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Abstract
In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest manage-
ment schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely 
due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect 
performance and plant damage parameters. However, recent changes in the political framework in many countries demand 
future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control 
attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies 
and new scientific insights into the ecology of insect–Brassica interactions are becoming available. Here we discuss and 
prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisa-
tion in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays 
benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape 
cultivars with multiple insect pest resistances/tolerances in the near future.

Oilseed rape breeding and production 
within changing environments

Oilseed rape/canola (Brassica napus) is a very young culti-
vated species originating from interspecific hybridisation of 
its natural ancestors B. oleracea (cabbage) and B. rapa (tur-
nip rape) a few thousand years ago through domestication 
and intensive artificial selection by humans (Chalhoub et al. 
2014). Natural wild forms of B. napus are not known (Mason 
and Snowdon 2016). Oilseed rape is a major crop in central 
Europe, Canada, China, South Asia and Australia and has 
significant economic value (e.g. Neik et al. 2017). Moreo-
ver, oilseed rape plays an important role in the improvement 
in soil structure and disease suppression for cereal crops 
(Angus et al. 2015) and is thus a favourable preceding or 
break crop in rotation schemes in cereal-dominated agricul-
tural production systems (e.g. Sieling and Christen 2015). 
Due to the strong and constant selection for some major 
traits (e.g. low erucic acid and glucosinolate seed content) 
and the extensive crossbreeding of cultivars in rapeseed 
breeding programs worldwide over the last 70 years, severe 
genetic bottlenecks were imposed and the genetic diversity 
of modern cultivars has been enormously reduced (Mason 
and Snowdon 2016). This loss of genetic diversity may also 
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have been accompanied by a loss of defence compounds and 
resistance against fungal pathogens and insects in modern 
elite cultivars (Gols et al. 2008a; Chen et al. 2015). Oil-
seed rape is susceptible to many fungal diseases and insect 
pests (e.g. Hegedus and Erlandson 2012; Neik et al. 2017). 
A global survey among 22 experts from 10 countries on 
major biotic constrains of oilseed rape production in 2019 
revealed 16 diseases and 37 insect pests, as well as nema-
todes, slugs and snails, to be present in oilseed rape or 
mustard since 2016 (Zheng et al. 2020). Globally, insect 
pests play a more important role than fungal diseases in oil-
seed rape production, except for Australia. With 17 insect 
pests, Europe has the highest diversity compared to China, 
Canada and Australia. Only one single insect, the diamond-
back moth (Plutella xylostella), has been reported to occur 
worldwide. Damage by insect pests is resulting in an annual 
yield loss in oilseed rape production of 15% on a European 
scale (Milovac et al. 2017). In contrast with the management 
of fungal diseases, management of insect pests in oilseed 
rape has relied on pesticides in the last decades due to the 
lack of effective methods of crop rotation, tillage, biocontrol 
and cultivar resistance (Zheng et al. 2020). The frequent 
use of a limited number of insecticides sharing the same 
mode of action resulted in insect populations with resist-
ance against various classes of insecticides (e.g. pyrethroids) 
within the last decade worldwide including populations of 
the diamondback moth, of the pollen beetle (Brassicogethes 
aeneus), of the cabbage stem flea beetle (Psylliodes chryso-
cephala) and of the cabbage seed weevil (Ceutorhynchus 
obstricus, syn. assimilis) (Hervé 2018). In Europe, the 
ban of neonicotinoid seed treatments in 2013 resulted in 
an increased insect damage and decreased yield of oilseed 
rape production (e.g. in the UK, Dewar 2017). Also, new 
product approvals for conventional crop protection products 
are declining (Phillips McDougall 2018). At the same time, 
climate change is resulting in changes of insect populations 
and, consequently, movement of insect pests into so far non-
affected oilseed rape production areas has been predicted 
(Bale et al. 2002). These developments are currently threat-
ening oilseed rape cultivation. Because insect pest manage-
ment strategies exclusively relying on insecticides are not 
sustainable, a fundamental shift towards innovative and inte-
grated management approaches is urgently required.

Challenges and chances for breeding 
towards effective insect resistance

For maize, rice and wheat, it has been reported that publicly 
funded crop breeding for insect resistance is a long story of 
success, and according to Smith (2021) conventional breed-
ing of insect-resistant crop plants is still the best way to 
feed the world population. Known resistances against insects 

are predominantly based on quantitative resistances while 
qualitative, monogenic resistances based on gene-for-gene 
interactions are rare and limited to phloem-sucking insects 
(VanDoorn and de Vos 2013; Kliebenstein 2014). However, 
for these monogenic inherited insect resistances plant breed-
ing companies have successfully exploited natural variation 
in the last decades in several horticultural and agricultural 
crops (VanDoorn and de Vos 2013). In contrast, no mono-
genic resistance against any insect pest in oilseed rape is 
known and currently no cultivars are available which show 
tolerance or resistance against any of the commercially 
important insect pests (Hervé 2018). Also, in the primary 
germplasm pool of older oilseed rape cultivars no reduced 
insect susceptibilities has been found—except for aphids 
(e.g. Dunn and Kempton 1969; Table 1).

Another reason why oilseed rape breeding companies and 
research institutions did not get engaged in insect resistance 
breeding in the past is the phenotyping bottleneck which 
prevented screening of hundreds of accessions in parallel 
(Goggin et al. 2015). Phenotyping for insect resistance is 
challenging because (i) major insect pest species are dif-
ficult to rear in the laboratory, (ii) plant–insect interactions 
depend strongly on the plant developmental stage and on 
the environment and (iii) phenotyping in the field relies on 
natural insect populations infesting the fields, which vary 
strongly between years and locations. However, in the last 
years methods have been developed that try to overcome this 
bottleneck and might enable more efficient insect resistance 
breeding by screening large plant populations of oilseed rape 
and other crops more rapidly and precisely. The development 
and application of low-cost high-throughput phenotyping 
(HTP) methods in combination with newly generated large 
genomics datasets are of critical importance for the future 
success of breeding insect-resistant oilseed rape cultivars. 
For plant diseases and insect pests, the application potential 
application of sensors in HTP has been rated low compared 
to other crop phenotyping traits under field conditions (Jin 
et al. 2020). The direct measurement of insect activity in the 
field by sensor-based HTP methods is challenging. Thus, for 
application in commercial breeding or pre-breeding indi-
rect traits have to be identified which are simple and cost-
effective to measure in high-throughput in the greenhouse 
or field and which are strongly correlated with the complex 
target traits mediating insect resistance and co-vary with 
insect performance (Goggin et al. 2015). These proxy traits 
should preferably be less susceptible to genotype × envi-
ronment (G × E) interactions than insect performance, e.g. 
leaf surface temperature, photosynthetic activity and other 
physiological characteristics of crops will change under 
insect infestation and are associated with specific spectral 
features. For this reason, unmanned aerial vehicle pheno-
typing platforms have been considered a good choice for 
developing HTP platforms for insect resistance screening 
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in the field in the future (Song et al. 2021b). Kloth et al. 
(2015) demonstrated that under controlled conditions high-
throughput phenotyping for aphid feeding on leaf discs by 
an automated video tracking system is feasible using 344 A. 
thaliana accessions. Chen et al. (2012) screened large Arabi-
dopsis populations by an indirect approach, using ELISA to 
detect Turnip yellows virus (TuYV) transmission, and used 
virus titers as a proxy trait for possible aphid resistance. 
This approach can be easily transferred to oilseed rape. Also, 
Kirkeby et al. (2021) showed that camera-based recognition 
of insect species affecting oilseed rape by machine learning 
approaches can be applied and might in the near future allow 
local spraying on field sections and local automated counting 
of insect species for evaluating insect genotype preferences 
on a plot basis in the field. The emerging high-throughput 
phenotyping technologies together with knowledge-based 
identification of breeding targets from fundamental studies 
on molecular/metabolomic networks (trait discovery) are 
also critical to enable us to breed for integrated insect pest 
protection by targeting and screening for plant–insect–antag-
onist interactions in the greenhouse and field. However, sim-
plified and indirect approaches, as presented by Chen et al. 
(2012), carry the risk of not being able to identify some 
resistant genotypes, e.g. phloem-localised resistance mecha-
nisms do not necessarily prevent an infection with TuYV.

Although breeding and host plant resistance always have 
been considered to be a key step in integrated pest manage-
ment (IPM), it has been rarely addressed in the framework 
of biocontrol or biopesticides. IPM has mainly been domi-
nated by individual isolated measures that have been used 
as replacements for chemicals, but not based on true inte-
gration of different management strategies (Thomas 1999; 
Deguine et al. 2021). Nevertheless, breeding seems to be 
the most promising technology within IPM, besides crop 
rotation. Therefore, breeding for insect resistance should 
be developed as a central part of an integrated protection 
strategy against insect pests in the future. To implement oil-
seed rape cultivars with a high resilience to combined biotic 
and abiotic stresses within IPM regimes, cultivar mixtures, 
diversified cultivars and intercropping have been suggested 
(Lamichhane et al. 2018). Synthetic cultivars are 1 type of 
diversified cultivars, which are produced based on random 
mating of a number of selected inbred lines with a superior 
general combining ability and subsequent propagation of 
bulked seed (Becker 1988). The cultivation of these het-
erogeneous synthetic cultivars might result in local adapta-
tion, buffering across certain environments, e.g. by provid-
ing resilience against diverse insect pests, reduction in pest 
damage and stabilisation of yield—however, providing only 
a reduced yield level compared to modern homogeneous 
hybrid cultivars. For oilseed rape, the cultivation of syn-
thetic cultivars is underexplored (Falk et al. 1998; Niemelä 
et al 2006), but might be one long-term strategy, e.g. by 

producing synthetic cultivars from founder parents with dif-
ferent glucosinolate profiles providing resistances against 
different generalist and specialist insect pest species of oil-
seed rape.

Rapidly developing high-throughput phenotyping meth-
ods together with the increasing availability of resequencing 
and other genomic data for many B. napus lines, resynthe-
sised B. napus, and interspecific and intergeneric Brassica 
crosses open up new perspectives have recently emerged 
(Hu et al. 2021). The integration of genetic and genomic 
data to complement phenotyping data and the use of pre-
dictive algorithms in breeding is a process sometimes also 
referred to as Breeding 3.0. Soon, we will be entering a new 
phase in breeding for many crops including oilseed rape, 
termed Breeding 4.0. This breeding phase, which will be 
catalysed by major technical advances in high-throughput 
phenotyping, genetics and information systems, represents a 
new chance to develop insect resistant oilseed rape cultivars 
(Wallace et al. 2018). In the following parts (i) promising 
breeding resources and breeding strategies and (ii) target 
traits conferring insect resistance are discussed. The identi-
fied target traits have been classified based on their level of 
technological maturity and the time perspectives for reali-
sation in breeding. Time perspectives for insect resistant 
breeding lines to be available for plant breeding companies 
addressing different breeding targets have been classified as 
short term with 5–15 years, medium term with 15–25 years 
and long term with more than 25 years (Table 2, Fig. 1).

Breeding resources and breeding strategies

Novel resistances from interspecific hybridisation

The primary germplasm pool of B. napus is thought to lack 
resistances to many insect pests (Hervé 2018 and sum-
marised in Table 1). However, interspecific hybridisation 
has historically been widely used in the Brassica genus 
to introgress useful traits into crops (reviewed by Katche 
et al. 2019; Quezada-Martinez et al. 2021). Therefore, 
moving useful insect resistances from related species into 
B. napus via resynthesis and interspecific hybridisation is 
an approach which should be considered to address this 
problem. B. napus as an allotetraploid species with the 
A and C genomes shares a subgenome with progenitor 
species B. rapa (2n = AA) and B. oleracea (2n = CC), as 
well as with its sister allopolyploid species Indian mustard 
(B. juncea; 2n = AABB) and Ethiopian mustard (B. cari-
nata; 2n = BBCC). Interspecific hybridisation to produce 
hybrids between B. napus and each of these species is rela-
tively straightforward and has been achieved by hand pol-
lination in each case without the need for embryo rescue 
or other interventions (reviewed by FitzJohn et al. 2007). 
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Although crossing success is highly genotype dependent, 
the easiest cross is considered to be B. napus × B. rapa, 
followed by crosses with B. juncea, then B. carinata and 
finally B. oleracea. An additional major advantage of 
hybridisation with species which share a subgenome with 
B. napus is that resistances can be readily transferred via 
homologous recombination between chromosomes from 
the shared subgenome in the interspecific hybrid (reviewed 
by Mason and Chevre 2016). Hypothetically, even quan-
titative resistances could be transferred via A–A chromo-
some pairing from B. rapa and B. juncea to B. napus and 
via C–C chromosome pairing from B. oleracea and B. 
carinata to B. napus. The recombination between shared 
subgenomes approach is by far the easiest way to use inter-
specific hybridisation for rapeseed crop improvement and 
has been successfully used in the past for a number of 
traits (see Katche et al. 2019; Quezada-Martinez et al. 
2021 for review). Unfortunately, these genomes are also 
less likely to contain useful resistances that are not pre-
sent in rapeseed already than more distantly related spe-
cies, due to the high level of gene conservation between 
the Brassica subgenomes present in the different species 
(Chalhoub et al. 2014). So far, some evidence suggests this 
also applies to insect resistance traits (Austel et al. 2021). 

Thus, we may need to also consider the wider relatives 
when breeding for insect resistance (Table 1).

Although there are many species which can hybridise 
with B. napus and for which we know there is at least a 
chance of chromosome introgression, there are several 
major barriers which need to be considered. Firstly, produc-
tion of interspecific hybrids in the first place may require 
tissue culture intervention (rescue of fertilised ovules or 
embryos), or more exotic techniques such as somatic fusion 
(for very distantly related species, where sexual reproduc-
tion between species is not possible). Secondly, interspecific 
hybrids produced may only very rarely undergo recombina-
tion between subgenomes during meiosis (e.g. Gaebelein 
et al. 2019). This recombination is critical to transfer small 
chromosome segments containing the desired introgression 
locus from the wild relative to the crop. Transfer of a whole 
chromosome and subsequent production of disomic addition 
lines is generally undesirable due to linkage drag, i.e. the 
relatively high chance that many agronomically deleterious 
alleles or genes will also be transferred into the crop with the 
addition of this chromosome. However, recombination fre-
quency is dictated both by sequence similarity (which gen-
erally decreases with increasing phylogenetic distance) and 
by a number of as-yet-unknown or not well-characterised 

Fig. 1   Schematic representa-
tion of major breeding tools/
strategies and breeding targets 
with time-perspective for future 
realisation and availability of 
insect resistant breeding lines in 
integrated insect pest protection 
of oilseed rape.  Short-time 
perspective (5–15 years),  
medium-time perspective 
(15–25 years),  long-
time perspective (more than 
25 years). Pictures are obtained 
from BioRender.com
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genetic factors which may be specific to species or lineages 
(reviewed by Pelé et al. 2018; Mason and Wendel 2020). 
Therefore, recombination may either take place extremely 
infrequently, such that recovery of introgressed segments is 
a gamble and/or requires huge populations, or there may be 
little to no chance of recombination occurring between the 
target region containing the “wild” locus of interest and B. 
napus, due to poor homoeology or recombination rates in the 
target area (see e.g. Adamczyk-Chauvat et al. 2017). Despite 
these challenges, there are some examples of the use of wild 
relatives which do not have a shared genome for Brassica 
crop improvement (reviewed by Katche et al. 2019). For 
example, resistance to mustard aphid (Lipaphis erysimi) was 
recently successfully introgressed from wild species B. fru-
ticulosa (F genome) into B. juncea (2n = AABB) (Agrawal 
et al. 2021). Furthermore, introgression of Sinapis alba into 
B. napus seems to be a promising strategy, as intergeneric 
hybrids were resistant to seed pod weevil (Ceutorhynchus 
obstrictus) and root maggots (Delia radicum, Delia floralis) 
(Dosdall et al. 2000; Dosdall and Kott 2006). However, due 
to the phylogenetical distance, this is a labour and time-
intensive approach with a long-term perspective to gain sta-
ble hybrid B. napus lines.

An additional barrier to the use of interspecific hybridi-
sation for improvement in insect resistance in B. napus is 
that we know very little about the underlying genetics or 
physiology of the insect resistance that has been identi-
fied in wild relatives. This is not 100% prohibitive, since 
we can carry out interspecific hybridisation without a good 
understanding of the genetics underlying a specific trait, 
as plant breeders have done for the last hundred or more 
years. However, a better understanding of the inheritance of 
the resistance and the utility in the field will help targeting 
traits for which interspecific hybridisation is a good choice 
of method, i.e. traits which are highly heritable, and which 
confer qualitative, monogenic (single locus) resistances with 
little environmental variance. Interspecific hybridisation is a 
breeding strategy which can be realised within a short term 
(use of resynthesised lines) to long-term range (secondary 
and tertiary germplasm) (Fig. 1). Wide Brassica relatives 
of B. napus show high potential for use (Table 1), but both 
prevalence of resistance and mechanisms of resistance in 
wild relatives are still very under-studied.

Transgenic, genome engineering and mutation 
breeding approaches

In the past, transgenesis has been broadly applied to protect 
some major crop species against coleopteran and lepidop-
teran insect pests. Genes for endotoxins (Cry toxins) derived 
from the bacterium Bacillus thuringiensis (Bt) have been 
used commercially in transgenic crops (genetically modified 
organisms, GMOs) since the mid-1990s, most commonly 

in maize and cotton, but not in oilseed rape (Sanahuja et al. 
2011). Although the first Bt oilseed rape lines, effective 
in the control of the diamondback moth and the cabbage 
looper (Trichoplusia ni), were developed at the same time 
when most other Bt crops were obtained (Hervé 2018), Bt 
oilseed rape lines were not marketed until today. However, 
Bt oilseed rape has been found to be effective also in field 
experiments against the diamondback moth and the corn 
earworm Helicoverpa zea (Ramachandran et al. 1998). One 
well-known problem of transgenesis is that in Bt crops the 
development of insect populations with resistance against Bt 
toxins is a common phenomenon. Populations of P. xylos-
tella have been shown to develop resistance against micro-
bial Bt formulations, and populations of Cry1A-resistant P. 
xylostella have been shown to survive on transgenic crucifers 
including oilseed rape (Sayyed et al. 2003). Other transgenes 
used in oilseed rape to create insect resistant plants were pro-
tease inhibitors, lectins and chitinases which showed varying 
effectivity (summarised in Hervé 2018).

Recent developments that focus on the application of 
agrobiotechnological approaches focus on RNA interference 
(RNAi), a cell-based mechanism leading to a strong silenc-
ing of gene expression (knock down) of a selected gene in a 
target organism. This mechanism can be exploited for crop 
protection by delivery of double stranded (ds) RNA to crop 
plants via spraying (spray induced gene silencing, SIGS) 
and via expression of ds RNA coding constructs in trans-
genic plants (Zotti et al. 2018; Liu et al. 2020a, b; Chung 
et al. 2021). The agrobiotechnological approach that uses 
RNAi technology mediated by dsRNA expressing transgenic 
plants is also termed host-induced gene silencing. However, 
although many studies showed insect growth inhibition as 
well as an increasing lethality as a consequence of dsRNA 
feeding for many insect pest species, indicating a high poten-
tial of this approach for efficient insect pest control, only a 
few of these approaches have been transferred into com-
mercial products as genetically engineered plants and none 
as commercially available spray applications. This suggests 
that more research into the efficient delivery, reduced deg-
radation and reduced off-target effects in beneficial species 
is required (Chung et al. 2021).

More recently, powerful highly specific genome engi-
neering (or genome-editing, GE) technologies, especially 
CRISPR/Cas9-based gene editing, have become available 
and have been applied to manipulate genes in oilseed rape 
increasing the toolbox for agrobiotechnology. In contrast 
with RNAi-based approaches which are leading to a knock 
down of expression GE approaches can lead to a complete 
knock out of the expression of selected genes. These GE 
technologies might have a promising perspective for applica-
tion in molecular breeding of oilseed rape (summarised in 
Chang et al. 2021; Gocal 2021). Many examples for different 
plant species exist where genome editing was used to induce 
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plant resistance against fungal pathogens, e.g. Sclerotinia 
sclerotiorum in oilseed rape (Sun et al. 2018), powdery mil-
dew in tomato (Nekrasov et al. 2017), Magnaporthe oryzae 
in rice (Wang et al. 2016) and Phytophthora infestans in 
potato (Kieu et al. 2021). In all these examples, different 
susceptibility genes, e.g. mlo genes (Nekrasov et al. 2017), 
were knocked out. Research and breeding in crops includ-
ing oilseed rape have been focusing for a long time on plant 
resistance genes (R genes), e.g. for development of improved 
oilseed rape cultivars with resistance against fungal patho-
gens (Lv et al. 2020). However, single dominant R genes are 
often overcome in the field by pathogens’ evolution within a 
few seasons (Rouxel and Balesdent 2017). Enhancing natu-
ral immunity by understanding and implementing ‘suscepti-
bility’ gene-mediated natural pathogen and insect resistance 
mechanism by CRISPR/Cas9-based knockout is an attrac-
tive alternative to the nowadays commonly applied time-
consuming breeding for R gene-mediated resistance (Pavan 
et al. 2010; Zaidi et al. 2018). ‘Susceptibility’ genes are 
coding for plant factors which are targeted by pathogen/pest 
effector proteins controlling plant susceptibility. Insect pro-
teins can be found inside the saliva/oral secretions, which, 
for example, function as effector proteins suppressing plant 
defence responses. Most insect effectors were identified for 
aphids in Arabidopsis so far, e.g. for the green peach aphid 
(M. persicae) (Bos et al. 2010; Elzinga et al. 2014; Mugford 
et al. 2016; Wang et al. 2021). Only rarely the function of 
effectors has been elucidated, often because knock down of 
‘susceptibility’ genes only provides quantitative effects and 
a slight decrease in susceptibility (Åhman et al. 2019). GE 
is still an emerging tool and for insect resistance there are 
only a few examples where GE was applied to plants making 
them resistant against economically important insect pests 
(e.g.Tyagi et al. 2020). CRISPR/Cas9 holds large promise as 
a breeding tool for specific and fast editing of target genes. In 
cases where suitable target genes have been identified, it has 
a short-term perspective for realisation in engineering insect 
resistance in oilseed rape. In most cases, more research is 
required to identify the most suitable target genes exhibiting 
strong effects on insect resistance of oilseed rape in the field 
also considering the polyploid nature of the crop (Mason 
and Snowdon 2016). Although GE by CRISPR/Cas9 is sug-
gested to have a high economic potential as a new breeding 
technique, its commercial exploitation in breeding is finan-
cially risky and unattractive for companies in the near future 
due to current regulations by process-based criteria in the 
European Union according to the rules for genetically modi-
fied organisms (GMOs). This is not the case in many other 
countries like the USA, Argentina, Canada and China where 
GE is regulated by product-based criteria or on a case-by-
case basis (Zhang et al. 2020).

Progress in random mutagenesis approaches like TILL-
ING (Targeting-Induced Local Lesions in Genomes) 

allowing the fast detection of mutations in any genome has 
made this technology an alternative to the targeted CRISPR/
Cas9 mutation technology, especially in Europe, as TILL-
ING is not covered here under GMO legislation rules 
(Holme et al. 2019). Also, for B. napus substantial genomic 
and pan-genomic resources are nowadays available (e.g. 
Song et al. 2021a) which speed up analysis of the available 
B. napus TILLING populations for detection of mutations in 
target genes. This makes mutant B. napus populations (Wang 
et al. 2008; Harloff et al. 2012; Gilchrist et al. 2013) a valu-
able resource for reverse genetic approaches, e.g. to iden-
tify variation in glucosinolate genes useful for breeding of 
oilseed rape with modified glucosinolate profiles and insect 
resistance (see "Breeding for modified glucosinolate profiles 
in non-seed plant organs" section). New opportunities for the 
identification of useful mutants are also arising particular 
due to the availability of more powerful mutant population 
analysis methods based on the application of high-through-
put amplicon or whole genome sequencing approaches des-
ignated TILLING by sequencing (e.g. Sashidhar et al. 2019).

The improvement in specificity and throughput of 
genome editing and genome-wide mutation analysis tech-
nologies achieved in recent years makes the introduction 
of new insect resistance traits into oilseed rape via these 
technologies a breeding strategy with a promising short-term 
perspective (except for Europe for GE due to legalisations 
issues, Fig. 1).

In the following sections, we are presenting promising 
breeding targets based on the current knowledge on their 
involvement in insect resistance/tolerance in oilseed rape.

Breeding targets conferring insect resistance

Breeding for modified glucosinolate profiles 
in non‑seed plant organs

Glucosinolates (GSL) are involved in the defence of plants 
against pathogens and herbivorous insect (Ahuja et al. 2010; 
Liu et al. 2021). Brassicaceae species react upon insect her-
bivory with a “mustard oil bomb” consisting of GSL and 
their hydrolyzing enzymes (myrosinases) to release toxic 
degradation products that act as insect deterrents and toxins 
(Matile 1980; Chhajed et al. 2020). Glucosinolates, their 
breakdown products and plant volatile compounds (see 
below) hold great prospects for application in integrated 
pest management (Ahuja et al. 2010). However, some spe-
cialist insects have developed metabolic countermeasures 
to handle this “mustard oil bomb” and are even attracted 
by certain GSL and their hydrolytic products as cues for 
oviposition and feeding (Giamoustaris and Mithen 1995 ; 
Björkman et al. 2011). Oilseed rape has undergone severe 
genetic bottlenecks in the 1970s and 1980s due to intensive 
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breeding for seed nutritional quality improvement for cul-
tivars with low levels of seed GSL and low levels of seed 
erucic acid (00 cultivars). Selection for low total seed GSL 
content is performed as a standard selection approach on a 
regular basis by commercial breeders using non-destructive 
near infrared-reflectance spectroscopy (NIRS) technology 
(Hom et al. 2007). Besides the reported general positive cor-
relation of seed and leaf GSL concentrations, low seed GSL 
(00) oilseed rape cultivars tend to contain similar concen-
trations of GSL in the leaves compared to high seed GSL 
(0) oilseed rape cultivars suggesting that breeding for the 
low seed GSL trait did not indirectly select for reduced total 
leaf GSL content or modified leaf GSL profiles in B. napus 
(Schilling and Friedt 1991; Mithen et al. 1992; Beckmann 
et al. 2007; Liu et al. 2020a, b). In addition, 00 cultivars 
have been shown to exhibit similar susceptibilities to pests 
and pathogens compared to 0 cultivars (Mithen 1992). Some 
studies in A. thaliana and B. napus also suggest that GSL 
produced in seeds and vegetative tissues are regulated inde-
pendently (Fieldsend and Milford 1994; Li et al. 1999; Rosa 
1997; Brown et al. 2003). Recently, Liu et al. (2020a, b) 
identified a candidate gene on chromosome A03 respon-
sible for high leaf and low seed GSL concentrations and 
reported an independent inheritance of seed and leaf GSL in 
B. napus. Moreover, this candidate gene explains about 30% 
of the leaf GSL variation in low seed GSL genotypes and 
seems not to be fixed during the selection in double-low oil-
seed rape breeding programs (Liu et al. 2020a, b). Tan et al. 
(2021) recommended the mining for further alleles involved 
in the transport of GSL for the breeding of B. napus cultivars 
possessing low seed GSL and high GSL concentrations in 
vegetative tissues and identified BnaC02.GTR2 as another 
potential candidate for altering seed and leaf GSL profiles. 
However, between resynthesised oilseed rape lines the total 
as well as individual GSL concentrations in the leaves differ 
substantially (Cleemput and Becker 2012). It was also found 
that these differences in leaves and stems of resynthesised B. 
napus are associated with reduced susceptibility against the 
cabbage stem weevil (Ceutorhynchus pallidactylus) and the 
rape stem weevil (Ceutorhynchus napi) (Eickermann et al. 
2011; Schaefer-Koesterke et al. 2017; Schaefer et al. 2017). 
Similarly, it was found that in interspecific crosses of B. 
napus with S. alba the modified GSL profiles were associ-
ated with resistance to the cabbage seedpod weevil (McCaf-
frey et al. 1999; Dosdall and Kott 2006). Yet, breeding for 
modified GSL levels in vegetative tissues of oilseed rape has 
been described as a “double-edged sword.” Depending on 
the individual GSL compositions and concentrations, certain 
GSL might increase resistance to generalist pest herbivores, 
whereas they might at the same time also make plants more 
susceptible to specialist pest herbivores (Björkman et al. 
2011; Bruce 2014; Hopkins et al. 2009). Thus, the nature of 
the GSL components addressed as indirect breeding targets 

for increasing insect resistance must be carefully chosen. 
Although some insects have developed strategies to over-
come the toxicity of the glucosinolate–myrosinase system 
(Winde and Wittstock 2011), high concentrations of total 
GSL can affect even specialist insects and this may result in 
plant resistance (Hopkins et al. 2009; Björkman et al. 2011). 
GSL levels can be induced by herbivore damage, mainly 
by chewing insects which increase jasmonic acid levels in 
the plant, having positive or negative effects on subsequent 
herbivory (Bartlet et al. 1999; Ponzio et al. 2017; Badenes-
Pérez 2021). As many glucosinolates and isothiocyanates are 
released upon tissue damage by the glucosinolate–myrosi-
nase system chewing insects are more affected compared 
to phloem-sucking insects. Phloem-sucking insects are able 
to avoid most contact with myrosinase by feeding from the 
phloem (Sun et al. 2020), and some of them even sequester 
glucosinolates to use them against their enemies like the 
specialised cabbage aphid (Brevicoryne brassicae) (Kazana 
et al. 2007). However, non-specialised aphid species like the 
green peach aphid M. persicae are affected by an increase in 
indol GSL levels in leaves of A. thaliana (Kim et al. 2008). 
Elevated and reduced concentrations of total, isothiocyanate 
releasing and specific GSL in vegetative tissue of oilseed 
rape have been identified as suitable breeding targets for 
resistance against different generalist and specialist insect 
pest (summarised in Table 3). Mithen (1992) suggested to 
increase the overall leaf GSL levels without changing the 
relative proportions of different GSLs, and to increase con-
centrations of gluconapin, glucobrassicanapin and sinigrin, 
which are hydrolysed to isothiocyanates with high bioac-
tivity against most tissue-damage causing pathogens and 
generalist insect pests. We suggest to breed for a decrease 
in glucobrassicin and neoglucobrassicin to provide resist-
ance against weevils and root flies, to breed for a decrease 
in gluconasturtiin and propenyl isothyocyanates to provide 
resistance against weevils, to breed for a decrease in progoi-
trin to provide resistance against flea beetles and aphids and 
to breed for an increase in total GSL to provide resistance 
against aphids in B. napus elite cultivars (Table 3). Due to 
the high diversity of pest insects, there will be no particular 
glucosinolate compounds, which are active against all pest 
insects.

Besides these feeding related glucosinolates, Brassi-
caceae emit volatile glucosinolate breakdown products 
such as isothiocyanates, thiocyanates, nitriles, and epith-
ionitriles (Halkier and Gershenzon 2006). The emission 
of constitutive oilseed rape VOCs (volatile organic com-
pounds), i.e. volatiles emitted by the undamaged plant, could 
be manipulated by breeding to achieve a lower emission of 
pest-attracting VOCs. For instance, different Brassicaceae 
species vary in their attractiveness to the pollen beetle for 
oviposition. These differences can be attributed mostly to 
scent compounds from the flower buds, which are preferred 
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by the winter generation of the beetle (Ruther and Thie-
mann 1997; Jönsson et al. 2007). To reduce the olfactory 
attraction of pollen beetle to oilseed rape, the biosynthesis 
of 2-phenylethyl, 3-butenyl and 4-pentenyl isothiocyanate, 
phenylacetaldehyde, and indole could be reduced by breed-
ing for a lower content of alkenyl glucosinolates (reviewed 
in Mauchline et al. 2018; Cook et al. 2007a; see above). Iso-
thiocyanates (2-phenylethyl isothiocyanate), together with 
nitriles (phenylacetonitrile, 4-pentenenitrile and 5-hexeneni-
trile) and other volatiles play a role in host plant recogni-
tion and olfactory attraction of the seed weevil C. assimilis 
(Bartlet et al. 1993; Tansey et al. 2010a). On the other hand, 
increasing the constitutive emission of attractive volatiles 
could render certain Brassicaceae plants ideal trap crops 
when planted on oilseed rape field borders. For instance, B. 
rapa is particularly attractive to B. aeneus due to its devel-
opment cycle and scent composition including compounds 
such as phenylacetaldehyde, indole and (E,E)-α-farnesene 
(Cook et al. 2007b).

The major bottleneck for breeding for modified GSL con-
tent in non-seed organs of oilseed rape to enhance insect pest 
resistance is currently the lack of simple and cost-efficient 
high-throughput analytical methods for individual GSL. For 
seed GSL profiles, NIRS analysis has been applied broadly. 
For non-seed organs, a widely distributed method is based 
on reversed phase high-performance liquid chromatogra-
phy (RP-HPLC) which is time- and labour-consuming and 
requires special equipment (Ishida et al. 2014). NIRS-based 
methods for quantifying GSL profiles and individual GSL in 
stems and leaves have been evaluated in Brassicaceae spe-
cies and oilseed rape, but not broadly applied in breeding 
(Font et al. 2005; Toledo-Martín et al. 2017) and should be 
further developed for oilseed rape. Beckman et al. (2007) 
reported a preliminary NIRS calibration for leaf GSL in 
a reduced set of B. napus genotypes with good prediction 
accuracies at least for the total GSL contents and showed 
the potential of this method as an HTP selection tool for B. 
napus genotypes with altered leaf GSL profiles. Because 
these methods dealing with vegetative tissues might require 
freeze drying or handling of samples under cool condi-
tions of samples, it will allow less throughput compared to 
NIRS analysis of seeds, but will allow a substantially higher 
throughput than sample preparation and analysis by HPLC 
of stem and leave or other non-seed organs of oilseed rape.

Many genes involved in GSL biosynthesis and their 
genetic controls are well described in the model plant 
A. thaliana, in B. napus and other Brassicaceae species 
(Kittipol et al. 2019; Mitreiter and Gigolashvili 2021). Muta-
tions within GSL biosynthesis genes which disrupt expres-
sion can be efficiently identified by TILLING-by-Sequenc-
ing approaches (see “Transgenic, genome-engineering and 
mutation breeding approaches” section). The genomic and 
genetic knowledge together with the genetic resources and Ta
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the perspectives for developing simple HTP phenotyping 
methods makes modified glucosinolate content as a proxy 
for insect resistance an excellent breeding target with a 
short-term perspective (Table 2, Fig. 1).

Breeding for modified profiles of other secondary 
plant metabolites

Brassica plants contain, in addition to glucosinolates, many 
other groups of secondary metabolites which are sometimes 
lineage specific. Secondary metabolites can have multifunc-
tional roles and are often associated with adaptive evolution 
to changing environments including regulation of growth, 
development and plant defence (Erb and Kliebenstein 2020). 
Major groups of secondary metabolites in the Brassicaceae 
involved in interaction with insects include terpenoids, phy-
tosterols, flavonoids, phenolics, cyanogenic compounds and 
alkaloids (Hegedus and Erlandson 2012). A meta-analysis 
of plant–insect interactions including diverse plant taxa 
showed that higher foliar content of flavones and saponines 
are mainly involved in anti-herbivore defence at the constitu-
tive level, whereas upregulation of anthocyanins, flavonoids, 
quinones, alkaloids and other compounds are involved in 
induced defence (Sardans et al. 2021). One of the largest 
groups of these metabolites are phenolics originating from 
the shikimate–phenylpropanoids–flavonoids pathways (Lat-
tanzio et al. 2006). There is a multitude of reports on the role 
of polyphenols and secondary metabolites in plant–insect 
interactions and plant defences for diverse plant species 
(e.g. Singh et al. 2021). However, studies that have vali-
dated the anti-herbivory effects of secondary metabolites 
in crops under field situations are very limited (Kortbeek 
et al. 2019). A literature review on secondary metabolites 
for which anti-insect activity has most often been reported 
across all plant species revealed isoprene-derived terpenoids 
followed by alkaloids and phenolic compounds at the first 
3 positions (Boulogne et al. 2012). Most of the studies on 
Brassicaceae species are addressing the effects of glucosi-
nolates (e.g. Kliebenstein 2014; Kumar 2017). Detailed 
functional studies on the anti-herbivory effects of other sec-
ondary metabolites in oilseed and vegetable Brassica species 
are scarce (e.g. Ahuja et al. 2010). Terpenoids including 
triterpene saponins play a role in specialist insect resistance 
in the Brassicaceae genera Lunaria (honesty), Thlaspi (pen-
nycress) and Barbarea (winter cress) for resistance against 
the striped flea beetle (Pyllotetra striolata), the diamondback 
moth, the cabbage butterfly (P. rapae) (reviewed in Hussain 
et al. 2019) and pollen beetles (Austel et al. 2021). Tetracy-
clic triterpene steroids from Iberis species (candytuft) are 
involved in resistance against several species of flea beetles 
(Nielsen 1978) as well. Because these Brassicaceae species 
cannot be crossed with B. napus, generation of resistance 
in oilseed rape would require a gene transfer approach. 

Phytosterols including brassicasterol are found in B. napus 
and have been shown to adversely affect the insect species 
Bertha armyworm (Mamestra configurata) and crucifer flea 
beetle (Phyllotetra cruciferae), but not the green peach aphid 
(Hegedus and Erlandson 2012). Diverse types of flavonoids 
are bioactive against specialist insect herbivores in Bras-
sica species and B. napus. However, some show adverse 
effects on some insect species while being stimulatory to 
other insect species, e.g. quercetin and/or kaempferol gly-
cosides and their derivates deterred the Bertha armyworm 
and the cabbage seedpod weevil, but stimulated the dia-
mondback moth and the horseradish flea beetle (P. armo-
raciae) (Hegedus and Erlandson 2012; Lee et al. 2014). B. 
napus leaves contain only traces of quercetin glycosides, 
but large amounts of kaempferol glycosides (Gruber et al. 
2018), which would enable targeted breeding for increased 
quercetin glycoside levels. The phenylpropanoid ester chlo-
rogenic acid confers broad-spectrum resistance against many 
pathogens and insect pests in many plant species includ-
ing B. napus (Lattanzio et al. 2006; Obermeier et al. 2013; 
Kundu and Vadassery 2019; Singh et al. 2021). Sinapic acid 
and its derivates are highly abundant in different tissues of 
Brassica species, especially in seeds. These compounds are 
involved in multiple biological processes including adapta-
tion to stress and protection against UV radiation (Nguyen 
et al. 2021). Sinapic acid has antimicrobial activities. It also 
has been described to reduce spruce budworm (Choristo-
neura fumiferana) oviposition (Grant and Langevin 2002) 
and cabbage root fly (Delia radicum) oviposition on cau-
liflower (B. oleracea) (Jones et al. 1988). Sinapic acid is a 
precursor of sinapate esters. Sinapate esters have been shown 
to be involved in disease resistance against the soil-borne 
pathogen Verticilllum longisporum in Arabidopsis (König 
et al. 2014). The sinapate ester sinapoyl malate was shown 
to be induced in B. rapa by herbivory of both larvae of the 
generalist beet armyworm (S. exigua) and the specialist dia-
mondback moth in leaves (Widarto et al. 2006). Tannins 
are polyphenolic compounds showing antifungal activity 
against many filamentous fungi and are at the same time 
deleterious to many phytophagous insects (Lattanzio et al. 
2006). However, no reports for the anti-herbivory activity of 
tannins or condensed tannins (proanthocyanidins) in Bras-
sica species and B. napus exist. The alkaloid camalexin is 
involved in resistance of Arabidopsis against fungal patho-
gens, against the green peach aphid and against the cabbage 
aphid (Kettles et al. 2013; Kuśnierczyk et al. 2008). Only 
very few plant species of the Brassicaceae family are known 
to produce cyanogenic compounds. However, the cyano-
genic compound alliarinoside found in the Brassica species 
Alliaria petiolata (garlic mustard) has been described to 
strongly inhibit the feeding of the Mustard White butterfly 
(Pieris napi oleracea) (Renwick et al. 2001). Resistance to 
the flea beetle Pyllotetra nemorum has been introduced to 
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Arabidopsis by transferring the entire pathway for synthesis 
of the cyanogenic glucoside dhurrin from Sorghum bicolor 
(Tattersall et al. 2001). Glucosinolate breakdown products 
are implicated in callose accumulation, a polysaccharide 
produced to enhance cell walls after stress or damage induc-
tion (Erb and Kliebenstein 2020). Callose accumulation is 
involved in resistance to phloem-sucking aphids and has 
been well studied in Arabidopsis (Kuśnierczyk et al. 2008; 
Shoala et al. 2018). In B. rapa and B. nigra callose accumu-
lation also has been induced by the cabbage butterfly (Caarls 
et al. 2021; preprint).

Oilseed rape and other Brassicaceae emit various mono- 
and sesquiterpenoids, green leaf volatiles and benzenoids 
(Himanen et al. 2017; Dudareva et al. 2013). While oil-
seed rape is limited in (volatile) chemical diversity due to 
a long breeding history with specific bottlenecks (Mason 
and Snowdon 2016), other Brassicaceae species offer a 
higher diversity of volatile compounds. Breeding could 
aim for increasing the emission of specific VOCs that act 
as repellents for non-adapted herbivores. Plant species that 
are phylogenetically distant from B. napus, and repel Bras-
sica specialists, might be sources for breeding (Stratton 
et al. 2019). It is known that some Brassicaceae genera like 
Raphanus and Eruca are less attractive and cause high larval 
mortality in the pollen beetle (Veromann et al. 2014). How-
ever, for most of these Brassicaceae species interspecific 
crossing success is low. Thus, it has been suggested that by 
using GMO approaches repellent non-host volatiles from 
non-Brassicaceae species such as Lavandula spp. or Mentha 
spp. could be introduced, subsequently masking host plant 
volatiles of B. napus to reduce its attractiveness to herbi-
vores (reviewed in Mauchline et al. 2018; Li et al. 2019; 
Guo et al. 2020).

Companion plants can alter the VOC environment 
encountered by pests, and cultural control can involve trap 
crops and intercrops, with VOC emissions, potentially opti-
mised by breeding. Pollen beetles, for instance, are attracted 
by visual and olfactory cues of B. rapa, which was success-
fully used as trap crop surrounding plots of B. napus (Cook 
et al. 2007a). Optimising VOC blends in oilseed rape can 
be achieved through classical or precision plant breeding 
or through genetic modification of VOC biosynthetic path-
ways, including new breeding techniques such as CRISPR/
Cas (Chen et al. 2019).

Phenotyping for most secondary metabolites is based 
on analytical methods like HPLC and GC–MS, which 
require specialised laboratory equipment and expertise and 
are comparatively slow and expensive. In addition, some 
secondary metabolites are degraded after plant material is 
sampled and require freeze-drying of the material before 
analytical processing. This represents a severe bottleneck 
for high-throughput in breeding. Due to the multifunctional 
roles of most secondary metabolites, breeding for a modified 

profile of secondary metabolites with enhanced insect resist-
ance has also to consider the potentially negative aspects 
for development, quality and yield of oilseed rape (e.g. 
Ahuja et al. 2010). There is a knowledge gap for the mul-
tifunctional roles and pleiotropic effects of most secondary 
metabolites, which requires more research before integration 
into commercial breeding is reasonable. Currently, the most 
promising secondary metabolites for integration into breed-
ing programs towards insect resistance seem phenylpropa-
noid esters, e.g. chlorogenic acid. For breeding sweet potato 
for insect resistance, it has been demonstrated that a rapid 
and reliable analytical technique for chlorogenic acid based 
on thin layer chromatography can be adopted for screening 
large accessions of breeding material (Lebot et al. 2021). 
The current lack of advanced knowledge on the diverse 
multiple functions and variation in secondary metabolites 
in oilseed rape together with the lack of high-throughput 
phenotyping methods make breeding for modified second-
ary metabolite profiles for insect resistance a breeding target 
with a medium- to long-term perspective (Table 2, Fig. 1).

Breeding for modification of plant surfaces 
and enhancement of physical barriers

The leaf or stem surface is the first physical barrier an above-
ground herbivore is facing during close range host plant 
orientation. The waxiness and thus the adhesiveness of the 
plant surface as well as the tissue toughness and hairiness 
are three important physical properties. Glossy (waxless) 
phenotypes of Brassica ssp. can lead to increased resistance 
in various insect species (e.g. for L. erysimi and B. brassi-
cae) as well as to increased susceptibility (e.g. greater feed-
ing damage by the crucifer flea beetle P. crucifera) (Stoner 
1992; Eigenbrode and Espelie 1995; Hegedus and Erlandson 
2012; Lammerts van Bueren et al. 2021). Leaf toughness has 
a negative effect on feeding damage by chewing herbivores 
(Choong 1996; Malishev and Sanson 2015; Caldwell et al. 
2016), whereas sap sucking or mining insects are mostly not 
affected (Caldwell et al. 2016). This has been demonstrated 
for several plant taxa, but no studies have been conducted for 
the Brassicaceae (Caldwell et al. 2016; Hao et al. 2020). Due 
to contrary effects on herbivores, breeding for modified epi-
cuticular wax composition or leaf toughness might not be a 
suitable breeding target to create oilseed rape with resistance 
against multiple insect pests, although a reduced wax bloom 
has positive effects on predatory insects (see “Breeding for 
manipulation of natural enemies of insect pests” section).

Non-glandular trichomes have been shown to be efficient 
physical barriers against herbivorous pests for a number of 
plant species within the Brassicaceae family (Müller 2006; 
van Poecke 2007), e.g. against P. xylostella (Løe et al. 2007) 
and flea beetles (Brown et al. 1997). Contrasting reports 
exist whether the degree of specialisation of herbivores to A. 
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thaliana is associated with the involvement of trichome den-
sity in plant defence (Handley et al. 2005; Pfalz et al. 2007). 
A number of genes involved in trichome formation, trichome 
density and its modulation by environmental factors have 
been identified and well characterised in A. thaliana (Hül-
skamp 2004; Hauser 2014; Vadde et al. 2019). Trichome 
density can be increased after induction by herbivore attack 
in Brassicaceae species (Traw and Dawson 2002; Travers-
Martin and Müller 2008; Mathur et al. 2011, 2013). Genes 
involved in trichome formation have also been character-
ised in R. sativus (Li et al. 2013), B. villosa (Nayidu et al. 
2014), B. rapa and B. napus (Tian et al. 2018). Molecular 
markers useful for marker-assisted selection in breeding 
have been identified in B. oleraceae (Mei et al. 2017) and in 
B. napus (Xuan et al. 2019). Genetic transfer of one of the 
A. thaliana genes involved in hairiness into B. napus has 
resulted in ultra-hairy lines showing strong feeding deter-
rence to crucifer flea beetles and modest resistance to larvae 
of the diamondback moth (Soroka et al. 2011; Hegedus and 
Erlandson 2012; Alahakoon et al. 2016a, 2016b; Gruber 
et al. 2018). However, growth in these genetically modified 
B. napus plants was negatively affected. In the past, most 
studies have focused mainly on trichome formation on leaf 
surfaces. Future studies are required that tackle trichome 
formation on shoots to efficiently target stem flea beetle and 
stem weevil resistance, on flower buds to target pollen beetle 
resistance or on seed pods to target bug and weevil resist-
ance. Furthermore, the role of trichomes is not limited to 
providing physical barriers to insects; they can also mediate 
chemical defence as well. From A. thaliana it is known that 
non-glandular trichomes accumulate phenylpropanoids and 
glucosinolates (Sinlapadech et al. 2007; Jakoby et al. 2008).

A high-throughput phenotyping method for automated 
assessment of trichome density on leaves has been devel-
oped for grapevine (Divilov et al. 2017) which could be 
adapted to oilseed rape. The extensive molecular knowledge 
of trichome development in A. thaliana and the availability 
of molecular markers from Brassica species and HTP tech-
nologies makes hairiness of leaves and other plant organs a 
promising trait for breeding oilseed rape with resistance to 
flea beetles and other insect pests with a good short-term 
perspective (Table 2, Fig. 1).

Other herbivore-induced physical defence mechanisms 
which might be exploitable to create insect-resistant oil-
seed rape cultivars in the future are insect-egg killing traits, 
including the expression of hypersensitive response (HR)-
like necrosis by the host plant on the leave beneath deposited 
Lepidopteran and Coleopteran eggs. Because egg-killing 
traits kill an immobile stage of the pest before feeding dam-
age occurs, breeding for this trait might provide a highly 
effective plant protection strategy in cases where larvae 
cause significant feeding damage (Fatouros et al. 2016). Due 
to the expression of HR-like necrosis, eggs desiccate and/

or drop off from the plant. This type of defence has been 
described for several plant taxa including Brassicaceae. An 
egg-killing effects has been described in B. nigra against the 
eggs of the cabbage white butterflies, Pieris rapae and Pieris 
brassicae displaying variation in different wild black mus-
tard populations (Fatouros et al. 2014; Griese et al. 2017, 
2021). Against the cabbage moth (Mamestra brassicae) and 
the diamondback moth, the insect-killing traits were found to 
be less effective in B. nigra (Griese et al. 2021). In B. napus, 
HR-like necrosis with a less severe phenotype has been 
observed in 9 out of 10 tested genotypes against P. bras-
sicae eggs considered as intermediate–strong HR responses 
(Griese et al. 2021; Afentoulis et al. 2021).

Breeding for manipulation of natural enemies 
of insect pests

Predators and parasitoids constitute an important dimension 
of natural pest control. Conceptually, tri- or multitrophic 
interactions across crop plants, pest insects and their natural 
antagonists are mediated by a multitude of plant and insect 
traits which may provide breeding targets to improve natu-
ral pest control and may represent promising strategies in 
a pesticide free agriculture (Agrawal 2000). Direct plant 
defences against insect pests and plant volatiles mediating 
interactions between plants and pests have been discussed 
elsewhere in the manuscript (see above). In addition, there 
are several rather basic plant traits such as physical and 
chemical plant characteristics affecting natural antagonists. 
It has been shown that very basic plant characteristics such 
as plant size can affect herbivores and interactions of herbi-
vores, pollinators and natural enemies (see Schlinkert et al. 
2015, 2016 for examples from the Brassicaceae), and it is 
well known that size and plant architecture influence the 
interactions between herbivores and their natural antagonists 
(see Frazer and McGregor 1994; and additional references in 
White and Eigenbrode 2000). On a smaller scale, especially 
plant surface traits such as cuticular waxes and trichomes 
appear to be critical determinants of the efficiency of preda-
tors and parasitoids of herbivores (see “Breeding for modi-
fication of plant surfaces and enhancement of physical bar-
riers” section). An example from the Brassicaceae includes 
the interaction of 4 ladybird species with the cabbage aphid 
across 3 species of Brassica and Hirschfeldia incana (short-
pod mustard). While the predation rates across ladybird spe-
cies were not different, there was a difference across plant 
species. Among other differences, especially the frequency 
of falling off mediated by the plant surface differed strongly 
across plant species (Grevstad and Klepetka 1992). It has 
been demonstrated mechanistically, that the attachment force 
of predatory lacewing larvae depends on the waxiness of B. 
oleracea leaves. On cabbage leaves with a glossy pheno-
type (‘glossy’ mutations, leading to a reduced wax bloom) 
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adhesive force was 20 to 200-fold greater compared to phe-
notypes with a normal wax bloom. This pattern was reflected 
by the predation efficiency on larvae of the Brassicaceae 
pest P. xylostella which was substantially higher on glossy 
leaves (Eigenbrode et al. 1995). The effect of trichomes on 
predatory insects have been reviewed by Riddick and Sim-
mons (2014) over a wide range of agricultural plants, but not 
in Brassicacea. They concluded that trichomes have more 
harmful than beneficial effects on predatory insects, but 
most harmful effects are sublethal.

Attracting natural enemies (parasitoids, predators) by 
volatiles is another plant protection strategy in oilseed rape, 
which could be exploited by breeders in the future. A dozen 
parasitoid species of the most common oilseed rape pests 
are sufficiently widespread and abundant across Europe 
to be of potential economic importance for conservation 
biological control (Ulber et al. 2010). Attracting natural 
enemies involves the emission of herbivore-induced plant 
volatiles (HIPVs). In addition to the emission of constitu-
tive volatiles from undamaged plants, oilseed rape and other 
Brassicaceae species typically respond to the oviposition or 
feeding activity of insect herbivores by releasing a range of 
volatiles into the environment (Himanen et al. 2017). Such 
HIPVs are emitted in greater quantities compared to undam-
aged plants, and the HIPV mixture provides a chemical sig-
nal that predatory and parasitic insects can use to locate an 
individual plant on which their prey or host is located (Heil 
2014; Hilker and Meiners 2006; Turlings and Erb 2018). In 
B. napus, leaf feeding by diamondback moth caterpillars 
leads to higher emission rates of various monoterpenes such 
as α-thujene, sabinene, limonene, the homoterpene dimeth-
ylnonatriene, or the sesquiterpenes β-elemene and (E,E)-α-
farnesene (Himanen et al. 2009; Ibrahim et al. 2008). The 
induced HIPV mixture is very attractive to the solitary wasp 
Cotesia vestalis (Himanen et al. 2009). Similar results have 
been reported with pollen beetle-infested B. napus and sev-
eral of its parasitoids. However, in this case HIPVs were 
collected from plants at the bud stage, resulting in a much 
richer mixture containing flower-specific volatiles in addi-
tion to HIPVs released from vegetative tissues (Jönsson and 
Anderson 2008; Jönsson et al. 2005). Such specificity of 
HIPV mixtures indeed plays an important role in HIPV-
mediated interactions, as natural enemies rely on the cor-
rect odor gestalt to find their prey or host (Bruce and Pickett 
2011). This issue of specificity is particularly relevant for 
specialised parasitoids, whereas generalists tend to learn 
existing odors as conditioned stimuli when they encounter 
their victims. Understanding the information content of spe-
cific HIPV mixtures for carnivorous insects in a tritrophic 
environment is therefore a prerequisite before breeding for 
improved HIPV emission can commence. The quantity and 
composition (quality) of the HIPVs emitted by a given plant 
depend on several factors, including the herbivore species, 

its feeding mode (Rowen and Kaplan 2016; Turlings and 
Erb 2018), the infested plant part, the age of the plant, or the 
simultaneous presence of herbivores and microbes. Abiotic 
stresses such as drought, nutrient availability, soil salinity, 
or ozone concentration have been found to alter the amount 
of all or some HIPVs. However, such changes do not always 
reduce the attractiveness of the altered mixture to natural 
enemies (Becker et al. 2015; Wäschke et al. 2013). Several 
studies have demonstrated strong intraspecific differences in 
HIPV mixtures that result in differential attraction to natural 
enemies (Aartsma et al. 2019; Degen et al. 2004; Kappers 
et al. 2011). Domestication and breeding efforts may inad-
vertently have resulted in modern plant genotypes that emit 
HIPV mixtures with relatively low attraction potential (Ras-
mann et al. 2005; Tamiru et al. 2011). Glucosinolate-derived 
HIPVs play a role in the attraction of the third trophic level 
in the Brassicaceae (Hopkins et al. 2009). Wild and culti-
vated B. oleracea showed significant differences in HIPV 
mixtures and attraction to the cabbage whitefly parasitoid 
Cotesia rubecola. It was suggested that isothiocyanates, vol-
atile degradation products of glucosinolates emitted only by 
wild B. oleracea, might be the key compounds (Gols et al. 
2011). A meta-analysis of HIPVs emitted by Brassicaceae 
and Solanaceae species revealed that domesticated species 
in general release higher amounts of green leaf volatiles and 
terpenes than wild species, but their HIPV blends are less 
divers (Rowen and Kaplan 2016). The latter point seems to 
be crucial for pest control, since increased emission per se 
does not necessarily affect natural enemies. It is rather the 
presence or absence of specific compounds and the ratio 
of volatiles that are important for attraction (D’Alessandro 
et al. 2006; Bruce and Pickett 2011; Beyaert et al. 2010). 
When aiming for improving the attraction of oilseed rape 
to predators or parasitoids one option is the improvement in 
the production and emission of HIPVs by breeding, maybe 
even by changing it from an inducible to a constitutive mode 
(van Lenteren 1986). For example, modified cis-jasmone 
concentrations are activating defence and volatile emission 
in a range of cultivars of B. napus, B. rapa and B. oleracea 
and are making these plants less attractive to and less suit-
able for the aphid M. persicae, but more attractive to the 
parasitoid Diaeretiella rapae (Ali et al. 2021).

In general, breeding for specific HPVs or constitutive 
volatile compounds needs to take environmental factors 
into account that may affect the emission and stability of 
the volatile signals. Simultaneously, these factors may affect 
the responding insects as well. Knowledge on these interac-
tions needs to be collected and provided by biologists as the 
consequences of manipulating specific volatiles has to be 
evaluated in a broader ecological context. Changing volatile 
emission might not only repel herbivores or attract natural 
enemies more efficiently. As an unwanted side effect, it could 
also promote the success of plant pathogens. For example, 
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Arabidopsis mutants with increased monoterpene emission 
were more susceptible to Verticillium longisporum than wild 
type plants (Roos et al. 2015). Changing volatile emission 
by breeding can also lead to other unwanted side effects and 
might negatively affect successful habitat or host location 
of predators, parasitoids or pollinators. A conventionally 
bred-resistant cultivar of Brussels sprout supported lower 
parasitism rates of the cabbage aphid because the plant pro-
duced less of specific glucosinolate precursors of volatile 
cues, which reduced its attractiveness to females of the aphid 
parasitoid Diaeretiella rapae (van Emden 1995). Metabolic 
engineering of plant volatiles can furthermore lead to less 
attractive flowers for pollinators (Dudareva et al. 2013). It 
can also cause elevated human or animal consumer irrita-
tions or allergies due to the enhanced production of aller-
genic compounds (McEwan and Macfarlane Smith 1998). 
Another option is the modification of plant VOC emission 
and natural enemy attraction via exogenous application of 
defence elicitors or plant strengtheners (Rostás and Turlings 
2008; Sobhy et al. 2014). The responsiveness of oilseed rape 
to these elicitors could also be an aim of breeders.

Besides indirect defences via natural enemy attrac-
tion, secondary compounds involved in plant tolerance 
or resistance can indirectly affect the 3rd trophic level 
via the sequestration of plant compounds as a defence by 
insect pests (Hopkins et al. 2009; Opitz and Müller 2009; 
Petschenka and Agrawal 2016). Remarkably, several insects 
specialised on Brassicaceae are known to sequester glucosi-
nolates including important pest species such as the cab-
bage aphid and the mustard aphid (Kazana et al. 2007), the 
turnip sawfly (A. rosae) (Müller and Wittstock 2005), and 
flea beetles (P. chrysocephala, P. armoraciae, P. striolata) 
(Beran et al. 2014, 2018; Sporer et al. 2020). While glu-
cosinolates in plants are known to confer tolerance against 
some insects (Hopkins et al. 2009; Jeschke et al. 2017), 
they have been shown to impair predators (Kos et al. 2012; 
Sun et al. 2019) and can even affect the fourth trophic level 
(hyperparasitoids) (Harvey et  al. 2003). Consequently, 
breeding to reinforce glucosinolates in oilseed rape as a 
defence against herbivores may negatively affect biocon-
trol of specialised insects (Gols and Harvey 2009). In line 
with this, the survival of predatory ladybird larvae (Adalia 
bipunctata) depends on the Brassica host plant species of 
its specialist aphid prey B. brassicae and may be mediated 
by the plants’ glucosinolate content. In contrast, for the 
generalist aphid pest M. persicae no such differences across 
B. napus, B. nigra and S. alba plant species were observed 
(Francis et al. 2001). Plant-mediated effects on predators 
are not only observed across plant species but also occur 
within Brassica species. Across four cultivars of white cab-
bage (B. oleracea), Kos et al. (2011) found differences in 
the performance of the hoverfly Episyrphus balteatus and 
the lacewing Chrysoperla carnea preying upon the aphid 

B. brassicae. Moreover, differences in the performance of 
predators matched differences in the glucosinolate profiles 
sequestered by the aphids. Across three populations of wild 
B. oleracea, the performance of the endoparasitoids Cote-
sia rubecula and Microplitis mediator reflected the per-
formance of their hosts, the cabbage butterfly and the cab-
bage moth which was affected by plant quality (Gols et al. 
2008b). A screening across 10 oilseed rape/canola cultivars 
revealed > 35-fold differences in fecundity of the cabbage 
aphid between the most susceptible and the most resistant 
cultivar. A comparison between the most susceptible and 
one of the most resistant oilseed rape cultivars revealed that 
performance of the aphid decreased by 93% while the per-
formance of its parasitoid Diaeretiella rapae only decreased 
by 20% (Karami et al. 2018).

Currently, methods for high-throughput screening for 
use in breeding to characterise phenotypes affecting tri- or 
multitrophic interactions are not available. The efficiency 
of parasitisation and predation could be assessed in the 
future by video-based solutions. Experiments involving 
video technology for observing several replicates of pre-
dation experiments simultaneously were already described 
20 years ago (Meyhöfer 2001) and can be used to observe 
parasitoid behaviour under field conditions (de Bruijn et al. 
2021) or for high throughput recording of insect behaviour 
(de Bruijn et al. 2018). Especially experiments with inverte-
brate predators such as lacewing larvae can be carried out in 
small Petri dishes (Pokharel et al. 2020) and probably even 
multiwell plates and thus would allow the conversion into a 
high throughput screening methods. Other traits influencing 
the efficiency of natural antagonists such as the attachment 
force of predators on leaf surfaces could be quantified via 
simple centrifugal devices as described by Eigenbrode et al. 
(1999). Although we have good knowledge about multiple 
traits mediating tritrophic interactions in the Brassicaceae, 
quantification of variation across genotypes will require 
the development of novel technologies for high throughput 
screening, and therefore, most of the traits outlined above 
can be integrated into breeding only under a long-term per-
spective (Table 2, Fig. 1).

Breeding for an improved microbiome

The integration of plant microbiomes for improved crop pro-
tection has been advocated frequently within the last years 
(e.g. Sessitsch and Mitter 2015; Trivedi et al. 2021). A num-
ber of approaches for manipulating the microbiome which 
are useful for insect pest management have been identified 
and future opportunities for the discovery of new biopes-
ticides have been described, including plant-derived pro-
tectants and semiochemicals (Qadri et al. 2020). Direct or 
indirect selection and breeding for improved plant–microbe 
interactions to enhance biotic stress tolerance has been 
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suggested as a new concept to manipulate the microbiome of 
crop plants (e.g. Gopal and Gupta 2016; Clouse and Wagner 
2021). Microbiome-targeted approaches for crop improve-
ment have been classified as first-generation approaches 
defined as applying single microorganisms to improve plant 
growth or control pathogens and pests. These approaches 
have been applied for more than 100 years. In contrast, 
second-generation future approaches have been defined as 
engineering of whole microbial communities and breed-
ing of crop plants for enhanced interaction with beneficial 
microorganisms (French et al. 2021). Microbiome research 
has focused in the past mainly on plant-associated below-
ground microbiome composition and less on above-ground 
microbiome composition with regard to plant interaction 
with pathogens and insect pests. For the involvement in the 
interaction of plants and insects, most recent studies have 
been focusing on the soil and rhizosphere microbiome and 
its indirect manipulation (e.g. by crop rotation and breeding) 
has been suggested as a target for suppression of above-
ground insect pests (Pineda et al. 2017).

Currently, quantitative data generated from next-gener-
ation sequencing approaches are the most suitable high-
throughput proxy traits for microbiome phenotyping. Mostly 
amplicon next-generation sequencing of variable regions of 
conserved marker genes like bacterial 16S rRNA genes or 
fungal Internal Transcribed Spacer regions of rRNA genes 
are used (Beilsmith et al. 2019). However, the microbial 
community-wide sequence data generation within large plant 
populations for genetic mapping of plant loci involved in 
controlling the abundance of specific microbial taxa under 
different environmental conditions is still in its infancy 
and HTP approaches useful for commercial breeding are 
not available yet. Until now, 16S rRNA next-generation 
sequencing data from plant populations has only been used 
in Arabidopsis and sorghum to identify genetic loci control-
ling whole phyllosphere and rhizosphere bacterial and fungal 
communities by genome-wide association analysis (Horton 
et al. 2014; Deng et al. 2021). To substantially extend these 
kinds of studies in the future in oilseed rape and other crops, 
it is necessary to identify and further characterise putative 
target loci for breeding towards an improved microbiome.

The oilseed rape rhizosphere and root microbiomes are 
different from the microbiomes of other crops (Lay et al. 
2018; Morales Moreira et al. 2021). Its composition in rhizo-
sphere, roots, leaves and seeds depends on a combination of 
factors including environmental conditions, agronomic treat-
ments (e.g. fertilisation and seeding density), plant develop-
mental stage and is also cultivar-dependent (e.g. Rybakova 
et al. 2017; Taye et al. 2020; Morales Moreira et al. 2021). 
Taye et al. (2020) reported that across different oilseed rape 
growth stages in the field 16–37% of the variation between 
16 diverse B. napus genotypes was either directly or indi-
rectly due to genetics which would allow to manipulate 

its composition through targeted breeding. Studies on the 
composition and genotype-specific association of the oil-
seed rape microbiome with resistance against pathogens 
and insects are rare. It has been shown that root endophytic 
bacterial communities of oilseed rape or its soil microbi-
ome are associated with genotype-specific resistance against 
the soil-borne fungal pathogen Verticillium longisporum 
(Glaeser et al. 2019) and Plasmodiophora brassicae (Daval 
et al. 2020). The soil-borne endophyte A. alternatum is pro-
ducing phytosterols in B. oleracea which has been shown 
to inhibit the growth of P. brassicae and the diamondback 
moth (Jäschke et al. 2010; Raps and Vidal 1998). The influ-
ence of the soil microbiome composition on development 
of the cabbage root fly in roots and above-ground parts of 
oilseed rape was only marginal (Lachaise et al. 2017). In 
B. oleracea, in contrast, resistance to the cabbage root fly 
was significantly reduced by rhizobacterium Pseudomonas 
simiae added to the soil (Friman et al. 2021). For Boechera 
stricta (Drummond’s rockcress), it has been shown that 
the disruption of the rhizosphere microbiome composition 
increases the susceptibility against the green peach aphid 
and the crucifer flea beetle (Hubbard et al. 2019). Aside 
from a few studies on Brassicacea discussed above, no other 
research exists   describing plant–microbiome–insect inter-
action in relation to oilseed rape genotypes.

For a number of reason the most promising actual target 
for microbiome manipulation through breeding for insect 
resistance seems to be the seed microbiome. First of all, it 
has been shown for B. napus that a large component of the 
seed microbiome is cultivar dependent (Morales Moreira 
et al. 2021). Second, B. napus cultivars harbouring higher 
indigenous seed microbiome diversity were characterised as 
having a higher colonisation resistance against beneficial and 
pathogenic microorganisms (Rybakova et al. 2017). Third, 
B. napus seeds have been shown to be involved in the verti-
cal submission of endophytic microbiota to seedlings and 
the next generation (Rochefort al. 2021). Finally, seeds are 
easy to sample and analyse in high throughput assays adapt-
able to commercial breeding schemes. The plant genotype 
together with the cropping environment has an impact on the 
seed microbiome composition in B. napus (Rochefort et al. 
2019). However, the seed microbiome is a lot less diverse 
and abundant compared to the rhizosphere and root micro-
biome. Transmission of microbiota to the roots and shoots 
of the seedling is driven mainly by the soil microbiome, but 
to a much lower extent by the seed microbiome due to a soil 
microbial mass effect. However, B. napus is selecting rare 
seed-borne microbiota in the seedlings which suggests that 
these rare taxa increase the fitness of the plants (Rochefort 
et al. 2021). For barley, a plant genotype-dependent endo-
phytic seed microbiome was found with most of the isolated 
endophytes showing diverse plant beneficial characteristics 
in vitro (Bziuk et al. 2021). The feasibility of this concept 
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and its large economic success has been shown in cool 
season grass (Lolium perenne) breeding in New Zealand, 
Australia and the USA. Cool season grass cultivars have 
been successfully bred and commercialised whose seeds are 
inoculated with compatible strains of the fungal endophyte 
Epichloë. These endophyte strains are producing selected 
alkaloids (pyrrolizidines) in the plants with anti-herbivore 
effects without the toxic effects on animals and other ver-
tebrates (Caradus and Johnson 2020; Lee et al. 2021). In 
addition, for many Brassicaceae species the association with 
beneficial endophytic microorganisms has been shown (Card 
et al. 2015). Detailed studies and understanding of seed-
transmitted microbiota and their genotype-specific influence 
on plant performance might enable a targeted breeding strat-
egy towards seed microbiome mediated insect resistance in 
oilseed rape.

Breeding for an improved microbiome firstly requires 
understanding of host genetic control of the microbiome 
in different plant organs, its variability and its interaction 
with insect performance in different genotypes under field 
conditions. The current lack of knowledge on the genetics, 
variability and on the effect of the microbiome on plant per-
formance in oilseed rape together with the lack of simple 
and cost-efficient high-throughput phenotyping methods 
make breeding for a modified microbiome for insect resist-
ance a breeding target with a long-term perspective (Table 2, 
Fig. 1).

Conclusion

Ensuring environmentally sustainable rapeseed production 
despite increasing threats from insect predation is a major 
challenge. Not only is rapeseed the target of approximately 
40 species of insects worldwide, but very little resistance 
against insect predation has been so far identified in this 
species, and few effective control methods have been estab-
lished. Phenotyping for resistance is also challenging; resist-
ances are generally quantitative, and use of the few known 
chemical treatments or sprays is strictly regulated. In this 
review, we comprehensively outline different strategies for 
targeted research and breeding which may allow continued 
rapeseed production and propose an integrated strategy for 
future rapeseed crop protection against insect pests. Specifi-
cally, we highlight possible methods to identify (automated 
and high-throughput phenotyping, screening for secondary 
metabolite production) and transfer resistances (interspe-
cific hybridisation, genetic engineering), suggest breeding 
targets (glucosinolates, volatiles and production of other 
secondary metabolites, microbiome features, plant surface 
barriers) and propose management strategies (identification 
of biological control methods such as insect predators and 
novel insect repellent compounds). Due to the high diversity 

of pest insects, no single compound or compound class will 
be a suitable breeding target for creating oilseed rape lines 
with multiple insect species resistances. By targeting a range 
of possible insect control methods, we hope that new, inte-
grated protection strategies for rapeseed will be developed 
over the short, medium and long term, sustaining production 
of this major oil crop species.
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