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A B S T R A C T   

Different types of the Crop Water Stress Index (CWSI) have been useful for water stress monitoring and irrigation 
management in semi-arid regions, however little research exists on its effective application in humid regions. 
This study aims to assess the effectiveness of three CWSI models (CWSIe - empirical, CWSIt - theoretical, CWSIh - 
hybrid) for crop water stress monitoring in an experimental field for potato crops in Northern Germany. Irri
gation experiments with three treatments (optimum-OP, reduced-RD and no) were conducted in the summer of 
2018 and 2019. Continuous canopy temperatures (Tc) for OP and RD irrigation treatments together with 
meteorological measurements were used to derive CWSI from the different models. Additionally, Visible/near 
infrared (VNIR) and Thermal Infrared (TIR) drone images were collected on several days during the growing 
season to create CWSI maps. The different CWSI models were correlated with volumetric soil water content (θ) 
measurements for comparison and relationships were established between CWSI and θ for prediction. Results 
showed that CWSI accurately estimates soil water content under atmospheric conditions similar to those in semi- 
arid regions. The predictive performance of different CWSI models were fairly good (R2 

=0.57–0.63) (situation in 
2019). CWSIe and CWSIh performed better than CWSIt. CWSI-θ relations calibrated in one year effectively 
predicted θ in another year with errors of 1.2–2.2% absolute soil water content. CWSIh could be a promising 
alternative to the traditional CWSI as it combines aspects of CWSIe (empirical upper limit) and of CWSIt 
(theoretical lower limit) which has advantages for operational use. Finally, the drone-based CWSI and θ maps 
(derived from the developed CWSI- θ relations) captured well the applied irrigation patterns and could help to 
decide when to irrigate and how much water to apply.   

1. Introduction 

Irrigation is the biggest user of freshwater on Earth; however, a large 
proportion of irrigation water is wasted due to inefficient irrigation 
systems (Cohen et al., 2017). Water supply for irrigation is expected to 
decrease due to frequent droughts and increased competition from other 
industries around the world (Alvino and Marino, 2017). Hence, there is a 
need for improved irrigation management to optimize irrigation water 
use while maximizing crop yield (Rud et al., 2014; Cohen et al., 2017; 
Han et al., 2018). Crop water status is an important water stress indi
cator used in irrigation management (Cohen et al., 2017; Han et al., 

2018). Although soil-based methods for assessing crop water status are 
more widely used, there is a growing interest in plant-based methods 
(Jones and Vaughan, 2010), because they serve as a direct proxy of 
actual plant water status, whereas soil water content measurements only 
provide an indirect linkage. Canopy temperature (Tc) is a good indicator 
for water status due to its inverse relation to the rate of canopy water loss 
which in turn is closely linked to stomatal conductance (Jones and 
Vaughan, 2010), hence Thermal Infrared (TIR) sensing of Tc has been a 
useful tool for monitoring water stress (Alvino and Marino, 2017; Han 
et al., 2018; Bian et al., 2019). However, the sensitivity of Tc to changing 
weather conditions led to the development of crop water stress index 
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(CWSI) which considers the effects of air temperature (Ta) and other 
meteorological variables such as vapor pressure deficit (VPD), wind 
speed (WS) and available energy. 

The Crop Water Stress Index (CWSI) has been proven to be effective 
in water stress monitoring and in irrigation management (DeJonge et al., 
2015; Alvino and Marino, 2017). Its main advantage over pure Tc 
measurements is that it accounts for meteorological variables, mainly, 
Ta and VPD, while Tc alone is sensitive to highly fluctuating environ
mental factors (Inoue et al., 1990), which makes CWSI a more suitable 
measure of water stress. CWSI is based on a solid theoretical base (Idso 
et al., 1981) and it normalises Tc firstly, by the actual difference between 
canopy and air temperature (known as canopy-to-air temperature dif
ference, Tc-Ta or CATD) and secondly, by the Tc-Ta of fully transpiring 
and non-transpiring crops commonly referred to as the lower and upper 
limits respectively (Jackson et al., 1981). Different models to calculate 
CWSI have been developed based on differences in how the upper and 
lower limits are derived (Maes and Steppe, 2012). The Empirical CWSI – 
CWSIe (Idso et al., 1981) model establishes a relationship between Tc-Ta 
and VPD from which the lower limit, known as the “non-water-stressed 
baseline” – NWSB (Idso et al., 1981), is derived. The main advantage of 
CWSIe is that it requires the measurement of only three variables (Tc, 
Ta, and VPD) for its application. However, the NWSB is highly sensitive 
to changes of climate variables, such as radiation and wind speed 
(Jackson et al., 1988; Gonzalez-Dugo et al., 2014). Yearly differences in 
NWSBs have also been reported for the same crop in the same field 
(Horst et al., 1989; Gonzalez-Dugo et al., 2014; Han et al., 2018), hence 
the use of baselines derived from one year across multiple years has been 
questioned. Additionally, a robust NWSB is usually derived at the end of 
the growing season from multiple cloud free days (Gardner et al., 1992a, 
1992b), which makes the near-real time application of CWSI challenging 
for day-to-day stress measurements during the growing season. 

The theoretical CWSI - CWSIt (Jackson et al., 1981) model presents 
an alternative method for calculating the upper and lower limits from 
equations based on a combination of the Penman-Monteith and the 
energy balance equation. It offers an improvement to CWSIe by 
including additional atmospheric parameters, net radiation (Rn), wind 
speed (WS), and canopy resistance (rC) which are not considered in the 
CWSIe (Jackson et al., 1981, 1988). CWSIt in principle is advantageous 
over CWSIe for practical use in day-to-day water stress monitoring since 
its upper and lower limits are derived from equations applied for the 
same environmental conditions at the time of Tc measurement (Jackson 
et al., 1988). Nevertheless, CWSIt has a number of disadvantages: 
Firstly, problems attributed to the proper estimation of aerodynamic 
resistance (rA) from wind speed were noted by Jackson et al. (1988) and 
has been shown to significantly affect final CWSIt values (Stockle and 
Dugas, 1992; Agam et al., 2013b). Secondly, net radiation (Rn) is 
another important input variable required, however, which is not 
directly measured in many weather stations and therefore needs to be 
estimated from meteorological variables (Berni et al., 2009). Accurate 
estimation of aerodynamic resistance, rA, poses challenges as estimates 
depend on the empirical parameterization of surface roughness and at
mospheric stability corrections which further requires a number of 
site-specific parameters (Paul et al., 2014; Mallick et al., 2016, 2018) 
and has led to errors in the final CWSI estimates (Berni et al., 2009). 
Given the limitations associated with deriving rA, a method that elimi
nates the need for estimating rA could improve the accuracy of CWSI. 
Rud et al. (2014) demonstrated that the use of empirical upper limits 
together with theoretical lower limits did not affect the accuracy of final 
CWSI values and Agam et al. (2013a) recommended its use for practical 
purposes. The use of empirical upper and theoretical lower limits to 
calculate CWSI is further investigated and is referred to as hybrid CWSI 
model (CWSIh) henceforth. 

The development and early application of CWSI was done on point- 
based Tc measurements, but has been adapted and applied to high res
olution thermal imagery for assessing the spatial variability of crop 
water status (Jones, 1992; Maes and Steppe, 2012; Agam et al., 2013b). 

Direct/image-based models involving different ways of deriving the 
upper and lower limits (Jones, 1992, 1999; Fuentes et al., 2012; Padhi 
et al., 2012; Gerhards et al., 2018); theoretical models with direct 
application of theoretical equations from Jackson et al. (1988); and 
hybrid models with a fixed upper limit (depending on crop type) and 
theoretical lower limit, have widely been applied to TIR images (Jones, 
1999, 1992; Möller et al., 2006; Rud et al., 2014; Hoffmann et al., 2016). 

The applicability of CWSI for water stress monitoring depends on 
demonstrating that it can accurately and reliably replace soil and plant- 
based water status indicators in agricultural fields and that it is appro
priate for stress detection in a variety of crops in different climatic zones 
(Cohen et al., 2017). Suitable relationships between CWSI and other 
indicators are required in order to translate CWSI accurately into 
water-stress estimates, which can then serve in irrigation decision sup
port (Möller et al., 2006). CWSI has been shown to exhibit good re
lationships with direct in situ plant and soil-based measures such as soil 
water content (Padhi et al., 2012; DeJonge et al., 2015; Taghvaeian 
et al., 2014), leaf water potential, stomatal conductance and transpira
tion (Berni et al., 2009; Gonzalez-Dugo et al., 2013; Cohen et al., 2017; 
Han et al., 2018; Bian et al., 2019). In this study, relationships between 
volumetric soil water content (θ) and thermal stress indices are explored 
and used to evaluate the performance of indices in monitoring water 
stress. Such relationships normally derived from point measurements 
are potentially transferable to images to represent stress at large spatial 
scales (Berni et al., 2009; Gonzalez-Dugo et al., 2014; Rud et al., 2014). 
Here, established relationships between CWSI and soil water content are 
transferred to drone images and their accuracy was evaluated to 
represent the spatial variability of soil water content. 

CWSI was developed to provide a universal method of water stress 
monitoring for agricultural crops in different climatic zones (Jackson 
et al., 1988) and so far, has been proven to be robust in many arid and 
semi-arid regions around the globe and for different agricultural crops 
(Meron et al., 2013; DeJonge et al., 2015; Cohen et al., 2017; Liu et al., 
2020;). However, little research has been carried out so far to test its 
applicability in humid and sub humid regions, including possible link
ages of CWSI with soil water content, although vegetation in these re
gions is also susceptible to water stress. In order to be considered a truly 
universal approach, it’s robustness must be tested across a broad range 
of climatic and aridity zones. Jones (1999) investigated the potential use 
of infrared thermometry in cooler humid climates and Hoffmann et al. 
(2016) in their studies in western Denmark proved that CWSI could 
accurately represent the water status of barley. In the present study, we 
test the suitability of CWSI in potatoes as a tool for irrigation support in a 
temperate humid zone of Northern Germany. 

The objectives of this study were to:  
• Derive and assess the performance of three CWSI models (CWSIe, 

CWSIt, CWSIh) as a proxy for crop water stress through relations 
with volumetric soil water content (θ).  

• Assess the transferability of derived CWSI-θ relations from one year 
to another year and its applicability to drone-based CWSI images for 
mapping soil water content at field scale.  

• Discuss the suitability of Crop Water Stress Index as a water stress 
indicator in a humid region on potato, a crop susceptible to water 
stress. 

2. Materials and Methods 

2.1. Description of experimental setup and design 

The experiment was carried out in Hamerstorf in Northern Germany 
(52◦ 54’ 36’’ N, 10◦ 27’ 36’’ E; 65 m a.s.l.), a site with annual rain totals 
of 622 mm and mean annual air temperature of 8.8 ◦C and with silty 
sand being the primary soil type. The experimental site belongs to the 
Agricultural Chamber of Lower Saxony (Landwirtschaftskammer Nie
dersachsen, LWK), which has been conducting irrigation experiments 
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for more than 13 years with the main objective to assess the effect of 
irrigation intensities, representing different levels of water stress, on 
crop yield. The experimental data has been collected within the project 
“Sensor based irrigation control in potatoes” which ran from 2016 to 
2019 with the main aim to “use canopy temperature for irrigation de
cision support and how the techniques can be implemented into agri
cultural operating systems (Meinardi et al., 2021). 

This study investigates the effect of different irrigation water treat
ments on potato crops carried out over two years 2018 and 2019. The 
variety in each year was "Amanda". The root depth has not been 
measured, but the assumption was, that the maximum root depth of the 
potato plant is 60 cm. Former measurements of soil water content at 
different depths showed water extraction by the root at a maximal depth 
of 60 cm. The potato crops were planted on a 270 m x 42 m field divided 
into 120 plots (representing 2 different irrigation treatments, 2 different 
potash fertilization regimes, 4 repetitions of each treatment, and 2 
auxiliary plots for each of the 40 experimental plots) of 9 m x 6,75 m, 
with a planting density of 4 plants per square meter on 9 rows of ridges 
in each plot. Each plot had a total length of 27 m, where only the 9 m in 
the middle are harvested (net harvest plot), Three different types of 
irrigation treatments were implemented based on the desired percent of 
usable field capacity (nFK, Table 1), developed based on experiences 
from long-term irrigation experiments carried out by LWK. Optimum 
irrigation (OP hereafter) with 50% nFK (also referred to as CWSI 0.5) 
means a good water supply for the plants with no relevant drought 
stress, aiming at highest possible yield; Reduced irrigation (RD here
after) with 35% nFK (also referred to as CWSI 0.65) means temporary 
drought stress with possible effects on yield, aiming at a reduced water 
and energy consumption, and no irrigation as control treatment. The 
control treatment will not be regarded for CWSI measurement in this 
paper. 

A nozzle cart with a boom, made by Beinlich (Ulmen, Germany)1, 
was used for irrigation. The adjustment of the retraction velocity of the 
cart was made based on water pressure, water amount per hour and 
nozzle width. The true amount of water was controlled with 4 customary 
plastic rain gauges along the irrigation width. The deviation of the given 
amount was approx. ± 2 mm. The decision on when and amount to 
irrigate was based on weekly/bi-weekly gravimetric soil water content 
(θg) measurements in combination with transpiration amounts for the 
following days according to the weather forecast from DWD (German 
weather Service) (water-balance method according to Hartmann et al., 
2000). The root zone was considered as 60 cm depth from top of dam 
(45 cm below planting depth) at development stadium BBCH 55 (first 
bud 5 mm). 

Final irrigation dates and amounts are presented in Table 2. Irriga
tion treatments started on 42 days after planting for OP plots and 45 
days for RD plots in 2018 and 52 days after planting for OP plots and 69 
days for RD plots in 2019, both set approximately at the beginning of 
inflorescence emergence and tuber formation in 2018 and 2019 
respectively, because these are the periods when water consumption by 
potato is highest (Dalla Costa et al., 1997; Gerhards et al., 2016) with the 
exception of OP in 2019, when irrigation started at the beginning of 
tuber initiation for quality reasons. 

2.2. Canopy temperature, soil water content and meteorological 
measurements 

Six thermal infrared thermometers (IRT), Thünen Institute in-house 
development and construction based on the Sensor Chip Melexis 
MLX90614, with massive aluminium housing, special electronics for 
MODBUS protocol usage and additional radiation shielding were set up 
at six plots to record continuous canopy temperatures (Tc) of three RD 
(CWSI 0.65) and three OP (CWSI 0.5) replications from June to 

September for each year. Tc was recorded every 3 seconds and averaged 
over 30 minutes. Only Tc data in the timespan from 11 am to 3 pm 
Central European Summer Time (CEST) were used in this study, unless 
indicated else. This is 9:38 am to 1:38 pm local solar time. The mean of 
the three OP or RD replications were used for stress analysis. The IRTs 
had a thermal resolution of 0.02 K. Their field of view angle was 35◦. To 
ensure that only pure Tc was monitored even before full canopy closure, 
IRTs were installed at an oblique angle of 60◦ to nadir, so that their field 
of view captured only vegetation. IRTs were mounted at 2 m above 
ground, resulting in an elliptical measurement area of about 5 m2 per 
sensor at ground level. IRTs were positioned at the Northern border of 
each plot, pointing towards South. The emissivity was set to 1, despite 
the fact that real dense crop canopies have slightly lower emissivity, and 
background (sky) radiation should be taken into account for precise IRT 
measurements. No canopy temperature was measured in the non- 
irrigated plots. From previous experiments it was known that non- 
irrigated potato plants almost never arrive at full canopy cover on the 
sandy soil, thus prohibiting any valid canopy temperature measurement 
by IRTs. Growing potatoes without irrigation does not occur on real 
production fields in the local irrigation region. 

Table 1 
Table of abbreviations, constants, symbols, and their description used in the 
study.  

Symbol Description 

TIR Thermal Infrared 
CWSI Crop Water Stress Index 
CWSIe Empirical Crop Water Stress Index 
CWSIt Theoretical Crop Water Stress Index 
CWSIh Hybrid Crop Water Stress Index 
DN Digital numbers 
BT Brightness temperature (◦C) 
OP Optimum irrigation 
RD Reduced irrigation 
nFK Usable field capacity, also called available water capacity nFK=FC- 

PWP 
PWP Permanent wilting point 
FC Field capacity 
Ta Air Temperature (◦C) 
VDP Atmospheric vapor pressure deficit (hPa) at the level of Ta 

measurement 
ea* Saturation vapor pressure of surface (hPa) at Ta 
ea Actual vapor pressure at air temperature (hPa) 
VPG Vapor pressure gradient (hPa) 
Tc-Ta/ 

CATD 
Canopy-to-air temperature difference (◦C) 

θ Volumetric soil water content (m3 m− 3) 
Rn Net radiation (W m− 2) 
WS wind speed 
rC canopy resistance (s m− 1) 
rCP canopy resistance at full transpiration (s m− 1) 
rA aerodynamic resistance (s m− 1) 
G Ground heat flux (W m− 2) 
Rg Incoming Shortwave radiation (W m− 2) 
Rso clear-sky solar radiation (W m− 2) 
RH Relative humidity (%) 
ρ Density of air (kg m− 3) 
cP Specific heat of dry air (J kg− 1 ◦C− 1) 
Δ Slope of saturation vapor pressure versus temperature curve (hPa 

◦C− 1) 
γ Psychrometric constant (hPa ◦C− 1) 
z reference height (m) 
d displacement height (m) 
z0 roughness length (m) 
(Tc-Ta)UL upper reference under non-transpiring conditions (◦C) 
(Tc-Ta)LL lower boundary representing a non-water-stressed condition (◦C) 
NWSB Non water stressed baseline equivalent to (Tc-Ta)LL 

Twet lower boundary of plant/canopy surface temperature (◦C) 
Tdry upper boundary of plant/canopy surface temperature (◦C) 
α Soil surface albedo 
σ Stefan Boltzmann constant 
Rgclr Clear sky radiation (W m− 2) 
GRcoef Coefficient representing G/RN  

1 https://www.beinlich-beregnung.de 
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Continuous volumetric soil water content (θ) measurements were 
made with two Sentek EnviroScan sensors (Sentek Sensor Technologies, 
Australia) at positions IR1 and IR2 (Fig. 1) to represent soil moisture 

conditions for RD and OP respectively. Both EnviroScan sensor tubes 
contained 6 sensors and were placed covering the top 60 cm soil profile 
in intervals of 10 cm. θ measurements for 2018 and 2019 were carried 

Table 2 
Planting and harvesting date, irrigation amounts (in mm) for each treatment and crop growth stages as BBCH (FAO-56) for each treatment. Values in parenthesis 
indicate the number of irrigation events. Irrigation was the same for treatments OP (50% nFK and 0.5 CWSI) and RD (35% nFK and 0.65 CWSI), on all dates except in 
the period 22–29 July 2019.  

2018 2019  

OP RD    OP RD   
Date 50% nFK 35% nFK BBCH Growth Stage Date 50% nFK / 

0.5 CWSI 
35% nFK / 
0.65 CWSI 

BBCH Growth Stage 

27-Apr Planting  15-Apr Planting  
08-Jun 25  55 Inflorescence emergence  

(crop development) 
04-Jun 20  40/19 Beginning of Tuber 

formation/end of leaf 
development (crop 
development) 

11-Jun  25 55     
14-Jun 28       

18-Jun  29 60 Flowering (mid-season 1) 21-Jun 25 25 61 Flowering (mid-season) 
27-Jun 30  66 27-Jun 30  65 
02-Jul  30 69 01-Jul  30 69 
04-Jul 30   03-Jul 30  69 
09-Jul 25 25 72 Tuber Development  

(mid-season 2) 
18-Jul 25  75 Tuber Development 

(mid-season) 19-Jul 30  74 22-Jul  25/  
23-Jul  30 75 25-Jul 30/   
26-Jul 30  76 26-Jul  / 30 91 Senescence (late season) 
30-Jul  31 78 29-Jul / 30  91 
02-Aug 30  91 Senescence (late season)     
07-Aug 25  91     
25-Sep Harvest  16-Sep Harvest  
Sum 253 (9)* 170 (6)*   Sum: 160 (7)* 85 (4)*   

*Numbers in brackets represent number of irrigation events in the season 

Fig. 1. Setup of irrigation experiment, IR 1–6 are the approximate positions and direction of view of thermal infrared thermometers (IRT) and the corresponding 
irrigation treatments applied to each field portion in 2019. Colors green and orange denote two different potash fertilization treatments which are not considered in 
this study. Fertilization was done according to common local agricultural practice for the plots used for IRT measurement. 
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out at two different locations. In 2018 the soil moisture sensors were 
placed in the valley between two ridges and in 2019, soil moisture 
measurements were done at the top of the ridge where the potato plant 
grows. Additionally, gravimetric water content (θg) measurements for 
the top (0–30 cm), bottom (30–60 cm), and full (0–60 cm) soil profile 
were made following a standard protocol (Wessolek et al., 2009) 
approximately every 1–2 weeks at 2 locations each representing an OP 
or RD treatment. 3 samples were taken per plot, followed by mixing and 
scaling the samples before putting them into a drying oven for approx
imately 20 hrs at 105 ◦C, then scaling the samples again. Soil density, 
field capacity (15–18% volume for 0–30 cm depth; 11–14% for 30–60 
cm depth) and permanent wilting point (approx. 3–4 Vol%) were esti
mated based on soil texture (Wessolek et al., 2009). Soil texture varied 
between the plots. It was estimated for each sample separately by hand 
(finger test). The highest FC and PWP values occurred in the upper soil 
(0–30 cm) due to the higher soil organic carbon content (1.5%). 

Meteorological measurements of air temperature (Ta), solar radia
tion (Rg), relative humidity (RH), and wind speed (WS), were measured 
every 2 minutes at position IR1 in the field (Fig. 1). Daily rainfall was 
recorded at a weather station located on the experimental site. Addi
tional meteorological parameters such as vapor pressure deficit (VPD) 
and net radiation (Rn) were calculated according to (Allen et al., 1998, 
1994a, 1994b) and ground heat flux (Gn) was estimated for wet soils 
according to Santanello and Friedl (2003). Summary of meteorological 
conditions for the two years of the experiment are shown in Table 3. 

2.3. Unmanned aerial system (UAS) image acquisition and processing 

Visible/near infrared (VNIR) and Thermal Infrared (TIR) images over 
the plot data were collected on four days in the growing season of 2019 
(19 June at 13:45, 26 June at 15:15, 24 July 14:10 and 24 August at 
10:30, 12:00, 13:50 and 15:20). Each flight lasted for approximately 
20–30 minutes along 8 flight lines per field. The flight lines were pro
grammed to have 70% side overlap and flight altitude was set to 60 m 
above ground. Image GPS positions were recorded for every flight. 

Visible/near infrared (VNIR) were collected with the MicaSense 
RedEdge-MX™ sensor (MicaSense, Inc., Seattle, WA, USA) multispectral 
camera with five spectral bands (i.e., blue, green, red, red-edge and near 
infrared (NIR). Details on different bands, wavelengths and bandwidths 
are shown in Table 4. The camera setup includes a GPS module which 
allows geotagging every single image collected. A downwelling Light 

Sensor (DLS) in the camera monitors varying illumination conditions 
during light overcast. A reflectance calibration target with a set of 5 
panels coated with differing grey intensities and whose reflectance 
spectra had been measured in a laboratory was installed next to the 
fields and was used for image calibration and correction. Downwelling 
radiation measured with the DLS were used to correct for varying illu
mination conditions in every single frame. The raw DN images then 
underwent photogrammetric processing in Agisoft Metashape resulting 
in georeferenced orthomosaic images. A step- and band wise empirical 
line correction was used to convert DN to surface reflectance values. 
Linear relationships fitted between image DN and surface reflectance 
values from the calibration panels were used to develop prediction 
equations (with R2 values greater than 0.9) for surface reflectance 
calibration for each date and band. 

Thermal infrared (TIR) images were captured using the Thermal
Capture Fusion Zoom camera (https://thermalcapture.com/ther 
malcapture-fusion-zoom-50mm/). The camera contains a thermal FLIR 
Tau 2 core with a thermal resolution of 0.05 K and records GPS posi
tions. Image data with a spatial resolution of 640×512 pixels was 
collected with 9 Hz frequency. Conversion of digital numbers (DN) to 
brightness temperature (BT) was carried out in TeAx Thermoviewer 
using an assumed emissivity of 1. Raw images were selected to have 80% 
front overlap and were subjected to a photogrammetric processing 
workflow using Agisoft Metashape. Canopy temperatures (Tc) were 
retrieved from BT according to the two-step process described in Hei
nemann et al. (2020). First land surface emissivity (LSE) maps were 
derived from NDVI and then the derived LSE used to calculate Tc. Ac
curacy of the retrieved Tc from the drone data, was verified against 
ground thermometers at positions of IRT sensors (IR 1 - 6; Fig. 1), after 
extraction of “pure” image Tc using NDVI masking (Zhang et al., 2019). 
Results gave an R2 value of 0.71 and RMSE of 2.1 ◦C. 

2.4. Crop water stress index (CWSI) 

CWSI (Idso et al., 1981; Jackson et al., 1981) was defined according 
to: 

CWSI =
(Tc- Ta) - (Tc-Ta)LL

(Tc- Ta)UL - (Tc- Ta)LL
(1)  

where (Tc-Ta) is the measured temperature difference between canopy 
and air in ◦C, (Tc-Ta)LL is the lower boundary representing a non-water- 
stressed condition. (Tc-Ta)UL is the upper reference under non- 
transpiring conditions. For a well-watered crop, CWSI value is close to 
0; whereas for the crop under severe water stress condition, CWSI value 
is close to 1. Several different models for CWSI estimation have been 
developed based on the different methods of calculating the (Tc-Ta)LL 
and (Tc-Ta)UL (Han et al., 2018). 

2.4.1. Empirical CWSI (CWSIe) 
According to the empirical model in Idso et al. (1981), Tc -Ta follows 

a linear relationship with VPD (Fig. 2). When crops are sufficiently 
well-irrigated, a regression line, the so-called non-water-stressed base
line (NWSB), which is equivalent to (Tc -Ta)LL, can be derived according 
to Eq. 2 as: 

(Tc- Ta)LL = aVPD + b (2)  

where: coefficients a and b are determined by linear regression of the 
scatterplot between (Tc - Ta) versus VPD and (Tc -Ta)LL is the NWSB. 

To achieve the linear relationship represented in (Fig. 2), to be 
applied in Eq. 2 two methods have typically been established (Gardner 
et al., 1992a, 1992b) and were used in this study.  

a. Single-day method, where diurnal measurements from a well-watered 
crop are taken throughout a day to capture a wide range of Tc - Ta 
and VPD values. A plot of Tc - Ta vs VPD is done and a negative linear 

Table 3 
Summary of meteorological measurements for June, July, August for the 2018, 
2019 growing seasons.  

Parameter Jun - Aug 2018 Jun - Aug 2019 

Global Radiationmean (Wm-2) 323 315 
Air Tempmean (◦C) 19.0 18.9 
Air Tempmax (◦C) 36.7 37.0 
Air Tempmin (◦C) 6.1 5.0 
Relative Humiditymax (%) 99.6 100.0 
Relative Humiditymin (%) 20.8 21.3 
Wind Speed (ms-1) 1.7 1.5 
Rainsum (mm) 91 165  

Table 4 
Sensors used and their properties.  

Sensor Parameter Value 

MicaSense RedEdge-MX™ Resolution 5 cm 
Blue band 475 nm (20 nm bandwidth) 
Green band 560 nm (20 nm bandwidth) 
Red band 668 nm (10 nm bandwidth) 
Red Edge band 717 nm (10 nm bandwidth) 
NIR band 840 nm (40 nm bandwidth) 

TeAx ThermalCapture Fusion 
Zoom 

Resolution 5 cm 
Thermal IR 
band 

10500 nm (6000 nm 
bandwidth)  
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regression line can be fitted from the period sometime after sunrise 
and sunset as shown in Fig. 2 (Idso et al., 1981; Gardner et al., 1992a, 
1992b). To establish the (Tc -Ta)LL using the empirical single- day 
method in this study, days with sufficient difference between OP and 
RD treatments (established through soil water content differences) 
were selected. The relationships between Tc - Ta against VPD 
throughout the day was examined and days in which suitable 
negative linear relationships could be established after sunrise and 
before sunset as demonstrated in Fig. 2 were used to obtain param
eters for the NWSB and Eq. 2. Maximum Tc - Ta from stressed crops 
were used for (Tc -Ta)UL.  

b. Multi-day method, in which measurements can be made for well- 
watered crops on several days in a growing season, usually at the 
exact same time 1–2 hours around solar noon when VPD is maximum 
when water stress is likely to be the highest (Gardner et al., 1992a, 
1992b; Irmak et al., 2000). 

To establish the (Tc -Ta)LL with the multi-day method, Tc and VPD 
measurements were selected on several cloud free days from OP treat
ments, 1 and 2 days after irrigation and significant rain event (> 11 mm) 
between 11 and 15 h CEST (Idso et al., 1981; Han et al., 2018). Pa
rameters for the NWSB were generated from the negative linear rela
tionship established between Tc – Ta and VPD. Cloud free days were 
considered to be days where the ratio of incoming solar radiation to 
clear-sky solar radiation (Rso) was greater than 0.7 (Taghvaeian et al., 
2012). (Tc-Ta)UL was calculated according to Eq. 3. 

The Non-transpiring baseline (NTB, Fig. 2) can be based on 
maximum Tc measurements of an extremely stressed crop or - equiva
lent to determination of the NWSB - based on Eq. 3 (Han et al., 2018): 

(Tc- Ta)UL = aVPG + b (3)  

where: a and b are the slope and intercepts derived from Eq. 2 and VPG is 
vapor pressure gradient defined as the difference between the saturation 
vapor pressure evaluated at air temperature (Ta) and at a higher air 
temperature equal to air temperature plus “b”, Ta + b, as shown in Eq. 4 
(Allen et al., 1998; Han et al., 2018): 

VPG = 6.1e

(

17.27 Ta + b
(Ta + b) + 237.3

)

- 6.1e

(

17.27 Ta
Ta + 237.3

)

(4)  

2.4.2. Theoretical CWSI (CWSIt) 
Theoretical CWSI is based on equations derived from the combina

tion of Penman-Monteith equation and the energy balance equation 
(Jackson et al., 1981): 

(Tc- Ta) =
rA(Rn- G)

ρcP
×

γ
(

1 + rC
rA

)

Δ + γ
(

1 + rC
rA

) -
VPD

Δ + γ
(

1 + rC
rA

) (5)  

where, cP is the heat capacity of air (J kg− 1 ◦C), VPD is the air vapour 
pressure (Pa), γ is the psychrometric constant (Pa ◦ C− 1), rA is the 
aerodynamic resistance (s m− 1), rC is the canopy resistance (s m− 1), Δ is 
the change (slope) of saturation vapour pressure with temperature (Pa ◦

C− 1), Rn is the net radiation (J m− 2 s− 1), G is heat flux consumed by soil 
(J m− 2 s− 1). 

The aerodynamic resistance rA can be expressed as: 

rA =
4.72[ln(z - d)/z0]

2

1 + 0.54WS
(6)  

where z is the reference height (m), d is the displacement height (m), 
d = 0.63 *h, h is the height of crop (m), z0 is the roughness length (m), z0 
= 0.13 *h, and WS is the wind speed at height z (m2 s− 1) (Jackson et al., 
1981). 

The (Tc -Ta)UL is derived by assuming an infinitely large canopy 
resistance ( rC ≈ ∞), reducing Eq. 5 to Eq. 7: 

(Tc- Ta)UL =
rA(Rn- G)

ρcP
(7) 

(Tc -Ta)LL is modelled for conditions when rC = rCP (the canopy 
resistance at full transpiration). According to Jackson et al., (1988, 
1981), rCP can be assigned a value of zero or a known rCP value. In this 
study, rCP = 0 was used reducing Eq. 5 to Eq. 8: 

(Tc- Ta)LL =
rA(Rn- G)

ρcP
×

γ
Δ + γ

-
VPD

Δ + γ
(8)  

2.4.3. Hybrid CWSI (CWSIh) 
Both empirical and theoretical CWSI models show clear drawbacks: 

empirical approaches require suitable environmental conditions, and 
theoretical models require estimates of resistance terms and accurate net 
radiation calculations. The non-transpiring baseline (Tc - Ta)UL shows a 
weaker dependence on environmental conditions, e.g., VPD, compared 
to the non-water-stressed baseline (Tc – Ta)LL. It is also challenging to 
observe fully transpiring vegetation under high evaporative demand 
(high Rn and VPD), as also well-watered vegetation can show reduced 
transpiration under such conditions. Accordingly, determination of the 
non-transpiring baseline in the empirical method is more consistent 
between years and relies less on identifying suitable days (see Section 3), 
if at least some dry periods are observed during the growing season. 

We propose using an empirical estimate of the non-transpiring 
baseline to calculate the non-water-stressed baseline from a theorical 
model. Substituting Eq. 7 in Eq. 8 shows that with a known (Tc - Ta)UL, 
the (Tc – Ta)LL can be derived without the need to estimate rA, Rn and G 
leading to a simplification: 

(Tc- Ta)LL = (Tc- Ta)UL ×
γ

Δ + γ
-

VPD
Δ + γ

(9) 

For the hybrid method, a fixed upper baseline developed from the 
empirical method was used. 

2.4.4. Statistical analysis 
Canopy temperature and meteorological variables can change 

quickly within a few seconds; hence all measured values were averaged 
over 30 min to level out short-term fluctuations. For example, values at 
solar noon 13:19 CEST in this analysis is the average of measured data 
from 13:04–13:34 CEST. Days on which irrigation was done or the total 
rain was > 1.0 mm were not included, since the wet surface of the leaves 
can falsify the temperature measurement. 

For all analysis, CWSI values for the three indices (CWSIe, CWSIt, 
CWSIh) were calculated for each IR (1− 6) sensor and averaged only 

Fig. 2. Schematic illustration of the empirical CWSI. The red arrow shows the 
evolution of the canopy-air temperature difference (Tc-Ta) of a stressed crop 
over a day. The green arrows show the change of Tc-Ta of a well irrigated crop 
over a day. The linear blue line is the non-water stressed baseline. Red dashed 
lines are isolines indicating the same level of water stress 
(Modified after Idso et al., 1981 and Deng, 2015). 
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after calculation. Plots and analysis are presented only for full cover 
periods (20 June - 08 August 2018 and 19 June - 06 August 2019), since 
it can be largely ensured during this period that little, or no soil was 
visible in the measuring range of the sensor. Other researchers applied 
similar restrictions, e.g. when canopy cover was larger than 70% 
(DeJonge et al., 2015) or when crop coverage in the field of view of IRTs 
was larger than 80% (Han et al., 2018). 

Pearson correlation coefficients (r) between midday (11:00–15:00 h 
CEST) CWSI and measured soil water content (θ) at 10 cm depth was 
used to evaluate the suitability of the indices in monitoring water stress. 
Since θ measurements were taken only at positions IR1 and IR2 repre
senting one RD and OP treatments respectively, only Tc and the three 
CWSI models developed for these 2 treatments were used to establish 
relationships with θ. To predict θ from CWSI, exponential relationships 
were established for CWSI and θ for one year and used to predict θ for the 
other year and for Tc images. Relationships buit in 2019 were used to 
generate θ maps. 

3. Results 

3.1. Establishment of non-water stressed baseline and non-transpiring 
baseline 

Diurnal patterns for OP and RD treatments for the two representative 
stressed days (24th July 2018 and 29th June 2019) which were used to 
establish the lower, (Tc - Ta)LL, and upper, (Tc - Ta)UL, baselines for the 
empirical single-day method, are presented in Fig. 3. 24th July 2018 was 
one day after RD irrigation (on 23 July) and five days after OP (on 19 
July) events; hence RD was less stressed on this day, and thus was used 
to establish the (Tc - Ta)LL. In 2019 on the other hand, OP with irriga
tions on 21 and 27 June and RD irrigation on 21 June representing 
stressed and unstressed conditions respectively on 29 June were used to 
establish appropriate (Tc - Ta)LL and (Tc - Ta)UL. Linear regression 
models were fitted for the negative Tc -Ta / VPD relationship for the 
unstressed crop between 9 and 17 h CEST for both years. Only slight 
differences exist for the slope and intercept in both years (Table 5) while 

the R2-values were significantly different from each other (2018: 0.83 
and 2019: 0.98). The (Tc - Ta)UL were significantly different for each 
year but a suitable (Tc - Ta)UL could not be established in 2018 since the 
maximum Tc-Ta for OP which was stressed on this day was only 1.2 ◦C 
which is not a reasonable value for potatoes (Fig. 3). 

The (Tc - Ta)LL equations fitted for the Tc -Ta / VPD relationships 
considering the multi-day method were significant for both years, with 
R2 values 0.88 and 0.83 (p < 0.001; Fig. 4, Table 5) for 2018 and 2019 
respectively. While the empirical (Tc - Ta)LL and (Tc - Ta)UL parameters 
derived from single-day and multi-day methods were significantly 
different from each other, they were relatively invariant between years 
when each method is considered individually. The (Tc - Ta)UL and R2 

from the multi-day method were very similar to each other (Table 5) and 
could be more useful in establishing suitable baselines for application 
across multiple years. Given this advantage and the higher stability that 
is provided by multi-day methods (Gardner et al., 1992), the final CWSIe 
was estimated from limits derived from the multi - day method. Addi
tionally, the mean value of (Tc - Ta)UL from 2018 and 2019 multi-day 
method, 5.7 ◦C, was used to calculate CWSIh, which is close to the value 
(5 ◦C) used by Gerhards et al. (2016) for potato crops in Germany. 

Derived (Tc - Ta)UL and (Tc - Ta)LL from the three CWSI models 
(CWSIe, CWSIt and CWSIh) are presented in Fig. 5. As previously 
mentioned, (Tc - Ta)UL used for the hybrid method was the mean (Tc - 
Ta)UL from the multi - day empirical method for 2018 and 2019 hence 
they are only slightly different from the empirical upper limits in both 
years. For the theoretical method, only the mean (Tc - Ta)UL is shown as 
it has a different value for each data point. The (Tc - Ta)LL values from 
the theoretical and hybrid models have similar curved patterns with 
higher scatter and lower values than those of the empirical method. The 
effect of the different limits affects the final CWSI models values. Since 
the lower baseline (Tc - Ta)LL for CWSIe was derived as the average of 
real Tc - Ta values on 17 days (2018) resp. 11 days (2019) with well- 
watered condition for the reason of numerical stability, its values are 
higher than the virtual Tc – Ta of an ideal optimally watered crop. 

Fig. 3. Linear relation between Tc-Ta 
and VPD to determine non-water- 
stressed baseline for single -day 
method, numbers denote the hour of 
day. In 2019 (right), conditions to 
determine LL and UL were ideal. In 
2018 (left), RD was irrigated one day 
before the measurements, so it can be 
considered as fully irrigated (and thus, 
was used to determine the LL) whereas 
the OP was irrigated five days before 
and only exhibited light drought stress 
(thus, no UL is plotted). The NWSB (Tc- 
Ta)LL in both years show similar 
equations.   
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3.2. Relationships between soil water content and CWSI 

Volumetric soil water content (θ) measurements were used as the 
basis to assess the suitability of the different CWSI models to represent 
stress conditions. The temporal dynamics of θ at 10 cm and 20 cm depth 
showed good correspondence with both rain and irrigation events 
(Fig. 6), with θ values increasing sharply after each irrigation or rain 
event and slowly decreasing with soil drying until the next event. In 
2018, θ at 10 and 20 cm depth showed similar variability while in 2019, 
θ at 10 cm depth was more variable than θ at 20 cm depth. This is likely 
due to the measurement position of the sensors. Previous unpublished 
research work of LWK revealed that only little irrigation water perco
lates under the top of the ridge. In 2018, maximum and minimum θ 
values for OP and RD mostly had the same magnitude throughout the 
season. In 2019 however, absolute θ values of the OP treatment 
remained above the θ values of the RD treatment. 

The seasonal course of daily midday (from 11h to 15h CEST) values 
of the three CWSI models together with θ, irrigation and significant rain 
(> 5 mm) events in 2018 are examined (Fig. 7). All CWSI models showed 
expected variations with respect to soil water content, irrigation and 
rain. However, the pattern is not observable throughout the season but 
can be seen only at certain periods. Only periods with relatively high Rg 
and VPD (Rg > 600 Wm− 2 and VPD > 20hPa; grey background Fig. 7) 
have this response implying that the crop must experience high radiative 
heating and atmospheric demand for the expected CWSI responses to 
occur. Considering only these periods, mean CWSI values for RD were 
marginally higher than for OP irrigation with values for CWSIe, CWSIt 
and CWSIh being 0.18, 0.34 and 0.49 and 0.15, 0.32 and 0.47 respec
tively (Table 6). The effect of higher (Tc - Ta)LL for CWSIe method 
(Section 3.1; Fig. 5) can be seen in its significantly smaller mean values 
compared to CWSIt and CWSIh. Most Tc-Ta values fall below the (Tc - 
Ta)LL causing most of CWSIe values to be negative and lowering the 
mean values. 

In Fig. 7 upper plot (RD), in the dry period between DOY 190 and 
DOY 204 an inverse relationship between soil moisture (SM) and CWSI 
can be observed: At DOY 190, SM is high (25%, blue circle) and corre
sponding CWSI values are low at values close to or below 0 (red triangle, 
black dot, green dot). Then during this dry period, SM declines from 
25% to 7% (at DOY 204), while CWSI increase to values around 0.4–0.7 
(depending on CWSI type). Similar behaviour is present in the same plot 
for period DOY 170–182 or in the Fig. 7 lower plot (OP) during period 
DOY 190–204. 

Similar seasonal dynamics in θ and daily midday CWSI models are 

Table 5 
Derived upper and lower baseline equations for the estimation of empirical 
CWSI. All relationships were significant with p values < 0.001.  

Method Year Day 
(DOY) 

Number of 
Days 

(Tc-Ta)LL (Tc- 
Ta)UL 

R2 

Single - 
Day 

2018 24 July 
(205) 

– 1.0-0.11 *VPD  1.2  0.83 

2019 29 June 
(180) 

– 1.1-0.13 *VPD  4.8  0.98 

Multi - 
day 

2018 – 17 3.6–0.22 *VPD  5.67  0.88 
2019 – 11 3.3–0.26 *VPD  5.35  0.83  

Fig. 4. Estimated lower and upper limits for calculating empirical CWSI 
(11–15 h CEST) according to the multi-day method. The equations for LL and 
UL show similar equations in both years. 

Fig. 5. Comparison of upper - (Tc - Ta)UL and lower - (Tc - Ta)LL limits from the empirical, theoretical hybrid models.  
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also observed in 2019 (Fig. 8), with higher CWSI values (Table 6) for RD 
(CWSIe = 0.5, CWSIt = 0.46, CWSIh = 0.61) than OP (CWSIe = 0.26, 
CWSIt = 0.32, CWSIh = 0.45). Like in 2018, only periods with relatively 
high Rg and VPD show good response, however the length of these 

periods were shorter and limited in 2019. Two periods where such 
patterns are clearly visible are the periods from 20 June - 3rd July (DOY 
171–184; grey background in Fig. 8) and 23–28 th July 2019 (DOY 
204–209; grey background in Fig. 8). 

Pearson correlation coefficients (r) between Tc and the three 
different CWSI models at midday (11:00 – 15:00 h CEST) and θ at 10 cm 
depth are shown in Table 7. To show the effects of the meteorological 
conditions on thermal measurements, correlations are shown for all the 
observations and periods when Rg > 600 Wm− 2 and VPD > 20hPa (grey 
background Fig. 7 & 8). Correlation coefficients are also shown for all 
irrigation treatments (RD & OP) combined and when they are consid
ered separately. For all considerations, r was higher for periods with Rg 
> 600 Wm− 2 and VPD > 20hPa than when all observations are 
considered. Also, r was higher for RD than OP treatments for both years, 
although better correlations exist for RD & OP and RD in 2019 than 
2018. 

3.3. Estimating of θ from CWSI 

Scatter plots of mean daily midday Tc and CWSI vs 10 cm θ are 
presented in Fig. 9. From the scatter plots and summary statistics 
(Table 6), it can be observed that θ and index values for OP and RD 
treatments were not significantly different from each other in 2018, 
while clear distinctions exist between RD and OP θ in 2019 hence Tc and 
all CWSI models were different from each other. R2 values were poor in 
2018 (R2 < 0.4) and good in 2019 (R2 ≈ 0.6) even for Tc. A comparison 

Fig. 6. Temporal evolution of the midday soil water content in 10 cm and 20 cm depth together with rain and irrigation events in 2018 (top) and 2019 (bottom).  

Fig. 7. Seasonal evolution daily midday (11–15 h CEST) soil water content at 
10 cm depth (θ), empirical CWSI (CWSIe), theoretical CWSI (CWSIt), hybrid 
CWSI (CWSIh) for the reduced (RD, above) and optimal (OP, below) irrigation 
plots, together with corresponding soil water content (θ), irrigation events, and 
significant rain (> 5 mm) for 2018. Grey background indicates periods of high 
incoming solar radiation where inverse relations between CWSI and θ can be 
observed during absence of rain or irrigation (e.g. period DOY 190–204). FC 
and PWP lines only apply to the right-hand axis. 

Table 6 
Mean and standard deviations (in brackets) for midday (11–15 h) Tc, CWSIe, 
CWSIt and CWSIh for days with mean Rg > 600 Wm− 2 and VPD > 20hPa.  

2018 2019 

Index RD OP Index RD OP 

Tc 29.19 (2.04) 28.98 (2.03) Tc 31.92 (2.63) 29.46 (2.32) 
CWSIe 0.18 (0.19) 0.15 (0.17) CWSIe 0.50 (0.20) 0.26 (0.14) 
CWSIt 0.34 (0.14) 0.32 (0.08) CWSIt 0.46 (0.12) 0.32 (0.10) 
CWSIh 0.49 (0.11) 0.47 (0.09) CWSIh 0.61 (0.13) 0.45 (0.08) 
θ 10.55 (4.20) 14.88 (7.76) θ 6.53 (2.10) 13.09 (2.35)  
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between the predicted θ and measured θ is presented in Fig. 10. Pre
dicted θ for 2018 from relationships in 2019 were generally better (R2 >

0.5; RMSE < 2%) for all CWSI models while predictions of 2019 from 
2018 were poor (R2 < 0.4; RMSE > 2%). For both cases considered in 
Figs. 9 and 10 CWSIe had the best performance for both models. 

3.4. Application to thermal images 

CWSIh was computed on the drone images replacing IRT-based Tc 
with drone-based Tc in Eq. 1. Environmental conditions during the 
drone flights are given in Table 8. 

CWSIh maps for three experimental days, 19 June, 26 June and 24 
July are shown in Fig. 11. Data collected on 24 August was not analysed 
further since most of the leaves were dried up by this date and images 
mostly captured soil temperature. 

On the 19th of June, spatial variability of CWSI due to irrigation 
treatments is not reflected in the maps. However, on 26 June and 24 
July, spatial patterns are clearly visible and reflect the corresponding 
irrigation. This confirms the previous results that spatial CWSI patterns 
can reflect the patterns of plant available soil water. The visibility of 
spatial patterns on 26 June and 24 July (but not on 19 June) is due to 
absence of rain in the period before image acquisition and the high Rg 
and VPD (Table 8) on these days, which is necessary for stress detection 
with TIR. For accurate water stress detection, crops must heat up 
significantly (high Rg), and there must be high atmospheric demand 
(high VPD). 

3.5. Potato yield results 

Yield results are beyond the focus of this paper but are given in  
Table 9 for completeness of the presentation. Reduced irrigation resul
ted in a 15% yield reduction in 2018 and 10% yield reduction in 2019, 
compared to OP. Without any irrigation (control treatment), yield 
dropped to 40% of the OP treatment in the very dry year 2018, and to 
57% in 2019. 

4. Discussion 

4.1. Non-water stressed baseline and non-transpiring baseline 

The R2 values from empirical equations to derive the NWSB ((Tc - 
Ta)LL) and NTB ((Tc - Ta)UL) from the single-day and multi-day methods 
are within acceptable limits for both methods. Gardner (1992b) reported 
that for single-day methods, R2 values should typically be greater than 
0.95 while for multi-day methods R2 values around 0.6 and 0.7 are 
acceptable. Recent studies such as Taghvaeian et al. (2012) and Berni 
et al. (2009) had R2 values of 0.98 and 0.67 for single and multi-day 
methods respectively. Nevertheless, R2 value for the (Tc - Ta)LL in 
2018 was 0.83, less than 0.98 obtained in 2019. Differences in slope and 
intercept were also recorded between both years (2018 & 2019). Dif
ferences between consecutive years for the same crop in the same place 
have also been reported in other studies; Gonzalez-Dugo et al. (2014) 
reported different values for intercept, slope and R2 for their three-year 
experiment, 2009, 2010, 2011 for mandarin and orange trees, DeJonge 
et al. (2015) and Taghvaeian et al. (2012) made similar observations for 
maize. Such differences have been attributed to climatic conditions 
between different years, crop growth stages, differences in transpiration 
rate and water uptake potential between years and instrument param
eters such as IRT view angles (Gonzalez-Dugo et al., 2014; Han et al., 
2018). In this study the differences in climatic conditions (2018 was 
drier than 2019) and crop growth stage (suitable day for single-day 
empirical method in 2018 was 24 July which was at late stages of 
tuber development while 2019 was 29 June which was in the flowering 
stage; Table 2) likely caused the differences in slope and intercept. 

The (Tc - Ta)UL were significantly different for each year which could 
be attributed to the level of stress and the amount of radiation available 
on the selected days. The stressed crop in 2019 had three additional days 
of stress compared to 2018. The low (Tc - Ta)UL of 2018 (1.2 ◦C) from the 
single - day method does not represent the maximum stress conditions 
for potatoes because the OP irrigation was not under severe stress, hence 
cannot be used as a reliable (Tc - Ta)UL. In such cases where a reliable 
upper limit cannot be derived from irrigation treatments and no other 
data is available a constant (Tc - Ta)UL value of 5.0 ◦C is recommended 

Fig. 8. Seasonal evolution daily midday (11–15 h CEST) soil water content at 
10 cm depth (θ), empirical CWSI (CWSIe), theoretical CWSI (CWSIt), hybrid 
CWSI (CWSIh) for the reduced (RD, above) and optimal (OP, below) irrigation 
plots, together with corresponding soil water content (θ), irrigation events, and 
significant rain (> 5 mm) for 2019. Grey background indicates periods of high 
incoming solar radiation where good patterns of CWSI and θ can be observed. 

Table 7 
Correlation coefficients (r) between midday (11–15 h) 10 cm θ and Tc, CWSIe, 
CWSIt and CWSIh.  

2018  

All Days Rg > 600 Wm-2 and VPD > 20hPa 

Index RD & OP RD OP Index RD & OP RD OP 

Tc -0.21 -0.29 -0.10 Tc -0.37 -0.44 -0.31 
CWSIe -0.39 -0.44 -0.29 CWSIe -0.60 -0.73 -0.50 
CWSIt -0.40 -0.48 -0.23 CWSIt -0.49 -0.71 -0.22 
CWSIh -0.41 -0.47 -0.31 CWSIh -0.61 -0.76 -0.50 

2019 

Tc -0.11 -0.32 -0.10 Tc -0.68 -0.70 -0.55 
CWSIe -0.13 -0.35 -0.21 CWSIe -0.76 -0.67 -0.60 
CWSIt -0.23 -0.51 -0.32 CWSIt -0.77 -0.81 -0.57 
CWSIh -0.16 -0.36 -0.23 CWSIh -0.77 -0.65 -0.57  
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for use (Taghvaeian et al., 2014). Typically, (Tc - Ta)UL is derived from 
severely stressed crops under ideal conditions (Idso et al., 1981; Irmak 
et al., 2000; DeJonge et al., 2015), however Al-Faraj et al. (2001) 
observed that this may not be suitable for all cases even under controlled 
experiments, hence the application of the baseline equation (Eq. 3) 

comes in handy in such cases. Also, the use of mean and maximum upper 
limit values for CWSIt and CWSIe as indicated in Fig. 5 has been widely 
applied. 

The higher (Tc - Ta)LL values from the empirical method presented in 
Fig. 5 can be attributed to the experimental setup where OP and RD 

Fig. 9. Relationship between mid- day index vs soil water content at 10 cm (%) when Rg > = 600 W/m2 and VPD > = 20 hPa for 2018 (left column) and 2019 
(right column). 
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irrigation amounts are set at 50% and 35% field capacity respectively. 
Typically, the (Tc - Ta)LL is derived from irrigation treatments with 
100% plant available water or field capacity resulting in much lower (Tc 
- Ta)LL values. The irrigation treatments in this experiment therefore 
cannot represent conditions for well-watered crops and the derived 
parameters may be suboptimal as reported by Al-Faraj et al. (2001) in 
tall fescue, although Irmak et al. (2000) had obtained suitable lower 
baselines for corn even at 50% available water holding capacity, which 

Fig. 10. Performance of predicted soil water content at 10 cm (%) for 2019 from relationships derived in 2018 (left column), and for 2018 from relationships derived 
in 2019 (right column). Dashed lines represent 1 on 1 line. 

Table 8 
Acquisition dates and time of thermal imagery and atmospheric conditions at 
time of UAV flight.  

TIME Rg (Wm− 2) Ta (◦C) VPD (hPa) 

19/06/2019 13:45 531.38 29.44 22.40 
26/06/2019 15:15 701.67 31.71 26.24 
24/07/2019 14:10 741.72 31.38 26.70  
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was expected to be the case in this study since within the first two days 
after 20–30 mm irrigation (Table 2), the water availability was unre
stricted for both of the treatments. 

4.2. Soil water content - CWSI relations 

The results from the conducted analysis demonstrate that CWSI 
models can be used to monitor crop and soil water status and dynamics. 
CWSI was expected to be high during water stress (low θ) and decrease 
during recovery (after rain/irrigation), additionally OP treatments were 
also expected to be less stressed than RD irrigation treatments. Both 
expectations are generally met in this study for all three models. How
ever, good CWSI dynamics and correlations are only observable/ob
tained under certain meteorological conditions with high Rg and VPD 
during high radiative heating and high atmospheric demand (Table 7). 

Fig. 11. CWSIh for potato field. Labels are irrigation treatments applied to the plots, i.e., Reduced (CWSI 0.65, 35% FC), Optimal (CWSI 0.5, 50% FC), and No 
Irrigation (0). 

Table 9 
Potato tuber yield results.   

OP RD Control 

2018 66.1 t/ha 56.2 t/ha 26.4 t/ha 
2019 64.0 t/ha 57.6 t/ha 36.5 t/ha  

Fig. 12. Estimated soil water content (%) for potato field based on the calibration between CWSIt and soil water content at 10 cm (Fig. 9). Labels are irrigation 
treatments applied to the plots, i.e., Reduced (CWSI 0.65, 35% FC), Optimal (CWSI 0.5, 50% FC), and No Irrigation (0). Approx. 3–4 Vol% corresponds to PWP, 15–18 
Vol% to FC. 
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Poor dynamics and correlations for the whole study period is due to the 
presence of cloudy conditions with low Rg and VPD on certain days and 
the relationships greatly improve under ”dry” conditions only (high Rg 
and VPD). Similar results have also been documented by Agam et al. 
(2013a). 

Important requirements in obtaining strong CWSI-θ relationships are 
the accurate measurement of soil water content and variation from dry 
to wet conditions. In this experiment, soil water content measurements 
for 2018 and 2019 were carried out at two different locations. In 2018 
the soil moisture sensors were placed in the valley between two ridges 
and in 2019, soil moisture measurements were done at the top of the 
ridge where the potato plant grows. The effect of this disparity can be 
seen in Fig. 6 where the difference in 10 and 20 cm soil water content for 
2018 were mostly the same while for 2019 there is a huge difference in 
soil water content between both depths. Irrigation water (and rain) 
applied at the top of the ridge tends to infiltrate mainly into the valley. 
The infiltration on the top of the ridge is much less and mostly restricted 
to the top centimetres of the ridge hence high variability of soil at the 
10 cm depth while the 20 cm is more stable. 

It would be desirable to provide a soil water content threshold for 
beginning water stress. This is however difficult to estimate as the choice 
of CWSI model affects the results, and due to limits in measurement 
accuracy, CWSI is rarely exactly 0 even for unstressed vegetation. The 
most reliable method in this case would be to treat a certain percentile of 
the lowest CWSI values observed in a season as “unstressed”. From the 
data shown in Fig. 9, this seems to be around 12–15% volumetric soil 
water content, which corresponds to a depletion fraction for no stress 
similar to FAO56 of 0.2 – 0.4 (assuming PWP=3% and FC=18%), which 
is somewhat lower than the FAO56-recommended value of 0.35 for 
potatoes (Allen et al., 1998). 

4.3. Comparison of CWSI models 

Several studies have shown that CWSI is a better indicator of water 
stress than Tc (Berni et al., 2009; Gerhards et al., 2019). However, while 
this was the case in 2018, the CWSI models did not provide significant 
improvement for 2019, an observation which was also made by DeJonge 
et al. (2015). With respect to the different CWSI models, some studies 
comparing the different models have shown CWSIe to perform better 
than CWSIt (Agam et al., 2013b; Liu et al., 2020) and others have shown 
similar performance for CWSIe and CWSIt for olives (Ben-Gal et al., 
2009) and for potato in particular (Rud et al., 2014). In this study, 
CWSIe performed slightly better than CWSIt and CWSIh in representing 
and predicting soil water content. Improvements in CWSIt can be made 
by using a seasonal average rA, which can reduce uncertainty for the 
different growth stages and instantaneous atmospheric effects (Jackson 
et al., 1988; Han et al., 2018). 

Although it is expected that CWSI should be a better indicator than 
direct Tc, DeJonge et al. (2015) found out that Tc measurements alone 
without meteorological parameterization, were equally capable as CWSI 
in representing soil moisture deficit under certain conditions and can be 
used for such instances. However, CWSI models are still advantageous as 
they consider meteorological variables and scale the value of stress to 
quantifiable limits of stress (0− 1) unlike simple Tc measurements where 
no absolute limits of stress can be established which is important in 
practical irrigation scheduling and water stress monitoring situations. 
All meteorological measurements required for estimating CWSI might 
not be readily available (Berni et al., 2009) and in addition to the lim
itations of both CWSIe and CWSIt outlined in Section 1, the use of CWSIh 
could be a suitable alternative given that it could easily be applied 
without further calculations of aerodynamic resistance rA and net radi
ation. Additionally, CWSIh combines the best aspects of CWSIe and 
CWSIt and has been recommended by Agam et al. (2013b) as a more 
practical method for daily monitoring of stress and shown to work well 
for stress monitoring in potatoes (Rud et al., 2014;). Nevertheless, some 
level of caution should be observed when assigning fixed upper limit 

values as index values are sensitive to such values (Agam et al., 2013b). 
The good level of θ predictions from the CWSIe and CWSIh models 

(mainly in 2019) demonstrate that these indices can be used to simulate 
and predict irrigation amounts from one year to another, when similar 
meteorological and soil moisture conditions prevail. Also in other 
research the use of CWSI-θ relations to simulate soil water content (θ) 
has been shown to provide reliable soil moisture estimates in the 
absence of in situ θ measurements (Taghvaeian et al., 2012; Liu et al., 
2020). 

4.4. Application to thermal images 

In the present study, CWSI maps accurately captured the different 
levels of water stress which reflected the different irrigation treatments 
in the field although errors in derived Tc presumably led to errors in 
CWSI maps. CWSI values from images were generally larger than in situ 
CWSI values which eventually led to lower estimated soil water content. 
However, the accuracy of the final soil moisture maps could not be ul
timately verified due to lack of sufficient spatially distributed in situ 
field measurements. 

Tc values were generally higher in the images than in situ Tc (by 
about 2.1 ◦C). Errors in Tc from remote sensing images have been 
attributed to atmospheric effects, differences in view angles and accu
racy of drone TIR sensors and field thermometers (Song and Park, 2020). 
Heinemann et al. (2020) stressed the importance of accurate estimation 
of specific emissivity, consideration of environmental background 
temperature and atmospheric transmittance to obtain Tc with errors less 
than 0.05 K. Additionally, co-registration inaccuracies between TIR and 
VNIR images used for extraction of pure Tc may lead to pollution by 
background signals in the final Tc image. Although various methods of 
separation of pure Tc from background signals of soil and plant shadow 
exist (Wang et al., 2010; Meron et al., 2013) and were applied to the 
images, no method has been shown to be completely perfect for pure Tc 
extraction (Zhang et al., 2019). Zhang et al. (2019) also suggested that 
TIR images could be recalibrated using coefficients derived from linear 
relationships within situ Tc measurements, however this method has not 
been widely applied yet and was not used in the current study. 

Relationships derived from in situ measurements and applied to 
CWSI maps for spatial monitoring have been shown to work well in 
predicting spatial variations of stress. For instance, Berni et al. (2009) 
produced accurate CWSI maps from canopy conductance derived from 
high spatial resolution UAV thermal imagery and relationships with 
CWSI have been used to map leaf water potential (Cohen et al., 2005, 
2017). Such maps may be used to estimate available soil water within 
the crop’s root zone so that soil water deficit can be quantified within 
the field for irrigation scheduling (Padhi et al., 2012). 

4.5. Spatial variations within CWSI and SM (soil moisture) images 

On June 19 (Fig. 11, top map), there was no water stress despite hot 
midday temperatures due to 20 mm of rain four days before. Soil water 
content was about 50–70% field capacity (FC) equivalent to 10.5–13.5 
volume % (Fig. 12, top map). June 26 was five days after the last irri
gation for both OP and RD plots and the previous days were hot and dry 
with presumably high transpiration rates. On the left (Western) side of 
the field, intensive drought stress (Fig. 11, centre map) and low soil 
water content (Fig. 12, bottom map) can be observed even in the 50% FC 
plots. In contrast on the right (Eastern) side of the field, in the same 
treatment class (50% FC) only mild drought stress and intermediate soil 
water content values can be observed. A possible explanation are dif
ferences in soil properties, for instance loamy lower soil layers with 
larger water holding capacity than the otherwise prevalent sandy layers. 
From the loamy soil horizon plants can be supplied with water and show 
less drought stress, despite the topsoil layer being very dry. These soil 
properties tend to increase towards the Eastern part (right side in 
Figs. 11 and 12) of the field. Smaller areas of mild drought stress can also 
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be seen in the Western part of the field. These interpretations are sup
ported by analysing the yield of the individual parcels (not shown), 
where the yield for the assumed better soil (with larger soil water 
holding capacity) in the East end was larger by 10–20% compared with 
the West end in both treatment variants CWSI 0.5 and FC 50%. Similar 
differences in soil properties in the same agricultural field have also 
been observed by Padhi et al. (2012) and Han et al. (2018) which also 
accounted for the differences in soil water distribution, crop growth and 
crop response to drought stress. An alternative explanation could be that 
in the stressed (red coloured) areas unfavourable soil properties or 
poorly developed plants have decreased the rooting depth such that less 
water can be absorbed by the soil. However, those areas seem too large 
to make this a likely cause. 

The blue stripe at the top margin of the 26 June image indicates wind 
drift of water from the neighbouring field during irrigation. On 24 July 
(bottom maps in Figs. 11 and 12), we can see that the RD treatment 
(35% FC) plots have relatively low stress and large θ values. Indeed, 
those plots had been irrigated just two days before (Table 2) and were 
during the time of image capture at about 60–70% FC. One may notice a 
border effect from the neighbouring treatment caused by the used irri
gation method (nozzle cart). The nozzles spray up to 9 m and can spray 
some of the water in the neighbouring parcel. For that reason, only the 
centre part of the parcel is harvested that receives the exact amount of 
irrigation water as planned. One can also notice an uneven water dis
tribution within the parcels, likely due to wind drift by Southerly winds 
during the irrigation. On 24 July, the other RD treatment (CWSI 0.65) 
had not yet received irrigation and indicates severe drought stress and 
low soil water content (less than 30% FC). The OP treatments show 
intermediate drought stress at somewhat higher SM values compared to 
the CWSI 0.65 treatment. The 50% FC treatment was irrigated on the 
following day. 

4.6. Suitability of thermal sensing in humid zones 

The sensitivity of crop water stress index is affected by cloudy con
ditions hence the use of CWSI is valid only under clear sky conditions 
(Gardner et al., 1992a, 1992b; DeJonge et al., 2015). In humid regions 
however, the number of clear sky (high Rg) days are highly limited in 
wet years (2019; Fig. 8) compared to a dry year (2018; Fig. 7). This 
limits the use of CWSI in humid regions to periods with favourable at
mospheric conditions. Even on days with high mean Rg, high hourly 
fluctuations in Rg due to clouds may lead to low CWSI values and an 
underestimation of stress (Agam et al., 2013a; Irmak et al., 2000). 

Given these limitations, the use of an artificial wet (lower limit) and 
dry (upper limit) reference has been recommended by Jones (1999) in 
computing CWSI in humid regions. The approach is based on the concept 
that both reference surfaces change with corresponding change in can
opy temperature under all atmospheric conditions. However, reference 
surfaces may not always be available and have been known to fail or 
disturbed by the meteorological factors (Jones, 1999; Gerhards et al., 
2018; Bian et al., 2019). Alternatively, an adaptive CWSI algorithm has 
been developed by Osroosh et al. (2015) and has been shown to be 
effective in irrigation scheduling on cool and humid days. The algorithm 
estimates dynamic reference temperatures (upper and lower limits) 
which adjust for temporary weather conditions and avoid erroneous 
irrigation signals (Osroosh et al., 2015). Such a system can be tested and 
may prove useful in humid regions. 

5. Conclusion 

Irrigation experiments over two years were carried out to analyse the 
suitability of three crop water stress indices in monitoring water stress 
and assess their potential use in monitoring volumetric soil water 

content in humid/sub-humid environments. Results revealed that all 
CWSI models responded to variable irrigation treatments and showed 
good relationships with volumetric soil water content especially when 
irrigation experiments and measurements are properly done. In general, 
CWSIe models performed better than CWSIt and CWSIh. CWSI-θ re
lations calibrated in one year, could effectively predicted θ in another 
year with little errors of 1–2%. For practical purposes, CWSIh could be a 
promising alternative to the traditional CWSI (CWSIe and CWSIt) 
models since it requires the least amount of input variables. 

The research demonstrates the propensity to accurately monitor field 
soil moisture conditions under “ideal” (i.e., high radiation, dry air) 
environmental conditions using TIR observations. The CWSI models 
could therefore be used for water stress monitoring and irrigation 
advice, thereby complementing or replacing traditional plant and soil 
water content measurements. In humid/sub-humid environments the 
possibility of application on a daily basis may however be limited by the 
limited number of cloud free days in a normal year. Although a few 
methods addressing this issue have been reported so far, more studies 
need to be carried out on their usefulness and new models need to be 
developed before CWSI can be widely used for stress monitoring and 
irrigation management in energy limited/humid zones. 

With the future candidate TIR missions to space, the Copernicus 
LSTM (Land Surface Temperature Monitoring) and the NASA SBG 
(Surface Biology and Geology) missions, that will provide spatially 
continuous LST information at field scale, water stress indices are ex
pected to face a wider application in agricultural water management 
applications. 
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