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Abstract: Some European ash trees show tolerance towards dieback caused by the invasive pathogen
Hymenoscyphus fraxineus. The microbiome of these trees harbours a range of specific bacterial groups.
One of these groups belonging to the species Aureimonas altamirensis was studied in detail by genome
analysis and a plant inoculation trial. The strain group was shown to be phylogenetically distinct from
clinical isolates by 16S rRNA analysis and phylogenomics. Genome analysis of a representative strain
C2P003 resulted in a large number of unique gene sequences in comparison to other well-studied
strains of the species. A functional analysis of the genome revealed features associated with the
synthesis of exopolysaccharides, protein secretion and biofilm production as well as genes for stress
adaptation, suggesting the ability of C2P003 to effectively colonize ash leaves. The inoculation of
ash seedlings with C2P003 showed a significant positive effect on the plant health of the seedlings
that were exposed to H. fraxineus infection. This effect was maintained over a period of three years
and was accompanied by a significant shift in the bacterial microbiome composition one year after
inoculation. Overall, the results indicate that C2P003 may suppress H. fraxineus in or on ash leaves
via colonization resistance or indirectly by affecting the microbiome.

Keywords: plant-bacterium interaction; genome mining; ash dieback; Hymenoscyphus fraxineus;
microbiome

1. Introduction

The plant microbiome is an integral part of its host and comprises a tremendous
amount of beneficial, commensal and potentially pathogenic microorganisms. Both plant-
microbe interactions and competition among microorganisms affect the plant perfor-
mance [1,2]. Plants subjected to diverse biotic and abiotic stresses can induce changes
in root and leaf exudates and subsequently alter the plant microbiome assembly [3]. A
special role in the microbiome is played by plant beneficial bacteria that effectively colonize
the plant and contribute to nutrient supply [4,5] and/or defence against pathogens by direct
antagonism, competition or plant-supporting metabolic activities [6–8]. The abundance
of these microorganisms in the microbiome has been linked to plant growth and health in
several studies [9–11]. The spread of pathogens may have dramatic effects on ecosystem
functioning, particularly in forests. This makes it all the more important to successfully
control the pathogens of the trees through the application of biocontrol agents [12].

In the last few years, the spread of ash dieback has resulted in a substantial threat to
Fraxinus excelsior stands in central and northern Europe [13,14]. Infection with the causal
agent Hymenoscyphus fraxineus begins with the germination of wind-borne ascospores on the
leaves, after which the fungus penetrates into the intercellular space and then into shoots
and twigs, where it causes necrotic bark lesions and blockages of the xylem vessels [15].
The severity of infestations with H. fraxineus might be reduced by resident phyllosphere
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or endosphere colonizers, which are able to counteract the entry and penetration of the
invader [16,17]. Comparative analyses of the bacterial leaf microbiome of F. excelsior in ash
dieback-affected forests revealed a significantly increased abundance of individual bacterial
groups in tolerant trees belonging to the genera Aureimonas, Luteimonas, Pseudomonas,
Bacillus and Paenibacillus [18]. With the exception of Aureimonas, all these genera are known
for strains with plant-beneficial traits. Thus, a health-stabilizing effect on ash seedlings was
recently demonstrated for a Luteimonas fraxinea strain obtained from the leaves of healthy
ashes [19]. Other members of Luteimonas also had stimulating effects based on disease
suppression and nitrogen acquisition [20–22]. The genus Pseudomonas comprises many
strains contributing to plant health by antibiosis, competition and induction of systemic
resistance [23–26]. Finally, strains of the genera Bacillus and Paenibacillus are of exceptional
importance as biocontrol agents, especially due to the synthesis of bioactive secondary
metabolites [27–29].

Unlike these genera, members of Aureimonas have not yet been characterized as plant-
beneficial bacteria. At present, the genus contains 18 species originally derived from a wide
range of habitats. Aureimonas altamirensis was first isolated from the subterranean environ-
ment of the Altamira cave as part of a complex microbial community [30]. In the following
years, several publications reported on the pathogenic potential of A. altamirensis strains
based on evidence in human clinical samples [31–34]. However, the clinical relevance of the
species remains unclear since infestations are discussed in relation to immune deficiencies
and the simultaneous detection of other organisms [32,35,36]. A. altamirensis is therefore
considered an opportunistic pathogen [36,37], and further studies are needed to elucidate
its epidemiology, pathogenic mechanisms, and clinical significance [38]. Moreover, the
species was also repeatedly detected in environmental habitats, e.g., as a cellulolytic strain
obtained from vegetable biomass [39].

We discovered A. altamirensis strains as specific colonizers of leaves from dieback
tolerant ash trees [18] and hypothesized that the species could play a role in plant resilience.
Here we characterize this group of isolates in detail. The phylogenetic analysis of a
representative isolate was performed to determine the position within the genus and the
species. The genome was further investigated to reveal features that could be related to
plant colonization and plant-protective properties. Finally, an inoculation trial on ash
seedlings exposed to H. fraxineus was performed to clarify the effects of the studied isolate
on plant health and the microbiome.

2. Results and Discussion

Analyses of the leaf microbiome of 80-years-old ash trees under H. fraxineus exposure
revealed several bacterial groups with significantly higher abundance in tolerant trees [18].
One of these groups was assigned to A. altamirensis, which was found together with well-
known plant colonizers, such as Luteimonas and Pseudomonas. The abundance of the A.
altamirensis strain group was increased 34 and 49-fold in tolerant trees as analysed by 16S
rRNA gene amplicon sequencing and culturing, respectively. A total of 62 isolates formed
this single group based on MALDI-TOF MS (matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry), which were isolated almost exclusively from tolerant
ash trees.

2.1. Phylogenetic Analysis

To gain insight into the variability of the ash-associated A. altamirensis group, peak
profiles derived from MALDI-TOF MS spectra of the 62 isolates were analysed by principal
component analysis. The ordination plot indicated clear differences between the isolates
(Figure 1a). The isolate C4P030 showed a strong distance to nearly all other group members.
In addition, several different clusters could be identified within the A. altamirensis strain
group. Seven isolates with clear distances to each other were selected for sequencing of
the ribosomal intergenic spacer (IGS) region. For phylogenetic analysis, the IGS sequences
of the isolates were compared with those of the type strain DSM 21988 and the clinically
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derived strains ON-56566 and OT7. The tree shows a separate cluster of all the ash
isolates. Within this branch, the isolates obtained from different trees (C2 and C4) could
be distinguished. A strong differentiation was found to DSM 21988 and with even higher
distances to the clinical strains ON-56566 and OT7 (Figure 1b). The sequencing of the
16S rRNA gene revealed identical sequences for all seven isolates. The isolate C2P003 was
subsequently chosen as a representative isolate and subjected to a comprehensive analysis.

Plants 2022, 11, x FOR PEER REVIEW 3 of 18 
 

 

members. In addition, several different clusters could be identified within the A. altami-

rensis strain group. Seven isolates with clear distances to each other were selected for se-

quencing of the ribosomal intergenic spacer (IGS) region. For phylogenetic analysis, the 

IGS sequences of the isolates were compared with those of the type strain DSM 21988 and 

the clinically derived strains ON-56566 and OT7. The tree shows a separate cluster of all 

the ash isolates. Within this branch, the isolates obtained from different trees (C2 and C4) 

could be distinguished. A strong differentiation was found to DSM 21988 and with even 

higher distances to the clinical strains ON-56566 and OT7 (Figure 1b). The sequencing of 

the 16S rRNA gene revealed identical sequences for all seven isolates. The isolate C2P003 

was subsequently chosen as a representative isolate and subjected to a comprehensive 

analysis. 

  

(a) (b) 

Figure 1. Variability of the A. altamirensis isolates obtained from ash trees: (a) Ordination plot of 

MALDI-TOF MS spectra, calculated by a principal component analysis. (b) Maximum-likelihood 

tree of the IGS gene sequences of selected ash-associated A. altamirensis isolates and two clinically 

derived strains (ON-56566, OT7) as well as the type strain DSM 21988. Numbers at branch nodes 

refer to bootstrap values >50%. 

A phylogenetic analysis based on the 16S rRNA gene showed a close relationship of 

isolate C2P003 to the type strain DSM 21988 (isolated from the subterranean environment 

of a cave), the strain gall3186, which is a member of a gall wasp microflora [40], and SBP73, 

a cellulolytic strain obtained from vegetable biomass [39] (Figure 2). 

Figure 1. Variability of the A. altamirensis isolates obtained from ash trees: (a) Ordination plot of
MALDI-TOF MS spectra, calculated by a principal component analysis. (b) Maximum-likelihood
tree of the IGS gene sequences of selected ash-associated A. altamirensis isolates and two clinically
derived strains (ON-56566, OT7) as well as the type strain DSM 21988. Numbers at branch nodes
refer to bootstrap values >50%.

A phylogenetic analysis based on the 16S rRNA gene showed a close relationship of
isolate C2P003 to the type strain DSM 21988 (isolated from the subterranean environment
of a cave), the strain gall3186, which is a member of a gall wasp microflora [40], and SBP73,
a cellulolytic strain obtained from vegetable biomass [39] (Figure 2).

The four strains of environmental origin formed a shared cluster that was distinct from
the isolates detected in clinical samples [31,32,37,38,41]. Within the genus, A. frigidaquae
and “A. fodinaquatilis” were found to be the closest related species. However, the phy-
logenetic positions of the Aureimonas species within the genus as suggested by the 16S
rRNA gene analysis were only slightly supported by the bootstrap values. Consequently,
the analysis was complemented by genome phylogeny using the genome sequences of
the currently known Aureimonas species. The comparison between C2P003 and the type
strain of A. altamirensis DSM 21988 resulted in an average nucleotide identity (ANI) of
96.4% and a digital DNA-DNA hybridization value (dDDH) of 70.0%. Both values were
above the respective thresholds (≥95% and ≥70%) and confirmed the affiliation of C2P003
to the species A. altamirensis. Comparable to the 16S rRNA analysis, the phylogenomic
tree showed the close relationship between C2P003 and A. altamirensis DSM 21988 with a
clear separation to A. altamirensis ON-56566 and Aureimonas sp. OT7, supported by high
bootstrap values (Figure S1). Strain OT7, isolated from human skin, and strain ON-56566,
isolated from patient blood culture, were reported to belong to the same species clade that
is separated from the A. altamirensis type strain [41]. Consistent with the 16S rRNA data, a
phylogenomic analysis indicated that A. frigidaquae and “A. fodinaquatilis” were the species
most closely related to A. altamirensis.
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Figure 2. Maximum-likelihood tree of the 16S rRNA gene sequences showing the position of
A. altamirensis C2P003 among other A. altamirensis strains and reference strains of related Aureimonas
species. Phylogenetic analysis was performed using the HKY+G+I model. Rhizobium leguminosarum
was used as the outgroup. Numbers at branch nodes refer to bootstrap values >50%. Bar: substitu-
tions per nucleotide site. Accession numbers or locus tags (NCBI or IMG database) are indicated
in brackets.

2.2. Genome Analysis

The sequencing and assembly of genomic DNA from the A. altamirensis strain C2P003
resulted in a complete circular genome. However, the annotation of the genome sequence
revealed several clusters with plasmid genes (trbIGFLJEDCB, repB) (Table S1). It can
therefore not be ruled out that in the current assembly, the chromosome was merged with
one or several plasmids. Accordingly, the latest assembly (GCF_021228915.1) should be
considered as a draft genome. The genome sequence comprised 4,592,981 bp with a total
of 4289 predicted protein-coding genes (Table 1). The genome size, G+C content and
the other annotation statistics are comparable to those of the A. altamirensis type strain
DSM 21988 and the clinically derived strains ON-56566 and OT7. However, strain C2P003
differs from its closest relatives by a larger genome size and a higher number of protein
coding sequences.
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Table 1. Genome annotation statistics of the Aureimonas altamirensis strains C2P003, DSM 21988,
ON-56566 and OT7.

C2P003 DSM 21988 ON-56566 OT7

Contigs 1 11 13 1
Genome size (bp) 4,592,981 4,190,965 4,200,047 4,181,223
G+C content (%) 64.3 64.8 65.2 65.0

Number of
protein-coding genes 1 4289 3967 3976 3871

rRNAs 16S (total) 3 (9) 2 (10) 1 (5) 3 (9)
tRNAs 50 46 48 51

1 The data were derived from the NCBI and IMG databases, and the accession numbers are CP089311, 2585427611,
2627854086 and CP062167, respectively.

The genomes of the four A. altamirensis strains share 3253 orthologous genes (Figure 3),
which account for 69.6% of all predicted protein-coding sequences of strain C2P003. A total
of 3725 genes of C2P003 (79.7%) had orthologues in A. altamirensis DSM 21988, indicating
the close relationship between the two strains. By comparison, lower proportions of genes
(73.28 and 74.4%) were shared with ON-56566 and OT7, respectively. In addition, the
analysis of orthologous genes again revealed the specificity of C2P003 due to the highest
quantity of unique gene sequences (741 vs. 266–398).
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Genome annotation did not reveal any genes whose products are clearly associated
with pathogenic functions. In addition, a comparison with pathogenic Brucella species
that possess a set of virulence factors allowing bacteria to replicate in host cells and to
induce persistent infections was performed. A key role in the virulence of Brucella is played
by the T4 secretion system (T4SS), which is used to transfer toxic effector proteins into
the host cell [42,43]. On the other hand, T4 secretion systems are equally common in
nonhuman-pathogenic species, such as symbiotic rhizobia [44]. The genes for T4SS transfer
proteins could also be detected in the genomes of the Aureimonas strains C2P003, DSM
21988 and ON-56566 (Tables 2 and S1). Further virulence factors of Brucella, in particular
genes involved in the biosynthesis of the lipopolysaccharide O-side chain (e.g., wboA, wboB,
wbkA, wbkE, gmd) [45], could not be identified in the genome of any Aureimonas strains. The
phenotypic tests with strain C2P003 did not indicate a pathogenic potential. The strain was
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not able to grow at human body temperature (37 ◦C), did not show extracellular DNAse
activity and was haemolytic-negative. Overall, there were no indications for pathogenicity.

Table 2. Summary of protein-coding genes involved in host colonization and stress adaptation
in the genome of A. altamirensis C2P003 and corresponding genes in the genomes of DSM 21988
and ON-56566.

Category/Subsystem Number of Genes
C2P003 DSM 21988 ON-56566

Capsular and extracellular polysaccharides 8 8 7
Membrane Transport

Protein secretion system, Type I 3 3 0
Protein secretion system, Type IV 45 9 35
Protein secretion system, Type VII 3 3 0

Stress response: Osmotic stress
Osmoprotectant ABC transporter YehZYXW of Enterobacteriales 4 4 4

Synthesis of osmoregulated periplasmic glucans 3 3 3
Choline and betaine uptake and betaine biosynthesis 9 9 9

Stress response: Oxidative stress
Oxidative stress 7 8 7

Glutathione: Biosynthesis and gamma-glutamyl cycle 6 3 5
Glutathione: Nonredox reactions 9 9 9

Glutathione: Redox cycle 3 3 3
Resistance to toxic compounds
Copper homeostasis/tolerance 8 10 11

Cobalt-zinc-cadmium resistance 8 8 8
Resistance to chromium compounds 1 1 1

Resistance to antibiotics
Resistance to fluoroquinolones 2 2 2

Beta-lactamase 1 1 1

2.3. Genomic Features

To study the genetic bases for a plant-associated lifestyle and potential plant-enhancing
properties of A. altamirensis C2P003, a functional analysis of the annotated genome was
performed. The analysis, conducted in comparison to the type strain DSM 21988 and the
clinical strain ON-56566, was focused on the detection of gene mediating functions in plant
colonization, defence against competitive microorganisms and resistance to abiotic stress.

2.3.1. Host Colonization

Bacteria gain access to plant tissues and cells by motility, chemotaxis, biofilms and the
ability to degrade plant polymers [46–48]. Numerous genes conferring these traits have
been identified in the genomes of plant-colonizing bacteria [49–51]. Cells of C2P003 as
well as A. altamirensis DSM 21988 [30] were found to be nonmotile and genome analysis of
the three A. altamirensis strains did not reveal genes conferring motility and chemotaxis.
However, strains C2P003, DSM 21988 and ON-56566 possess several genes related to the
synthesis of exopolysaccharides and protein secretion system types I, IV and VII (Table 2,
Supplementary Table S1). The secretion of both polysaccharides and proteins promotes the
attachment of bacteria to the host cells and thus the formation of biofilms [52,53]. Protein
secretion systems, in particular, are involved in numerous biotic interactions, including
mutualistic plant colonization but also the infection induction by pathogens [54,55]. In
contrast to strains C2P003 and DSM 21988, the genome of ON-56566 lacks genes for
secretion systems type I and VII.

Moreover, all analysed A. altamirensis genomes harbour genes coding for plant cell
wall-degrading enzymes that are crucial for bacteria to be able to access and proliferate in
the intercellular space [46,56]. The detected genes encode for several enzymes involved in
the degradation of cellulose, hemicellulose and pectin (Table 3, Supplementary Table S2).
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Table 3. Predicted plant and microbial cell wall-degrading enzymes of strains A. altamirensis C2P003,
DSM 21988 and ON-56566.

CAZy
Family Substrate Annotation

Enzyme
Code

Number of Genes

C2P003 DSM
21988

ON-
56566

CE4 Peptidoglycans Peptidoglycan N-acetylglucosamine deacetylase EC 3.5.1.- 1 0 0
CE4 Polysaccharides Polysaccharide deacetylase 2 0 0

Peptidoglycans D-alanyl-D-alanine carboxypeptidase EC 3.4.16.4 4 4 4
GH73 Peptidoglycans N-acetylmuramoyl-L-alanine amidase EC 3.5.1.28 1 1 1

CE9 Polysaccharides/
Chitooligosaccharides N-acetylglucosamine-6-phosphate deacetylase EC 3.5.1.25 1 1 1

Polysaccharides Glucosamine-6-phosphate deaminase EC 3.5.99.6 1 1 1
GH13 Polysaccharides α-amylase EC 3.2.1.1 1 1 1
GH15 Polysaccharides Glucoamylase EC 3.2.1.3 2 2 1
GT35 Polysaccharides Glycogen phosphorylase EC 2.4.1.1 1 1 1
GH43 Hemicellulose α-L-arabinofuranosidase EC 3.2.1.55 1 0 1
GH9 Cellulose β-1,4-glucanase EC 3.2.1.4 1 1 1
GH28 Polysaccharides/Pectin Pectin degradation protein 1 1 0
GH24 Peptidoglycans/Chitin Phage lysozyme R EC 3.2.1.17 2 1 1
GH73 Peptidoglycans/Chitin β-N-acetylglucosaminidase EC 3.2.1.52 1 1 1
GH15 Polysaccharides Glucan 1,4-α-glucosidase EC 3.2.1.3 1 1 0

GH16 Cellulose,
Hemicellulose Endo-β-1,3-1,4 glucanase (licheninase) EC 3.2.1.73 1 1 1

2.3.2. Antimicrobial Substances

Some further genes in the genomes of C2P003, DSM 21988 and ON-56566 encode for
enzymes required in the degradation of bacterial and fungal cell walls, such as
β-N-acetylglucosaminidase, N-acetylmuramoyl-L-alanine amidase and phage lysozyme
R (Table 3, Supplementary Table S2). β-N-acetylglucosaminidase plays an important role
in the degradation of chitin, the bulk component of fungal cell walls [57], as well as in
the degradation of peptidoglycan, the main component of bacterial cell walls [58,59]. N-
acetylmuramoyl-L-alanine amidase is the second most important enzyme required in the
lysis of peptidoglucan [58,60], whereas lysozyme contributes to the breakdown of pepti-
doglucan and partly also of chitin [61,62]. In addition, the three A. altamirensis strains are
equipped with antibiotic resistance genes (Table 2). Both the ability to attack microbial
competitors and the self-protection from invaders may support the establishment of C2P003
in the host.

2.3.3. Stress Adaptation

Colonizers of the phyllosphere, the interface between the atmosphere and plants, are
exposed to strong and unpredictable fluctuations in temperature, moisture and UV levels.
Adaptations to osmotic and oxidative stress are therefore basic abilities for survival in this
habitat [63].

The most common response to osmotic stress is the accumulation of potassium or
osmolytes, such as amino acids, betaines, polyols or sugars [64]. The genome of C2P003 con-
tains genes coding for betaine aldehyde dehydrogenase and choline dehydrogenase, which
are involved in the biosynthesis of the osmoprotectant glycine betaine from choline [65,66]
and the production of glycine betaine [67], respectively. Furthermore, the presence of
the conserved yehZYXW operon encoding the stress-regulated ABC membrane transport
system [68] might contribute to the resilience of C2P003 against osmotic stress. Genes
related to the osmotic stress response were also found in the other A. altamirensis strains
(Table 2, Supplementary Table S1).

To counteract oxidative stress and to restore a redox balance, aerobic organisms pos-
sess complex mechanisms regulating the activation or silencing of genes for defensive
enzymes, transcription factors and structural proteins [69,70]. Genes coding for antioxi-
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dant enzymes, i.e., superoxide dismutase [71] and glutathione S-transferase [72,73], were
found in the genomes of C2P003, DSM 21988 and ON-56566 in equal numbers (Table 2,
Supplementary Table S1).

In addition to harmful atmospheric effects, heavy metals absorbed by the plants can
also damage plant-associated bacteria. In response to this challenge, bacteria have evolved
a range of mechanisms for heavy metal tolerance including transport, sequestration and
reduction of metal ions [74–76]. This enables plant-associated metal-tolerant bacteria to
reduce the metal contamination of plants and to enhance plant growth [77,78]. Genes
contributing to copper homeostasis, cobalt-zinc-cadmium resistance and resistance to
chromium compounds were detected in the genomes of C2P003, DSM 21988 and ON-56566
(Table 2; Supplementary Table S1).

In conclusion, the analysis of the genomic features of A. altamirensis C2P003 revealed
numerous genes involved in metabolic functions for survival and competitiveness in the
phyllosphere and the plant endosphere.

2.4. Inoculation of Ash Seedlings

The effect of A. altamirensis C2P003 on ash dieback was studied together with two
further strains, which were also isolated from ash plants in 2017. Bacillus velezensis A4P130
was characterized as a typical antagonistic strain with a high ability to inhibit the growth
of the pathogen H. fraxineus in cocultivation assays [18]. A. altamirensis C2P003 as well as
L. fraxinea D4P002 showed no antagonistic activity against H. fraxineus [18]. However, both
strains D4P002 and C2P003 were found to have significantly higher abundance (>20-fold)
in tolerant ash trees and were conclusively specific for the microbiome of F. excelsior plants
tolerant to ash dieback.

The three strains were applied for an inoculation test with ash seedlings. To simulate
natural conditions of H. fraxineus infection, the seedlings were exposed to the pathogen
via application of infected leaf petioles [79] four weeks after inoculation with the bacterial
strains. This resulted in the first dieback symptoms in mid-August, such as leaves with
dark patches and withered leaves [15]. The effect of the inoculation was monitored over a
period of three years. In September of the first year (141 days after inoculation), all three
strains showed a significant positive effect on plant health (Figures 4 and S2). The strongest
impact was assessed for C2P003. In the following year, new dieback infection symptoms
were rarely observed. The majority of the control plants, which were still weakened by the
primary infection, showed growth depressions with nonspecific leaf damage. Despite the
lack of infection, there was again a distinct effect of the inoculation; however, in contrast
to A4P130 and D4P002, the impact of C2P003 was significant at only one of the two time
points of examination. In the third year, a strong fructification of H. fraxineus was again
visible on the freshly applied petioles, suggesting a high likelihood of infection. Under
these conditions, inoculation with the bacterial strains maintained their advantage over
the controls through stronger growth and healthier leaves until the end of the vegetation
period (Figure 4). The effects of inoculation with A4130 and D4P002 were significant across
all three years of the plant trial [19]. Inoculation with the strain C2P003 also resulted in a
distinct effect on the plant health of the ash seedlings, but at two time points this effect was
not significant (Figure 4).

In the second year (15 months after inoculation), ash leaves were sampled to compare
the microbiomes of the three inoculated and the control variants. Amplicon sequencing
revealed a complex bacterial community with 13 phyla dominated by Pseudomonadota (av-
erage abundance across all treatments of 68.5%), Actinomycetota (19.0%), Deinococcota (9.5%)
and Bacteroidota (2.8%). An overview about the taxonomic composition of the bacterial
microbiome is shown in Figure 5. At the phylum level, Pseudomonadota tended to be less
abundant in the control plants; however, the difference was not significant. The genera
Methylobacterium, Sphingomonas, Deinococcus and Klenkia dominated the bacterial micro-
biome and had comparable abundances in all variants. Alpha-diversity estimates (Shannon
and InvSimpson index) showed significantly lower values for the microbiomes of trees inoc-



Plants 2022, 11, 3487 9 of 17

ulated with C2P003 or D4P002 (Shannon: 4.75± 0.34/4.94± 0.25; mean± SD) as compared
to the control (5.34 ± 0.26; p < 0.02). The variance of the bacterial microbiome composition
of the ash plants was studied by a principle coordinate analysis (Figure 6). As shown in the
ordination plot, the first axis clearly differentiated the plants inoculated with C2P003 and
D4P002 from the control. Correspondingly, ANOSIM and PERMANOVA analyses revealed
significant differences between C2P003 and D4P002 vs. the control (R = 0.47/0.42, p < 0.003;
R2 = 0.27/0.24, p = 0.006). In contrast, the microbiome composition of A4P130-inoculated
plants did not show significant differences from that of the control plants.

Altogether, the strains specifically found on tolerant ash trees were able to trigger a
shift in the bacterial microbiome more than one year after the treatment. This finding is
consistent with several recent studies describing that inoculation with individual bacterial
strains resulted in changes in the plant microbiome that were associated with improved
plant health [81–85]. Berg et al. [86] reviewed the effects of microbial inoculants on the
indigenous plant microbiome and suggested microbiome modulations as a novel and
efficient mode of action for microbial inoculants that can also be mediated via the plant.
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Figure 4. Impacts of inoculation with A. altamirensis C2P003, B. velezensis A4P130 and L. frax-
inea D4P002 on ash seedlings. The effects on ash dieback were monitored by the health status of
H. fraxineus-infected seedlings. Health status and ash dieback symptoms were estimated as described
by Peters et al. [80]. Bonitur scale: 1: healthy, 2: 10–25% leaf damage, 3: 26–60% leaf damage, 4: 61-99
leaf damage, 5: dead plants. Stars indicate significant differences compared to the control (p < 0.05).
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levels are demonstrated.

Plants 2022, 11, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 6. Ordination plot visualizing the bacterial microbiome composition of ash seedlings inocu-

lated with A. altamirensis C2P003, B. velezensis A4P130 and L. fraxinea D4P002 as well as control 

plants. A principle coordinate analysis (PCoA) was applied based on the weighted UniFraq distance 

matrix. 

Altogether, the strains specifically found on tolerant ash trees were able to trigger a 

shift in the bacterial microbiome more than one year after the treatment. This finding is 

consistent with several recent studies describing that inoculation with individual bacterial 

strains resulted in changes in the plant microbiome that were associated with improved 

plant health [81–85]. Berg et al. [86] reviewed the effects of microbial inoculants on the 

indigenous plant microbiome and suggested microbiome modulations as a novel and ef-

ficient mode of action for microbial inoculants that can also be mediated via the plant. 

In contrast to C2P003 and D4P002, the antagonistic strain B. velezensis A4P130 was 

not able to modify the microbiome composition, which fits well with data on the compre-

hensively studied biocontrol strain B. velezensis FZB42 [87]. Comparable to A4P130, the 

treatment of lettuce with FZB42 led to improved plant performance, but a lasting shift of 

the microbiome could not be observed [88]. In this case, the antagonistic capabilities of 

A4P130 were suggested for the health-protecting effects. 

3. Materials and Methods 

3.1. Isolation and Classification of Bacteria 

A. altamirensis isolates were obtained during a sampling campaign of tolerant and 

susceptible ash trees conducted in July 2017 in a forest area of Northeast Germany with 

severe infestation of H. fraxineus [18]. All isolates originated from two tolerant trees with-

out visible symptoms that were located in the district Pennin on plot C (54°15′ N, 13°01′ 

E) and a susceptible tree located in the district Lendershagen on plot A (54°14′ N, 12°51′ 

E). The strains were isolated from compound leaves using a method allowing the cultiva-

tion of both epi- and endophytic bacteria. 

Classification was based on MALDI-TOF MS. Isolates that could not be unambigu-

ously identified by the Bruker database were assigned by the sequencing of almost the 

complete 16S rRNA gene [18]. 

3.2. Sequencing of the Ribosomal Intergenic Spacer (IGS) Region 

The phylogenetic variability of the selected Aureimonas strains was studied by se-

quencing the 16S–23S rRNA gene intergenic spacer region. Total DNA extraction followed 

the procedure of Ulrich et al. [89]. Amplification with the primers 1492f and 115r and sub-

sequent Sanger sequencing were performed as described by Tokajian et al. [90]. 

  

Figure 6. Ordination plot visualizing the bacterial microbiome composition of ash seedlings inocu-
lated with A. altamirensis C2P003, B. velezensis A4P130 and L. fraxinea D4P002 as well as control plants.
A principle coordinate analysis (PCoA) was applied based on the weighted UniFraq distance matrix.

In contrast to C2P003 and D4P002, the antagonistic strain B. velezensis A4P130 was
not able to modify the microbiome composition, which fits well with data on the compre-
hensively studied biocontrol strain B. velezensis FZB42 [87]. Comparable to A4P130, the
treatment of lettuce with FZB42 led to improved plant performance, but a lasting shift of
the microbiome could not be observed [88]. In this case, the antagonistic capabilities of
A4P130 were suggested for the health-protecting effects.

3. Materials and Methods
3.1. Isolation and Classification of Bacteria

A. altamirensis isolates were obtained during a sampling campaign of tolerant and
susceptible ash trees conducted in July 2017 in a forest area of Northeast Germany with
severe infestation of H. fraxineus [18]. All isolates originated from two tolerant trees without
visible symptoms that were located in the district Pennin on plot C (54◦15′ N, 13◦01′ E) and
a susceptible tree located in the district Lendershagen on plot A (54◦14′ N, 12◦51′ E). The
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strains were isolated from compound leaves using a method allowing the cultivation of
both epi- and endophytic bacteria.

Classification was based on MALDI-TOF MS. Isolates that could not be unambiguously
identified by the Bruker database were assigned by the sequencing of almost the complete
16S rRNA gene [18].

3.2. Sequencing of the Ribosomal Intergenic Spacer (IGS) Region

The phylogenetic variability of the selected Aureimonas strains was studied by se-
quencing the 16S–23S rRNA gene intergenic spacer region. Total DNA extraction followed
the procedure of Ulrich et al. [89]. Amplification with the primers 1492f and 115r and
subsequent Sanger sequencing were performed as described by Tokajian et al. [90].

3.3. Genome Sequencing

Cells of the A. altamirensis strain C2P003 were cultured in R2 broth for two days at 25 ◦C
and washed two times with 0.3% NaCl. Genomic DNA was extracted by the Genomic-Tip
20 Kit (Qiagen, Hilden, Germany) as described previously [19]. The fragment size, quantity
and quality of DNA were assessed on a 1% agarose gel and with a NanoDrop ND-1000
spectrophotometer (Thermo Scientific, Waltham, MA, USA). DNA was sequenced using
the Pacific Biosciences (PacBio) RS II sequencing platform at Eurofins Genomics (Konstanz,
Germany). Sequence reads were de novo assembled using the PacBio hierarchical genome
assembly process (HGAP4). The assembling resulted in one contig with an average genome
coverage of 124×. The genome sequence was circulated with the Circlator v. 1.5.5 [91].

3.4. Phylogenetic and Genome Analyses

The genome of A. altamirensis C2P003 was annotated using RAST server version
2.0 [92] and by the NCBI prokaryotic genome annotation pipeline [93]. The RAST platform
was also used for comparisons with genomes of the A. altamirensis strains DSM 21988 and
ON-56566 as well as Aureimonas sp. OT7 to avoid bias by different annotation systems. The
calculation of orthologous genes was based on the predicted coding sequences with an
identity of more than 70% at the amino acid level. A Venn diagram was generated using
the R package VennDiagram [94].

For phylogenetic analysis, 16S rRNA gene sequences from closely related strains and
species were aligned using the ClustalW algorithm with MEGA X [95], resulting in an
alignment of 1386 nt. The phylogenetic tree was constructed using the maximum-likelihood
algorithm based on evolutionary distances of the Tamura 3-parameter model (+G+I). In
the same way, the isolate group of A. altamirensis was analysed using an alignment of
IGS sequences comprising 950 nt. The maximum likelihood tree was calculated using
distances of the Hasegawa-Kishino-Yano model (+G). The phylogenomic analysis based
on core genome phylogeny [96] was performed as described by Ulrich et al. [50]. A total
of 120 bacterial core marker genes were used to form a concatenated amino acid sequence
alignment, which was used to calculate a maximum-likelihood tree (LG substitution model
with F+G+I) with MEGA. The calculation of the ANI and dDDH values between C2P003
and the type strain of A. altamirensis DSM 21988 was performed as described previously [19].

3.5. Assessment of A. altamirensis C2P003 for Human Pathogenicity

The possible pathogenicity of C2P003 was tested by different approaches allowing a
differentiation between pathogenic and nonpathogenic strains. First, C2P003 cells were
plated on Columbia blood agar (Oxoid-Thermo Fisher Scientific, Germany) and incubated
at 37 ◦C and 5% CO2. Growth at 37 ◦C is a simple indication of pathogenicity [97] and has
been demonstrated for a clinical A. altamirensis strain [34]. A second approach consisted
of checking the activity of extracellular DNase, which is involved in the dissemination of
bacteria [98]. Third, haemolytic activity as a possible indication of pathogenicity was tested
via incubation on Columbia blood agar as described by the manufacturer.
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3.6. Inoculation Test on Ash Seedlings

To study the effect of antagonistic bacteria on ash dieback, ash seedlings with a height
of approximately 15 cm were inoculated with the three strains A. altamirensis C2P003,
B. velezensis A4P130 and L. fraxinea D4P002 at the beginning of June, 2019. For preparation
of the inoculum, the bacteria were grown overnight in R2 broth at 22 ◦C with gentle shaking
at 200 rpm. Cells were collected by centrifugation at 5000× g for 5 min, washed with 1/4
Ringer solution and finally resuspended in 20 mL 1/4 Ringer solution. The cell density
of the inocula was adjusted to 1 × 108 cells mL−1. The inoculation was performed by
thoroughly dipping the seedlings in the inoculum for approximately 1 min. Control plants
were immersed in the same manner in 1/4 Ringer solution. Afterwards, the seedlings were
potted into 3 L plastic containers with potting soil and covered with glassine bags for 7 days
to maintain high humidity. After 2 weeks, the plants were transferred to the nursery under
controlled irrigation and shade. Infection with H. fraxineus was initiated four weeks after
inoculation as well as in June of the following two years by application of infected ash leaf
petioles at the bottom of the plant containers. The seedlings of each treatment (n = 12) were
monitored for their health status based on a 5-point Bonitur scale modified according to
Peters et al. [80] over a period of three years. An analysis of significant differences between
inoculated and control plants was performed using the Kruskal-Wallis test followed by
Dunn’s test of multiple comparisons using rank sums as implemented in R version 4.1.2,
library dunn.test [99]. Fifteen months after inoculation, the seedlings were sampled for
microbiome analysis. Pieces of all parts of compound leaves were taken from each of the
plants and stored at −20 ◦C until further processing.

3.7. Microbiome Analysis

Total DNA was extracted from 100 mg of the ground plant material using the DNeasy
Plant Mini Kit as described by Ulrich et al. [18]. PCR amplification was performed with
primers 799F and 1115R which exclude the chloroplast and mitochondrial DNA of the host
plant. Library preparation and 300-bp paired-end sequencing on an Illumina MiSeq was
performed at LGC Genomics (Berlin, Germany). The sequence reads were processed using
the DADA2 pipeline [100]. After quality filtering and the removing of potential chimaeras,
residual plastid and mitochondrial sequences from ash trees were excluded from the
dataset, which resulted in 2,987,432 high-quality reads. Statistical analyses were performed
using the phyloseq, vegan, metagMisc, decipher, phangorn and ggplot2 packages in R. To
estimate alpha diversity, the Shannon and InvSimpson indices were calculated. Differences
in the bacterial microbiome composition were visualized by applying a principal coordinate
analysis (PCoA) based on weighted UniFraq distances of the ASVs. Significant differences
between the bacterial communities were tested using Analysis of Similarity (anosim) and
PERMANOVA (adonis).

4. Conclusions

The studied group of A. altamirensis strains which were specifically found on ash
trees tolerant to H. fraxineus infection represents the first evidence of the species as a
plant-associated bacterium. A phylogenetic analysis resulted in a clear distinction from
previously described clinical isolates of the species. A functional genome analysis of the
representative strain C2P003 revealed the presence of many genes necessary for successful
colonization of the phyllosphere and/or the endosphere of plants. Although C2P003
did not possess in vitro antagonistic activity against the fungal pathogen H. fraxineus, an
inoculation experiment on ash seedlings demonstrated the plant health-protecting effect of
C2P003, which was accompanied by a shift in the leaf microbiome one year after inoculation.
It suggests that the strain C2P003 may suppress H. fraxineus via colonization resistance or
indirectly by changing the microbiome composition.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11243487/s1, Figure S1: Phylogenomic tree showing the
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position of A. altamirensis C2P003 among other A. altamirensis strains and reference strains of related
Aureimonas species. Figure S2: Ash seedlings inoculated with B. velezensis A4P130 (A), A. altamirensis
C2P003 (B) and L. fraxinea D4P002 (C) as well as control plants (D). Plant health was evaluated
141 days after inoculation. Table S1: Protein-encoding genes involved in host colonization and stress
adaptation in the genome of A. altamirensis C2P003. Table S2: Protein-encoding genes involved in the
degradation of plant and microbe cell walls in the genome of A. altamirensis C2P003.
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