

ICTV VIRUS TAXONOMY PROFILE

MICROBIOLOGY SOCIETY

Purdy et al., Journal of General Virology 2022;103:001778 DOI 10.1099/jgv.0.001778

ICTV Virus Taxonomy Profile: Hepeviridae 2022

Michael A. Purdy¹, Jan Felix Drexler², Xiang-Jin Meng³, Heléne Norder^{4,5}, Hiroaki Okamoto⁶, Wim H. M. Van der Poel⁷, Gábor Reuter⁸, William M. de Souza⁹, Rainer G. Ulrich¹⁰, Donald B. Smith^{11,*} and ICTV Report Consortium

Abstract

The family *Hepeviridae* includes enterically transmitted small quasi-enveloped or non-enveloped positive-sense single-stranded RNA viruses infecting mammals and birds (subfamily *Orthohepevirinae*) or fish (*Parahepevirinae*). Hepatitis E virus (genus *Paslahepevirus*) is responsible for self-limiting acute hepatitis in humans; the infection may become chronic in immunocompromised individuals and extrahepatic manifestations have been described. Avian hepatitis E virus (genus *Avihepevirus*) causes hepatitis—splenomegaly syndrome in chickens. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family *Hepeviridae*, which is available at www.ictv.qlobal/report/hepeviridae.

Table 1. Characteristics of members of the family Hepeviridae

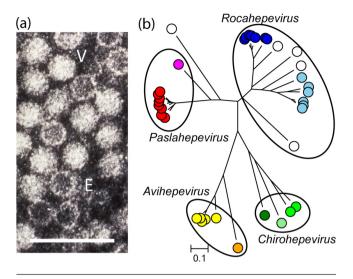
Example:	human hepatitis E virus Burma (M73218), species Paslahepevirus balayani, genus Paslahepevirus
Virion	Quasi-enveloped or non-enveloped, 27–34 nm diameter with a single capsid protein
Genome	6.4–7.2 kb capped positive-sense monopartite RNA containing three ORFs
Replication	Occurs in association with the host endoplasmic reticulum
Translation	From genomic (ORF1) and a subgenomic (ORF2 and ORF3) capped mRNA
Host range	Mammals (Chirohepevirus, Paslahepevirus, Rocahepevirus), birds (Avihepevirus) and salmonid fishes (Piscihepevirus)
Taxonomy	Realm Riboviria, kingdom Orthornavirae, phylum Kitrinoviricota, class Alsuviricetes, order Hepelivirales: two subfamilies, multiple genera and species

VIRION

Virions of human hepatitis E virus are icosahedral, quasienveloped (blood or tissue culture [1]) or non-enveloped (faeces), spherical particles with a diameter of 27–34 nm (Table 1, Fig. 1a). The capsid is formed by capsomeres consisting of homodimers of a single capsid protein, forming the virus shell. Each capsid protein contains three linear domains forming distinct structural elements: S (the continuous capsid), P1 (three-fold protrusions) and P2 (two-fold spikes). Neutralizing epitopes have been found in the P2 domain. Each domain contains a putative polysaccharide-binding site that may interact with cellular receptors [2].

GENOME

Viral genomes (Fig. 1b) are positive-sense monopartite RNA of 6.4–7.2 kb, with three ORFs flanked by short 5′- and 3′-terminal non-coding regions: ORF2 (capsid protein) overlaps ORF3 but neither overlaps ORF1. The 5′-end is m′G-capped and the 3′-end is polyadenylated (Fig. 2). Non-structural proteins encoded by ORF1 have limited similarity with the 'alpha-like supergroup' of viruses and contain domains consistent with a methyltransferase, papain-like cysteine protease, macro domain, RNA helicase and RNA-directed RNA polymerase [3]. A small immunoreactive protein (12.5 kDa) encoded by ORF3 has been shown to


Received 02 June 2022; Accepted 11 June 2022; Published 28 September 2022

Author affiliations: ¹Centers for Disease Control and Prevention, Atlanta, GA, USA; ²Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; ³Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; ⁴University of Gothenburg, Gothenburg, Sweden; ⁵Sahlgrenska University Hospital, Gothenburg, Sweden; 'Jichi Medical University School of Medicine, Tochigi, Japan; ⁷Wageningen University and Research, Lelystad, The Netherlands; ⁸Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary; ⁹University of Texas Medical Branch at Galveston, Galveston, Texas, USA; ¹⁰Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Riems, Germany; ¹¹University of Oxford, England and University of Edinburgh, Scotland, UK.

*Correspondence: Donald B. Smith, donald.smith.mail@gmail.com Keywords: hepatitis E virus; *Hepeviridae*; ICTV report; taxonomy.

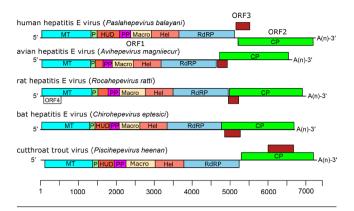
001778

1

Fig. 1. (a) Negative-contrast electron micrograph of human hepatitis E virus particles from a case stool collected in Nepal. (V) virion and (E) empty capsid. Bar: 100 nm (photograph M. Purdy). (b) Phylogeny of orthohepevirin methyltransferase domains (details: ICTV Report).

exhibit multiple functions associated with virion morphogenesis, egress and viral pathogenesis. The capsid and ORF3 proteins are translated from a subgenomic RNA.

REPLICATION


The viral RNA-directed RNA polymerase associates with the host endoplasmic reticulum through residues encoding a predicted transmembrane domain. Replication involves temporal separation and alternating cycles of synthesis of positive- and negative-sense RNAs [3, 4].

TAXONOMY

Current taxonomy: ictv.global/taxonomy. Members of the subfamily *Orthohepevirinae* infect humans and domestic and wild mammals, (genera *Paslahepevirus* and *Rocahepevirus*), bats (*Chirohepevirus*), and birds (*Avihepevirus*) [5, 6]. Human hepatitis E virus can cause self-limiting acute hepatitis in humans and is transmitted by contaminated water, the consumption of undercooked or raw meat or iatrogenically through blood transfusion or organ transplantation. Globally, human hepatitis E virus is a major cause of acute hepatitis.

References

- Yin X, Ambardekar C, Lu Y, Feng Z. Distinct entry mechanisms for nonenveloped and quasi-enveloped hepatitis E viruses. J Virol 2016;90:4232–4242.
- 2. Mori Y, Matsuura Y. Structure of hepatitis E viral particle. *Virus Res* 2011;161:59–64.
- 3. Cao D, Meng XJ. Molecular biology and replication of hepatitis E virus. Emerg Microbes Infect 2012;1:e17.

Fig. 2. Genome organization of hepeviruses. There are short 5'- and 3'-non-coding regions. The ORF1 polyprotein includes the putative functional domains: MT, methyltransferase; P, a putative papain-like cysteine protease; HUD, hepevirus unique (or Z-) domain; PP, a hypervariable polyproline region; Macro, macro domain; Hel, helicase; and RdRP, RNA-directed RNA polymerase. ORF2 encodes the capsid protein (CP) and ORF3 a small phosphoprotein.

Chronic hepatitis E virus infection has increasingly become an important clinical problem in immunocompromised individuals. Cutthroat trout virus, a member of the subfamily *Parahepevirinae*, infects trout and salmon, although its pathogenicity and full host range are unknown.

RESOURCES

Full ICTV Report on the family *Hepeviridae*: www.ictv. global/report/hepeviridae.

Funding information

Production of this summary, the online chapter and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA).

Acknowledgements

Members of the ICTV Report Consortium are Stuart G. Siddell, Elliot J. Lefkowitz, Sead Sabanadzovic, F. Murilo Zerbini, Donald B. Smith, and Peter Simmonds.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Disclaimer

M. Purdy - CDC/ATSDR has not formally disseminated the conclusions in this report; they do not represent and should not be construed to represent any agency determination or policy.

- Varma SPK, Kumar A, Kapur N, Durgapal H, Acharya SK, et al. Hepatitis E virus replication involves alternating negative- and positive-sense RNA synthesis. J Gen Virol 2011;92:572–581.
- Smith DB, Simmonds P, Jameel S, Emerson SU, et al. Consensus proposals for classification of the family Hepeviridae. J Gen Virol 2014;95:2223–2232.
- Wang B, Meng XJ. Hepatitis E virus: host tropism and zoonotic infection. Curr Opin Microbiol 2021;59:8–15.