil organic carbon (SOC) in soil health, fertility and

as apotential sink ofCO2 iswidely acknowledged (Minasnyet al., 2017;

Smith et al., 2019). There are monitoring initiatives on various scales

all over the globe to establish solid baselines and evaluate SOC stock
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changes over time (van Wesemael et al., 2011). In addition to national

or international inventories and monitoring programmes that are usu-

ally run by government institutions, changes in SOC are also assessed

in a number of other contexts, including long-term experiments and

emerging carbon credit schemes. From plot to continental scale, the

dilemma faced is that SOC stock changes over time are usually small
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compared with the overall size of the pool and its natural spatial het-

erogeneity. Therefore, detecting changes in SOC stocks in timescales

relevant for the abovementioned activities presents a major challenge

(Goidts et al., 2009; Smith, 2004).

For national soil inventories, a time interval of about 10 years is sug-

gested as a minimum to detect changes in SOC stocks on a country

scale (Saby et al., 2008; Schrumpf et al., 2011). Based onmeasured top-

soil SOC variances and sample numbers, Saby et al. (2008) estimate

that European countries would require between 3 and >70 years to

be able to detect SOC stock changes. The minimum detectable differ-

ence (MDD) betweenSOCstockmeasurements decreaseswith sample

size, thus national or continental inventories with a sufficiently dense

grid of sampling sites are more likely to capture average trends in SOC

over time. Indeed, several repeated national inventories in European

countries have succeededat detecting significant SOCstockor content

changes on a country scale (Bellamy et al., 2005;Heikkinen et al., 2013;

Poeplau et al., 2015).

Soil inventories have the potential to reveal more than average

temporal trends in soil parameters or indicators: when sufficient

background information is available for each sampling site, such as

current agricultural management, land-use history or pedoclimatic

conditions, observed changes in soil parameters could potentially be

directly linked to these drivers (Mayer et al., 2019). Such direct links

have the potential to quantify management effects on SOC dynamics,

understand observed trends and their regional patterns, and thus

facilitate agricultural policy-making. Especially for such direct links, an

accurate relocation and resampling of soils at a certain interval of time

is necessary and considered to be the most effective approach in soil

monitoring schemes (Lark et al., 2006;Mol et al., 1998). However, even

if the exact sampling point can be relocated for resampling, soil that has

been sampled once has been disrupted and cannot be directly resam-

pled. Therefore, the correlation between different sampling dates in

national inventories often reveals a huge scatter, which can mostly

be explained by large plot-scale variability causing random deviations

between two sampling events (Heikkinen et al., 2013). Such noise

hampers in-depth analyses of the causes of SOC change and should be

avoided by minimising the different causes of random errors in SOC

stock estimates (Goidts et al., 2009). In essence, soil monitoring sys-

tems have to deal with spatiotemporal variability for estimating pop-

ulation means and their changes over time (Lark et al., 2006; Papritz &

Webster, 1995a, 1995b). Determination of the latter requires to keep

the resampling error at the sampling plot scale during resampling at

a minimum, which is why pairing sampling positions at two successive

sampling events is recommended (Papritz &Webster, 1995a, 1995b).

In practice, time and money are always limiting factors. Optimised,

knowledge-based sampling strategies are thus crucial to save those

resources and successfully verify changes in SOC stocks (Lark et al.,

2006; Smith, 2004). However, there has been minimal quantification

of plot-scale heterogeneity, especially in agricultural soils, hamper-

ing the design of robust, cost-effective and time-effective sampling

schemes that enable SOC stock changes to be detected and explained.

Agricultural soils, particularly croplands, are often characterised by

homogenised topsoils due to tillage operations, with plot-scale het-

erogeneity expected to be much smaller than in undisturbed ecosys-

tems such as forests. Indeed, Conant et al. (2003) detected smaller

coefficients of variation (CV) in SOC stock estimations within cropland

microplots (2 × 5m) than within forest microplots. Furthermore, Cam-

bardella et al. (1994) found a strong spatial dependence of SOC in a cul-

tivated soilwith a lag distance ofmore than100m,while Schöning et al.

(2006) found a spatial independence of samples of a forest soil after

a lag distance of 5.4 m. Finally, Saby et al. (2008) found plot-scale (1–

400 m2) CV in the SOC content of European agricultural soils (3.4%)

to be marginally higher than the analytical error of elemental analysis

(2.5%). These examples all indicate that resampling at exactly the same

location with a minimum spatial shift of the soil profile might render

plot-scale variability in SOC of agricultural soils negligible, and there-

fore excessive numbers of individual samples per sampling site could

be avoided in a national soil monitoring context.

The firstGermanAgricultural Soil Inventorywas completed in 2018.

At a total of 3104 sites comprising croplands, grasslands and perma-

nent crops, one soil profile pit was opened and sampled at fixed depth

increments to a depth of 100 cm (Poeplau et al., 2020). The aim of the

present study was to assess the plot-scale variability of cropland and

grassland soils of differing properties to develop a resampling strategy

for the abovementioned national inventory. Themajor questions were:

(1) How large is the average resampling error in SOC stock estimation

at a sampling plot caused by small-scale spatial heterogeneity, if one

soil profile is resampled in direct proximity (20–60 cm apart) and (2)

will the resampling error in SOC stock estimation decreasewhen three

profiles will be sampled and resampled instead?

2 MATERIALS AND METHODS

2.1 Experimental design and soil sampling

A total of eight croplands and eight grasslands in north central and

northeast Germany were sampled between January and May 2020.

The sampling sites were selected to encompass a wide range of major

soil properties (Table 1); for example, the sand content of the soils

varied from 2% to 92% and SOC contents at a depth of 0–10 cm varied

from 6 to 65 g kg–1 across the 16 selected sites. Most of the sites were

located in proximity of Soil Inventory sampling sites. On the designated

fields, 20 × 20m plots were selected by keeping at least 20 m distance

to obvious disturbances and boarders such as headlands, hedgerows,

roads or neighbouring fields. The sites were sampled in two steps

(Figure 1A). In the first step, three soil profile pits were opened to a

depth of 50 cm. The first profile (P1) was located at the origin of the

coordinate system (0, 0), the second (P2) 2 m to the left (–2, 0) and the

third (P3) 5m to the right (5, 0) (Figure 1A). The profile wall was always

facing north. Each profile was sampled at 0–10, 10–30 and 30–50 cm

using a cylindrical soil core of 250 cm3 (height of 5 cm) to obtain undis-

turbed samples for soil physical parameters. Two undisturbed samples

were taken vertically from the soil profile wall at each depth increment

and pooled. In 0–10 cm, they were placed side by side, while in 10–30

and 30–50 cm they were stacked. To obtain disturbed composite

 15222624, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jpln.202100393 by B

ayerische Staatsbibliothek, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PLOT-SCALE VARIABILITYOF SOIL CARBON 405

TABLE 1 List of sampled cropland (C1–C8) and grassland (G1–G8) sites with stage (croplands) or type (grasslands) of management, soil type
(World Reference Base), average soil organic carbon (SOC) content (g kg–1), fine soil density (FSD) (g cm–3), rock fragments fraction (mass%), sand,
silt and clay contents (mass%) and pH value in water (H2O) at 0–10 cm depth

Site ID Stage/type ofmanagement Soil type SOC FSD Rock fragments Sand Silt Clay pHH2O

C1 Ploughed Chernosem 18.4± 0.2 1.13± 0.05 0.1± 0.1 4 75 21 7.7

C2 Harvested Gleysol 7.1± 0.5 1.54± 0.07 2.5± 1.3 87 9 4 6.6

C3 Cover crops Cambisol 14.8± 1.0 1.21± 0.05 0.2± 0.2 14 70 16 7.1

C4 Cover crops Gleysol 36.1± 2.4 1.25± 0.08 0 28 37 35 6.9

C5 Grubbed Gleyic Cambisol 22.2± 0.7 1.32± 0.10 0.2± 0.2 80 15 5 6.2

C6 Grubbed Gleyic Cambisol 6.1± 0.3 1.44± 0.09 3.7± 0.8 86 11 3 5.5

C7 Harvested Anthrosol 10.7± 1.2 1.44± 0.09 1.9± 0.3 83 11 6 8.0

C8 Grubbed Cambisol 14.7± 0.9 1.05± 0.08 4.2± 3.1 41 41 18 7.9

G1 Permanent green fallow Gleysol 44.4± 4.6 0.80± 0.05 0 8 66 26 6.9

G2 Mowed pasture Gleyic Cambisol 10.5± 1.9 1.27± 0.05 0.6± 0.3 92 4 4 5.3

G3 Mowed pasture Colluvisol 64.9± 3.3 0.85± 0.04 0.1± 0.1 9 63 28 7.8

G4 Mowed pasture Gleysol 64.1± 6.9 0.89± 0.06 0 3 55 42 7.2

G5 Mowed pasture Pelosol 56.2± 13.6 0.94± 0.08 0 38 32 40 6.9

G6 Meadow Stagnic Cambisol 53.1± 3.6 0.76± 0.07 1.2± 1.7 11 64 25 5.2

G7 Mowed pasture Gleysol 41.1± 4.2 1.04± 0.07 2.6± 1.2 64 16 15 6.7

G8 Mowed pasture Luvisol 27.6± 1.4 1.15± 0.05 0 2 79 19 5.9

SOC, FSD and rock fragments is the average of all analysed profile samples per site (n= 6 with standard deviation); all other parameters were measured in a

pooled sample form the central profile (P1) with two technical replicates.

F IGURE 1 (A) Example of the sampling design with 16 randomly distributed soil core sampling points and six soil profiles with fixed positions
and (B) schematic representation of how the six profiles were used to calculate resampling errors of the three sampling strategies Single,
Single/Triple and Triple
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406 POEPLAU ET AL.

samples for chemical analysis, a scraper was used to cut thin slices

along the profile wall in the respective depth increment. After the

three profiles were sampled, the profile wall was shifted by 60 cm in

the case of P1, by 40 cm in the case of P2, and by 20 cm in the case

of P3 to obtain profiles P1r, P2r and P3r (Figure 1A). This adjustment

was made to simulate the shift during a resampling event and has to

occur since identical profile walls cannot be resampled due to soil

disturbance caused by initial sampling in the profile pit. The variation

in shifting distance (20–60 cm) was used to additionally assess spatial

dependence of SOC at the decimetre scale. The three shifted profiles

were sampled in the same way as the original profiles. The soil profiles

were always shifted towards north (Figure 1A), while excavated

material was piled southwards.

In the second step to assess the plot-scale variability of SOC stocks,

a total of 16 soil coreswere taken fromeach site at random, but slightly

clustered positions within the 20 × 20 m plot. The random clustering

was to ensure a balancedmix of small, intermediate and large distances

(acronym for horizontal distance in the entire manuscript) between

sampling points, enabling the evaluation of spatial dependence of the

assessed parameters. Histogramswere used to visually inspect the bal-

ance of paired distances between sampling points. The maximum dis-

tance between sampling points was set to 28.28 m, which is the diag-

onal distance of a 20 × 20 m square. In the field, a soil corer of 6.7 cm

diameter was used to take an undisturbed sample of the soil at each

random location to a depth of 50 cm, with soil depth increments of 0–

10, 10–30 and 30–50 cm. If the core was compacted, the core length

wasmeasured and the length of each depth increment reducedpropor-

tionally (linear correction). However, the maximum core compaction

that occurred was 5 cm (10%).

2.2 Soil analysis and soil organic carbon stock
calculations

For physical analysis (bulk density, rock fragment fraction, fine soil frac-

tion, soil texture), soil samples from the profiles were oven-dried at

105◦C, weighed and sieved to 2 mm. The sieved residuals were man-

ually separated into stones and roots and weighed separately. The fine

soil density of each individual depth increment i (FSDi, g cm
–3) was cal-

culated as:

FSDi =
massfine soil
volumesamplei

, (1)

wheremassfine soil is themass of the particles<2mm (g) and volumesample
is the volume of the total sample (cm3). We used FSD instead of total

bulk density (BD) or bulk density of the fine soil (BDfine soil), because it

is the correct parameter for SOC stock calculation and can, in compar-

ison to fine soil stock (FSD × depth), be directly compared across depth

increments of varying thickness (Poeplau et al., 2017).

For chemical analysis (total, organic and inorganic carbon, total

nitrogen and pH), all samples were oven-dried at 40◦C and sieved to

2 mm. An aliquot of each sample was milled for subsequent elemen-

tal analysis via dry combustion (LECO, St Joseph, MI, USA). Soil pH in

water (H2O) and calcium chloride (CaCl2) with a soil:solution ratio of

1:5 as well as soil texture (clay <2, silt 2–63, sand >63 and <2000 μm)

were measured for all three depth increments of the central profile

(P1) from each site (Table 1). Soil samples with a pHCaCl2 > 6.2 were

assumed to contain carbonates andwere subjected to rampeddry com-

bustion to distinguish organic carbon from inorganic carbon (LECO

RC612).

All soil core samples were analysed using a LECO RC612, while all

profile samples with pH <6.2 were analysed using a LECO TruMac.

The soil core samples, for which physical and chemical properties were

determined in the same sample, were dried at 40◦C and an aliquot was

dried at 105◦C to determine the dry fine soil mass. The fine soil den-

sity of each individual depth increment of the core samples (FSDi) was

calculated in the sameway as for the profile samples (Equation 1). SOC

stocks (Mg ha–1) for each individual depth increment (soil core or pro-

file) were calculated as follows (Poeplau et al., 2017):

SOC_stocki = FSDi × SOC_contenti × depthi × 0.1, (2)

where SOC_contenti is the content of SOC (g kg–1) and depthi is the

depth or thickness of the respective increment (cm). To evaluate treat-

ment or temporal effects on SOC stocks, a comparison of equal soil

masses ensures themost unbiased comparison (Ellert &Bettany, 1995;

VandenBygaart & Angers, 2006). In theory, the sampling depth needs

to be adjusted according to changes in bulk density. In practice, sam-

pling is mostly done to an equal soil depth and mass-corrected SOC

stocks are calculated to a given reference soil mass, as described in

(Poeplau & Don, 2013). Here, the reference soil mass (RSM) was that

of the central profile (P1).

2.3 Statistics

Todetermine the randomerrormadewhen soil profiles are shifted dur-

ing resampling, three different strategies were compared as potential

candidates for a resampling design for the German Agricultural Soil

Inventory (Figure 1B):

Single: a single profile (P1, P2 or P3) representing the profile of the

first inventory was shifted by 20–60 cm and resampled (one profile for

initial sampling and one profile for resampling). The absolute deviation

caused by each shift was averaged per site.

Single/Triple: the single initial profile (P1, P2 or P3) was resampled

using three profiles (P1r, P2r and P3r) (one profile for initial sampling

and three profiles for resampling). The deviation between P1, P2 or P3

and themean of P1r, P2r and P3rwas calculated and averaged for each

site.

Triple: three profiles (P1, P2 and P3) were resampled with a further

three profiles. This strategy would be applicable when a first resam-

pling is conducted using three profiles and then resampled again by

shifting each of the profiles (three profiles for initial sampling and three

for resampling). The mean of the three profiles (P1, P2, P3) was com-

paredwith themean of the three shifted profiles (P1r, P2r, P3r).
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PLOT-SCALE VARIABILITYOF SOIL CARBON 407

Subsequently, the mean absolute error (MAE) of all cropland

and grassland sites was calculated for each of the three strategies

(Goovaerts, 1998):

MAE =
1
n

∑n

i = 1
|SOCinitiali − SOCresampledi |, (3)

where n is the number of sites, and SOCinitiali and SOCresampledi are mea-

suredSOCcontentsor calculatedSOCstocks for each site and scenario

explained above. As a further indicator of the size of the error in SOC

content caused by in situ spatial shifts during resampling, this error

was compared with two laboratory errors of SOC determination: the

within-sample heterogeneity (subsampling error) and the analytical error

caused by the measurement itself. In order to quantify the subsampling

error, a second aliquot was taken from each of the sieved P1 samples

before milling, milled again and analysed using dry combustion. The

analytical errorwas quantified by averaging the deviations between the

two technical replicates of each originalmilled sample, whichwas done

by default for each SOCmeasurement. The mean absolute percentage

error (MAPE) was also calculated as an additional relative indicator of

the sampling error:

MAPE =
1
n

∑n

i = 1

|||||
SOCinitiali − SOCresampledi

SOCinitiali
× 100

|||||
. (4)

The effect of the sampling design (Single vs. Single/Triple vs. Triple),

sampling depth (0–10 cm vs. 10–30 cm vs. 30–50 cm) and land-use

type and their interactions on MAE and MAPE were determined

using three-way analyses of variance (ANOVA). This was done for

the parameters SOC content, FSD and SOC stocks. In all three cases,

data were log-transformed to ensure approximate normal distribution

after visually checking model residuals. The Tukey-HSD test was

performed as a post hoc test. Linear regression models were used to

assess the effect of soil properties on the variability in SOC content.

To select the best model, the dredge function was applied in the

multi-model inference (MuMIn) package in R (Bartoń, 2009). Soil

texture (sand, silt and clay content), root and rock fragment fractions,

inorganic carbon content, soil pH and sampling depth were used as

explanatory variables, and the relative sampling error (MAPE) in SOC

content caused by the resampling of one profile with one profile

(Single) was the dependent variable. Finally, profile data were also

used to test the effect of the distance between two profiles on MAE

of SOC stocks for significance using linear and logarithmic regression

models.

The spatial dependence of FSD, SOC content and SOC stock differ-

ences at plot scalewas assessed using the 16 soil cores taken fromeach

site. The semi-variance γ was calculated first between all soil cores at

each site as a function of the lag distance h (Schöning et al., 2006):

𝛾 (h) =
1

2n (h)

∑n(h)

i=%1
[Ai (xi) − Ai(xi + h)]2, (5)

where n is the number of pairs separated by the lag distance h and Ai is

the measured value of a given parameter at the location xi. We did not

fit semi-variogrammodels for each individual site, since the number of

samples (n= 16) was far too low (Lark, 2000;Webster &Oliver, 1992).

Instead, for an aggregated geostatistical evaluation across all sites, we

first calculated average semi-variances in 2 m lag distance intervals

at each site, and these average values were then assessed across all

cropland and all grassland sites (n = 8 per interval and land use) using

boxplots, which enabled a visual evaluation of potential trends (spatial

dependencies) in the data.

All statistical analyses were performed in R version 3.5.2 (R Devel-

opment Core Team, 2010). Significance was assessed at the p < 0.05

level.

3 RESULTS

3.1 Effect of sampling strategy on resampling
error

The hypothetical resampling strategy had a significant effect on the

estimated resampling error for FSD and SOC content and stock

(Table 2). Across all depth increments, in both land-use types and for

all considered soil parameters, the resampling of a single profile with

one profile (Single) resulted in the highest average deviation (Figure 2)

except in one case (SOC content at 30–50 cm depth in grassland soils).

The Single/Triple strategy, inwhich a single profile of the initial sampling

was resampled using three soil profiles, was found to cause interme-

diate resampling errors. The Triple strategy (three profiles resampled

using a further three profiles) produced by far the smallest error.

Increasing the number of profiles therefore led to a significant reduc-

tion in the resampling error. In 0–10 cm of cropland soils, the error in

SOCcontentmadeby theTriple strategywas even smaller than the sub-

sampling error in the laboratory expressingwithin-sample heterogene-

ity (Figure 2). Also, the overall MAPE of SOC content of the Triple strat-

egy was not significantly different from the two considered laboratory

errors (Figure 3). The average laboratory errors of SOC content caused

by subsampling the same sieved sample and the analytical MAPE

were 2.5 and 1.2% across all sites, depth increments and land uses

(Figure 3).

The average resampling error in the mass-corrected SOC stock in

0–30 cm of croplands was 5.1 Mg ha–1 for Single, 3.5 Mg ha–1 for Sin-

gle/Triple (error reduced by 31%comparedwith Single), and 2.5Mgha–1

for Triple (error reduced by 51% compared with Single). In grasslands,

the absolute deviations in mass-corrected SOC stock in 0–30 cmwere

higher, with 7.6, 6.6 (–13%) and 3.8 (–50%) Mg C ha–1 for Single, Sin-

gle/Triple and Triple (Table 3). Thus, even though the errorswere greater

in grasslands than in croplands, the error reduction from Single to Triple

was the same (≈ 50%) as in the croplands. Both land-use types and all

sampled depth increments were affected by the sampling strategy in a

similar way, thus, no significant interactive effects of sampling strategy

and land use or sampling strategy and depth were detected (Table 2).

Mass correction tended to reduce the error in SOC stock caused by

resampling for Single, while this was less pronounced for Single/Triple

and Triple (Table 3).
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408 POEPLAU ET AL.

TABLE 2 Results (p values) of the three-way analysis of variance (ANOVA) for mean absolute errors (MAE) andmean absolute percentage
errors (MAPE) caused by resampling in soil organic carbon (SOC) content, fine soil density (FSD) and SOC stock (n= 16)

Independent variable MAE MAPE

SOC content FSD SOC stock SOC content FSD SOC stock

Sampling strategy <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Land use <0.001 n.s. n.s. 0.047 n.s. n.s.

Depth n.s. 0.005 0.002 <0.001 0.001 0.002

Sampling: land use n.s. n.s. n.s. n.s. n.s. n.s.

Sampling: depth n.s. n.s. n.s. n.s. n.s. n.s.

Land use: depth <0.001 n.s. n.s. 0.004 n.s. n.s.

Sampling: land use: depth n.s. n.s. n.s. n.s. n.s. n.s.

The independent variables were sampling strategy (Single vs. Single/Triple vs. Triple), land use (cropland vs. grassland) and soil depth (0–10 cm vs. 10–30 cm vs.

30–50 cm).

F IGURE 2 Mean absolute error (MAE) of soil
organic carbon (SOC) content displayed as grey
diamonds, with the distribution of the individual
absolute errors of all sites (n= 8 per land use)
displayed as boxplots for each depth increment
and sampling strategy (Single, Single/Triple, Triple),
as well as the errors caused by subsampling and
the analytical error. Field heterogeneity-related
errors are depicted in blue, laboratory errors in
orange. Letters in brackets in the legend indicate
significant differences between sampling
strategies (p< 0.05)

F IGURE 3 Mean absolute percentage error
(MAPE) of soil organic carbon (SOC) content
displayed as grey diamonds, with the distribution
of the individual absolute errors of all sites (n= 8
per land use) displayed as boxplots for each depth
increment and sampling strategy (Single,
Single/Triple, Triple), as well as the errors caused by
subsampling and the analytical error. Field
heterogeneity-related errors are depicted in blue,
laboratory errors in orange. Letters in brackets in
the legend indicate significant differences
between sampling strategies (p< 0.05)
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PLOT-SCALE VARIABILITYOF SOIL CARBON 409

TABLE 3 Mean absolute errors (MAE) for uncorrected and reference soil mass (RSM)-corrected cumulative soil organic carbon (SOC) stock
(Mg ha–1) (n= 8) for all three resampling strategies (Single, Single/Triple, Triple)

Single Single/triple Triple

Depth Land use Uncorrected RSM Uncorrected RSM Uncorrected RSM

0–10 Cropland 2.2 2.1 1.6 1.8 0.9 1.3

0–30 Cropland 5.8 5.1 3.5 3.5 2.3 2.5

0–50 Cropland 6.6 6.4 2.2 2.2 2.7 2.3

0–10 Grassland 5.3 5.2 4.9 5.3 2.1 3.6

0–30 Grassland 8.1 7.6 6.6 6.6 4.9 3.8

0–50 Grassland 10.2 11.4 5.6 5.6 4.8 4.6

F IGURE 4 Mean absolute percentage error (MAPE) of the fine
soil density (FSD, g cm–3) displayed as grey diamonds, with the
distribution of the individual absolute percentage errors of all sites (n
= 8 per land use) displayed as boxplots for each depth increment and
sampling strategy

In grasslands, theMAEvalueswere significantly higher than in crop-

lands for all parameters (Figure 2). The relative error MAPE was sig-

nificantly higher in grasslands, but this was not the case for the 30–

50 cmdepth incrementwhere resampling of croplands tended to cause

higher relative errors than resampling of grasslands (Figure 3). This

explains the significant interactive effect of land-use type and depth on

the MAPE of SOC content (Table 2). A higher MAPE in subsoils than in

topsoil was expected, since SOC is less evenly distributed in subsoils,

and much lower and cropland topsoils are also regularly homogenised.

However, for grasslands, there was no clear depth dependence of the

MAPE of SOC content. The MAPE of FSD was slightly lower than that

of SOC (Figure 4) and showed a clear and significant declinewith depth

(Table 2).

Across sites, the distance between two soil profiles was rarely sig-

nificantly correlated with theMAE of SOC stock (Figure 5). Only in the

subsoil (30–50 cm) of cropland soils and the 10–30 cm depth incre-

ment of grassland soils was a significant increase inMAEdetectedwith

increasing distance within the first 7 m between soil profiles. Mostly,

the deviations of SOC stock determined within a distance of less than

60 cm were comparable to those detected between profiles 5 or 7 m

apart. In accordance with the geostatistical evaluation of the soil core

samples, this indicates that in topsoils in particular, a large share of the

F IGURE 5 Mean absolute error (MAE) in soil organic carbon
(SOC) stock as a function of the distance between two profiles. Each
point represents themean of eight sites. Regressionmodels with a
95% confidence interval are only displayedwhen a significant effect of
distance (linear or logarithmic) was detected (p< 0.05)

maximum plot-scale variability in SOC stock can be expected to occur

within the shortest distances <60 cm. There was no systematic effect

of shifting soil profiles by 20, 40 or 60 cm on the MAE of SOC stock

(Figure 5).

For 0–10 cm and 10–30 cm we were not able to explain a signifi-

cant proportion of the variation in MAPE of SOC content across sites

with the considered variables. However, in the 30–50 cm depth incre-

ment, the best model to explain the MAPE of SOC content included

rock fragment fraction and silt content (R2 =0.78), while rock fragment

fraction was positively correlated and silt was negatively correlated

with the relative resampling error. The positive correlation with rock

fragment fraction was the most important variable in 30–50 cm (R2 =

0.58; Figure S1), inwhich the highest rock fragment fractions occurred.

However, the directionwas the same for all depth increments (data not

shown). Across all sites and depth increments, the rock fragment frac-

tion ranged from 0 to 17%.

 15222624, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jpln.202100393 by B

ayerische Staatsbibliothek, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



410 POEPLAU ET AL.

TABLE 4 Average plot-scale coefficients of variation (%) and their standard deviation in fine soil density (FSD), soil organic carbon (SOC)
content and stock for all sampled depth increments and both land use types separately

FSD SOC content SOC stock

Depth Cropland Grassland Cropland Grassland Cropland Grassland

0–10 8.3± 2.8 9.7± 2.7 7.7± 4.9 11.9± 5.5 9.3± 3.5 10.1± 3.7

10–30 6.5± 1.5 9.5± 6.9 8.8± 4.8 12.7± 4.5 10.2± 4.3 14.5± 8.0

30–50 6.5± 2.9 9.9± 7.0 27.6± 20.4 32.8± 20.9 25.8± 18.1 33.3± 18.8

Sixteen soil core samples were used to derive coefficients of variation for each site.

F IGURE 6 Coefficient of variations (CV) in soil organic carbon (SOC) stock of all sites as a function of CV in fine soil density (FSD) and SOC
content at each site. CVwere derived from 16 soil core samples at each site, and thus represent the plot scale (20× 20m). The dashed line
indicates the 1:1 line

3.2 General plot-scale variability and spatial
dependence of assessed soil properties

The plot-scale variability of FSD, SOC content and SOC stock was

slightly loweronaverage in croplands than in grasslands (Table4).How-

ever, none of these differences was statistically significant, indicating

that site had a greater influence than land use on the variability of the

assessed parameters. The subsoil increment (30–50 cm) had CV about

three times higher than the upper depth increments for SOC content

and stock. In contrast, the variability of FSD tended to decrease with

depth and was lowest in the subsoil. Across all depth increments,

plot-scale variability in SOC content was a strong driver of the vari-

ability in SOC stock, while CVFSD was only weakly correlated with

CVSOC stock (Figure 6). In croplands, no clear trend of increasing semi-

variance with increasing average lag distance across the 20 × 20 m

plots was detectable (Figure 7). This was true for all depth increments

and parameters. In grasslands, slight increases were visible in some

cases, e.g., for SOC stocks in 0–10 and 10–30 cm in the lag distance

range of >10 m (Figure 8). However, overall spatial dependence

was weak. Semi-variances detected at smallest lag distances (<2 m)

were in the same order of magnitude as semi-variances detected at

largest lag distances (>18 m), which fits to the observations in the soil

profile data, i.e., that small spatial shifts can cause large resampling

errors.

4 DISCUSSION

4.1 Plot-scale variability in SOC

The average plot-scale variability in SOC contents and stocks observed

in this study were comparable to those observed in microplots with

a radius of 4 m by (Goidts et al., 2009). The average CV of about 8%

in croplands and 12% in grassland topsoil SOC contents was however

higher than the values reported by Saby et al. (2008), who found an

average (median) CV of 3–4% for plots of 1–400 m2 in European top-

soils of various land-use types. This is only slightly higher than the

reported analytical uncertainty of 2–3% given in the same study. In

accordancewithGoidts et al. (2009),we found theanalytical error tobe

a negligible source of uncertainty (≈ 1%), when state-of-the-art meth-

ods are applied and the instrument is not changed. In the present study,

the observed cropland and grassland topsoil SOC stock variability was

much lower than the forest topsoil CV (>30%) observed by Schöning

et al. (2006) on a similar spatial scale. For both land use types, subsoil
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PLOT-SCALE VARIABILITYOF SOIL CARBON 411

F IGURE 7 Boxplots of average semi-variances of soil organic carbon (SOC) content, fine soil density (FSD) and SOC stock at 2m lag distance
intervals for all croplands sites (n= 8). On average, 12 semi-variances were averaged per site and interval

(30–50 cm) SOC variability was almost three times as high as topsoil

variability. The higher CV of SOC in agricultural subsoils than in top-

soils has been observed before (Don et al., 2007) and can be explained

by the patchiness of organic C inputs in subsoils, inhomogeneities of

the geogenic substrate (Heinze et al., 2018) and the absence of anthro-

pogenic homogenisation (croplands). For FSD, the opposite trend to

SOC was observed, i.e., a decrease in variability with increasing depth,

which was most likely related to the low degree of disturbance in the

subsoil and the constant overburden pressure of the overlaying solum

(Gao et al., 2016). FSDwas generally less variable than SOC,whichwas

also observed byGoidts et al. (2009) andDon et al. (2007). Accordingly,

in contrast to FSD, the variability in SOC content was a good predictor

of the variability in SOC stock.

The content and stock of SOC is driven by abiotic site factors such

as climate and mineralogy (Doetterl et al., 2015), but also by carbon

inputs (Kätterer et al., 2012).While climatic drivers aremostly relevant

on larger scales, such as continents or regions with strong gradients

(Hobley et al., 2015; Wiesmeier et al., 2013), geological, pedological,

geomorphological or hydrological drivers can be of major importance

at field to landscape scale (Doetterl et al., 2016; Hook & Burke, 2000).

 15222624, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jpln.202100393 by B

ayerische Staatsbibliothek, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



412 POEPLAU ET AL.

F IGURE 8 Boxplots of average semi-variances of soil organic carbon (SOC) content, fine soil density (FSD) and SOC stock at 2m lag distance
intervals for all grassland sites (n= 8). On average, 12 semi-variances were averaged per site and interval

On a plot scale these abiotic drivers might be less important for SOC

variability or are partly cancelled out by plot selection using visual

criteria. However, even within small and apparently homogeneous

plots, the small-scale variability in SOC and other soil properties can

be large, as shown in the present study. Sporadically, soil profiles with

outlying pedogenic properties in the subsoil were encountered within

a distance of 7 m. A typical example is silt lenses in sandy, glacio-fluvial

deposits (Sumbler, 1983). Substrate inhomogeneities, even within the

same substrate or geological unit, are thus also likely to explain parts of

the SOC variability at plot scale. Apart from the homogenised plough

layer of croplands, the spatial heterogeneity of carbon inputs, as well

as the more or less random redistribution of organic matter by biotur-

bation might also play a significant role in SOC stock variability at plot

scale. The proximity of a sampling point to larger plants, the distribu-

tion of aboveground and belowground biomass in general, macropore

networks of roots or earthworms that are preferentially reused by

plants or filled with C-rich material, patches of urine in pastures caus-

ing species shifts and thus carbon input differences, patches of dung or

even unequally distributed mineral fertilisers can all cause variability

in SOC. In all of these examples such variability can occur abruptly and

within shortest distances. Such initial patchiness may result in positive

feedbacks, with higher C input to these patches over longer time
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PLOT-SCALE VARIABILITYOF SOIL CARBON 413

periods resulting in changes in total SOC stock at this scale.Wiesmeier

et al. (2009) detected strong differences in small-scale SOC variability

between overgrazed and less degraded steppe soils in 2×2mplots and

suggested using such variability as an indicator of degradation. Finally,

the combination of small-scale substrate inhomogeneities and patchi-

ness of SOC inputs plus the strong homogenisation in cropland topsoils

are likely to cause the weak spatial dependence in SOC stock and

related parameters.

4.2 Sampling strategy effect on the random error
in SOC stock and related parameters

The results of this study suggested that much of the variability in SOC

stock at plot scale is observedwithin shortest distances. Consequently,

the resampling error associated with a shift of a single soil profile

by <1 m was not at all negligible. Instead, it was as great as if the

profile had been shifted by as much as 7 m. Shifting a single profile

by 40 cm on average caused average SOC stock deviations of 5.1

and 7.6 Mg C ha–1 at 0–30 cm depth in cropland and grassland soils.

This might not affect average national or regional-scale SOC stocks

estimated by soil inventories, since the error was random and the

systematic error (bias) might be close to zero given a sufficiently large

number of sites. However, the error exceeded the maximum range

of management-related SOC stock changes that can be expected

between two sampling events at a suggested interval of 10 years

(Schrumpf et al., 2011). For example, in a synthesis of review papers

on agricultural measures to increase SOC stocks, Bolinder et al. (2020)

found average 10-year increases in SOC of 4.1 Mg C ha–1 for manure

application, 3.3 Mg C ha–1 for cover crops (when grown every year)

and 1.2 Mg C ha–1 for straw retention. Realistic management-related

SOC stock changes are thus highly unlikely to be detected at plot scale

by resampling just one soil profile. Thus, resampling a single soil profile,

even with a minimum shift of just 20–60 cm, would probably fail to

elucidate agricultural management effects on SOC stock changes at

any given site. Across sites, the absolute error between the initial and

resampled profile ranged from 1.8 to 13.7 Mg C ha–1. In a national

inventory context, the correlation between SOC stock at sampling

date one and sampling date twowould thus be characterised by a huge

scatter around the 1:1 line, with residues primarily explained by the

random sampling error. This was similarly observed by Heikkinen et al.

(2013) for the Finnish agricultural soil inventory and in the LUCAS soil

survey (Fernández-Ugalde et al., 2020).

Interestingly, in the present study the mean absolute error in SOC

content increased significantly with rock fragment fraction, while it

decreased with silt content. The latter can be explained by the fact

that silty soils, such as the Chernosems developed from loess at the C1

site, are often homogeneously structured, facilitating a homogeneous

distribution of SOC due to homogeneous plant growth and potentially

also by bioturbation. The positive correlation of rock fragment fraction

and the resampling error could indicate that the distribution of SOC

along the soil profile is patchier in more rocky soils, e.g., due to more

preferential root growth. At the same time, with a maximum of 15%

the rock fragment fraction was most likely not high enough for such a

mechanism in this study andmight thus simply indicate substrate inho-

mogeneity as such.

When the resampling of one profile was performed using three indi-

vidual profiles, the resampling error decreased compared with resam-

pling with just one profile. Despite the fact that values of one pro-

file were compared to the average values from three profiles from up

to 7 m away, the error in SOC content, FSD and SOC stock could be

reduced compared with a simple shift of one profile by 20–60 cm. This

is in line with the findings of Goidts et al. (2009), who suggest that the

small-scale variability in SOC content can be decreased by composite

sampling, i.e., increasing the number of individual samples. Accordingly,

the lowest resampling error was observed with the Triple strategy, i.e.,

resampling three profileswith a further three profiles. For the 0–10 cm

depth increment of the investigated croplands, this resampling error

was even smaller than the deviation between two subsamples of the

same dried and sieved sample (subsampling error). In other words, at

least for this specific depth increment, the small-scale variability was

almost entirely accounted for and the associated resampling error can-

not be expected to be reducedmuch further, e.g., withmore than three

additional soil profiles. As expected, the analytical error with repeated

measurements of the same subsample was much lower than the other

sources of uncertainty and canbe considerednegligible, at least for val-

ues above the detection limit (Saby et al., 2008). As expected, increas-

ing the number of profiles fromone to three also reduced theminimum

detectabledifferenceof SOCstocksbyup to70%for theTriple strategy.

4.3 Implications for soil sampling

The aim of this study was to develop a resampling design for the

German Agricultural Soil Inventory. One of the specific features of this

inventory was that a profile pit was dug and described in detail to a

depth of 1 m. Soils were not only characterised by their soil physical

and chemical properties, but a wealth of pedological data was also

evaluated from the soil profile (Poeplau et al., 2020). In addition to

the soil profile, eight soil cores in a circle of 20 m diameter around

the profile pit were taken. Those soil cores were analysed individually

for a part of the inventory sites, revealing a significant bias between

profile and soil core-estimated SOC stocks (Jacobs et al., 2018). This

can be partly explained by soil compaction during core sampling and

the applied linear correction of that compaction, which was also

observed by (Walter et al., 2016) and in the present study (data not

shown). However, a bias in SOC content was also found, which is more

difficult to explain. In any case, this bias and the fact that the baseline

was derived from profile sampling hindered the use of soil cores for

resampling, since systematic errors caused by a switch in methods

would increase the total error. Several other inventories have based

their sampling strategies on composite soil core samples covering one

or several plots at a site (Heikkinen et al., 2013; Orgiazzi et al., 2018;

Poeplau et al., 2015). The major advantage of a composite core sample

is its robustness and the chance of minimising the spatial variability

effect on the resampling error (Goidts et al., 2009). If the goal is to

take a representative sample of a whole plot or field and to verify
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414 POEPLAU ET AL.

changes on that scale, then core or auger sampling is preferable due

to the large sample sizes needed to cover a larger area. However, in

national inventories this is not the case, since the sample should be

representative for one whole grid cell (8 × 8 km in the case of the

GermanAgricultural Soil Inventory). A pooled sample from a profile pit

might then be just as representative. Regarding resampling, one major

problem with soil cores is that variations in soil moisture conditions in

particularwill lead to variable soil compaction and thus a sampling bias.

This might partly explain the wide deviations between two sampling

dates, as observed byHeikkinen et al. (2013). Soil profiles are certainly

more robust in that respect. The present study was not designed

to directly compare the two approaches, but both have shown that

shifting a sampling location even by small distances of <1 m induces a

significant error in SOC stock estimates. Therefore, in the case of the

German Agricultural Soil Inventory, more than one profile needs to be

sampled to retain the possibility of verifying potential management

effects on SOC stocks in a repeated inventory. The present study was

not directly designed to investigate, if three profiles are sufficient for

a robust first resampling. However, we sampled a total of six profiles

per site, so a potential resampling with of the initial profile with four

or five profiles could be checked (Table S1). In fact, resampling one

profile with four or five profiles can lead to a slight further reduction

of the resampling error (≈ 2%), but the responsewas flattening and the

optimal number depends on cost-benefit considerations.

The average error was generally smaller at microplot scale than at

plot scale. This implies that paired sampling, i.e., the establishment of

sub-plots within a larger plot, experiment or field, is a valid means to

also decrease theminimal detectable difference to some extent, which

has been highlighted also by Schöning et al. (2006). However, many

studies reported that up to several hundred samples are required to

detect small changes (≈1–3 Mg ha–1) at the field scale (Heikkinen

et al., 2021; Schöning et al., 2006; VandenBygaart, 2006). This should

be of interest for emerging carbon certification schemes in particular,

and questions whether field-scale verification of SOC stock changes is

feasible after a few years at all, at least when moderate or large-scale

realisable measures of C sequestration are being targeted. However,

new technologies for cost-efficient and spatially accurate SOC deter-

mination are being developed (de Gruijter et al., 2018) and proximal

sensing has lately been found to be more accurate yet only slightly

more expensive than composite sampling in estimating average SOC

stocks at field scale (Viscarra Rossel & Brus, 2018). The authors con-

cluded that the cost efficiency, i.e., the ratio of accuracy and costs, was

1.2–2.1 higher for handheld sensing (visible-near infrared and gamma

attenuation) as compared to composite sampling. To date, it can be

doubted that the accuracy of the techniques is high enough for detect-

ing management-induced SOC changes in any given situation (Jaconi

et al., 2017). However, major advantages of spectroscopic methods

over composite sampling are that (1) information on the spatial distri-

bution of SOC can be obtained, which can also facilitate the design of

sampling schemes (Viscarra Rossel & Brus, 2018) and (2) that a wide

range of soil properties can be estimated from the spectra (Cécillon

et al., 2009).

5 CONCLUSIONS

This study is among the first to combine the quantification of plot-

scale and microplot-scale heterogeneity of SOC stock and associated

parameters in agricultural soils. It revealed a relatively high variabil-

ity in SOC stock-related parameters within distances of <1 m. Con-

sequently, even a precise relocation and resampling of these profiles,

i.e., shifting the sampling locations just a few decimetres, would lead

to resampling errors that exceed the potential effect of realistic agri-

cultural management effects on SOC stocks at a monitoring interval

of 10 years. Increasing the number of soil profiles to three was shown

to greatly decrease the random sampling error in both croplands and

grasslands, since it accounted for small-scale variability. Furthermore,

theminimumdetectable differencewas decreasedwhen three profiles

rather than one were used for resampling. The probability of verifying

changes in SOC stocks on a country scale or within specific strata can

thus be significantly improved by this extra effort. Overall, this study

confirmed earlier findings that the in situ spatial heterogeneity of SOC

content is the major uncertainty when estimating SOC stocks and that

to some extent this issue can be addressed by composite or replicate

sampling. The large sample sizes needed to verify SOC stock changes

over time in a single field or plot, however, calls into question the prac-

ticability of such efforts and likewise of emerging carbon certification

initiatives aimed at plot and field-scale detection of SOC stock changes

within short time periods.
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