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A B S T R A C T   

Through their suggestive name, non-targeted methods (NTMs) do not aim at a predefined “needle in the hay-
stack.” Instead, they exploit all the constituents of the haystack. This new type of analytical method is 
increasingly finding applications in food and feed testing. However, the concepts, terms, and considerations 
related to this burgeoning field of analytical testing need to be propagated for the benefit of those associated with 
academic research, commercial development, or official control. This paper addresses frequently asked questions 
regarding terminology in connection with NTMs. The widespread development and adoption of these methods 
also necessitate the need to develop innovative approaches for NTM validation, i.e., evaluating the performance 
characteristics of a method to determine if it is fit-for-purpose. This work aims to provide a roadmap for 
approaching NTM validation. In doing so, the paper deliberates on the different considerations that influence the 
approach to validation and provides suggestions therefor.   

1. Introduction 

A new type of analytical method, known as “non-targeted methods” 
(NTMs), has emerged as a powerful technique for tackling problems in 
fields such as food authenticity (including food fraud) (Ulberth, 2020), 
food quality (Böhme, Karola, Calo-Mata et al., 2018), food safety 
(Medina et al., 2019), water monitoring (Hollender et al., 2017), mi-
crobial species subtyping (Singhal et al., 2015), among others. These 
new methods are described in a growing body of literature, and some are 
already being used in routine testing and monitoring (Monakova et al., 
2014; PerkinElmer, n.d.; Solovyev et al., 2021). Many different terms are 
used to refer to NTMs in the literature, such as “untargeted method,” 
“non-target testing,” “non-target approaches,” and “fingerprinting 
methods,” among others (Ballin & Laursen, 2019). In this paper, only the 

term “non-targeted methods” will be used. 
NTMs combine the superiority of high-resolution analytical mea-

surement instruments with advances in chemometrics and machine 
learning algorithms. Acquired measurements typically consist of large 
arrays of values, which are sometimes referred to as the “fingerprint” of 
the sample under examination. Owing to the immense potential of these 
methods, the past decade has seen their rapid development and adoption 
by researchers and laboratories, especially in connection with food 
authenticity. As a result, there is a pressing need to devise ways to ensure 
the reliability of the obtained results. The key to doing so is providing 
objective evidence that NTMs are fit for their intended purpose via 
method validation (MV) studies. In such studies, method performance 
characteristics are obtained and communicated in such a way as to allow 
informed decisions by producers, consumers, official control agencies, 
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and regulators alike (Magnusson & Örnemark, 2014; Thompson et al., 
2002). European Union (EU) Official Controls Regulation requires offi-
cial food control laboratories to apply, when available, standardized 
methods, i.e., methods validated in a multi-lab validation study (MLV) 
(EU Controls Regulation: REGULATION (EU) 2017/625 OF THE EU-
ROPEAN PARLIAMENT AND OF THE COUNCIL of 15 March 2017 on 
Official Controls and Other Official Activities Performed to Ensure the 
Application of Food and Feed Law, Rules on Animal Health, and Wel-
fare, 2017). If a standardized method is not available, methods validated 
in a single-lab validation study (SLV) should be applied. In such cases, 
the comparability of results between official food control laboratories 
and commercial laboratories doing the counter analysis on behalf of the 
business operators becomes the challenge. Several researchers and ex-
perts have drawn attention to the paucity of internationally accepted 
validation protocols for NTMs (Cavanna et al., 2018; McGrath et al., 
2018; Riedl et al., 2015). Thus, much has to be addressed regarding how 
to perform NTM validation (Creydt & Fischer, 2020a; Esslinger et al., 
2014; Locatelli et al., 2017; Riedl et al., 2015). 

To this end, the purpose of this paper is twofold. First, to review and 
describe the terminologies in connection with NTMs. The burgeoning 
field of NTMs has been accompanied by an expanding set of terminol-
ogies. These terms are related to the new analytical technologies, the 
machinations of artificial intelligence methods, information systems 
infrastructures, and statistical decision theory. Hence, there is consid-
erable room for misinterpretation of what different experts might be 
conveying. Second, it aims to investigate the factors that make devising 
an NTM validation protocol challenging. In doing so, it highlights the 
points of contention surrounding validation choices. This work proposes 
considerations for how NTM validation can be implemented in practice. 
Altogether, this work aims to add to the limited body of work that is 
currently available. This will eventually help researchers in the scientific 
community, officials at control agencies, and experts in drafting relevant 
guidelines, protocols, or standards. 

The paper is organized as follows: Section 2 describes the terminol-
ogy relating to NTMs. The novelty here is that this construction of ter-
minology, although opinionated, can provide a common basis for any 
dialogue on the topic of NTMs. Section 3 provides a general discussion of 
the basics of method validation. The following section then reviews the 
concepts that are currently available for NTM validation. Given the 
current understanding of NTMs and their validation, these three sections 
segue into specific proposals for the NTM validation procedure, detailed 
in Sections 5 and 6, respectively. The validation scheme involving 
quantitative scores proposed in Section 6 has not been reported previ-
ously, to the best of our knowledge, and is one of this paper’s most 
important contributions. Next, we discuss the validation sample re-
quirements in Section 7. And finally, we lay out the stages for NTM 
development and validation and how we see them differing from the 
traditional way. Previously inaccessible, this section describes the pro-
cedure for collaborative method development in NTMs and its consid-
erations for validation. 

2. Describing NTMs and the terminology around it 

Devising MV concepts for NTMs such that it can bring under its ambit 
all the different methods that are available currently and future methods 
is a challenging task, to say the least. A good place to start is by asking 
what constitutes an NTM. In the following, eight questions are addressed 
in order to gradually elucidate the concept of NTM. Instead of providing 
an unambiguous definition for NTM, the discussions arising in connec-
tion with these questions will shed light on the manifold aspects of 
NTMs. 

2.1. What are the components of an NTM? 

Fig. 1 shows the general components of an NTM. All steps involved in 
the NTM until the analytical measurements, which are performed on a 
lab bench, are collectively referred to as “wet lab” procedures. Some 
manner of chemometric / statistical / machine learning / artificial in-
telligence model is then responsible for parsing this multi-dimensional 
dataset. These steps are referred to as the “dry lab” procedures. The 
copious amounts of measurement data are saved, processed, and 
retrieved by means of electronic or reference databases. An NTM uses 
several features obtained by measurements (in the wet lab) in combi-
nation with data analytics (in the dry lab using a reference database) to 
authenticate a food product (product characteristic). Food authenticity 
testing can be done in relation to the species, origin, production or 
processing system, purity, etc. Ultimately, the final decision regarding 
authenticity is usually based on a set of criteria. 

The above terminology will prove very useful in determining what 
can (and cannot) be considered an NTM. It should be emphasized that 
the analytical method used to obtain measurements for building the 
reference database must be validated regarding its analytical perfor-
mance in such a way (e.g., SLV) that it is poised for eventual standard-
ization (further elaborated in Section 8). This is important to ensure that 
the data basis in the reference database is not rendered unusable, leaving 
any ensuing NTM development unsuitable. 

2.2. Are NTMs associated with a particular measurement platform or 
instrument or analytical technology? 

In its simplest sense, a “measurement platform” refers to the 
analytical measurement procedure. The term “platform” encompasses 
the ensemble of instruments and equipment involved in the wet lab, 
which is not only highly complex and expensive but also of considerable 
size. Having said that, measurement instruments can also be portable 
benchtop or handheld devices. The different wet-lab analytical tech-
nologies that are typically part of NTMs are as follows: Methods 
involving chromatographic separation (like gas or liquid chromatog-
raphy) are mostly, but not exclusively, followed by (high-resolution) 
mass spectrometry (Creydt & Fischer, 2020b). Alternatively, these can 
be other spectra-generating methods such as nuclear magnetic reso-
nance (NMR) (Sobolev et al., 2019), Fourier transform infrared (FTIR) 
(Segelke et al., 2020), near-infrared (NIR) (Grassi et al., 2018), or Raman 
spectroscopy (Xu et al., 2020). In practice, NTMs are not specific to any 

Fig. 1. Components of a non-targeted method.  
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instrument, measurement platform, or analytical technology. Moreover, 
a combination of several analytical measurement platforms can also be 
used simultaneously in connection with an NTM. 

We believe that NTMs involve not only spectra, chromatograms, or 
identified and quantified chemical entities (elements, fatty acids, etc.) as 
measured signals from the instruments but also nucleotide sequences. 
This can be the case in metabarcoding methods involving next- 
generation sequencing (NGS) technologies applied in order to identify 
several species or taxa simultaneously (Haynes et al., 2019). Whether 
these methods are NTMs can be argued with the reasoning that a 
genomic region (barcode) is targeted by a defined primer pair. However, 
this primer pair needs to fit universally to the selected genetic region in 
all organisms of interest (e.g., all land vertebrates), allowing non- 
targeted species identification via multiple parallel sequencing and 
subsequent assignment of the sequences by database comparison. 

2.3. Are databases required for NTMs? 

The short answer is: Yes! In the generic sense, large amounts of 
empirical data are acquired to define the sample populations (classes), e. 
g., wine from France and wine from Germany. It should be noted that, 
depending on the context, reference databases will address different 
types of classification, for instance, geographic origin or production 
process (e.g., organic versus conventional). 

However, there are further aspects. Indeed, like much of the termi-
nology used in connection with NTMs, the notion and implication of the 
term “database” can be diverse. For instance, “database” may refer to the 
entire technology behind the storage and management of data (in the 
cloud or locally). Alternatively, “database” could refer to the collection 
of data stored in it. It is not always required to have a technical database 
implementation for NTMs. 

In any case, empirical data plays an important role in NTMs, and one 
should be aware of the context in which the term “database” is used. The 
generation of data from well-defined samples is mandatory, and 
together with meta-data capturing the related traceability information, 
these are the most common types of databases used by NTMs. Usually, 
the greater the amount of training data available, the more accurate the 
model is. The reference database can be used to “train” supervised 
machine learning algorithms. Alternatively, the measured data can be 
compared against the reference sample data using non-supervised ap-
proaches, e.g., similarity metrics or correlation coefficients. 

2.4. Do NTMs always help answer a yes or no question? 

Broadly, food authenticity testing aims to investigate whether claims 
made for a particular food item are correct (e.g., regarding the 
geographic origin, plant/animal species, ingredients, process). Typi-
cally, the classification consists of matching the sample to classes as 
defined in a reference database. The output of the dry lab procedure 
furnishes quantitative values such as probabilities (of belonging to a 
given class), referred to as “decision scores.” The sample is then assigned 
to a particular class (say, class α) if their score is below a given univariate 
decision threshold (or decision limit). Conversely, a sample is assigned 
to the other class (say, class β) if their score is higher than the decision 
threshold. Experience shows that quantitative decision scores exist for a 
large number of NTMs owing to the underlying chemometric or machine 
learning model (Alewijn et al., 2016). The outcome of the decision will 
undoubtedly be yes or no. 

2.5. What is the difference between ‘fingerprinting’ and ‘profiling’, and 
are both NTMs? 

Considering the definitions reviewed and provided by Balin et al. 
profiling methods fall into the type of targeted methods (Ballin & 
Laursen, 2019). An alternative perspective is that both fingerprinting 
and profiling are NTMs as both require a statistical model (dry lab) and a 

reference database for decision making (Fig. 1). The main difference 
between fingerprinting and profiling relates to the output generated by 
the analytical method (wet lab), in other words, whether it targets 
specific entities. Fingerprints of a material are electronic records (e.g., 
whole or part of chromatograms or spectra) produced by an instrument 
without further information regarding the identities or quantities of 
entities represented by the record, whereas quantity values of defined 
entities constitute the profile of a material (e.g., elements, fatty acids, 
sugars, etc.) (Ballabio et al., 2018; Danezis et al., 2017; Sørensen et al., 
2016). However, the profile itself does not allow us to decide on the 
authenticity of the material but is used as the input of a multivariate 
decision model. Quite often, fingerprinting methods are converted into 
profiling methods by attempting to identify the most relevant variables 
for discrimination. Usually, this variable reduction reduces noise and 
guards against model overfitting, but the biggest advantage is that the 
resulting targeted, profiling methods are independent of the measure-
ment platform through calibration with reference materials. 

2.6. Is ‘suspect screening’ also a type of NTM? 

Suspect screening workflows are widely used in food, environmental, 
and forensic chemistry (Ballin & Laursen, 2019; Hollender et al., 2017). 
In these types of pipelines, a large list of suspect compounds (n ≫ 1) is 
checked for presence or absence (Hollender et al., 2017). In food anal-
ysis, such methods are mainly used for food safety questions (e.g., 
pesticide screening) and are less known for authenticity questions. 
Therefore, in this paper, such workflows may not be considered NTMs, 
stricto sensu, but do make use of the information content from the multi- 
dimensional measurement data. 

2.7. What is the role of calibration in an NTM? 

The IUPAC definition of calibration “the set of operations which 
establish, under specified conditions, the relationship between values indi-
cated by the analytical instrument and the corresponding known value of an 
analyte” is in principle applicable to NTMs if the state of the material 
(authentic or non-authentic) is regarded as the quantity value to be 
determined (IUPAC Compendium of Chemical Terminology, 2014). 
However, in contrast to methods where the quantity of a targeted ana-
lyte (measurand) is estimated via a univariate calibration function (e.g., 
linear, or quadratic regression), NTMs use multivariate models for 
deciding whether the sample is authentic. Such models need to be 
calibrated as well, but to avoid confusion, the term “training” is 
frequently used instead, and the samples used for setting up the model 
are called “training samples” or “training set.” 

2.8. What is the role of quality control materials in an NTM? 

As with any other analytical method, quality control is a prerequisite 
for producing valid results, requiring the availability of quality control 
materials (QCMs). The main function of QCMs is to monitor the accuracy 
(precision, trueness) and stability of the analytical method during its 
application. (Certified) reference materials (C)RMs) are key for estab-
lishing metrological traceability and can also be used for creating quality 
control charts to keep a targeted method of analysis under statistical 
control over time. (C)RMs for NTMs are rare but a few exist, e.g., NIST 
SRM 1950 Metabolites in Human Plasma, which has values assigned for 
approximately 100 analytes. Anhydrous butter fat (BCR-519) and cocoa 
butter (IRMM 801) have been made available for checking the authen-
ticity (purity) of milk fat and cocoa butter by triglyceride analysis in 
combination with multivariate statistical analysis. Other types of 
commercially available quality control materials include, e.g., meat 
from different species (LGC Ltd.), or plant specimens obtained from 
botanical gardens. 

For novel NTMs such (C)RMs do not exist in most cases (Gao et al., 
2019). Pooling aliquots of reference samples used in training the 
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decision model and including them in the analytical sequence is a 
frequently used quality control technique. The obtained data are not 
only subjected to multivariate analysis (e.g., principal component 
analysis and inspection of the score plot), but also to generate Shewhart 
charts of principal components or extracted features, etc. (Lörchner 
et al., 2022). Such tools are appropriate for setting up quality control in a 
single laboratory, but they may be insufficient if the NTM is to be used in 
multiple laboratories. This situation frequently requires QCMs for the 
normalization of data produced in different laboratories and/or by 
different instrument brands. A QCM obtained by pooling samples and 
making it available as a “normalization sample” to interested labora-
tories is a potential solution. However, its long-term stability as well as 
the effect of renewing the normalization sample on data quality once the 
original batch is used up, have to be considered. 

3. Validation definitions 

A fundamental matter of contention is the perception of the term 
“validation.” Depending on the problem, context, and application, it 
may have a different meaning to different stakeholders. MacNeil et al. 
aptly pointed out that validation, just like beauty, is in the eyes of the 
beholder (MacNeil et al., 2000). In the context of NTMs, validation often 
refers to “model validation” (dry lab) (McGrath et al., 2018; Riedl et al., 
2015), which can be done using techniques such as “nested cross-vali-
dation” or “k-fold validation” (details of these techniques are described 
elsewhere (Filzmoser et al., 2009; Uhlig et al., 2019). Thus, it is neces-
sary to revisit MV definitions and review what can be applicable to NTM 
validation. 

The ISO/IEC 17025:2017 standard defines validation as the “provi-
sion of objective evidence that a given item fulfills specified requirements, 
where the specified requirements are adequate for the intended use” (ISO 
17025/IEC:2017 General Requirements for the Competence of Testing 
and Calibration Laboratories, 2017). The Eurachem Guide on the fitness- 
for-purpose of analytical methods defines it as “the process of establishing 
the performance characteristics and limitations of a method, and the identi-
fication of the influence which may change these characteristics and to what 
extent” (Magnusson & Örnemark, 2014). In ISO 16140–1:2016, MV is 
defined as “Determining the performance characteristics of a process and 
provide objective evidence that the performance requirements for a specified 
intended application are met” (ISO 16140–1:2016, Microbiology of the 
Food Chain—Method Validation—Part 1: Vocabulary, 2016). Classical 
MV concepts involve the evaluation of method performance character-
istics (“Accuracy (Trueness and Precision) of Measurement Methods and 
Results,” Parts 1–6 International Standard ISO 5725–1:1994, 
5725–2:1994, 5725–3:1994, 5725–4:1994, 5725–5:1994, and 
5725–6:1994, 1994; Guidelines for the Validation of Chemical Methods 
for the FDA Foods Program, 2019; Thompson et al., 2002). Method 
validation usually consists in conducting experiments in a single labo-
ratory or in several laboratories to determine these performance char-
acteristics. Although there may be differences in meaning between 
single-lab vs. in-house validation or multi-lab vs. collaborative valida-
tion, for the sake of simplicity, we will consistently use the terms single- 
lab and multi-lab. 

Methods can be validated for more than one analyte, for different 
matrices, or for different instruments or platforms. If available, (C)RMs 
can be used to determine the precision and trueness of a method. Vali-
dation protocols may include the use of (C)RMs or matrix spiked samples 
to determine recovery rates, matrix blank samples to determine back-
ground levels, blanks to determine the limit of detection, and replicate 
analysis of a sample to determine precision. The performance charac-
teristics for the validation of a method strongly depend on the intended 
use, the type of method (quantitative or qualitative), or, in the case of 
method extension (new analyte, new matrix, new platform, etc.), the 
degree to which it has been previously validated. We believe that there is 
unanimous agreement that the performance characteristics of a newly 
developed quantitative method include trueness, precision, selectivity, 

limit of detection, limit of quantitation, linearity (or other calibration 
models), working range, measurement uncertainty, ruggedness, confir-
mation of identity, and recovery rates. It also seems undisputed that 
sensitivity, selectivity, false-positive rate (FPR), and false-negative rate 
(FNR) are typical performance characteristics for the validation of a new 
qualitative method. Some of these classical experiments can be trans-
ferred to NTMs, while others are simply not available or applicable (such 
as the use of (C)RMs, etc.). 

Many NTMs are motivated by and related to a binary decision 
problem (discussed in detail in the following sections). A validation 
procedure for such NTMs, in general, involves determining the risk of a 
false positive or false negative decision. In this paper, “validation pro-
cedure” and “validation approach” might be used interchangeably. The 
performance characteristics (or figures of merit) of non-targeted 
methods and the way they are estimated undoubtedly differ from the 
ones related to targeted methods; however, the ultimate objective re-
mains the same, i.e., demonstrate the “fitness-for-purpose” of the 
method, independent of the physico-chemical principles of the analyt-
ical method, the data evaluation, etc. For the method developer, this is 
important to objectively demonstrate the fitness for its intended use; for 
the method user, it is important for quality assurance and accreditation. 

4. Existing concepts for NTM validation 

The guideline for the development and validation of non-targeted 
methods from the US Pharmacopeia (USP) has been a go-to resource 
in the absence of other harmonized guidelines or standards (US Phar-
macopeia, 2019). The guideline is part of the USP Food Chemicals Codex 
and describes a procedure for methods used to classify samples as either 
adulterated (atypical) or unadulterated (typical). The USP guideline 
defines NTM as follows: “A method that determines the similarity of a 
sample (U) to a reference standard or set (Sn). It has a binary output—the 
sample is atypical or typical with respect to the known sample set. The concept 
of non-targeted methods covers a spectrum from truly non-targeted (largely 
theoretical) to semi-targeted (most practical applications), but for the pur-
poses of this paper, any broadly nonspecific adulterant detection method is 
treated as non-targeted, as the same principles are applicable” (US Phar-
macopeia, 2019). It is noteworthy that the prescribed procedure in the 
USP guideline is independent of the analytical technology or food type. 
This is beneficial to ensure horizontal applicability to a wide range of 
methods. However, the scope of the guideline remains limited to a 
subset of methods for food authenticity testing, namely: one-class clas-
sification methods for testing adulteration or mixing. 

The recommended performance characteristics include evaluation of 
sensitivity for the correct identification of unacceptable samples as 
“atypical” and specificity for the correct identification of acceptable 
samples as “typical.” In other words, the sensitivity of the method is the 
rate of detection of adulterated or fraudulent samples, and the speci-
ficity is the rate of detection of safe or compliant food items. 

The USP guideline’s appeal also comes from the fact that it takes into 
account method development along with single lab validation. A generic 
thought process is described so that sufficient method suitability is 
established before going to the validation stage. The performance 
characteristics are checked against the criteria set upfront in the appli-
cability statement. Furthermore, the guide specifies which sample sets 
are necessary at each stage. In the method development stage, the 
mathematical model is developed using a reference dataset containing 
adequately represented, unadulterated (authentic) samples. The model 
is optimized using a test set. In the validation phase, an independent 
sample set comprising both typical and atypical samples is tested as 
unknown samples. It should be noted, however, that no guidance is 
provided regarding the minimum number of samples in the validation 
set. 

As a result of reliance on a specific version of the instrumentation 
hardware, reference databases, and complex mathematical models, 
NTMs might be required to be updated and revalidated. Besides, the 
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necessary samples in the reference database might be influenced due to 
environmental or anthropogenic factors, leading to drifts in the math-
ematical model parameters. The USP guide also mentions such scenarios 
and recommends monitoring the method. This needs to be addressed not 
only by the method developer (e.g., database maintenance), but also by 
the user (laboratory) in the framework of quality assurance. However, it 
is not clear whether institutions are willing to carry the resource burden 
of revalidating the method (see also Section 8). 

Apart from the USP guide, standard method performance re-
quirements (SMPRs®) for non-targeted testing (NTT) are also available 
from the AOAC (AOAC, 2016). At the time of writing, SMPR are avail-
able for methods testing for economically motivated adulteration in 
three food items, viz. extra virgin olive oil (EVOO) (AOAC, 2020b), 
honey (AOAC, 2020a), and bovine milk (AOAC, 2020c), and draft 
SMPRs are available for vanilla (AOAC, 2021b), and saffron (AOAC, 
2021a). These SMPRs define the NTT method as: “Any method generating 
a baseline fingerprint of the authentic material and comparing test sample 
fingerprints to assess differences will be considered. The final binary result 
identifies test samples as either authentic or potentially adulterated” (AOAC, 
2020d). Unlike the USP guide, the SMPRs do not describe generic steps 
to adhere to in the method development stage. But they do provide a 
number for the samples required to be tested in the validation stage. 
Furthermore, it is to be noted that the AOAC SMPRs describe procedures 
for single-lab validation. 

Together, these NTM validation resources have several attractive 
features that can be used for a future harmonized NTM validation 
concept. For example, (i) descriptions of applicability statements such as 
“a non-targeted method for detecting the adulteration of honey with 
sugar syrups at a level >10 % with a sensitivity rate of 90 % and a 

specificity rate of 95 %, both with a significance level of p = 0.05′′ (USP), 
(ii) proposed performance characteristics for binary non-targeted 
methods, (which are more straightforward) (USP) (iii) requirements 
for the number of samples needed to reach a certain level of confidence 
(AOAC), and (iv) importance of method monitoring and need for reva-
lidation in case of drift (USP). 

A harmonized protocol for the validation of NTM should ideally 
build on existing proposals and proven design principles of interna-
tionally accepted protocols. These can serve as a springboard to establish 
an NTM validation framework. Existing harmonization efforts are 
ongoing in Europe (CEN) and North America (AOAC). At the same time, 
they should be scrutinized for scientific validity and extended for 
practicability and applicability. Additional work is also required to 
merge philosophies and specify terminologies for the different working 
groups, communities, and existing documents. Furthermore, effort is 
required to describe the principles in more detail (nature of samples, 
number of replicates, number of laboratories, etc.) and data re-
quirements (number of samples) for single-lab as well as multi-lab 
validation. Building on the existing concepts for NTM validation, the 
following section proposes four NTM validation procedures. 

5. Extending the existing concepts to NTM validation 

5.1. Considerations for one-class, two-class, and multi-class NTM 

NTMs can be defined and structured in different ways. Fig. 2 serves 
to illustrate this perspective. Consider methods related to testing the 
authenticity of olive oil as a running example throughout. The first 
question is how to specify the scope of a binary NTM. Suppose it is a two- 

Fig. 2. Different ways to formulate an NTM, focusing on examples around olive oil testing. The text in the white box adjoining each connecting arrow provides 
context and examples. 
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class problem, e.g., if the method is applied to distinguish genuine olive 
oil from olive oil adulterated with seed oil (e.g., sunflower oil) at some 
economically relevant level (e.g., 15 %). The reference database must 
contain entries for both classes, i.e., samples with adulteration greater 
than 15 % seed oil and samples with less than or equal to 15 % seed oil. 
By contrast, in the case of a one-class problem, only entries for one class 
(e.g., authentic olive oils) are required in the reference database. 

The advantage of the one-class problem is that only samples corre-
sponding to one class (e.g., authentic olive oils) are required, and it is 
easier for the method developer to obtain the samples. However, one- 
class problems do not consider sensitivity, or FNR, with respect to a 
specific class and only consider specificity, or FPR. One of the conse-
quences of this is that the sensitivity of an NTM for a one-class problem is 
typically lower than that of a two-class problem. 

One option to overcome the limitations of one-class problems from 
the perspective of validation would be to define a counter-class. The 
counter-class comprises samples that represent a reasonable approxi-
mation of samples being “non-authentic” with regard to the initial 
classification question. Consider the example in Fig. 2: Does the olive oil 
originate from Italy or not? The one class includes all possible olive oils 
originating from Italy. Here the counter-class (olive oils not originating 
from Italy) can be characterized by performing measurements on olive 
oil samples typically found in the market, which are from nearby 
countries. Defining a counter-class in this way with samples likely to be 
candidates for fraud can allow us to use the more efficient two-class 
problem validation. 

5.2. Ways to define classes 

The underlying classes can be delimited numerically, e.g., an olive oil 
sample belongs to the class if its seed oil content is below 15 %. More 
generally, the numerical demarcation can be based on adulteration 
level, concentration, contamination, etc. Such numerically delimited 
class definitions have been reported in the literature (Alamprese et al., 
2016; Botelho et al., 2015; Nichani et al., 2020; Weesepoel et al., 2020). 

On the other hand, if the method tests, say, whether the examined 
olive oil sample originates from Italy or Turkey—the classes cannot be 
delimited numerically. We assume that most NTMs that do not involve 
measures of purity (mixture or adulteration levels) involve qualitatively 
delimited classes. One-class problem descriptions typically involve 
qualitatively delimited classes. Coming back to the example of an NTM 
applied in order to determine whether olive oil samples originate from 
Italy, the two classes would be “Italy” and “not Italy.” 

In addition to one- and two-class problems, NTMs are also applied in 
connection with multi-class classification problems (more than 2 clas-
ses). Multi-class problems can be broken down into several binary 
classification problems. Hence, the points discussed above can be 
extended to the multi-class case. Consider the example of an NTM 
applied to determine whether olive oil originates from Italy, Spain, or 
Greece. The reference database must include data for the three classes 
(Italy, Spain, and Greece). Such a multi-class problem can be broken 
down into a series of binary classification problems as follows: EU region 
or not; Italy or not; Spain or not; Greece or not. The conversion of multi- 
class problems into a series of binary classifications will likely prove 
useful in the validation of NTMs, particularly in the field of authenticity 
testing. 

5.3. NTM validation approach 

The above examples of the different types of classification problems 
by no means constitute an exhaustive list. Nonetheless, these examples 
illustrate that methods which differ, e.g., in terms of class definition or 
number of classes, will require different validation approaches. We now 
turn to an illustration of what the different validation approaches can be. 

In almost all cases, the final decision step in an NTM applied in 
connection with a classification problem is based on a quantitative 

decision score calculated in the dry lab stage. This score is compared to a 
specified decision limit. Examples of quantitative decision scores include 
correlation coefficients, similarity metrics, class assignment probabili-
ties, principal component scores, proprietary scores provided by com-
mercial software, etc. Basing the validation on such quantitative scores 
(rather than on yes/no results) allows for improved method perfor-
mance characterization while considerably decreasing the workload 
(number of samples and number of laboratories). Depending on whether 
classes are numerically delimited and on whether quantitative decision 
scores are used, 4 different validation approaches can be distinguished, 
(named generically as A, B, C, and D). 

Fig. 3 provides an overview of these 4 different approaches, illus-
trated on the basis of the running example for olive oil testing (Fig. 2). 
Please note that the illustrations in Fig. 3 do not cover the entire vali-
dation procedure. However, they provide a graphic comparison of how 
performance characteristics will be evaluated. Validation approach A is 
used when (i) the classes are delimited by the level of seed oil adulter-
ation in olive oil and (ii) decision scores from the dry lab statistical 
model are used. Fig. 3 (top left) illustrates how the decision score dis-
tribution depends on the adulteration level. A decision limit of 1.2 is 
considered here (as an example). The two classes are delimited 
numerically, namely: above and below 15 % adulteration with seed oil. 
It can be seen that the FPR is below 5 % when the adulteration level is 
below 13 % and that the FNR is below 5 % when the adulteration level is 
above 17 %. A recent study (Nichani et al., 2020) followed similar lines 
in a preliminary method performance characterization study using 
quantitative decision scores (called D scores in the study). The NTM 
under consideration was developed in order to distinguish spelt and 
wheat cultivars. 

Validation approach B (Fig. 3, top right) is used when (i) classes are 
qualitatively delimited, e.g., olive oil from Italy (class α) and Turkey 
(class β), and (ii) validation is based on decision scores. Two statistical 
distributions for the decision scores associated with the two classes are 
shown (as an example). If the decision limit is 2, about 10 % of Italian 
olive oil samples are misidentified as originating from Turkey (FPR of 
10 %). Several validation procedures for this approach and worked-out 
examples for the calculation of performance characteristics have been 
described in a recent study (Uhlig et al., 2021). Applying validation 
approach B was also one of the central themes of another publication 
(Alewijn et al., 2016), in which the authors described a case study to 
validate a method to detect organic and conventional eggs (a two-class 
problem). 

Moving to validation approach C (Fig. 3, bottom left). It is used when 
(i) the classes are delimited by the level of seed oil adulteration in olive 
oil and (ii) validation is based on y/n decision outcomes. The diagram 
shows the relative frequencies of samples tested at different adulteration 
levels along with a probability of detection function for an adulteration 
limit of 15 %. A statistical model for the probability of detection in 
connection with collaborative studies of binary test methods is described 
in (Uhlig et al., 2013). 

The probability of identification (POI) approach described in (Lab-
udde & Harnly, 2012) is an example of validation approach C. The 
method under consideration was developed to distinguish between bo-
tanicals with acceptable levels of expected ingredients and those with 
unacceptable levels. The POI is obtained from the measurement of 
specific superior test materials (SSTM) and specific inferior test mate-
rials (SITM) in different mixing ratios so that the functional dependence 
on the mixing ratio can be determined. 

Finally, validation approach D is used when (i) classes are qualita-
tively delimited, e.g., olive oil from Italy (class α) and Turkey (class β), 
and (ii) validation is based on y/n decision outcomes. The example in-
volves testing samples and determining the relative frequencies of 
samples assigned to class β. The FPR thus obtained is 10 %, and the FNR 
is 4 %. The procedure described in the USP protocol provides a good 
example of validation approach D (US Pharmacopeia, 2019). 
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5.4. Benefit for using quantitative decision scores for validation: 
simulation 

To demonstrate the implications of using the quantitative decision 
scores instead of the positive or negative detect (y/n) decision, the 
following describes a simulated validation study. Fig. 4 illustrates a 
comparison of the calculated FPR (=1-specificity) according to valida-
tion approaches B and D. Three different simulation runs are shown 
under the assumption that the population of samples can be well 
described by a normal distribution. We consider 30 validation samples 
for class α (=negative) (shown as circles) and a decision limit of 2 

(shown by a vertical dotted line). For the purpose of this example, the 
choice of 30 samples is for illustrative purposes only, even though it has 
been suggested elsewhere (AOAC, 2020e, 2020f, 2020d). Validation 
approach B makes use of the quantitative decision scores, whereas 
approach D is based on the counts of positive and negative results. In the 
event that the classes can be considered homogeneous and a normal 
distribution can be used to describe the distribution of the quantitative 
decision scores, the arithmetic mean and standard deviation of the de-
cision scores can be used to calculate the expected FPR (which is rep-
resented by the red shaded area in Fig. 4). For illustrative purposes, we 
chose a simple example where scores corresponding to only one class are 

Fig. 3. Options for validation approaches depending on whether the class definitions can be delimited numerically and whether the method validation utilizes 
quantitative decision scores or not. 

Fig. 4. Simulations for illustrating the difference between approaches B and D. Consider the decision limit of 2 (red vertical dotted line) for all three simulations. For 
each simulation, the green circles represent the decision scores for 30 samples. The region beyond the decision limit of 2 and under the probability density curve 
(shaded red) is the probability of obtaining a false positive result. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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shown (class α, suppose olive oil from Italy) and only compare one 
performance characteristic, namely, FPR. 

Consider the scenario as shown in Fig. 4 simulation 1. The decision 
scores of all 30 samples are below 2, and therefore the decision is for all 
samples: class α (=negative). In this situation, approaches B and D will 
come to the same conclusion. The FPR calculated with approaches B and 
D are <1 % and 0 % (i.e., 0/30 are positive), respectively. Since the FPR 
calculations are dependent on the underlying distribution of the data, it 
is good statistical practice to not claim very small probabilities, and 
hence we only state that the FPR <1 %. In another scenario, as shown in 
Fig. 4 Simulation 2, the decision scores of all 30 samples are below 2 and 
therefore the decision is for samples: class α (=negative). In this situa-
tion, approaches B and D will not come to the same conclusion. The FPR 
according to approach B is 6 % (red shaded area), and according to 
approach D, it is still 0 %. Alternatively, consider the scenario depicted 
in Fig. 4 simulation 3. Here, 27 samples were detected as class α 
(=negative), and 3 samples were detected as not class α (=positive). In 
this scenario, again, approaches B and D will come to the same 
conclusion. 

For approach D, even if the validation study result is perfect, i.e., 
FPR = 0 %, it is not apparent whether this result is actually as clear-cut 
as in simulation 1, or borderline as in simulation 2. One cannot be sure 
with approach D, even without a single misclassification with 30 sam-
ples, that the actual FPR rate is maybe 10 % (see simulation 3). This 
shows that validation with 30 samples using approach D is very uncer-
tain, and more samples are recommended. Roughly speaking, approach 
B might lead to better results than approach D by considering the 
additional distance to the decision limit. It has to be noted, however, 
that approach B also has statistical uncertainties, like the appropriate 
choice of the underlying distribution, but these are considerably lower, 
so that a validation approach with only 30 samples per class seems 
justified. 

The relationship highlighted in comparing validation approaches B 
and D is also applicable to approaches A and C. Thus, there is consid-
erable benefit in utilizing the decision scores in the validation 
procedure. 

In the case of single lab validation, the decision scores may be used 
directly. However, for multi-lab validation, standardization of the de-
cision scores across laboratories might be required when different labs 
have minor differences in the dry lab procedure (e.g., the software or 
algorithm is different for some labs). In its simplest sense, standardiza-
tion of scores involves bringing all the decision scores to the same scale 
so that they can be compared. Certainly, this additional step makes the 
validation procedure cumbersome. Furthermore, in many cases, the 
decision scores do not possess a physical interpretation and cannot be 
traced to a true physical value. Perhaps that is one of the reasons that 
existing validation procedures (the USP protocol and AOAC SMPRs) 
only make use of the qualitative y/n outcomes. Altogether, the valida-
tion scheme using quantitative scores should make an important 
contribution to filling the gap in NTM validation. Furthermore, the 
newly available validation schemes are put together in a framework (as 
illustrated in Fig. 3) that is not only easy to digest but also helps to 
choose a suitable scheme with relevant performance characteristics. 

6. Further considerations for applying NTM validation 
approaches 

When applying a validation approach, experts must take several 
factors into account. The considerations will influence, among others: (i) 
what performance characteristics to focus on; (ii) how to determine 
these performance characteristics; (iii) how to derive performance 
criteria; and (iv) what data considerations need to be made to derive 
performance criteria. The various considerations are discussed further 
below. 

6.1. Choice of considering the method as screening method or 
confirmatory method 

It has to be distinguished whether the NTM method is to be used for 
screening purposes or as a confirmatory method. In the case of a 
screening method, the aim is to identify all samples that could be 
considered suspect samples. In this case, one will try to minimize the 
FNR. In the case of a confirmatory method, on the other hand, one will 
try to prove that the sample is indeed positive. In this case, one will 
primarily try to minimize the FPR. 

6.2. Dependence on the measurement platform 

NTMs with specialized measurement platforms are becoming more 
popular, particularly in the research field, due to their high resolution 
and high analytical sensitivity. Because a particular measurement plat-
form is becoming more widespread, it might be useful to have a vali-
dation procedure tailored to it. In this case, the specific nuances of the 
method can be taken into consideration. 

For example, NMR measurements have been used as part of an NTM 
for testing various types of beverages, such as juice, coffee, wine, beer, 
and honey (Kuballa et al., 2018). Platform-specific (using the 
instrument-specific standard operating procedure and, where appro-
priate, using the reference database of the instrument provider) vali-
dation of such proprietary methods allows specific aspects of the 
platform to be addressed in the validation process. On the other hand, it 
appears that a platform-independent approach is more appropriate for 
purposes of official food control. It is to be expected that, as with tar-
geted methods, systematic differences between platforms are unavoid-
able. The use of different dry lab approaches can also lead to systematic 
differences in the results. Therefore, the influence of platform-specific 
effects as well as the influence of dry lab effects must be checked dur-
ing validation. 

6.3. Modular or comprehensive validation 

Another option is to choose a modular strategy for validating the wet 
lab and dry lab procedures sequentially. Given the different parts of 
NTM, a modular validation can help to avoid surprises at the end. It can 
be performed only if there is evidence that the wet lab and dry lab 
performances can be considered independent. This can be possible when 
dealing with certain microbiological or molecular methods (ISO 
16140–1:2016, Microbiology of the Food Chain—Method Vali-
dation—Part 1: Vocabulary, 2016). However, in most other cases, the 
final outcome will be affected by variations in the wet lab and dry lab 
procedures. 

In a comprehensive validation, all the steps until the final decision 
outcome are included. One of the arguments in favor of performing 
comprehensive validation is that the method outcomes from the dry lab 
can seldom be considered independent of the measurement results from 
the wet lab. They are affected by variations in different steps. How these 
variations in the wet-lab data translate to the final outcome is an 
important aspect to be examined. Thus, we believe comprehensive 
validation will be necessary for NTMs. 

7. Samples for the validation study 

Turning to the question of how many and which samples should be 
used in the validation study, this section details the different criteria that 
must be fulfilled. Here, it is important to emphasize the distinction be-
tween samples used to develop the reference database (or train a ma-
chine learning model) and samples used in the validation study. The 
former is associated with the method development phase, while the 
latter is associated with the method validation phase (see Section 8). The 
samples must, first and foremost, be representative of the population of 
the foods covered by the method. Consider an example of an NTM to 
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detect if rice is basmati or not. In order to validate the method, it is 
crucial that rice samples be sourced from the Indian subcontinent and 
not another region (e.g., Italy). This is important as basmati is largely 
grown in that region. Secondly, the validation samples must be inde-
pendent and distinct from the ones that are in the reference database. 
Additionally, it must be ensured (to the best possible extent) that they 
are not sourced from the same distributor, supplier, farm, location, or 
processing plant as the samples used to build the reference database. 

Next is the question of how many samples are to be tested in the 
validation study. NTMs can be formulated in a variety of ways, as dis-
cussed in Sections 5 and 6. The validation approach and the choice of the 
number of samples depend on several factors, such as: (i) the desired 
confidence in the results; (ii) whether an NTM is to be employed as a 
screening method or confirmatory method; (iii) the scope of the NTM; 
(iv) the testing burden on the laboratory from an economical and 
practical perspective; (v) the type of statistical study design adopted 
(conventional or factorial designs); (vi) considerations for matrix effects; 
and (vii) variations (e.g., seasonal effects) within the respective sample 
groups or cohorts. Therefore, claims for an exact number of samples 
required in a validation study for NTM not only need to be grounded in 
sound statistical theory but also must consider the details of the method 
to be validated. 

However, a few proposals for the number of samples required for 
method validation have been previously reported. These numbers 
should be considered only in connection with the described validation 
scheme and the underlying statistical assumptions. The AOAC SMPRs 
suggest 30 validation samples for each adulterant (AOAC, 2020a, 
2020b, 2020c). Another recent report states that for a binary NTM, at 
least 60 samples per class would be required to ensure, with a statistical 
certainty of 95 %, that there is the inclusion of at least one sample from a 
subpopulation with a small proportion of 5 % (Uhlig et al., 2021). This 
can be ensured by using a factorial approach, in which all subclasses or 
subpopulations resulting from differences in the cultivation, processing, 
packaging, and delivery of the food are equally taken into account. 

8. Stages in the development and validation of an NTM 

Owing to the complexity involved in the development of an NTM, 
with so many different components and steps, it can be foreseen that 
some manner of cooperative method development can alleviate the 
resource burden. Herein, the effort in the method development stage is 
distributed among multiple laboratories (or institutions). For instance, a 
simple split in the effort is made with respect to the wet lab and dry lab 
development, performed by separate labs (or institutions) respectively. 
The cooperative method development with multiple labs represents a 
new paradigm in method development because such an approach has 
ramifications on the existing procedures of laboratory accreditation and 
the establishment of an official method. Efforts will be necessary on this 
front to introduce procedures and protocols. Until then, the conven-
tional way of method development in one lab will likely continue (see 
Table 1). However, the concept of cooperative method development is 
gaining traction, especially for NTM development. And we hope this 
study will instill new insights and spark further work on the validation of 
collaboratively developed methods. 

Fig. 5 illustrates the different stages that are passed through until the 

standardization of an NTM for food authenticity testing. Once the wet 
lab and dry lab components of the method are developed, optimized, 
and perfected for the given method scope, the next natural step is the 
method validation. The method validation phase has several stages until 
a method can be adopted for official control. Here, while referring to 
“method validation,” once again it must be emphasized that it is used in 
the context of determining method performance characteristics. First, 
the unvalidated method enters the implementation or prevalidation 
stage. This stage is referred to as “implementation and prevalidation” 
because (i) it precedes the most important stage—the multi-lab valida-
tion study—and (ii) it allows to further finetune the method as a whole, 
as results from method implementation can be used to revisit the scope, 
improve the analytical procedure, or edit spurious entries in the refer-
ence database. Typically, after method development, SLV is performed, 
followed by a method validation interlaboratory test. But if the NTM is 
developed collaboratively, then single lab validation is inappropriate. 
SLV would be a suitable option to perform during this stage when a 
method validation interlaboratory test is followed (see Table 1). Thus, 
with NTMs, SLV can be performed as part of the prevalidation stage. The 
exact validation procedure to be adopted and the sample requirements 
will be based on the discussions made so far in the previous sections. 

Another important function of the prevalidation phase is to identify 

Table 1 
Important phases of method development and method validation, to be per-
formed in a conventional or cooperative way.  

Method development Method Validation 

Wet lab + dry lab + reference database 
Single lab method 

development 
Validation of the method in a single laboratory using 
a specific set of samples, followed by a multi-lab 
validation study with a smaller number of samples. 

Multi-lab cooperative 
method development 

Multi-lab validation studies  

Fig. 5. Stages in the development and validation of NTMs.  
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the characteristics of challenging samples, i.e., to determine for which 
sample types the NTM has particular difficulty finding the correct clas-
sification. Interestingly, since challenging is not an inherent character-
istic of the sample, a set of challenging samples for one lab may not be 
challenging for another lab. Evidently, the main outcome of the method 
implementation and prevalidation stage is to identify such challenging 
samples. Iterative cycles of development, implementation, and preva-
lidation can be conducted to improve the method. 

The final step in method validation is the multi-lab method valida-
tion study, the design for which can be very different: conventional or 
more efficient factorial designs can be used here (Uhlig & Gowik, 2018). 
With factorial designs, there is the possibility of reducing the number of 
labs. Once the multi-laboratory validation study has been performed and 
the method performance characteristics have been established, the 
standardization process can be completed and the NTM can be intro-
duced into routine practice. 

Even after completion of the method standardization procedure, 
changes in the underlying reference database, corresponding changes in 
the dry lab procedure, or extended or amended method objectives can be 
expected at any time. For instance, the reference sample database can be 
updated to include a greater number of samples, broadening the scope of 
food types that can be assessed. Further, the algorithm or the software is 
updated with a newer version, which might lead to superior discrimi-
nation. In these scenarios, the results of the method can deviate drasti-
cally. Even though the modifications to the method are aimed at 
improving it, the validation data may not adequately describe the 
method’s performance. It is therefore necessary to implement a moni-
toring program for the NTM to control important performance param-
eters on a regular basis. 

9. Final discussion and conclusions 

Even with a simplified view, NTM terminology can be difficult. And 
hence, an attempt to deconvolve and disseminate the intricacies has 
been made in this paper. Our particular focus on the many aspects for 
NTM validation highlights the fact that devising a validation strategy 
will require their collective assessment. We discussed how to schematize 
NTMs for authenticity testing, with the aim of proposing a road map for 
approaching NTM validation. Ultimately, the intention of an NTM is to 
classify samples and thereby help in deciding whether a tested sample 
belongs to a class. The method can be formulated as a single-class, two- 
class (binary NTM), or multi-class NTM problem. The definition of the 
underlying classes can be derived qualitatively, e.g., by classifying by 
geographic origin. Alternatively, they can be derived quantitatively, e. 
g., by deciding whether the weight percentage of a lower-priced food 
(adulterant) is below or above a certain threshold. In both cases, the 
classification is mostly based on a quantitative score value that is 
compared to a fixed decision limit. The aim of this comparison is either 
to decide whether a tested sample belongs to a defined group (single- 
class) or to decide to which of the previously defined groups the sample 
belongs (multi-class). Validation using a quantitative score value with a 
fixed decision limit finds its analog in the validation of a measured 
pollutant concentration with a legal maximum value. 

The resulting framework in Section 5 combines and contextualizes 
both (a) existing concepts and (b) newly proposed concepts for valida-
tion. This new framework widens the validation toolbox as it provides 
the reader with the ability to reason, compare, and select an appropriate 
validation scheme. The validation procedures discussed so far in this 
work make a differentiation according to whether the respective quali-
tative decision results of different laboratories for the validation samples 
are used in the assessment of the performance of the NTM or whether the 
respective underlying quantitative score values are also considered for 
the respective validation samples measured by different laboratories. 
The number of samples required for validation will have to be deter-
mined accordingly; however, some orientation values are discussed. We 
show the merits of the assessment of the NTM’s performance by using 

this quantitative score value in the validation. A superior validation 
result can be achieved with a significantly lower validation effort 
(number of samples and number of laboratories). 

The particular challenge now is that the quantitative score value, 
which forms the basis for the respective classification, cannot be traced 
back to a specific reference standard. Unlike the determination of 
sample contents, it cannot be assumed that the quantitative score value 
fluctuates more or less randomly around a known, true value. When 
different manufacturers develop NTMs for their respective instrument 
platforms, the corresponding quantitative score values are not directly 
comparable. Developing a mathematical-statistical procedure that per-
mits platform-specific quantitative score values to be compared with one 
another is a mathematically challenging task. 

In light of the above discussion, it is essential that NTM development 
and validation plans be conceived as platform-independent and multi- 
laboratory from the outset. Individual sub-steps (the development of 
wet and dry lab methods, method implementation, and prevalidation; 
see Fig. 5) can be carried out by individual laboratories. Furthermore, all 
of the NTM’s components should be included in the validation planning 
(see Fig. 1). The contents of the reference database (which can be an 
existing database if necessary) and the intended decision criteria must 
be clearly planned and predefined from the beginning. Finally, it must 
be ensured that the analytical method (wet lab) is suitably standardized 
(with as few random error components as possible and as few systematic 
error components as possible) as well as applied comparably by all 
laboratories in order to generate suitable data for a reference database. 

Different statistical models (workflows) are also possible if neces-
sary, and their comparability can be checked during the development 
and validation of the method. An important difference to targeted 
methods is that the effort for further quality assurance in the routine is 
significantly higher. All components of the NTM (see Fig. 1) have to be 
evaluated (reference database and decision criteria) or quality assured 
(analytical method and statistical model) at regular intervals. It should 
be highlighted in this context that it is in the nature of an NTM for 
questions to change (e.g., slight changes in the underlying classes) or 
that additions or extensions to the objectives are likely to be the rule 
rather than the exception. Thus, it is recommended that the (raw) data 
collected during method development and validation be stored centrally 
and in a structured form. We believe that embracing and elaborating on 
the tenets of NTM validation outlined in this paper can guide the 
development and adoption of suitable validation procedures. 
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Böhme, Karola, Calo-Mata, P., Barros-Velázquez, J., & Ortea, I. (2018). Recent 
applications of omics-based technologies to main topics in food authentication. https:// 
doi.org/https://doi.org/10.1016/j.trac.2018.11.005. 

Botelho, B. G., Reis, N., Oliveira, L. S., & Sena, M. M. (2015). Development and analytical 
validation of a screening method for simultaneous detection of five adulterants in 
raw milk using mid-infrared spectroscopy and PLS-DA. Food Chemistry, 181, 31–37. 
https://doi.org/10.1016/j.foodchem.2015.02.077 

Cavanna, D., Righetti, L., Elliott, C., & Suman, M. (2018). The scientific challenges in 
moving from targeted to non-targeted mass spectrometric methods for food fraud 
analysis: A proposed validation workflow to bring about a harmonized app Trends in 
Food Science & Technology The scientific challenges in mo. Trends in Food Science & 
Technology, 80(August), 223–241. https://doi.org/10.1016/j.tifs.2018.08.007 

Creydt, M., & Fischer, M. (2020a). Food authentication in real life: How to link 
nontargeted approaches with routine analytics? Electrophoresis, 1665–1679. https:// 
doi.org/10.1002/elps.202000030 

Creydt, M., & Fischer, M. (2020b). Mass-Spectrometry-Based Food Metabolomics in Routine 
Applications: A Basic Standardization Approach Using Housekeeping Metabolites for the 
Authentication of Asparagus. https://doi.org/10.1021/acs.jafc.0c01204. 

Danezis, G. P., Pappas, A. C., Zoidis, E., Papadomichelakis, G., Hadjigeorgiou, I., 
Zhang, P., Brusic, V., & Georgiou, C. A. (2017). Game meat authentication through 
rare earth elements fingerprinting. Analytica Chimica Acta, 991, 46–57. 

Esslinger, S., Riedl, J., & Fauhl-Hassek, C. (2014). Potential and limitations of non-targeted 
fingerprinting for authentication of food in of fi cial control. 60, 189–204. 

EU Controls Regulation: REGULATION (EU) 2017/625 OF THE EUROPEAN 
PARLIAMENT AND OF THE COUNCIL of 15 March 2017 on official controls and 
other official activities performed to ensure the application of food and feed law, 
rules on animal health and welfare, Official Journal of the European Union (2017). 

Filzmoser, P., Liebmann, B., & Varmuza, K. (2009). Repeated double cross validation. 
February, 160–171. https://doi.org/10.1002/cem.1225. 

Gao, B., Holroyd, S. E., Moore, J. C., Laurvick, K., Gendel, S. M., & Xie, Z. (2019). 
Opportunities and challenges using non-targeted methods for food fraud detection. 
Journal of Agricultural and Food Chemistry, 67(31), 8425–8430. https://doi.org/ 
10.1021/acs.jafc.9b03085 

Grassi, S., Casiraghi, E., & Alamprese, C. (2018). Handheld NIR device: A non-targeted 
approach to assess authenticity of fish fillets and patties. Food Chemistry, 243, 
382–388. https://doi.org/10.1016/j.foodchem.2017.09.145 

Guidelines for the Validation of Chemical Methods for the FDA Foods Program. (2019). 
Haynes, E., Jimenez, E., Pardo, M. A., & Helyar, S. J. (2019). The future of NGS (Next 

Generation Sequencing) analysis in testing food authenticity. Food Control, 101 
(February), 134–143. https://doi.org/10.1016/j.foodcont.2019.02.010 

Hollender, J., Schymanski, E. L., Singer, H. P., & Ferguson, P. L. (2017). Nontarget 
screening with high resolution mass spectrometry in the environment: Ready to go? 
Environmental Science & Technology, 51(20), 11505–11512. https://doi.org/ 
10.1021/acs.est.7b02184 

ISO 16140-1:2016 Microbiology of the food chain — Method validation — Part 1: 
Vocabulary. (2016). 

ISO 17025/IEC:2017 General requirements for the competence of testing and calibration 
laboratories. (2017). 

IUPAC Compendium of Chemical Terminology. (2014). IUPAC. https://doi.org/10.1351/ 
goldbook. 

Kuballa, T., Brunner, T. S., Thongpanchang, T., Walch, S. G., & Lachenmeier, D. W. 
(2018). Application of NMR for authentication of honey, beer and spices. Current 
Opinion in Food Science, 19, 57–62. https://doi.org/10.1016/j.cofs.2018.01.007 

Labudde, R. A., & Harnly, J. M. (2012). Probability of identification: A statistical model 
for the validation of qualitative botanical identification methods. Journal of AOAC 
International, 95(1), 273–285. https://doi.org/10.5740/jaoacint.11-266 

Locatelli, M., Garino, C., Portinale, L., Leonardi, G., Rinaldi, M., Gallo, V., Monaci, L., 
Lippolis, V., Dominicis, E. De, Piva, M., Gritti, E., Godula, M., Amaral, J., Mafra, I., & 
Arlorio, M. (2017). FOODINTEGRITY: Good practices and methodological guidelines 
for the validation and application of the untargeted analysis for food authenticity 
and traceability. In FOODINTEGRITY. 

Lörchner, C., Horn, M., Berger, F., Fauhl-Hassek, C., Glomb, M. A., & Esslinger, S. (2022). 
Quality control of spectroscopic data in non-targeted analysis – Development of a 
multivariate control chart. Food Control, 133, Article 108601. https://doi.org/ 
10.1016/j.foodcont.2021.108601 

MacNeil, J. D., Patterson, J., & Martz, V. (2000). Validation of analytical methods- 
proving your method is’ fit for purpose’. Special Publications of the Royal Society of 
Chemistry, 256, 100–107. 
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