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Editorial on the Research Topic

Use of barley and wheat reference sequences: Downstream applications
in breeding, gene isolation, GWAS and evolution, volume II
Cereal grains are the most important food source consumed by human beings.

Among these, bread wheat is the most widely grown crop in the world, ranking 2nd only

to rice from total production point of view, whereas barley is ranked as the 4th most

important cereal. The inherent narrow genetic diversity present within modern cereal

crops combined with their large complex genomes had previously created a genetic

bottleneck hampering breeding progress as well as applying newly developed applications

in biotechnology. Improvements to long-read sequencing technologies continue to

enhance our ability to generate ultra-contiguous chromosome scale assemblies, thus

further improving the efficacy of gene isolation and unravelling the mechanisms of

evolution in cereal crop species. Despite the continual decline in sequencing costs and

bioinformatic innovation, genotyping by sequencing (GBS) using targeted enrichment

protocols and allele re-sequencing is currently the most cost-efficient approach to

generate large SNP datasets. This Frontiers in Plant Science research collection

comprises 16 articles highlighting the broad utility derived from combining multiple

chromosome scale genome reference assemblies with new approaches in quantitative

genetics to best exploit favourable genetic trait variation.

Rajendran et al. outlines the different GBS protocols and both their current and

future applications established for cereals focussing on barley as a diploid model crop
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species. The review highlights the utility derived from GBS

genotyping approaches to mine global GeneBanks and exploit

trait genetic diversity using genome wide association studies

(GWAS) and genomic selection (GS).

The recent optimisation of the GBS approach has led to

larger scale population genomic approaches in preference to

smaller biparental populations to identify the causal genetic

variation underlying traits of interest and is largely amenable

to complex traits such as yield (Rajendran et al.). Eight studies

mainly in wheat used GWAS as an approach to define the

genetic architecture of largely uncharacterised complex

agronomic traits of interest including nutrient content (Jin

et al.; Juliana et al.), herbicide resistance (Kurya et al.), lodging

resistance (Bretani et al.), yield related traits (Miao et al.; Sheoran

et al.; Yu et al.), flowering time and phenology (Bhati et al., Hu

and Zuo 2022) and disease resistance (Juliana et al.; Mehnaz

et al.; Wang et al.). Except for flowering time, phenology and

molybdenum content, these studies highlighted the complex

genetic basis of the agronomic traits assessed and the potential

to use the GWAS data for a subsequent GS approach.

Juliana et al. investigated the genetic control of grain zinc and

iron content in a large collection of wheat breeding lines (n= 5,585)

from CIMMYT. The lines were genotyped using 20,556 GBS

markers and evaluated for both zinc and iron content between

2018 and 2021 in Mexico. The study identified 141 marker-trait

associations on all 21 chromosomes except for chromosomes 3A

and 7D. Among them, 29 markers were associated with both iron

and zinc content suggesting a shared mechanistic basis. The

complex genetic control of these traits highlights the need for GS

to efficiently improve nutrient content in wheat.

Similarly, Jin et al. determined the genetic control of grain

molybdenum content in bread wheat using 207 accessions and a

set of 224,706 SNP markers from the 660k wheat array. The

study identified 77 significantly associated SNPs, 52 of which

were detected in at least two datasets and 48 out of the 52 were

distributed in a small region of 1.37 Mb located in the distal part

of the long arm of chromosome 2A. In the region spanning the

2A QTL three plausible candidates including a molybdate

transporter 1;2, molybdate transporter 1;1 and molybdopterin

biosynthesis protein CNX1, were identified for further

functional analysis.

Kurya et al. identified resistance to metribuzin to improve

the productivity of bread wheat grown in dryland regions. The

150 diverse accessions were genotyped using the 50K SNP array

and phenotyped by measurement of chlorophyll content relative

to the untreated control plants. The analysis identified 19

genomic regions including 10 on chromosome 6A, three on 2B

and one on 3A, 5B, 6B 6D, 7A, and 7B, respectively. Using the wheat

genome assembly, several candidate genes were identified that were

involved in herbicide resistance including cytochrome P450 pathways

and ATP Binding Cassette superfamilies.

Bretani et al. developed an image-based analysis protocol to

accurately phenotype for culm wall thickness and diameter that
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facilitated a multi-environment analysis to determine the genetic

control of culm morphology and lodging in barley. A collection

of 261 barley accessions were genotyped using the 50k iSelect

SNP array and phenotyped across seven different environments.

Most culm morphology traits were highly heritable (>50%) and

affected by several genotype-by-environment interactions. The

data highlighted the possibility of improving lodging

independently from plant height and identified candidate

genes involved in hormone and cell wall related pathways.

Bhati et al. investigated the genetic control of phenology and

heading date traits in bread wheat across three representative

wheat growing regions in India. A large collection of spring

wheat breeding lines (n= 4,680) were phenotyped at multiple

locations for days to heading and maturity. The phenotypic

variation highlighted the importance of the photoperiod

associated gene (Ppd-B1) and the Vrn-B1 gene for adaptation

of bread wheat across the different environments.

Sheoran et al. combined a large-scale GWAS and artificial

intelligence (AI) with genotype-phenotype networking to

understand the complex genetic control of spike fertility in

bread wheat. GWAS was performed on 200 diverse wheats

using the Breeders’ 35K Axiom Wheat Breeders' Array and

multiple years of phenotypic data. The study identified 255

significant marker-trait associations (MTAs) with MTAs on

chromosome 3A, 3D, 5B and 6A being the most promising for

enhancing spike fertility and grain yield.

Juliana et al. used varying numbers of GBS based markers

and performed a large-scale study to identify spot blotch

resistance in a panel of 6,736 (separated into seven specific

panels) advanced bread wheat breeding lines. Ninety-six

significant markers were common amongst the seven panels

mapping to chromosomes 1A, 1B, 1D, 2A, 3B, 4A, 5B, 5D, 6B,

7A, 7B, and 7D, and included possible linkage to previously

known disease resistance loci including the Lr46, Sb1, Sb2 and

Sb3 genes. Importantly the study identified favourable alleles for

spot blotch resistance on the same 2NS translocation from

Aegilops ventricosa where two markers were associated with

increased grain yield across multiple environments in India

and Mexico.

Hu and Zuo combined GWAS and an expression profiling

approach to identify a promising candidate for the Hg1 gene

controlling glume pubescence on chromosome 1AS encoding a

glycosyltransferase-like ELD1/KOBITO 1 in bread wheat. The

candidate was identified using the most recent iteration of the

wheat reference genome assembly based on tissue specific

expression patterns and functional SNP haplotype analysis.

The study demonstrated the importance of utilising the latest

reference genome data, expression patterns and GWAS data to

clone genes in bread wheat.

The availability of a pan-genome for both bread wheat and

barley addresses the most common limiting bottleneck in gene

cloning projects which is the over-reliance on both the gene

order and representation in the available reference genome.
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Hussain et al. reviewed the status and future directions of wheat

improvement in the pan genomic era with respect to important

agronomic traits such as yield, quality and both biotic and

abiotic stresses.

The utility of the barley and wheat pan-genome lies in being

able to use the information either from the most closely related

or directly from the sequenced genotype either carrying or

lacking the trait of interest as a reference genome thus limiting

the number of SNPs, presence absence variations (PAVs), and

inversions. This is especially important to improve the efficiency

and accuracy of QTL mapping, fine mapping, identify

recombination events and gene annotation.

Two studies in wheat reported on utilising the wheat reference

genome to dissect yield related traits using a combination of QTL

analysis and bulk segregant exome sequencing (BSE-Seq) and

meta-QTL (MQTL) analysis, respectively.

Yu et al. investigated the genetic architecture of yield-related

traits (spike compactness and length) using a QTL mapping

approach in a recombinant inbred line (RIL) population. Three

genomic regions were identified on chromosomes 2A and 2D

using BSE-Seq. Subsequent linkage map construction and QTL

analysis identified six major QTL across more than four

environments explaining 7.00-28.56% of phenotypic variation

with LOD values varying from 2.50 to 13.22. Three promising

candidates were identified based on genomic and expression

data for further functional analysis.

Miao et al. performed QTL analysis for thousand grain

weight (TGW) in a bread wheat RIL population and identified

45 TWG QTLs, where 10 loci were highly stable across multiple

environments. To refine the relatively large TGW QTL intervals

the Chinese Spring reference genome was used to perform a

MQTL analysis. A total of 267 previously reported QTLs were

consolidated and refined to 67 MQTLs. Importantly, five key

core MQTLs were refined to <1cM regions corresponding to

<20Mb in Chinese Spring enhancing the prospects of candidate

gene discovery, validation, and improved marker design.

In barley, reference genomes have undoubtedly enhanced

fine mapping studies, candidate validation based on

chromosome scale gene annotation and direct comparison of

resistant and susceptible haplotypes.

Mehnaz et al. firstly mapped a novel leaf rust resistance gene

from an Israeli landrace (AGG396) to chromosome 2HS at the

previously characterised Rph14 locus in barley. Both medium

and high-resolution fine mapping narrowed the genetic interval

to 0.7cM (corresponding to a 1.17 Mb physical interval) where

two annotated NLR (nucleotide-binding domain leucine-rich

repeat) genes were identified using the Morex v2 reference

genome and deemed the most promising candidates for

RphAGG396. A closely linked co-dominant marker was

designed for marker assisted selection.

Wang et al. fine mapped the barley mild mosaic virus

resistance locus rym15 located on chromosome 6H. A set of
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32 KASP markers designed from the barley 50K Illumina

Infinium iSelect SNP array, GBS and WGS data were used as a

backbone to construct two high-resolution genetic maps based

on the resistant donor Chikurin Ibaraki. The locus was resolved

to 0.036 cM in the Chikurin Ibaraki 1 × Uschi cross

corresponding to a 281kb physical interval. Pan genomic data

for susceptible Igri and Golden Promise was compared to a Pac

Bio assembly of Chikurin Ibaraki to determine that only two

candidate genes contained functional SNPs between resistant

and susceptible lines.

Two studies used next generation sequencing technologies to

develop a method to track recombination in barley (Schreiber

et al.) and determine the structural variants responsible for

increased yield in bread wheat (Makhoul et al.) respectively.

Schreiber et al. devised and optimised a method to accurately

identify crossover events in the genomes of diploid homozygous

inbred barley lines by combining chemical mutagenesis and low-

level whole genome shotgun sequencing. The study determined

that low-level EMS treatment induced variants in M3

populations and can be used to determine recombination rate

and frequency. The efficiency of the study was enhanced by

direct comparison of the wild type, Bowman and the near

isogenic line carrying a mutation in the HvMLH3 gene

(BW230) which the authors had previously shown to reduce

the genome wide recombination by up to 50%.

Makhoul et al. used single molecule sequencing of barcoded

long amplicons to assess sequence polymorphisms in the

VERNALIZATION1 (Vrn1) gene between homoeologous gene

copies on chromosomes 5A, 5B and 5D in a panel of 192 winter

wheat cultivars. Both haplotypic and structural variations were

subsequently associated with economically relevant agronomic

traits including yield, nodal root-angle index, and quality related

traits. Structural variations and increased copy-number

variation were associated with reduced quality and yield.

Furthermore, a novel SNP polymorphism within the G-

quadruplex region of the promoter of Vrn1-5A was associated

with deeper roots in winter wheat.
Future perspectives

Undoubtedly, third generation sequencing technologies and

the increased availability of chromosome scale reference

genomes has increased the capabilities of crop scientists to

better exploit genetic variations in agronomic traits of interest.

This is especially true for complex quantitatively inherited traits

such as yield and resistance to abiotic and biotic stress that were

previously too difficult to accurately resolve using trait specific

biparental populations. Subsequent genetic gain is likely to occur

by exploiting the large volume of GWAS datasets using

advanced breeding tools such as artificial intelligence and

developments in GS.
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In parallel, the ability to continually improve genome

assemblies for wheat and barley accessions carrying the desired

allele of interest is leading to an improved understanding of the

biological mechanisms controlling traits such as resistance to

disease. Despite the availability of first generation pan genomes

for both barley ad bread wheat, due to its simpler diploid genetic

structure, the current status of barley genomics is further advanced

relative to bread wheat. Further genomic and biological advances in

bread wheat are likely to come from developing pan genomic

information utilising diverse diploid representative accessions from

progenitor species. To best exploit pan genomic data, further

opportunities also lie in accurately phenotyping the currently

sequenced barley and wheat accessions for a wider array of traits.
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