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Abstract 

The universal availability of the complete Tribolium castaneum genome sequence assembly and 
annotation (Richards et al., 2008) and concomitant development of the versatile Tribolium genome 
browser, BeetleBase (Kim et al., 2010, http://beetlebase.org/) open new realms of possibility for stored 
product pest control by greatly simplifying the task of connecting biology and behavior with underlying 
molecular mechanisms. This genome has enabled sequence similarity searches that have resulted in a 
flood of new discovery involving thousands of genes with important functions in digestion, 
osmoregulation, metamorphosis, olfaction, xenobiotic metabolism, vision, and embryonic and larval 
growth and development. The value of the T. castaneum genome sequence is greatly enhanced by the 
availability of a sophisticated functional genomic toolkit for laboratory studies of this insect. These tools 
include high-resolution physical and genetic maps, genomic and cDNA libraries, balancer chromosomes, 
and effective and reliable techniques for specific knockout of any target gene via RNA interference 
(RNAi). In this paper we briefly discuss just two areas of Tribolium biology research that are being 
revitalized by the availability of the genome sequence, namely olfaction and exoskeleton, or “smell and 
skin”. 

1. Pheromone biology, olfaction and genomics 

Many common stored product beetles are long-lived as adults (weeks or months) and use male-produced 
aggregation pheromones to attract both sexes for mating and for achieving critical population densities 
for effective conditioning of the microhabitat (Phillips et al., 2000). Examples include species of 
Tribolium, Tenebrio, Sitophilus, Cryptolestes, Oryzaephilus, Rhyzopertha, and Prostephanus.  In 
contrast, adult beetles with female-produced sex pheromones, including stored-product pests in the 
families Anobiidae, Bruchidae and Dermestidae, tend to be short-lived (days to weeks), and may require 
only nectar for sustenance.  In Tribolium confusum (Duval) and T. castaneum (Herbst) the predominant 
male-produced aggregation pheromone is 4,8-dimethyldecanal (DMD; Suzuki, 1980), which has two 
chiral carbons whose configurations affect biological activity (Levinson and Mori, 1983; Suzuki and 
Mori, 1983). A 4:1 mixture of the (4R,8R) and (4R,8S) diastereomers elicits a near-optimal attractive 
response, showing more than ten-fold greater attractive potency than either the corresponding 1:1 blend 
or the pure (4R,8R) isomer (Suzuki et al., 1984). Since a 1:1 blend of (4R,8R):(4R,8S)  is presumably the 
recipe used in commercially available Tribolure, there is potential for development of a much-improved 
blend that could be a powerful research tool in studies of Tribolium population biology.   

As the name implies, this pheromone may function only for aggregation, while other semiochemical cues 
might be needed to evoke mounting and copulation. The latter idea was first suggested by Keville and 
Kannowski (1975), who found evidence that 1-pentadecene and other hydrocarbons elicit copulatory 
behavior in Tribolium confusum. It has been observed that, in contrast to the highly effective 
Rhyzopertha dominica (F.) aggregation pheromone, the synthetically-produced Tribolium aggregation 
pheromone (Tribolure) is a relatively weak attractant, to the extent that it is not useful for mass-trapping 
of large numbers of beetles. Tribolure-baited traps are, however, extremely useful for population 
monitoring. The possibility that Tribolure contains an unnatural or nonideal blend of diasteriomers, 
reducing its effectiveness, has already been mentioned, but the relatively low attractiveness of Tribolure-
baited traps might also be a function of the behavior and ecology of Tribolium.  In addition, it has been 
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suggested recently (Verheggen et al., 2007) that minor or trace components of a natural Tribolium 
aggregation pheromone blend might exist and might be critical for maximum activity. Candidate trace 
constituents include several benzoquinone and hydrocarbon secondary metabolites that are known to be 
produced in Tribolium spp.  For example, in T. confusum two different 1, 4-benzoquinones and several 
mono-unsaturated hydrocarbons, previously detected in several Tribolium species (Howard, 1987; 
Markarian et al., 1978), were shown to be attractive in behavioral assays and elicited electroantennagram 
(EAG) responses in isolated antennae (Verheggen et al., 2007). These include some of the same 
components previously reported by Keville and Kannowski (1975) to be active in eliciting mating 
behavior.  No one has yet reported on attempts to increase the potency of synthetic Tribolure by creating 
new blends that incorporate these candidate components as minor constituents, but this would seem to be 
worthy of investigation.  It has been observed that Tribolure-baited traps become more attractive after a 
number of beetles have been captured, perhaps because they are releasing important minor components 
not included in the commercial pheromone blend (Jim Campbell, unpublished observations). 

Chemical, physiological and behavioral studies have revealed much useful information about the 
olfactory and pheromonal biology of stored-product insects, but, as highlighted above, fundamental 
questions remain unanswered. The recently completed genome sequence of the red flour beetle, 
T. castaneum, opens a window to a vast, untapped reservoir of opportunity for gaining new knowledge 
about many aspects of the biology of this pest species, including the biology of olfaction. Establishing or 
confirming pheromone and secretome biosynthetic pathways (e.g. Kim et al., 2005) will be facilitated by 
the availability of the genome sequence. In many cases candidate olfaction genes can be readily 
identified based on sequence conservation, and the powerful technique of RNAi can then be used to 
knock down candidate genes and enable follow-up functional studies.   

Annotation of the T. castaneum genome sequence has already revealed unexpectedly large numbers of 
intact olfactory receptor (OR) and gustatory receptor (GR) genes (259 and 220, respectively, Engsontia et 
al., 2008), in comparison to other species.  For example, Drosophila melanogaster has only 62 and 68 
OR and GR genes, respectively. In addition to the relatively very large numbers of intact OR/GR genes 
in the T. castaneum genome, there are also 79 OR pseudogenes and 76 GR pseudogenes. RNAi has been 
done for TcOR1, which is one of the 259 OR genes in T. castaneum, and is a clear ortholog of the 
D. melanogaster Or83b gene, the latter having been demonstrated to be required for function of olfactory 
reception in D. melanogaster. RNAi-mediated knockout of TcOR1 completely eliminated the 
attractiveness of the synthetic aggregation pheromone DMD (Tribolure) to adult beetles (Engsontia et al., 
2008).  So far as we are aware, no other olfaction genes have been subjected to functional analysis in 
T. castaneum, but the success of this experiment and the large number of olfaction genes in this species 
hint at the wealth of functional information that could be revealed by systematic, high-throughput RNAi 
knockdown studies.  

The primary mediators of odor detection in insects are the odorant binding proteins (OBPs) and their 
smaller, more highly conserved cousins, the chemosensory proteins (CSPs). According to Foret and 
Maleszka (2006) there are 46 OBP genes in the T. castaneum genome, which is within the normal range 
(20~70) as currently defined by the available insect genome sequences.  In contrast, the gene count for 
insect CSPs is considerably lower, totaling less than 10 each in A. mellifera, D. melanogaster and A. 
gambiae. We could find no published data on complete CSP annotations in T. castaneum, but allusions to 
individual CSP genes can be found in Maleszka et al. (2007), Lu et al. (2007) and Vieira et al. (2007).  
According to our BLASTP analysis, there are 14 genes encoding highly conserved CSP proteins in 
T. castaneum (Fig. 1), as well as three additional CSP-like genes that encode slightly more divergent 
proteins.  
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Figure 1 Alignment of Chemosensory Proteins (CSPs) in Tribolium castaneum. CSP proteins were detected by 

BLASTP analysis using a 19-residue query sequence derived from a conserved region of CSP7 
(underlined) containing two of the cysteine residues involved in disulfide bridging. Multiple sequence 
alignment was done using T-COFFEE (Notredame et al., 2000). Fourteen of the 17 known CSP 
proteins are included. The remaining three (CSP06, 08 and 15) are somewhat divergent from the 14 
shown.  Secretion signal peptides at the amino termini of each protein, indicated in red font and by 
underlining, were determined with SignalP 3.0. Invariant residues are indicated by shading and bold 
font, and the four diagnostic cysteine residues (forming two disulfide bridges) are indicated by dots 
above the alignment.  The curated version of CSP5 lacked a signal peptide and contained a unique, 14-
residue insertion, both resulting from an apparent misannotation. We defined a previously 
unrecognized, 42-nt intron at the Asn (N) residue (boxed) near the terminus of the signal peptide, which 
reestablished a plausible signal peptide cleavage site and removed the atypical insertion. NCBI protein 
identities are as follows: CSP18 = NP_001039286.1, CSP17 = NP_001039284.1, CSP09= 
NP_001039283.1, CSP10= NP_001039278.1, CSP11= NP_001039279.1, CSP12= NP_001039280.1, 
CSP13= NP_001039281.1, CSP14= NP_001039282.1, CSP19= NP_001039276.1, CSP20= 
NP_001039274.1, CSP07= NP_001039289.1, CSP05= NP_001039287.1, CSP04= NP_001039285.1, 
CSP02= NP_001039277.1. The following CSPs are not shown: CSP15= NP_001039291.1, CSP08= 
NP_001039290.1 and CSP06= NP_001039288.1. 

 

Eight of the 14 proteins shown in Figure 1 are encoded by a closely linked cluster of CSP genes located 
on chromosome 7. Inspection of the tiling array tracks for this chromosomal region in the Tribolium 
genome browser BeetleBase (http://beetlebase.org/index.shtml) suggests that the various CSPs are 
differentially expressed and highly regulated (Fig. 2). For example, CSP10 expression is largely 
restricted to the larval and early pupal stages, whereas CSP11 is expressed predominantly in the late 
pupal and adult stages. CSP12 appears to have two peaks of expression, one in the early part of the last-
instar larval stage and another in the late pupal stage. Still other CSP genes (CSP9, 13-15 and 17) have 
very low or no expression throughout the last larval instar and pupal and adult stages. The latter could 
have vital but highly localized expression domains (individual sensillae or appendages?) preventing 
detection of such low-abundance transcripts in whole-animal tiling arrays.  
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Figure 2 Tiling Array Expression Patterns of a Cluster of Eight Chemosensory Protein (CSP) Genes on 

Chromosome 7 of Tribolium castaneum.  Depictions of results from Nimblegen expression tiling array 
hybridizations were selected in the GBROWSE genome viewer in BeetleBase. Vertical axes represent 
relative expression as determined by hybridization to microarrays containing contiguous 50-mer probes 
spanning the entire genome (excluding repetitive sequences). cDNAs used for hybridizations had been 
isolated from whole insects at the stages indicated, ranging from last instar larvae (panel A) through 
mature adults (panel E). Horizontal red bars (duplicated above and below tiling array panels) indicate 
positions of genes on the chromosome, and point in the direction of transcription. Computed gene 
structures and NCBI RefSeq names are shown just above the upper set of bars.Future work in our group 
will focus on description and RNAi-mediated knockdown of gene products responsible for pheromone 
biosynthesis, release or perception, with the general goal of understanding the basis for these functions 
in insect biology, and with a specific goal of knocking down one or more systems in a manner that 
could facilitate pest management. There is a total of “only” 63 OBP and CSP genes that are the 
presumed direct mediators of all chemosensory responses in the Tribolium repertoire. With specific 
gene knockdown by RNAi now a routine procedure, the previously impossible task of functionally 
characterizing all first-response odor detection genes now seems feasible. 

 

2. Chitin biology and genomics 

The insect exoskeleton is a noncellular biomaterial that functions both as skin and as waterproof armor 
that is sufficiently flexible to accommodate growth and enable mobility. This complex and fascinating 
physiological adaptation, together with other chitinous structures such as the digestive “peritrophic 
matrix” of the midgut, has contributed to the great evolutionary success of arthropods. We and others 
have identified more than 200 genes in the Tribolium genome that appear to be directly involved in the 
composition, biosynthesis, deposition and turnover of these structures (Tab. 1), offering a wealth of 
potential new biotargets for selective pest control. The proteins encoded by these genes can be divided 
into four major categories, including: (1) structural “cuticle proteins” that, together with the 
polysaccharide chitin itself, contribute most of the bulk and substance of the finished cuticle; (2) 
enzymes involved in chitin synthesis, modification or degradation; (3) cuticle assembly proteins involved 
in deposition and layering of chitin and cuticle structural proteins; and (4) cuticle maturation enzymes 
that control the processes of tanning, crosslinking and pigmentation to confer the final color, 
rigidity/elasticity and waterproofing to the finished cuticle. Many of the gene models have been validated 
by sequence analysis of cDNAs, and many have been functionally characterized by RNAi or other 
methods (e.g. Arakane et al., 2005a & b, 2008, 2009a & b, 2010; Dixit et al., 2008; Hogenkamp et al., 
2008; Jasrapuria et al., 2010; Richards et al., 2008; Zhu et al., 2008;).  
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Table 1 Tribolium castaneum genes involved in assembly and metabolism of cuticle and peritrophic matrix 

Category Gene Genbank/GLEAN 
accession # dsRNA knock-down phenotypes proposed function 

TcCHS-A-8a AY291475 Prevents L-L, L-P and P-A molting chitin synthesis 
TcCHS-A-8b AY291476 Prevents adult eclosion chitin synthesis 

Chitin 
synthases 
(CHS) TcCHS-B AY291477 loss of PM chitin, starvation chitin synthesis 

TcUAP1 GU228846 not tested chitin synthesis UDP-NAG 
pyrophos-
phorylases TcUAP2 GU228847 not tested chitin synthesis 

TcCHT2 GLEAN_09872 not tested chitin degradation 

TcCHT4 EF125543 No visible phenotype chitin degradation in digestive 
peritrophic matrix 

TcCHT5 AY675073 Affects P-A molting chitin degradation 
TcCHT6 EFA00965 No visible phenotype chitin degradation 

TcCHT7 DQ659247 arrested pupal wing expansion and 
pumping motion chitin degradation 

TcCHT8 DQ659248 No visible phenotype chitin degradation in digestive 
peritrophic matrix 

TcCHT9 DQ659249 not tested chitin degradation in digestive 
peritrophic matrix 

TcCHT10 DQ659250 Prevents L-L, L-P and P-A molting chitin degradation 
TcCHT11 GLEAN_15665 No visible phenotype chitin degradation 

TcCHT12  GLEAN_09178 not tested chitin degradation in digestive 
peritrophic matrix 

TcCHT13 DQ659252 not tested chitin degradation in digestive 
peritrophic matrix 

TcCHT14 GLEAN_09628 No visible phenotype chitin degradation in digestive 
peritrophic matrix 

TcCHT15 GLEAN_09629 No visible phenotype chitin degradation in digestive 
peritrophic matrix 

TcCHT16 AY873915 No visible phenotype chitin degradation in digestive 
peritrophic matrix 

TcCHT17  GLEAN_09625 not tested chitin degradation in digestive 
peritrophic matrix 

TcCHT18 GLEAN_09630 not tested chitin degradation in digestive 
peritrophic matrix 

TcCHT19 GLEAN_09175 not tested chitin degradation in digestive 
peritrophic matrix 

TcCHT20 AY873913 not tested chitin degradation in digestive 
peritrophic matrix 

TcCHT21 AY873916  not tested chitin degradation in digestive 
peritrophic matrix 

TcCHT22 DQ659251 not tested chitin degradation in digestive 
peritrophic matrix 

TcIDGF2 DQ659253 No visible phenotype cell proliferation/remodeling 

Chitinases 

TcIDGF4 DQ659254 Prevents P-A molting cell proliferation/remodeling 
TcNAG1 EF592536 Prevents L-L, L-P and P-A molting chitin degradation 
TcNAG2 EF592537 Prevents L-L, L-P and P-A molting chitin degradation 

TcNAG3 EF592538 compromises L-L, L-P and P-A 
molting chitin degradation 

N-Acetyl 
glucosamini-
dases (NAG) 

TcFDL EF592539 Prevents L-L, L-P and P-A molting N-glycan processing/chitin 
catabolism 

TcCDA1 EU019711 Prevents L-L, L-P and P-A molting chitin modification 

TcCDA2a EU019712 Nonarticulation of femoral-tibial 
joints chitin modification 

TcCDA2b EU019713 Affects epidermal cuticle 
morphology chitin modification 

TcCDA3 EU190485 No visible phenotype chitin modification 
TcCDA4 EU190486 No visible phenotype chitin modification 
TcCDA5A EU190487 No visible phenotype chitin modification 
TcCDA5B EU190488 No visible phenotype chitin modification 
TcCDA6 EU190489 No visible phenotype chitin modification 
TcCDA7 EU190490 No visible phenotype chitin modification 
TcCDA8 EU190491 No visible phenotype chitin modification 

Chitin 
deacetylases 
(CDA) 

TcCDA9 EU190492 No visible phenotype chitin modification 
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Category Gene Genbank/GLEAN 
accession # dsRNA knock-down phenotypes proposed function 

TcRtv GLEAN_07384 not tested cuticle assembly 
TcKNK1 GLEAN_10653 not tested cuticle assembly 
TcKNK2 GLEAN_12301 not tested cuticle assembly 

Cuticle 
assembly 
genes  

TcKNK3 GLEAN_02304 not tested cuticle assembly 
Peritrophic 
matrix-
associated 
genes 

TcPMP1-A GU128096 not tested peritrophic matrix structural 
protein 

  TcPMP1-B GU128097 not tested peritrophic matrix structural 
protein 

  TcPMP1-C GU128098 not tested peritrophic matrix structural 
protein 

  TcPMP2-A GU128099 not tested peritrophic matrix structural 
protein 

  TcPMP2-B GU128100 not tested peritrophic matrix structural 
protein 

  TcPMP2-C GU128101 not tested peritrophic matrix structural 
protein 

  TcPMP3 GU128102 not tested peritrophic matrix structural 
protein 

  TcPMP5-A GU128103 not tested peritrophic matrix structural 
protein 

  TcPMP5-B GU128104 not tested peritrophic matrix structural 
protein 

  TcPMP9 GU128105 not tested peritrophic matrix structural 
protein 

  TcPMP14 GU128106 not tested peritrophic matrix structural 
protein 

TcLac1 AY884065 No visible phenotype ferroxidase 

TcLac2A AY884061 Required for larval, pupal and adult 
cuticle tanning  tanning 

TcLac2B AY884062 Required for larval, pupal and adult 
cuticle tanning  tanning 

TcLLP GLEAN_15880 Prevent pupal development unknown vital function 
TcTyr1 AY884063   No visible phenotype Immune-related melanization? 

Phenoloxi-
dases 

TcTyr2 AY884064 No visible phenotype Immune-related melanization? 

TcTH EF592178 Required for larval, pupal and adult 
cuticle tanning  cuticle tanning-related 

TcDDC EU019710 Delays adult cuticle tanning, darkens 
body color cuticle tanning-related 

TcADC ABU25221 Black body color phenotype cuticle tanning-related 
TcNAT1 FJ647798 Dark pigment around elytral sensillae cuticle tanning-related 
Tcebony FJ647797 Black body color phenotype cuticle tanning-related 
Tctan GLEAN_03448 not tested cuticle tanning-related 
TcYellow-b GU111762 not tested pigmentation/sclerotization 
TcYellow-c GU111763 not tested pigmentation/sclerotization 
TcYellow-e GU111765 not tested pigmentation/sclerotization 
TcYellow-e3 GU111764 not tested pigmentation/sclerotization 
TcYellow-f GU111766 Prevents P-A molting pigmentation/sclerotization 
TcYellow-g1 GU111767 not tested egg cuticle stabilization 
TcYellow-g2 GU111768 not tested egg cuticle stabilization 
TcYellow-h GU111769 pigmentation/sclerotization pigmentation/sclerotization 

TcYellow-y GU111770 prevents hindwing melanin 
production pigmentation/sclerotization 

TcYellow-1 GU111771 not tested pigmentation/sclerotization 
TcYellow-2 GU111772 not tested pigmentation/sclerotization 
TcYellow-3 GU111773 not tested pigmentation/sclerotization 
TcYellow-4 GU111774 not tested pigmentation/sclerotization 

Cuticle 
tanning -
related genes 

TcYellow-5 GU111775 not tested pigmentation/sclerotization 
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Category Gene Genbank/GLEAN 
accession # dsRNA knock-down phenotypes proposed function 

Cuticle 
protein (CP) 
genes 

RR1 CP ~50 genes not tested cuticle structural proteins 

  RR2 CP ~50 genes not tested cuticle structural proteins 
  RR3 CP ~10 genes not tested cuticle structural proteins 
  CPLC ~15 genes not tested cuticle structural proteins 
  other CPs* ~15 genes not tested cuticle structural proteins 
  TcCPAP3-A1 EF125544 not tested cuticle structural protein 
  TcCPAP3-A2 EF125545 not tested cuticle structural protein 
  TcCPAP3-B EF125544 not tested cuticle structural protein 
  TcCPAP3-C5a EF125545 not tested cuticle structural protein 
  TcCPAP3-C5b EF125546 not tested cuticle structural protein 
  TcCPAP3-D1 EF125544 not tested cuticle structural protein 
  TcCPAP3-D2 EF125545 not tested cuticle structural protein 
  TcCPAP3-E EF125546 not tested cuticle structural protein 
  TcCPAP1-A EF125546 not tested cuticle structural protein 
  TcCPAP1-B EF125546 not tested cuticle structural protein 
  TcCPAP1-C EF125546 not tested cuticle structural protein 
  TcCPAP1-D EF125546 not tested cuticle structural protein 
  TcCPAP1-E EF125546 not tested cuticle structural protein 
  TcCPAP1-F EF125546 not tested cuticle structural protein 
  TcCPAP1-G EF125546 not tested cuticle structural protein 
  TcCPAP1-H EF125546 not tested cuticle structural protein 
  TcCPAP1-I EF125546 not tested cuticle structural protein 
  TcCPAP1-J EF125546 not tested cuticle structural protein 
*includes tweedle, CPF and CPFL genes    

 

With respect to category (1) above, insects employ an amazing variety of what appear to be structural 
protein genes during manufacture of the chitinous matrices. In T. castaneum there are approximately 160 
cuticle protein genes, encoding approximately 110 RR motif proteins, ~15 “cuticle proteins of low 
complexity” (CPLCs), 18 “cuticle proteins analogous to peritrophins” CPAPs) and several other minor 
categories of cuticle proteins, each represented by only one or a few genes (Table 1 and unpublished 
observations).  Why insects should require such a large array of protein structural components for cuticle 
and peritrophic matrix is still uncertain, but it is becoming clear that the various cuticle proteins are not 
uniformly expressed, and that different regions of cuticle and peritrophic matrix have different protein 
composition, probably reflecting the different physical properties and functions needed in different 
regions of the exoskeleton and digestive sac (Willis, 2010). 

A great number and variety of genes are also utilized for chitin-modification and degradation 
(24 chitinases, 4 N-acetyl glucosaminidases and 9 chitin deacetylases) and for cuticle tanning and 
pigmentation (26 genes). Of particular interest in the latter category are the 14 yellow genes, each of 
which may be specialized for a unique function.  For example, we found that one of the yellow genes is 
required specifically for wing pigmentation (but not that of elytra or body wall) while another yellow 
gene has a specific, vital role in tanning of the cuticle of the adult body wall (Arakane et al., 2010). 

3. Summary 

In summary, the T. castaneum genome project has opened a fast-track to gene discovery in this stored 
product pest insect for all areas of Tribolium biology, two of which are briefly discussed here. These 
examples reveal the complexity and sophistication of genetic regulation of insect adaptations, but also 
illustrate the rapid progress towards understanding biological mechanisms made possible by the 
availability of this genome sequence. Any gene can be quickly categorized as either essential or 
dispensable by the powerful technique of RNAi. For essential genes, the timing and mode of RNAi-
induced death give clues about specific gene functions, supplementing insights gained from protein 
sequence homology and conserved domain analysis. More subtle and detailed functional inferences can 
be gleaned by more careful scrutiny of beetles after gene knockdown or by more sophisticated bioassays.  
Examples include monitoring for changes in responsiveness to pheromone after knockdown of candidate 
olfaction genes, monitoring for abnormalities in stereotyped premolting behavior after knockdown of 
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candidate effector genes involved in the endocrine regulation of molting, or monitoring cuticle 
composition after knockdown of genes with suspected roles in the metabolism or recycling of the 
exoskeleton. Assessment of gene/protein expression patterns and biochemical studies of purified or 
recombinant proteins can complement and supplement gene RNAi studies.  The resulting improvements 
in our knowledge of the basic biology of pest insects will fuel the next generation of pest control 
technologies. 

Disclaimer 

Mention of trade names or commercial products in this publication is solely for the purpose of providing 
specific information and does not imply recommendation or endorsement by the U.S. Department of 
Agriculture. 
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