1 Eve	olution of	mate harm	resistance i	n females	from Dros	sophila mela	<i>inogaster</i> p	opulations
-------	------------	-----------	--------------	-----------	-----------	--------------	--------------------	------------

2 selected for faster development and early reproduction

3

A Tamero Varma	al amailide tamera 17@iisamhan a	~ :
4 Tanya verm	a, eman iu: tanyai / @iiseropr.a	C.III

- 5 Susnato Das², email id:daskpa201@gmail.com
- 6 Saunri Dhodi Lobo³, email id: dhodi.lobo@students.iiserpune.ac.in
- 7 Ashish Kumar Mishra⁴, email id: ashish.akm1999@gmail.com
- 8 Soumi Bhattacharyya⁵ email id: soumisayantan2000@gmail.com
- 9 Bodhisatta Nandy¹*

10

- ¹Indian Institute of Science Education and Research Berhampur, Odisha, India
- ¹² ²Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle,

13 Germany

- ³Indian Institute of Science Education and Research Pune, Maharashtra, India
- ⁴National Institute of Science Education and Research, Odisha, India
- ⁵Indian Institute of Science Education and Research Kolkata, West Bengal, India
- 17 *Corresponding author, email address: <u>nandy@iiserbpr.ac.in</u>, ORCID iD: 0000-0002-9588-

18 0316

19

- 20 Keywords: Interlocus sexual conflict, sexually antagonistic coevolution, life history
- 21 evolution, cost of reproduction, post-mating response in females

22

23 Authors Contribution:

24 BN and TV conceptualized the study, designed the experiments, analysed and interpreted the

- 25 results, and prepared the manuscript. SD helped with some parts of manuscript writing at
- 26 earlier stage. TV, SD, SDL, AKM, SB executed the experiments, including data collection.

27

28

29 Abstract

30 Interlocus sexual conflict is predicted to result in sexually antagonistic coevolution between 31 male competitive traits, which are also female-detrimental, and mate harm resistance (MHR) 32 in females. Little is known about connection life-history evolution and sexually antagonistic 33 coevolution. Here, we investigated the evolution of MHR in a set of experimentally evolved 34 populations, where mate-harming ability has been shown to have evolved in males as a 35 correlated response to the selection for faster development and early reproduction. We 36 measured mortality and fecundity of females of these populations and those of their matched 37 controls, under different male exposure conditions. We observed that the evolved females 38 were more susceptible to mate harm - suffering from significantly higher mortality under 39 continuous exposure to control males within the twenty-day assay period. Though these 40 evolved females are known to have shorter lifespan, such higher mortality was not observed 41 under virgin and single-mating conditions. We used fecundity data to show that this higher 42 mortality in evolved females is unlikely due to cost of egg production. Further analysis 43 indicated that this decreased MHR is unlikely to be due purely to the smaller size of these 44 females. Instead, it is more likely to be an indirect experimentally evolved response 45 attributable to the changed breeding ecology, and/or male trait evolution. Our results 46 underline the implications of changes in life history traits, including lifespan, to the evolution 47 of MHR in females.

48

50 Introduction

51	Evolutionary interests of sexes are often not aligned leading to evolutionary conflict over
52	traits with sexually antagonistic fitness effects (Arnqvist & Rowe, 2005; Hosken et al., 2019;
53	Parker, 1979). In one form of such conflict, commonly referred to as interlocus sexual
54	conflict, expression of male-benefitting traits (for example, courtship and mating behavioural
55	traits) reduces female fitness as an incidental side effect (Arnqvist & Rowe, 2005; Holland &
56	Rice, 1999; Pitnick & García–González, 2002). The theory further predicts a counter
57	evolution in female traits that reduce such mate harm – potentially resulting in sexually
58	antagonistic coevolution (Arnqvist & Rowe, 2002; Dougherty et al., 2017; Friberg, 2005;
59	Holland & Rice, 1998, 1999; Rankin et al., 2011; Snow et al., 2019; Wigby & Chapman,
60	2004). While interlocus conflict has been reported in a wide diversity of animals in the form
61	of mate harm (Arnqvist, 1989; Chapman et al., 1995; Crudgington & Siva-Jothy, 2000;
62	Fowler & Partridge, 1989; Partridge et al., 1987; Partridge & Fowler, 1990; Pitnick &
63	García-González, 2002; Rice, 1996), direct observation of sexually antagonistic coevolution
64	has been relatively difficult. Fruit fly Drosophila. melanogaster is an exceptional
65	experimental system, where both interlocus conflict and sexually antagonistic coevolution are
66	well studied. In this system, exposure to males is known reduce female fitness due to
67	persistent courtship and mating attempt (von Schilcher & Dow, 1977), and also due to the
68	side effects of the seminal fluid peptides received during a copulation (Chapman et al., 1995;
69	Rice, 2000; Wolfner, 1997). These detrimental effects on females are expressed as increased
70	mortality or lifetime reproductive output or both (Chapman et al., 1995; Holland & Rice,
71	1999; MacPherson et al., 2018; Nandy et al., 2013b, 2013a; Pitnick, 2001; Wigby &
72	Chapman, 2004). There are now ample evidences, most notably from experimental evolution,
73	showing the counter evolution of female resistance traits (Nandy et al., 2013c; Wigby &
74	Chapman, 2004). In absence of the evolution of female resistance, hereafter referred to as

75	mate-harm resistance (MHR), a population could suffer from reduced mean fitness
76	potentially leading to extinction through the hitherto proposed tragedy-of-commons model
77	(Rankin et al., 2007). Hence, understanding the causes and constraints relevant to the
78	evolution of MHR is important.
79	
80	MHR can include behavioural and physiological traits such as, avoidance of male encounter,
81	finding refuges, production of proteins and peptides that respond to male seminal fluid
82	protein (Arnqvist & Rowe, 2002; Chapman, 2018; Dougherty et al., 2017; Hopkins & Perry,
83	2022; Rice, 2000; Yun et al., 2017). These are expected to be physiologically costly for
84	females. Though, to the best of our knowledge there hasn't been any direct evidence or
85	measure of such costs, there is some indirect evidence. For example, multiple experimental
86	evolution results suggest reduction of MHR in females and the resulting increase in
87	susceptibility of them to mate harm when populations were evolved under reduced sexual
88	conflict (Holland & Rice, 1999; Wigby & Chapman, 2004).
89	
90	Life history theories predict investment in costly traits such as, MHR should reduce when
91	there is no fitness advantage of expressing such traits, especially when resources are
92	constrained and/or there are stronger fitness components where resources are invested (Adler
93	& Bonduriansky, 2014; Bonduriansky et al., 2008; Lemaître et al., 2020; Maklakov et al.,
94	2007). These theories predict a trade-off between conflict related traits and somatic
95	maintenance. Faster aging populations are thus expected to have greater investment in
96	conflict related traits and vice versa (Promislow, 2003). Further, selection for life history that
97	results in overall reduction in baseline resource availability, such as, selection for faster
98	development, may also constrain the expression of conflict related traits (De Jong & Van
99	Noordwijk, 1992; Van Noordwijk & De Jong, 1986).

100	It appears that relationship between life history and sexual selection/conflict is typical eco-
101	evolutionary feedback (Bonduriansky, 2014; Rankin & Kokko, 2006), wherein ecological
102	changes drive the evolution of reproductive and sexual traits through trade-offs and other
103	phenotypic and genetic correlations culminating in changes in the breeding ecology. Since,
104	intensity of sexual selection/conflict is a function of this can further change sexually selected
105	traits. Such changes may further drive the evolutionary changes in life history traits. Recent
106	experimental investigations examining the effect of evolution of faster development and early
107	reproduction on the evolution of conflict related traits have upheld this idea. The relationship
108	between life history and conflict related traits were found to be far more nuanced (Ghosh &
109	Joshi, 2012; Mital et al., 2021, 2022; Verma et al., 2022).
110	
111	In a previous report we showed evolutionary reduction in mate harming ability of <i>D</i> .
112	melanogaster males is a set of populations subjected to the selection for faster development
113	and early reproduction (Verma et al., 2022). Our results and those reported by Ghosh and
114	Joshi (2012) and Mital et al. (2022) suggests that part of the changes in male traits can be
115	attributable to the changes in key life history traits such as size. However, beyond the size
116	effect, breeding ecology changes also play a clear role (Verma et al., 2022). It is, however,
117	not clear if MHR in females respond to such changes in male traits. This is the question we
118	address in the current manuscript.
119	
120	Here we used four replicates of faster developing and early reproducing D. melanogaster
121	populations (ACOs), and their controls (COs), to address this issue. We have previously

122 reported the reduction of mate harming ability in ACO males. Therefore, we predicted that

123 expression of MHR in ACO females to have no fitness advantage. Here we compare MHR in

124 experimental (ACO) and control (CO) females to assess the evolution of MHR as a result of

125	selection for faster development and early reproduction. We predict that if investment in
126	sexually antagonistic traits is costly, experimental females should have reduced MHR. We
127	measured MHR by assaying female mortality and fecundity under (a) virgin, (b) single
128	mating and (c) continuous male exposure.
129	
130	Materials and methods
131	We used a set of experimentally evolved D. melanogaster populations. They consist five
132	replicates of evolved populations, named ACOs, derived from five replicates of control
133	population named COs. Detailed information on these populations can be found in the
134	chapter 2. A total of eight populations consisting of four replicates of evolved ACO and their
135	matched control CO populations were used for the present study. Hence, all assays described
136	below were conducted with ACO ₁ , ACO ₂ , ACO ₃ , ACO ₄ and their paired control CO
137	populations. Each ACO population and their matched CO population have been treated
138	together as one block in the present study. Hence, the assays were carried out in four distinct
139	blocks where each block consisted of a replicate set of ACO and CO populations.
140	All experimental flies were generated from a subset of the stock populations, after one
141	generation of common garden rearing. All adult flies used for the experiments were collected
142	as virgins. To obtain virgin flies, freshly eclosed flies were collected every 4-6 hours under
143	light CO ₂ anaesthesia. Virgin flies were then held in single-sex vials at a density of 10 flies
144	per vial until the assay. For a population, a total of 45 such vials of virgin females were
145	collected. An adequate number of male vials were also collected from the corresponding CO
146	population.
147	
148	

150

151 <u>Mate harm resistance assay setup</u>

In *D. melanogaster*, MHR can be measured by comparing female mortality under limited and
extended exposure to males (Jiang et al., 2011; Nandy et al., 2013c; Wigby & Chapman,
2004). Females with lower MHR are expected to show sharper increase in mortality under
extended male exposure compared to those with higher MHR.

156

157 Assay vials were set up with 1-2 day old virgins. Each replicate population consisted of 45 158 vials, each vial having ten virgin females from a population, were randomly assigned to three 159 assay conditions - virgin, single exposure, and continuous exposure such that each assay 160 condition consisted of an initial count of 15 vials. The experimental vials were set up by 161 introducing flies in fresh food vials. For the virgin assay condition, females were held without 162 any male exposure for the entire assay duration. Single exposure and continuous exposure 163 vials were set up by introducing 10 virgin control (i.e., CO) males along with the ten 164 experimental females in a fresh food vial. We used control regime males (i.e., CO males) for 165 this purpose to equalise the male background against which MHR of the evolved and control 166 females was measured. For the single exposure vials, matings were manually observed and 167 after a single round of mating, sexes were separated under CO₂-anaesthesia to discard the 168 males. Since under single exposure condition females received the mating exposure of males 169 only once hence the single round of mating was conducted only once on assay set-up day. 170 After discarding the males the females were then returned back in the same vials. For the 171 continuous exposure treatment, males and the females were kept together in the same vials 172 till the end of the assay. To ensure similar handling of flies across all treatments, flies under 173 virgin and continuous exposure treatments were also exposed to anaesthesia. Throughout the 174 experiment, except sorting of sexes, all other fly handling was done without anaesthesia. All

175	vials were maintained for twenty days and the flies in each vial were flipped to fresh food
176	vials every alternate day. For all vials regardless of assay condition, mortality in females was
177	recorded daily until day 20. Our previous observation suggests that the difference in effects
178	of mate harm on female mortality can be detected in the first twenty days of adult life (Verma
179	et al., 2022). In addition, this period represents early-to-mid-life in this system, most relevant
180	to both control (CO) and experimental (ACO) population ecology. Further, the difference in
181	age-dependent mortality rate between the two selection regimes has minimal impact on
182	mortality difference within this duration (data not shown). Dead flies were aspirated out
183	during vial-to-vial flips. In the continuous exposure assay condition, in case a female fly was
184	found dead in a vial, along with the dead female, a male was also removed from the same vial
185	to maintain a 1:1 sex ratio.
186	Female fecundity was recorded twice a week starting from the onset of the assay until day 20
187	(i.e., day 1, 3, 6, 9, 12, 15, 18, and 20). On each of these days, flies were flipped to a fresh
188	food vial (hereafter referred to as a fecundity vial) and were left undisturbed for 24 hours.
189	Following this, the flies were transferred to a fresh food vial, while the fecundity vial was
190	frozen immediately to prevent further development of the already deposited eggs. The
191	number of eggs laid in a fecundity vial was counted under microscope. Fecundity count was
192	carried out for single exposure and continuous exposure treatments. Per capita fecundity,
193	calculated as total number of eggs in a vial divided by the number of females alive in that vial
194	on that given day, from individual vials was taken as the unit of analysis. A few vials were
195	removed from the assay for a variety of reasons, including accidental escape, a few females
196	failing to mate, etc. The final sample size throughout the entire experiment was 13-15 vials
197	per population.

198

199 Data analysis

Female survivorship was analysed using Cox's Proportional hazards model. Selection regime
(levels: ACO and CO) and assay condition (levels: virgin, single exposure and continuous
exposure) were modelled as fixed factor and block as random factor using R package Coxme
(Therneau, 2012). Cox partial likelihood (log-likelihood) estimates across selection regimes
were compared.

205

206 Per capita fecundity was analysed in two ways. Cumulative fecundity i.e., per capita 207 fecundity pooled across all eight age classes was analysed to compare to total early-to-mid-208 life reproductive output of the females. In addition, age-specific per capita fecundity was 209 analysed to compare the age-related pattern of reproduction. The latter was done only for the 210 continuous exposure set to minimise model complication. Age-specific fecundity data were 211 square root transformed before analysis. A linear mixed effect model was fitted to the 212 transformed data. 1me4 package (Bates et al., 2015) and 1merTest (Kuznetsova et al., 213 2017) in R version 4.2.1 (R Core Team, 2022). In the cumulative fecundity model, selection 214 regime (levels: ACO and CO), assay condition (levels: single exposure and continuous 215 exposure) and their two-way interactions as fixed factors, block as a random factor. In the 216 analysis of age-specific per capita fecundity, selection regime and age (levels: 1, 3, 6, 9, 12, 217 15, 18, 20) were the fixed factors, and block and all interaction terms involving block were 218 modelled as random factors. All models are mentioned in the supplementary information. 219 Post-hoc pairwise comparisons using Tukey's HSD method were performed with the package 220 Emmeans (Lenth, 2016). The ANOVA table was obtained following Satterthwaite's method 221 using type III sum of squares.

222

223 Results

224	Cox partial likelihood estimates suggested that the effects of selection regime, assay
225	condition, and selection regime \times assay condition interaction on female mortality were
226	significant (Figure 1, Table 1). Pairwise comparisons indicated a significant difference in
227	survivorship of ACO and CO females only under continuous exposure, with ACO females
228	more than 9.5 times likely to succumb compared to CO females (estimated hazard ratio: 8.02,
229	95% CI: 3.786 to 17.798). ACO females are significantly smaller in size than CO females
230	(see supplementary information for details). Therefore, to further investigate whether the
231	higher mortality in ACOs compared to COs under CE condition was due to reduction in body
232	size, we performed mortality analysis with and without thorax length (a proxy for body size)
233	as a covariate. Details of the analysis can be found in supplementary information. The results
234	of this analyses suggested that incorporating thorax length did not qualitatively change the
235	interpretations of our results.
236	
237	The effects of selection regime and assay condition on cumulative fecundity were significant
238	(Table 2). While females under continuous exposure had significantly higher fecundity

regardless of the selection regime, cumulative fecundity of ACO females was 27% less than

that of the control CO females (Figure 2a). Age-specific fecundity analysis indicated

significant effects of selection regime, and age (Figure 2b). However, we found a two-way

and a three-way interaction term involving random block to be significant (see SI, Table S3).

243 Hence, we analysed each block separately (see supplementary information, Table S2).

244 Though across blocks the age-specific pattern seemed to vary, CO females generally showed

higher per-capita fecundity in most age points (see SI, Figure S3). Fecundity on day1 was of

246 particular interest as ACO maintenance regime selects for fecundity at this age. Hence, we

analysed day1 fecundity separately, using a linear mixed model similar to that used to analyse

248 cumulative fecundity. The results indicated significant effects of selection regime and assay

- 249 condition, with CO females showing higher fecundity under both SE and CE conditions
- 250 (Table 6.2, Figure S4).

	Hazard	Lower	Upper		
Fixed Coefficients	Ratios	CI	CI	Z	р
Selection Regime ACO	1.156	0.589	2.266	0.24	< 0.001
Assay condition SE	0.557	0.246	1.261	-1.13	< 0.001
Assay condition CE	1.927	1.051	3.536	1.36	< 0.001
Selection Regime ACO: Assay condition SE	1.776	0.624	5.053	0.98	< 0.001
Selection Regime ACO: Assay condition CE	8.209	3.786	17.798	4.27	< 0.001
Random effects	Variance				
Block	0.0794				

Table 1: Output of mixed effect Cox proportional hazard model for analysis of female survivorship ACO and CO regime females held under virgin (V), single exposure (SE) and continuous exposure (CE) condition with ancestral CO males. Hazard ratios are relative to the default level for each factor which is set to 1. The default level for selection regime was 'CO', and the default level for assay condition was 'Virgin'. Lower CI and Upper CI indicate lower and upper bounds of 95% confidence intervals. Level of significance was considered to be $\alpha = 0.05$, and significant p-values are mentioned in bold font style

267

268

269

270

Trait	Effect	SS	DF	MS	Den DF	F	р
	Selection Regime (SR)	4054.8	1	4054.8	3.008	25.826	0.015
Cumulative	Assay condition	5476.4	1	5476.4	2.987	34.881	0.010
fecundity	Selection Regime \times	583.0	1	583.0	3.016	3.713	0.149
	Assay condition						
	Selection Regime (SR)	301.22	1	301.22	5.649	11.673	0.016
Day 1 per capita	Assay condition	296.34	1	296.34	4.470	11.484	0.023
fecundity	Selection Regime × Assay condition	129.31	1	129.31	2.077	5.011	0.150
Age-specific per	Selection regime	14.20	1	14.21	40.027	42.210	<0.001
capita fecundity	Age	48.57	7	6.94	21.019	20.626	<0.001
- ·	Selection regime × Age	5.19	7	0.74	23.470	2.205	0.071
Body size	Selection Regime	1.11	1	1.11	235.000	1446.600	<0.001

271

Table 2: Summary of the results of linear mixed model (LMM) analysis of cumulative fecundity, day 1 per capita fecundity, age-specific per capita fecundity and body size using lmerTest function in R. Selection regime and assay condition in cumulative and day 1 per capita fecundity and regime and Selection regime in body size were modelled as fixed factors and block as a random factor. All tests were done considering $\alpha = 0.05$ and significant p-values are mentioned in bold font style.

277

278

Figure 1: Survivorship curves obtained from Cox proportional hazard analysis on the mortality of ACO (red line) and CO (dark cyan line) regime females held under virgin (V), single exposure (SE) and continuous exposure (CE) condition for 20 days during the assay. The differences between survivorship ACO and CO females were found to be no significant under virgin and SE conditions. Under CE condition, ACO females showed significantly higher mortality rate.

290

Figure 2: Results from the cumulative fecundity per capita across ACO and CO selection regime

females held with control (CO) males. Filled circles and error bars represent means, and standard

error respectively. Standard errors are calculated using block means (i.e., population means). Effects

of selection regime, and assay condition on cumulative per capita fecundity were found to be

significant.

297

Figure 3: Results from the age-specific per capita fecundity across ACO and CO selection regime females held with control (CO) males. Age specific fecundity was analysed only for continuous exposure assay condition to minimise model complication. Filled circles and error bars represent means, and standard error respectively. Standard errors are calculated using block means (i.e., population means). Effects of selection regime and age were found to be significant on age specific per capita fecundity.

- 305
- 306
- 307
- 308
- 309
- 310

311 Discussion

312	Our results suggest that selection for faster development and early reproduction has led to the
313	evolution of sexually antagonistic traits. The evolved ACO males were previously shown to
314	be significantly less harming to their mates (Verma et al., 2022). According to the results of
315	our MHR assay reported here, ACO females appeared to be significantly more susceptible to
316	continued male interaction. When held with control males, ACO females showed close to ten
317	times higher mortality rate compared to that of the control (CO) females in the same
318	condition. Further, ACO females were found to be consistently less fecund, regardless of the
319	length of male exposure, and age. Hence, higher mortality of ACO females mentioned above
320	was more likely to be due to an increased susceptibility to male induced harm, instead of an
321	increased cost of reproduction per se.
322	
323	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are
323 324	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are known to have >30% reduced mean lifespan (Burke et al., 2010). Hence, ACO females are
323 324 325	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are known to have >30% reduced mean lifespan (Burke et al., 2010). Hence, ACO females are expected to have a higher mortality. However, no difference in survivorship of females were
323 324 325 326	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are known to have >30% reduced mean lifespan (Burke et al., 2010). Hence, ACO females are expected to have a higher mortality. However, no difference in survivorship of females were observed when they were kept under absence of male exposure i.e., virgin condition or even
323 324 325 326 327	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are known to have >30% reduced mean lifespan (Burke et al., 2010). Hence, ACO females are expected to have a higher mortality. However, no difference in survivorship of females were observed when they were kept under absence of male exposure i.e., virgin condition or even under single mating exposure for the entire twenty-day assay period. This shows that there is
323 324 325 326 327 328	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are known to have >30% reduced mean lifespan (Burke et al., 2010). Hence, ACO females are expected to have a higher mortality. However, no difference in survivorship of females were observed when they were kept under absence of male exposure i.e., virgin condition or even under single mating exposure for the entire twenty-day assay period. This shows that there is no intrinsic difference in the mortality rate of females of two selection regime, at least for the
323 324 325 326 327 328 329	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are known to have >30% reduced mean lifespan (Burke et al., 2010). Hence, ACO females are expected to have a higher mortality. However, no difference in survivorship of females were observed when they were kept under absence of male exposure i.e., virgin condition or even under single mating exposure for the entire twenty-day assay period. This shows that there is no intrinsic difference in the mortality rate of females of two selection regime, at least for the assay period. Therefore, higher mortality under continued presence of males represents
323 324 325 326 327 328 329 330	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are known to have >30% reduced mean lifespan (Burke et al., 2010). Hence, ACO females are expected to have a higher mortality. However, no difference in survivorship of females were observed when they were kept under absence of male exposure i.e., virgin condition or even under single mating exposure for the entire twenty-day assay period. This shows that there is no intrinsic difference in the mortality rate of females of two selection regime, at least for the assay period. Therefore, higher mortality under continued presence of males represents mortality due to male induced harm and thus not the intrinsic mortality differences between
323 324 325 326 327 328 329 330 331	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are known to have >30% reduced mean lifespan (Burke et al., 2010). Hence, ACO females are expected to have a higher mortality. However, no difference in survivorship of females were observed when they were kept under absence of male exposure i.e., virgin condition or even under single mating exposure for the entire twenty-day assay period. This shows that there is no intrinsic difference in the mortality rate of females of two selection regime, at least for the assay period. Therefore, higher mortality under continued presence of males represents mortality due to male induced harm and thus not the intrinsic mortality differences between selection regime females. Reduction in MHR as a coevolutionary response to the reduction in
323 324 325 326 327 328 329 330 331 332	Experimental evolution resulted in reduced adult longevity in the ACOs, and females are known to have >30% reduced mean lifespan (Burke et al., 2010). Hence, ACO females are expected to have a higher mortality. However, no difference in survivorship of females were observed when they were kept under absence of male exposure i.e., virgin condition or even under single mating exposure for the entire twenty-day assay period. This shows that there is no intrinsic difference in the mortality rate of females of two selection regime, at least for the assay period. Therefore, higher mortality under continued presence of males represents mortality due to male induced harm and thus not the intrinsic mortality differences between selection regime females. Reduction in MHR as a coevolutionary response to the reduction in mate harm from males should depend on the cost of maintaining and/or expressing MHR

led to the reduction in MHR (Nandy et al., 2013c; Wigby & Chapman, 2004).

335

336	The harm induced by males to female is often measured in terms of reduced survival rate. In
337	Drosophila, males are known to reduce female survival through (a) detrimental effect of
338	seminal fluid proteins (Sfp) transferred during copulation (Chapman et al., 1995; Wigby et
339	al., 2020) and (b) by persistently courtship to the females (Fowler & Partridge, 1989). Several
340	experimental evolution studies have previously shown the evolution of female resistance to
341	male induced harm (Crudgington et al., 2005; Holland & Rice, 1999; Maklakov et al., 2007;
342	Martin & Hosken, 2003; Michalczyk et al., 2011; Nandy et al., 2013c, Wigby & Chapman,
343	2004). Reduction in population level sexual conflict, either through enforced monogamy or
344	through altered operational sex ratio emerged as the fundamental selective condition needed
345	for such female evolution (for example, Martin & Hosken, 2003, Nandy et al., 2013c). Since
346	ACO males are already shown to be less harming than ancestral CO males (Verma et al.,
347	2022), it is perhaps reasonable to suggest that ACO females are usually subjected to much
348	less sexually antagonistic male interactions. Hence, the female resistance traits, in absence of
349	any selective advantage, are free to evolve due to their costs.
350	
351	If MHR is costly to express, it is expected to be constrained by the resource availability

352 (Adler & Bonduriansky, 2014). Females in resource deprived condition should therefore be 353 limited in terms of their ability to resist mate harm. Such condition dependence of MHR has 354 been recently demonstrated (Iglesias-Carrasco et al., 2018; Rostant et al., 2020). In addition, 355 for reproducing females, the cost of producing progeny can further constrain resources 356 available for other physiological processes - potentially making them vulnerable to stresses 357 including mate harm. The evolved ACO females in our study are small in size (Table 2 and 358 see Supplementary information), and can thus be expected to be resource limited 359 (Chippindale et al., 1993). However, they have a lower reproductive rate - hence, lower 360 absolute investment in reproduction. Though it is difficult to assess the relative reproductive

361	investment, as evident from our data from the single mating treatment, there appears to be a
362	baseline reduction in reproductive rate of ACO females. However, evidently this baseline
363	difference in reproduction did not result in mortality rate difference, which is only evident
364	under extended male exposure. In addition, there was no evidence that this difference in
365	reproductive investment between the evolved ACO and control CO females was higher under
366	continuous male presence. Hence, it is very unlikely that observed differences in
367	susceptibility is a mere reflection of the difference in available resources after accounting for
368	the resources needed for reproduction per se. The size difference, however, could still be a
369	fundamental reason for reduction of MHR of the ACO females. Notwithstanding the potential
370	effect of body size on our MHR interpretation, re-analysis of the mortality results with female
371	thorax length as a covariate did not qualitatively change final outcome of the analysis.
372	Further, our conclusions are also in line with those of Mital et al. (2021) who used
373	phenocopied females to demonstrate the size independent reduction in MHR. The literature is
374	also fairly ambivalent about the dependence of MHR on female size. Hence, in conclusion, it
375	is very unlikely that the reduction in MHR of the ACO females can be completely
376	attributable to reduced size of these females, however, it cannot be completely ruled out
377	either.
378	
379	Several experimental evolution studies have shown the evolution of MHR (Crudgington et
380	al., 2005; Holland & Rice, 1999; Hollis et al., 2019, p. 2020; Maklakov et al., 2007; Martin &
381	Hosken, 2003; Michalczyk et al., 2011; Mital et al., 2021; Nandy et al., 2013c; Rostant et al.,
382	2020; Wigby & Chapman, 2004). Of these, only two have directly connected evolution of

383 conflict related traits to life history traits such as, condition, adult lifespan, development time,

and size (Mital et al., 2022; Rostant et al., 2020). Though evolution of MHR is important for

a population's survival (Rankin et al., 2011), continuation of sexual selection (Snow et al.,

386 2019), and maintenance of genetic variation (Härdling & Karlsson, 2009), it cannot evolve in 387 the vacuum of sexually antagonistic traits only. Our results are an important addition to the 388 growing list of evidences suggesting that sexual conflict is subjected to a typical eco-389 evolutionary feedback process. A key prediction of this is, the ecological variations such as 390 population dynamics, competition, economics of mating interactions can drive the 391 evolutionary changes (i.e. "eco-evo" dynamics) and evolutionary changes can in turn 392 influence the ecological processes such as population dynamics, productivity, investment etc. 393 ("evo-eco" dynamics: (Svensson, 2018)). Within-population studies showed that ecological 394 factors such as availability of food, predation pressure, operational sex ratio can affect mating 395 economics and interactions thereby affecting the degree of sexual selection and sexual 396 conflict (Ortigosa & Rowe, 2002; Perry & Rowe, 2018). For example, Ortigosa and Rowe 397 (2002) showed that in water strider (Gerris buenoi) females under low availability of food, 398 increases behavioural resistance to mating because mating interferes with female foraging, 399 thereby strengthening sexual selection to favour male investment in persistence traits. 400 Additionally, across population studies have also supported the idea that ecological variations 401 affecting male-female encounter can be an important determinant of investment in sexually 402 antagonistic traits. For example, complexity of the mating environment providing refuges for 403 mate avoidance (Byrne et al., 2008; Yun et al., 2017, 2021), temperature variation that alters 404 various activities in males (García-Roa et al., 2019), and community structure that alters 405 male-female encounter rate (Clutton-Brock et al., 1999; Gomez-Llano et al., 2018) have been 406 found to alter the level of mate harm in a population. Therefore, breeding ecology can set the 407 stage of sexual conflict and drive antagonistic coevolution between sexes, and moreover, life 408 history can affect such evolution by (a) setting physiological and genetic constraints, and (b) 409 constraining breeding ecology. Hence, selection for life history traits such as, lifespan, 410 reproductive schedule etc. should be important drivers of sexually antagonistic coevolution as

411 such selection can impact breeding ecology and offset the fitness premium on sexually

412 antagonistic traits.

413

414	In conclusion, we found that the reproductive evolution in the ACO females. The results
415	suggested that as a correlated response to the selection for faster development and early
416	reproduction, female fecundity and resistance to mate harm had evolved. Much of the
417	changes in resistance trait can be attributed to the incidental changes in the breeding ecology
418	in addition to the potential effect of resource limitation.
419	
420	Acknowledgements:
421	The study was financially supported by a research grant from Department of Science and
422	Technology, Govt. of India (INSPIRE Faculty award, Grant no.
423	DST/INSPIRE/04/2013/000520). We thank Subhasish Halder and Purbasha Dasgupta for
424	help in the experiments and Rabisankar Pal for help in data analysis and plotting. We thank
425	Sadanjeet Kumar Kar for help in experimental observations. TV thanks Indian Institute of
426	Science Education and Research, Berhampur for financial support in the form of Junior and
427	Senior Research Fellowship. SD thanks Scholarship for Higher Education, Govt. of India for
428	financial support in form of INSPIRE-SHE fellowship. SDL thanks IASc, INSA and NASI,

429 Government of India for financial support in the form of IASc-INSA-NASI Summer

- 430 Research fellowship. AKM thanks Department of Atomic Energy, Govt. of India for financial
- 431 support in the form of DISHA scholarship. We do not have any conflict of interest to declare.

432

433 **References**

434 Adler, M. I., & Bonduriansky, R. (2014). Sexual conflict, life span, and aging. Cold Spring

435 *Harbor Perspectives in Biology*, 6(8), a017566.

- 436 Arnqvist, G. (1989). Sexual selection in a water strider: The function, mechanism of selection
- 437 and heritability of a male grasping apparatus. *Oikos*, 344–350.
- 438 Arnqvist, G., & Rowe, L. (2002). Antagonistic coevolution between the sexes in a group of
- 439 insects. *Nature*, 415(6873), 787–789. https://doi.org/10.1038/415787a
- 440 Arnqvist, G., & Rowe, L. (2005). Sexual conflict (Vol. 31). Princeton university press.
- 441 Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. ArXiv
- 442 *Preprint ArXiv:1506.04967.*
- 443 Bonduriansky, R. (2014). The ecology of sexual conflict: Background mortality can modulate
- the effects of male manipulation on female fitness. *Evolution*, 68(2), 595–604.
- 445 Bonduriansky, R., Maklakov, A., Zajitschek, F., & Brooks, R. (2008). Sexual selection,
- sexual conflict and the evolution of ageing and life span. *Functional Ecology*, 443–453.
- 447 Burke, M. K., Dunham, J. P., Shahrestani, P., Thornton, K. R., Rose, M. R., & Long, A. D.
- 448 (2010). Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature,
- 449 467(7315), 587-590.
- 450 Byrne, P. G., Rice, G. R., & Rice, W. R. (2008). Effect of a refuge from persistent male
- 451 courtship in the Drosophila laboratory environment. *American Zoologist*, 48(2), e1–e1.
- 452 Chapman, T. (2018). Sexual conflict: Mechanisms and emerging themes in resistance
- 453 biology. *The American Naturalist*, 192(2), 217–229.
- 454 Chippindale, A. K., Leroi, A. M., Kim, S. B., & Rose, M. R. (1993). Phenotypic plasticity
- 455 and selection in *Drosophila* life-history evolution. I. Nutrition and the cost of reproduction.
- 456 *Journal of Evolutionary Biology*, 6(2), 171–193.
- 457
- 458 Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F., & Partridge, L. (1995). Cost of
- 459 mating in Drosophila melanogaster females is mediated by male accessory gland products.
- 460 *Nature*, *373*(6511), 241–244.

- 461 Clutton-Brock, T. H., Maccoll, A., Chadwick, P., Gaynor, D., Kansky, R., & Skinner, J. D.
- 462 (1999). Reproduction and survival of suricates (Suricata suricatta) in the southern Kalahari.
- 463 *African Journal of Ecology*, *37*(1), 69–80.
- 464 Crudgington, H. S., Beckerman, A. P., Brüstle, L., Green, K., & Snook, R. R. (2005).
- 465 Experimental removal and elevation of sexual selection: Does sexual selection generate
- 466 manipulative males and resistant females? *The American Naturalist*, *165*(S5), S72–S87.
- 467 Crudgington, H. S., & Siva-Jothy, M. T. (2000). Genital damage, kicking and early death.
- 468 *Nature*, 407(6806), 855–856.
- 469 De Jong, G., & Van Noordwijk, A. J. (1992). Acquisition and allocation of resources: Genetic
- 470 (co) variances, selection, and life histories. *The American Naturalist*, 139(4), 749–770.
- 471 Dougherty, L. R., van Lieshout, E., McNamara, K. B., Moschilla, J. A., Arnqvist, G., &
- 472 Simmons, L. W. (2017). Sexual conflict and correlated evolution between male persistence
- 473 and female resistance traits in the seed beetle Callosobruchus maculatus. *Proceedings of the*
- 474 *Royal Society B: Biological Sciences*, 284(1855), 20170132.
- 475 Fowler, K., & Partridge, L. (1989). A cost of mating in female fruitflies. *Nature*, 338(6218),
- 476 760–761.
- 477 Friberg, U. (2005). Genetic variation in male and female reproductive characters associated
- 478 with sexual conflict in *Drosophila melanogaster*. *Behavior Genetics*, 35(4), 455–462.
- 479 García-Roa, R., Chirinos, V., & Carazo, P. (2019). The ecology of sexual conflict:
- 480 Temperature variation in the social environment can drastically modulate male harm to
- 481 females. *Functional Ecology*, *33*(4), 681–692.
- 482 Ghosh, S., & Joshi, A. (2012). Evolution of reproductive isolation as a by-product of
- 483 divergent life-history evolution in laboratory populations of D rosophila melanogaster.
- 484 *Ecology and Evolution*, 2(12), 3214–3226.

- 485 Gomez-Llano, M. A., Bensch, H. M., & Svensson, E. I. (2018). Sexual conflict and ecology:
- 486 Species composition and male density interact to reduce male mating harassment and
- 487 increase female survival. *Evolution*, 72(4), 906–915.
- 488 Gromko, M. H., & Pyle, D. W. (1978). Sperm competition, male fitness, and repeated mating
- 489 by female Drosophila melanogaster. *Evolution*, 588–593.
- 490 Härdling, R., & Karlsson, K. (2009). The dynamics of sexually antagonistic coevolution and
- 491 the complex influences of mating system and genetic correlation. Journal of Theoretical
- 492 *Biology*, *260*(2), *276–282*.
- 493 Holland, B., & Rice, W. R. (1998). Perspective: Chase-away sexual selection: antagonistic
- 494 seduction versus resistance. *Evolution*, 52(1), 1–7.
- 495 Holland, B., & Rice, W. R. (1999). Experimental removal of sexual selection reverses
- 496 intersexual antagonistic coevolution and removes a reproductive load. Proceedings of the
- 497 *National Academy of Sciences*, *96*(9), 5083–5088.
- 498 Hollis, B., Koppik, M., Wensing, K. U., Ruhmann, H., Genzoni, E., Erkosar, B., Kawecki, T.
- 499 J., Fricke, C., & Keller, L. (2019). Sexual conflict drives male manipulation of female
- 500 postmating responses in Drosophila melanogaster. *Proceedings of the National Academy of*
- 501 *Sciences*, *116*(17), 8437–8444.
- 502 Hopkins, B. R., & Perry, J. C. (2022). The evolution of sex peptide: Sexual conflict,
- 503 cooperation, and coevolution. *Biological Reviews*, 97(4), 1426–1448.
- Hosken, D. J., Archer, C. R., & Mank, J. E. (2019). Sexual conflict. *Current Biology*, 29(11),
 R451–R455.
- 506 Iglesias-Carrasco, M., Jennions, M. D., Zajitschek, S. R., & Head, M. L. (2018). Are females
- in good condition better able to cope with costly males? *Behavioral Ecology*, 29(4), 876-884.
- 508 https://doi.org/10.1093/beheco/ary059. https://doi.org/10.1093/beheco/ary059

- Jiang, P.-P., Bedhomme, S., Prasad, N. G., & Chippindale, A. (2011). Sperm competition and
- 510 mate harm unresponsive to male-limited selection in Drosophila: An evolving genetic
- 511 architecture under domestication. Evolution: International Journal of Organic Evolution,
- **512** *65*(9), 2448–2460.
- 513 Kaufman, B. P., & Demerec, M. (1942). Utilization of sperm by the female Drosophila
- melanogaster. *The American Naturalist*, 76(766), 445–469.
- 515 Kuijper, B., Stewart, A. D., & Rice, W. R. (2006). The cost of mating rises nonlinearly with
- 516 copulation frequency in a laboratory population of *Drosophila melanogaster*. Journal of
- 517 *Evolutionary Biology*, *19*(6), 1795–1802.
- 518 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). ImerTest package: Tests in
- 519 linear mixed effects models. *Journal of Statistical Software*, 82, 1–26.
- 520 Lemaître, J.-F., Ronget, V., & Gaillard, J.-M. (2020). Female reproductive senescence across
- 521 mammals: A high diversity of patterns modulated by life history and mating traits.
- 522 *Mechanisms of Ageing and Development*, 192, 111377.
- 523 Lenth, R. V. (2016). Least-squares means: The R package Ismeans. Journal of Statistical
- 524 *Software*, 69, 1–33.
- 525 MacPherson, A., Yun, L., Barrera, T. S., Agrawal, A. F., & Rundle, H. D. (2018). The effects
- 526 of male harm vary with female quality and environmental complexity in Drosophila
- 527 melanogaster. *Biology Letters*, 14(8), 20180443.
- 528 Maklakov, A. A., Fricke, C., & Arnqvist, G. (2007). Sexual selection affects lifespan and
- aging in the seed beetle. Aging Cell, 6(6), 739–744.
- 530 Martin, O. Y., & Hosken, D. J. (2003). Costs and benefits of evolving under experimentally
- enforced polyandry or monogamy. *Evolution*, *57*(12), 2765–2772.
- 532 Michalczyk, \Lukasz, Millard, A. L., Martin, O. Y., Lumley, A. J., Emerson, B. C., & Gage,
- 533 M. J. (2011). Experimental evolution exposes female and male responses to sexual selection

- and conflict in Tribolium castaneum. Evolution: International Journal of Organic Evolution,
- **535** *65*(3), 713–724.
- 536 Mital, A., Sarangi, M., Dey, S., & Joshi, A. (2021). Evolution of lower levels of inter-locus
- 537 sexual conflict in D. melanogaster populations under strong selection for rapid development.
- 538 BioRxiv.
- 539 Mital, A., Sarangi, M., Nandy, B., Pandey, N., & Joshi, A. (2022). Shorter effective lifespan
- in laboratory populations of D. melanogaster might reduce sexual selection. *BioRxiv*, 2021–
 04.
- 542 Nandy, B., Chakraborty, P., Gupta, V., Ali, S. Z., & Prasad, N. G. (2013a). Sperm
- 543 competitive ability evolves in response to experimental alteration of operational sex ratio.
- 544 *Evolution*, 67(7), 2133–2141.
- 545 Nandy, B., Gupta, V., Sen, S., Udaykumar, N., Samant, M. A., Ali, S. Z., & Prasad, N. G.
- 546 (2013b). Evolution of mate-harm, longevity and behaviour in male fruit flies subjected to
- 547 different levels of interlocus conflict. *BMC Evolutionary Biology*, *13*(1), 1–16.
- 548 Nandy, B., Gupta, V., Udaykumar, N., Samant, M. A., Sen, S., & Prasad, N. G. (2013c).
- 549 Experimental evolution of female traits under different levels of intersexual conflict in
- 550 Drosophila melanogaster. Evolution, 68(2), 412–425. https://doi.org/10.1111/evo.12271
- 551 Ortigosa, A., & Rowe, L. (2002). The effect of hunger on mating behaviour and sexual
- selection for male body size in Gerris buenoi. *Animal Behaviour*, 64(3), 369–375.
- 553 Parker, G. A. (1979). Sexual selection and sexual conflict. Sexual Selection and Reproductive
- 554 *Competition in Insects*, *123*, 166.
- 555 Partridge, L., & Fowler, K. (1990). Non-mating costs of exposure to males in female
- 556 Drosophila melanogaster. Journal of Insect Physiology, 36(6), 419–425.

- 557 Partridge, L., Green, A., & Fowler, K. (1987). Effects of egg-production and of exposure to
- males on female survival in Drosophila melanogaster. *Journal of Insect Physiology*, 33(10),
- 559 745–749.
- 560 Perry, J. C., & Rowe, L. (2018). Sexual conflict in its ecological setting. Philosophical
- 561 *Transactions of the Royal Society B: Biological Sciences*, *373*(1757), 20170418.
- 562 Pitnick. (2001). Evolution of female remating behaviour following experimental removal of
- sexual selection. Proceedings of the Royal Society of London. Series B: Biological Sciences,
- 564 268(1467), 557–563.
- 565 Pitnick, S., & García–González, F. (2002). Harm to females increases with male body size in
- 566 Drosophila melanogaster. Proceedings of the Royal Society of London. Series B: Biological
- 567 *Sciences*, 269(1502), 1821–1828.
- 568 Promislow, D. (2003). Mate choice, sexual conflict, and evolution of senescence. Behavior
- 569 *Genetics*, 33(2), 191–201.
- 570 Rankin, D. J., Bargum, K., & Kokko, H. (2007). The tragedy of the commons in evolutionary
- 571 biology. *Trends in Ecology & Evolution*, 22(12), 643–651.
- 572 Rankin, D. J., Dieckmann, U., & Kokko, H. (2011). Sexual conflict and the tragedy of the
- 573 commons. The American Naturalist, 177(6), 780–791.
- 574 Rankin, D. J., & Kokko, H. (2006). Sex, death and tragedy. *Trends in Ecology & Evolution*,
- 575 *21*(5), 225–226.
- 576 Rice, W. R. (1996). Sexually antagonistic male adaptation triggered by experimental arrest of
- 577 female evolution. *Nature*, *381*, 232–234.
- 578 Rice, W. R. (2000). Dangerous liaisons. *Proceedings of the National Academy of Sciences*,
- **579** *97*(24), 12953–12955.

- 580 Rostant, W. G., Fowler, E. K., & Chapman, T. (2020). Sexual Conflict Theory: Concepts and
- 581 Empirical Tests. In The Sage Handbook of Evolutionary Psychology: Foundations of
- 582 *Evolutionary Psychology* (pp. 241–259). SAGE Publications.
- 583 Snow, S. S., Alonzo, S. H., Servedio, M. R., & Prum, R. O. (2019). Female resistance to
- sexual coercion can evolve to preserve the indirect benefits of mate choice. *Journal of*
- 585 *Evolutionary Biology*, *32*(6), 545–558.
- 586 Stearns, S. C. (1989). Trade-offs in life-history evolution. *Functional Ecology*, *3*(3), 259–268.
- 587 Svensson. (2018). On reciprocal causation in the evolutionary process. Evolutionary Biology,
- **588** *45*(1), 1–14.
- 589 Therneau, T. (2012). Coxme: Mixed effects Cox models. R package. Version.
- 590 Van Noordwijk, A. J., & De Jong, G. (1986). Acquisition and allocation of resources: Their
- influence on variation in life history tactics. *The American Naturalist*, *128*(1), 137–142.
- 592 Verma, T., Mohapatra, A., Senapati, H. K., Muni, R. K., Dasgupta, P., & Nandy, B. (2022).
- 593 Evolution of reduced mate harming tendency of males in *Drosophila melanogaster*
- 594 populations selected for faster life history. *Behavioral Ecology and Sociobiology*, 76(6), 1–
- 595 15.
- 596 von Schilcher, F., & Dow, M. (1977). Courtship behaviour in Drosophila: Sexual isolation or
- 597 sexual selection? *Zeitschrift Für Tierpsychologie*, *43*(3), 304–310.
- 598 Wigby, S., Brown, N. C., Allen, S. E., Misra, S., Sitnik, J. L., Sepil, I., Clark, A. G., &
- 599 Wolfner, M. F. (2020). The Drosophila seminal proteome and its role in postcopulatory
- 600 sexual selection. *Philosophical Transactions of the Royal Society B*, 375(1813), 20200072.
- 601 Wigby, S., & Chapman, T. (2004). Female resistance to male harm evolves in response to
- 602 manipulation of sexual conflict. *Evolution*, 58(5), 1028–1037.
- 603 Wolfner, M. F. (1997). Tokens of love: Functions and regulation of Drosophila male
- accessory gland products. *Insect Biochemistry and Molecular Biology*, 27(3), 179–192.

- 605 Yun, L., Agrawal, A. F., & Rundle, H. D. (2021). On male harm: How it is measured and
- 606 how it evolves in different environments. *The American Naturalist*, 198(2), 219–231.
- 607 Yun, L., Chen, P. J., Singh, A., Agrawal, A. F., & Rundle, H. D. (2017). The physical
- 608 environment mediates male harm and its effect on selection in females. *Proceedings of the*
- 609 Royal Society B: Biological Sciences, 284(1858), 20170424.
- 610