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Abstract 

In winter 2016–7, Europe was severely hit by an unprecedented epidemic of highly pathogenic avian influenza viruses (HPAIVs), causing 
a significant impact on animal health, wildlife conservation, and livestock economic sustainability. By applying phylodynamic tools to 
virus sequences collected during the epidemic, we investigated when the first infections occurred, how many infections were unre-
ported, which factors influenced virus spread, and how many spillover events occurred. HPAIV was likely introduced into poultry farms 
during the autumn, in line with the timing of wild birds’ migration. In Germany, Hungary, and Poland, the epidemic was dominated by 
farm-to-farm transmission, showing that understanding of how farms are connected would greatly help control efforts. In the Czech 
Republic, the epidemic was dominated by wild bird-to-farm transmission, implying that more sustainable prevention strategies should 
be developed to reduce HPAIV exposure from wild birds. Inferred transmission parameters will be useful to parameterize predictive 
models of HPAIV spread. None of the predictors related to live poultry trade, poultry census, and geographic proximity were identified as 
supportive predictors of HPAIV spread between farms across borders. These results are crucial to better understand HPAIV transmission 
dynamics at the domestic–wildlife interface with the view to reduce the impact of future epidemics.
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Introduction
Since the beginning of the 21st century, the highly pathogenic 
avian influenza (HPAI) H5N8 virus (clade 2.3.4.4b) represents one 
of the most serious threats to animal health, wildlife conser-
vation, and livestock economic sustainability. In June 2016, the 
virus was detected in wild birds in regions of Central Asia (at 
the Ubsu-Nur and Qinghai lakes, known as migration stopovers) 
and subsequently spread to other Asian countries and Europe 
(Napp et al. 2018). By the end of 2017, the virus had caused 
one of the most severe epidemics in Europe in terms of the 
number of poultry outbreaks, wild bird cases, and affected 
countries (Napp et al. 2018). Most of the poultry outbreaks 
occurred in France (n = 420, 37.8 per cent), followed by Hungary 

(n = 239, 21.5 per cent), Germany (n = 94, 8.5 per cent), Poland 
(n = 69, 5.8 per cent), and the Czech Republic (n = 43, 3.9 per cent) 
(Napp et al. 2018). While no human cases were observed, the 
control strategies that were implemented in the affected coun-
tries resulted in the culling of several million poultry, causing 

devastating socioeconomic impacts for the poultry industry.

The emergence of H5N8 virus in Europe was likely attributable 

to infected migratory wild birds from Northern Eurasia, leading to 

occasional or multiple viral incursions into poultry farms (Lycett 

et al. 2016; Beerens et al. 2017; Fusaro et al. 2017; Globig et al. 2018; 
Mulatti et al. 2018; Swieto˛ n and Smietanka 2018). After emergence, 

farm-to-farm transmission likely occurred during the epidemic, 

with contact with infected poultry and contaminated fomites, 

́ ́ ́
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such as vehicles or equipment, being a major risk factor for farm 
infection (Globig et al. 2018; Mulatti et al. 2018; Napp et al. 2018; 
Świętoń and Śmietanka 2018; Andronico et al. 2019; Guinat et al. 
2020b). In a number of cases, high poultry density and substan-
tial gaps in farm biosecurity were also identified as potential risk 
factors for farm infection (Globig et al. 2018; Mulatti et al. 2018; 
Napp et al. 2018; Guinat et al. 2020a). The possibility of airborne 
transmission between poultry farms was also suggested, without 
being conclusively demonstrated (Guinat et al. 2018; Scoizec et al. 
2018). Moreover, there is evidence that wild birds were another 
source of farm infection (Beerens et al. 2017; Napp et al. 2018; 
Świętoń and Śmietanka 2018).

While such epidemiological and phylogenetic studies have gen-
erated important clues about the H5N8 virus transmission pat-
terns in Europe, they remained opaque to the specific role of 
poultry farms and wild birds in disease spread. In particular, 
understanding the viral transmission dynamics among these two 
subpopulations is crucial to determining which of these two has 
the greatest potential to drive the viral transmission during epi-
demics, which, in turn, represents critical information to better 
target control strategies. When appropriate pathogens’ genetic 
and epidemiological data are collected, phylodynamic methods 
can fill this critical gap (Volz, Koelle, and Bedford 2013; du Plessis 
and Stadler 2015; Guinat et al. 2021). By fitting population dynamic 
models to genetic sequences collected during epidemics, these 
tools aim at quantifying disease transmission dynamics and have 
been particularly used to study the spread of infectious diseases 
in structured populations, be they stratified by time, species, or 
geography (Dudas et al. 2018; Faria et al. 2018; Nadeau et al. 2021). 
Importantly, birth–death model-based approaches (Kühnert et al. 
2016) explicitly allow for the direct estimation of key epidemio-
logical parameters, such as the effective reproduction number Re

(which captures the number of secondary infections generated at 
any time during an epidemic in a partially immune population) 
(Anderson and May 1979), while taking into account the sampling 
effort.

Using a phylodynamic framework, this study aimed at disen-
tangling the role of poultry farms and wild birds in the spread 
of H5N8 in Europe during the 2016–7 epidemic. We fitted a phy-
lodynamic model with geographical and host structure to H5N8 
genome sequences of the Hemagglutinin (HA) segment collected 
from both host types (190 from poultry farms and 130 from 
wild birds) in four severely affected European countries (Czech 
Republic, Germany, Hungary, and Poland) to (i) estimate the early 
patterns of virus spread; (ii) infer the number of unreported infec-
tions; (iii) provide Re estimates; (iv) discriminate the number of 
new infections arising from local transmission versus importation 
events; and (v) identify factors driving virus spread between farms 
across borders.

Results
We fitted a multi-type birth–death (MTBD) model to the aligned 
sequences (Kühnert et al. 2016; Scire et al. 2020) to co-infer epi-
demiological parameters and phylogenetic trees (Vaughan et al. 
2014). The MTBD model was structured into five discrete sub-
populations according to the host type and geographical location, 
referred to here as demes: ‘poultry farms in the Czech Republic’, 
‘poultry farms in Germany’, ‘poultry farms in Hungary’, ‘poultry 
farms in Poland’, and ‘wild birds in the four countries’. From a sub-
sampled set of phylogenetic trees and model parameters inferred 
with the MTBD analysis (Vaughan, 2022), we simulated epidemic 
trajectories (i.e. the number of newly infected hosts per deme 

over time, due to within-deme and between-deme transmissions 
(Vaughan et al. 2019) (see the section ‘Methods’).

Early patterns of H5N8 virus spread in Europe
The maximum clade credibility (MCC) tree reconstructed using 
the MTBD model is shown in Fig. 1. Sequences from poultry farms 
of the same country for Germany, Hungary, and Poland were gen-
erally clustered together in the tree, while sequences from poultry 
farms for the Czech Republic were more scattered in the tree, as 
were wild birds’ sequences. To inform the timeline of the first virus 
introduction, we inferred the date of the first virus introduction 
per trajectory and per deme for comparison with the date of the 
first officially reported infection per deme (FAO 2021) (Fig. 2). Over-
all, the inferred dates of the first virus introduction were before 
the date of the first officially reported infection in each deme, 
with a higher delay in the Czech Republic deme (median: 118 days, 
95 per cent High Posterior Density (HPD): 63–156, i.e. approxi-
mately 16 weeks) compared to the other demes (from median: 
20 days, 95 per cent HPD: 3–48 to median: 49.5 days, 95 per cent 
HPD: 11–83, i.e. approximately 3–7 weeks) (SI Appendix Table S1).

Number of unreported H5N8 infections
To assess the reporting rate during the epidemic, we inferred the 
number of poultry farms and wild birds that became noninfec-
tious per trajectory and per deme (following death, culling, or 
recovery of the poultry flock/wild bird) and compared this quantity 
to the number of officially reported infections per deme (FAO 2021) 
(Fig. 3). The cumulative number of officially reported poultry farm 
outbreaks (94 for Germany, 240 for Hungary, and 65 for Poland) 
were within the inferred 95 per cent HPD (median: 84, 95 per cent 
HPD: 28–984 for Germany; median: 406.5, 95 per cent HPD: 197–987 
for Hungary; and median: 98, 95 per cent HPD: 25–350 for Poland). 
More discrepancies were observed for poultry farms in the Czech 
Republic and wild birds in the four countries, with the cumulative 
number of officially reported infections (43 for the Czech Republic 
and 372 for wild birds) being outside the inferred 95 per cent HPD 
(median: 139, 95 per cent HPD: 45–289 for the Czech Republic and 
median: 4222, 95 per cent HPD: 1,112–13,713 for wild birds).

Key epidemiological parameters of H5N8 virus 
spread
Figure 4A and B shows the posterior distributions for the within-
deme and between-deme Re values, respectively, together with 
the prior (SI Appendix Table S2) for comparison. The within-
deme Re was estimated across four time intervals, correspond-
ing to the four phases of the epidemic (SI Appendix Fig. S1). 
Note that only one sequence was available per poultry farm and 
per wild bird, implying that the within-deme Re represents the 
farm-to-farm/wild bird-to-wild bird virus transmission and the 
between-deme Re represents the cross-species and cross-country 
virus transmission (i.e. farm-to-wild bird/wild bird-to-farm/farm-
to-farm across countries). For most demes, the median within-
deme Re posteriors were greater than or close to 1 during the 
first time period but decreased throughout the subsequent time 
periods (Fig. 4A, SI Appendix Table S3). However, these Re esti-
mates slightly increased again during the fourth time period 
(Feb–May 2017) in Germany, Hungary, and Poland. The highest 
median Re estimates were observed between poultry farms in 
Hungary and between wild birds in the four countries during 
the first time period (Oct–Nov 2016). Overall, the between-deme 
Re estimates were much lower than the within-deme Re esti-
mates, with extremely low values (median within the range of 
10−3–10−2) for those representing farm-to-farm across countries 
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C. Guinat et al.  3

Figure 1. Time-scaled MCC phylogenetic tree of the HA segment of HPAI H5N8 virus sequenced from poultry farms and wild birds during the 2016–7 
epidemic in the Czech Republic, Germany, Hungary, and Poland. The color of the tree branches shows the deme type with the highest probability 
(see legend). Circles at internal nodes indicate clade posterior probabilities above 0.50. For selected nodes, numbers show the posterior probabilities of 
the most probable deme type. There is evidence for virus spread among neighboring poultry farms illustrated by the presence of the clusters of H5N8 
sequences from poultry farms of the same country (mainly Germany, Hungary, and Poland) in the tree, with the possibility of wild birds’ movements 
facilitating virus spread between poultry farms across countries, illustrated by the dispersal distribution of H5N8 sequences from wild birds.
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Figure 2. Temporal distribution of the inferred dates of the first virus introduction per deme. The dashed line represents the date of the first officially 
reported infection per deme for comparison. In this graph, for each trajectory and each deme, we extracted the date of the first virus introduction 
event and summarized them over time.

Figure 3. Temporal distribution of the inferred cumulative number of infections per deme (log scale). The solid line represents the median inferred 
number, and the colored areas represent the 95 per cent HPD. The dashed line represents the cumulative number of officially reported infections (log 
scale). In this graph, for each trajectory and each deme, we extracted the cumulative number of infections and summarized them over time in log 
scale.

and wild bird-to-farm transmission (Fig. 4B, SI Appendix Table S3). 
Slightly higher values were found for those representing farm-

to-wild bird transmission (median of 0.1–0.4). One exception was 
found for the between-deme Re estimate representing farm-to-

wild bird transmission in the Czech Republic, with a median of 4.6 
(95 per cent HPD: 0.9–9.2). The infectious period was also inferred 

for each deme, with the highest median found for poultry farms 
in the Czech Republic (median: 14 days, 95 per cent HPD: 7–23) 
and wild birds in the four countries (median: 14 days, 95 per cent 
HPD: 11–19) (SI Appendix Fig. S2 and Table S3). The infectious 
period was slightly lower for poultry farms in Germany (median: 
10, 95 per cent HPD: 6–16), Hungary (median: 8 days, 95 per cent 
HPD: 4–14), and Poland (median: 7 days, 95 per cent HPD: 4–11). 
Using different priors on the Re did not qualitatively change the 

results (SI Appendix Figs S3–S5).

Number of local H5N8 transmission versus 
importation events
To better target control strategies, we inferred the number 
of infections arising from transmission within the same deme 
(local transmission) as opposed to transmission from another 
deme (imported transmission) per deme. Figure 5 illustrates the 
temporal distribution of the inferred median number of local 
transmission and imported transmission events per deme. In Ger-
many, Hungary, and Poland, the epidemic was dominated by 
farm-to-farm transmission events (median: 113, 95 per cent HPD: 
52–4,284; median: 316, 95 per cent HPD: 137–790; and median: 79, 
95 per cent HPD: 31–255, respectively) with an increase around 
March 2017, November 2016, and December 2016, respectively 
(SI Appendix Table S4). In the Czech Republic, the epidemic was 
dominated by wild bird-to-farm transmission events (median: 116, 
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Figure 4. (A) Posterior distributions for the within-deme Re values across four time intervals. Solid horizontal lines represent median values, and the 
dashed line represents the threshold between epidemic growth and fade out. (B) Posterior distributions for the between-deme Re values. Solid 
horizontal lines represent median values, and the dashed line represents the threshold between epidemic growth and fade out.

Figure 5. Temporal distribution of the inferred median number of infections arising from transmission within the same deme (local transmission) as 
opposed to transmission from another deme (imported transmission) per deme. In this graph, for each trajectory and each deme, we computed the 
median number of within-deme and between-deme transmission events over time.

95 per cent HPD: 55–218). For all countries, an increase in the num-
ber of wild bird-to-farm transmission events was observed around 
January–February 2017. There were a limited number of trans-
mission events between poultry farms across countries. The epi-
demic in wild birds was also dominated by wild bird-to-wild bird 
transmission events (median: 3,237, 95 per cent HPD: 869–9,034), 
and the highest number of imported transmission events came 
from poultry farms in the Czech Republic (median: 935, 95 per cent 
HPD: 66–4,495).

Predictors of H5N8 virus spread between poultry 
farms across borders
Alongside inferring the transmission dynamics of H5N8, poten-
tial drivers of virus spread between poultry farms across the four 

countries were investigated by quantifying the corresponding Re

parameter in the MTBD model with a generalized linear model 
(GLM) (Lemey et al. 2014; Müller, Dudas, and Stadler 2019) (see 
the ‘Methods’ section). There were eight predictors included in 
the model: the 2016 live poultry trade (FAOSTAT, 2016), the 2016 
poultry density in the source and destination deme (FAOSTAT, 
2016), the 2014 poultry farm density in the source and destination 
deme (EFSA, European Centre For Disease Prevention And Control, 
European Union Reference Laboratory For Avian Influenza et al. 
2017), the 2017 farm outbreak density in the source and des-
tination deme (FAO 2021), and the distance between countries’ 
centroids (SI Appendix Table S5). Figure 6A shows, for each predic-
tor, the inclusion probability, which represents the proportion of 
the posterior samples in which the given predictor was included in 
the model, and the Bayes Factor (BF), which quantifies which of the 
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6 Virus Evolution

Figure 6. (A) Inclusion probability for predictors of the between-farm virus spread across borders. This represents the proportion of the posterior 
samples in which each predictor was included in the model. BFs were used to determine the contribution of each predictor in the GLM. BFs were 
calculated for each predictor to quantify which of the posterior and prior inclusion probabilities of the given predictor in the model is more likely. 
The cutoff for substantial contribution of a given predictor in the GLM was set at 3.2. (B) Log conditional effect sizes for predictors of the between-farm 
virus spread across borders. This represents the (log) contribution of each predictor when the corresponding predictor was included in the model (𝛽i| 
𝛿I = 1), where 𝛽i is the coefficient and the binary indicator 𝛿I for each predictor i.

posterior and prior inclusion probabilities of the given predictor in 
the model is more likely. Figure 6B shows the log conditional effect 
size, which represents the log contribution of the given predictor 
when it was included in the model. None of the predictors were 
statistically supported to be associated with the spread of H5N8 
virus between poultry farms across borders, illustrated by the low 
BF metric (<3.2) (Fig. 6A) and the similar distribution between the 
posterior coefficient estimates (Fig. 6B) and the prior (SI Appendix 

Table S2).

Discussion
In each country, we showed that the first introduction of H5N8 
virus from wild birds to poultry farms likely occurred during 
autumn, which is in line with the timing of the arrival of migra-
tory wild birds in Europe (BTO 2017). In addition, we estimated 
a delay of 3–16 weeks (depending on the country) between the 
inferred date of the first virus introduction and the date of the 
first officially reported poultry farm outbreak, likely illustrating 
the effectiveness of different surveillance strategies. The longest 
delay (16 weeks) was observed in the Czech Republic, where most 
outbreaks occurred in small-sized farms (<100 birds), while they 
mainly affected large-sized farms (>10,000 birds) in Germany, 
Hungary, and Poland (Napp et al. 2018). While a total of 442 poultry 
farm outbreaks and 372 wild bird cases in the four countries were 
officially reported (FAO 2021), we showed that these official num-
bers of detections could have been under-reported, especially in 
the wild bird population, likely due to challenges related to wildlife 
surveillance (Artois et al. 2009). High reporting rates of poultry 
farm outbreaks were found in Germany, Hungary, and Poland, 
likely linked to the high mortality rates of poultry following H5N8 
virus infection, along with the active surveillance implemented 
around reported poultry farm outbreaks (EFSA et al. 2017). How-
ever, lower and again more delayed reporting rates were found 
for the poultry farms in the Czech Republic. These results suggest 
that the likelihood of reporting infected farms is likely associated 
with the characteristics of the farm. However, whether this is due 

to differences in farm size or other factors linked to the farm size 
(such as different farmers’ knowledge, attitudes, and practices) 
needs further investigation.

Following the first virus introduction, we demonstrated that in 
Germany, Hungary, and Poland, the epidemic was dominated by 
local farm-to-farm transmission events. In Germany, local farm-
to-farm transmission increased between February and May 2017, 
likely illustrating the cluster of turkey farm outbreaks which rep-
resented approximately 25 per cent of the total number of poultry 
farm outbreaks in the country (EFSA et al. 2017). In Hungary, 
a peak in the number of farm-to-farm transmission events was 
reported between October and November 2016, during which most 
outbreaks clustered in time and space (Napp et al. 2018). More-
over, the epidemic in these countries was also partly driven by 
wild bird-to-farm transmission, particularly in the middle of the 
epidemic, showing that the role of wild birds was not limited to 
the onset of the epidemic. These outcomes also emphasize that 
in-place biosecurity measures in Germany, Hungary, and Poland 
were sufficient to prevent continued incursions from farms across 
borders (such as a ban on international trade) (EFSA et al. 2017) 
but were less effective against local farm-to-farm and wild bird-
to-farm transmission. Having more detailed knowledge of how 
poultry farms are connected with one another in those countries 
could help contain future outbreaks by disrupting the network of 
potential transmissions between poultry farms. Important efforts 
are also necessary to ensure that prevention strategies aiming at 
limiting the virus spread between wild birds and poultry (such 
as restriction of outdoor access and providing indoor feed and 
drinking water) (Artois et al. 2009) are implemented during high-
risk periods. In addition, more sustainable strategies should be 
explored for poultry farms for which access to outdoor areas is 
part of the production specifications. The contribution of wild 
birds to poultry farm outbreaks was even more substantial in the 
Czech Republic, in which we showed that the epidemic was dom-
inated by wild bird-to-farm transmission events. Accordingly, we 
also showed that the majority of farm-to-wild bird transmission 
events were from the Czech Republic. This provides evidence that 
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small-sized farms could be more exposed to virus transmission 
from wild birds than large commercial farms. Again, this could be 
explained by differences in farm size or other factors linked to it 
(such as different farming practices, access to outdoor areas, or 
biosecurity levels), which requires further attention. In wild birds, 
the epidemic was dominated by wild bird-to-wild bird transmis-
sion events. The number of wild bird-to-wild bird transmission 
events, however, has decreased drastically since February 2017, 
likely linked to a decrease in wild bird density with migration to 
warmer climates (Hill et al. 2016) and a decrease in virus survival 
in the environment due to the temperature-dependence of H5N8 
virus transmission (EFSA et al. 2017).

We also attempted to uncover factors that could potentially 
predict the spread of H5N8 virus between farms across countries. 
However, none of the investigated predictors were identified as a 
supportive predictor of the viral spread. This could be explained 
by the low number of transmission events between poultry farms 
across countries (Fig. 5). This is in line with outbreak investiga-
tions on affected poultry farms in Europe, which showed that 
the likelihood of H5N8 virus introduction from one country to 
another via personnel contacts, trade of live poultry, feed, or 
poultry products was negligible (Lycett et al. 2016), although unre-
ported cross-border activities could not be excluded. Using phy-
lodynamic approaches, one previous study has found geographic 
proximity, sharing borders, and live poultry trade (when using 
time-dependent predictors) to be strong drivers of avian influenza 
(AI) virus spread between countries in Asia (Yang et al. 2019). The 
comparison of these previous GLM results to our study may not be 
appropriate due to differences in farming systems between Europe 
and Asia. In addition, our predictors ignore other potential drivers 
of virus spread, such as wild bird migration, different farming sys-
tems, and biosecurity levels among countries. For example, the 
scattered distribution of H5N8 sequences from wild birds among 
sequences from poultry farms of different countries on the MCC 
tree could support the possibility of wild birds’ movements facili-
tating virus spread between poultry farms across countries (Fig. 1). 
It is also possible that transmission between countries is linked to 
the trade of poultry products or other cryptic means that were not 
tested in this study due to a lack of information. In the future, we 
recommend further investigation of predictors with a higher scale 
of temporal and spatial resolutions, which could allow for stronger 
contribution levels (Yang et al. 2019).

The 2016–7 epidemic of H5N8 virus in Europe remains, like 
other epidemics of AI viruses, epidemiologically complex as it 
involves multiple wild bird species that vary in spatial ecology 
and clinical disease severity. During the epidemic, the virus was 
detected in a large number of wild bird species, mainly those of 
the Anseriformes orders (ducks, geese, and swans), including mute 
swans (Cygnus olor), tufted ducks (Aythya fuligula), Whooper swans 
(Cygnus cygnus), Eurasian widgeons (Mareca penelope), and mallards 
(Anas platyrhynchos) (EFSA et al. 2017). Among these species, some 
can be mostly sedentary in given areas while partially or wholly 
migratory in others (BTO 2017), implying that some species can 
act as sentinels in some areas or long-distance vectors of H5N8 
virus in others (Keawcharoen et al. 2008). Consequently, wild bird 
population structure may be much more complex than what was 
assumed in this study. For example, on the MCC tree, we observed 
H5N8 sequences from wild birds both within and between clusters 
of sequences from poultry farms of the same country, which could 
illustrate the presence of sedentary and migratory wild birds, 
respectively. Similarly, the virus was detected in several poultry 
species and farm types, which may play different roles in the virus 
spread due to discrepancies in virus infection susceptibility and 

farming practices (EFSA et al. 2017). Unfortunately, limited infor-
mation on virus prevalence or epidemiology in various domestic 
and wild host species between countries makes it difficult to treat 
species separately, thereby necessitating the grouping used here.

Bayesian phylogeographic approaches (Lemey et al. 2009) are 
more common than structured phylodynamic approaches (like 
the MTBD model) to infer the transmission of lineages between 
different host species, their popularity being partly associated 
with their computational efficiency (Trovão et al. 2015; Lycett et al. 
2016). However, one shortcoming of Bayesian phylogeographic 
approaches is the assumption of independence between the phy-
logeny and the transmission process, which can lead to loss of 
information (De Maio et al. 2015; Müller, Rasmussen, and Stadler 
2017; Bloomfield et al. 2019). Another shortcoming is the assump-
tion of proportionality between the sample sizes across subpopu-
lations and the subpopulation sizes, which make it sensitive to 
biased sampling. Unlike Bayesian phylogeographic approaches, 
MTBD models explicitly integrate how lineages transmit within 
and between sub-populations while accounting for the sampling 
effort, making the estimations more robust to sampling bias
(Kühnert et al. 2016; Scire et al. 2020). This has made it possible 
to infer transmission parameters, such as the effective reproduc-
tion number Re, among poultry farms and wild birds based on 
pathogens’ genome sequences. We expect those estimates being 
useful to parameterize predictive models of virus spread aiming 
at optimizing control strategies. We also inferred that the median 
farm-level infectious periods ranged from 7 to 14 days, suggest-
ing that some countries were quicker at depopulating than others. 
This also emphasizes that a back-tracing window of approxi-
mately 2 weeks would be sufficient to capture the period during 
which a farm was infectious. Only one sequence was available 
per poultry farm, meaning that within-farm genetic diversity was 
not taken into account. However, this is a reasonable assump-
tion due to the short period of the poultry farm outbreaks prior to 
detection and culling. More importantly, the present study demon-
strates how relevant these models can be (i) to inform on the 
number of unreported infections, (ii) to reconstruct previous unob-
served infections prior to the first officially reported infection, and
(iii) to discriminate transmission events within a given host 
species from incursions across species that are more chal-
lenging using traditional wildlife and epidemiological methods 
(Blanchong et al. 2016; Guinat et al. 2021). Therefore, such phylo-
dynamic tools can complement or even substitute for traditional 
epidemiological tools.

Phylodynamics provides one avenue for quantifying patterns 
and identifying drivers of infectious disease transmission dynam-
ics at the wildlife–domestic animal interface, which is a funda-
mental challenge for veterinary epidemiology. We expect that our 
results will be valuable in better informing policy decision-making 
as means to reduce the impact of future epidemics of HPAI viruses.

Methods
Selection and alignment of sequences
H5N8 genome sequences (of HA segment) collected during win-
ter 2016–7 from four severely affected European countries (Czech 
Republic, Germany, Hungary, and Poland) were downloaded from 
GISAID on 1 September 2020. Information about the sample col-
lection and the sequencing techniques used to generate these 
sequences can be found in previous phylogenetic studies (Nagy 
et al. 2018; Pohlmann et al. 2018; Świętoń and Śmietanka 2018; 
Śmietanka et al. 2020). Only one sequence was available per 
poultry farm and per wild bird, meaning that the transmission 
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dynamics of H5N8 were inferred at the farm-to-farm, wild bird-
to-farm, and farm-to-wild bird levels. Sequences were annotated 
with available sampling dates, locations and hosts, aligned using 
MAFFT v7 (Katoh and Standley 2013) and manually edited using 
AliView v1.26 (Larsson 2014). The dataset consisted of 190 poultry 
farm sequences and 130 wild bird sequences (SI Appendix Table 
S6 and Fig. S6).

Phylodynamic analysis
Multi-type birth–death model
The MTBD model was used as tree prior (Kühnert et al. 2016; Scire 
et al. 2020). Similar to compartmental models in epidemiology, 
the MTBD model involves the partitioning of the population into 
discrete subpopulations according to their properties, referred to 
here as deme. Sequences were organized into five demes, accord-
ing to the host type and geographical location: ‘poultry farms 
in Czech Republic’, ‘poultry farms in Germany’, ‘poultry farms 
in Hungary’, ‘poultry farms in Poland’, and ‘wild birds in the 
four countries’ (SI Appendix Table S6). All sequences from wild 
birds were aggregated into one deme (not depending on the geo-
graphical location as for poultry farms) since it was assumed 
that the majority of sampled wild bird species (mainly mallards 
and swans) could move freely among countries (Atkinson et al. 
2006). Under the MTBD model, infected hosts (poultry farms 
or wild birds) from a given deme could transmit the virus to 
another host from the same deme (with a parameter within-
deme Re), eventually become noninfectious due to recovery or 
death/depopulation (with a rate δ), be sequenced and sampled 
upon becoming non-infectious (with a proportion s, and thus are 
included into the dataset), or could transmit the virus to another 
host from another deme (with a parameter between-deme Re). 
All transmissions become noninfectious and sampling processes 
were assumed to be deme-specific and constant through time, 
except for the within-deme Re that was assumed constant across 
four time intervals, corresponding to the four phases of the epi-
demic (SI Appendix Fig. S1). It was assumed that once sampled, a 
given host could not be infected and sampled again since infected 
poultry farms were subject to culling following the confirmation 
of infection and sampling of wild birds was from a mortality event 
(EFSA et al. 2017).

The prior values and distributions of the MTBD model param-
eters are described in SI Appendix Table S2. The MTBD was 
combined with a HKY + Γ4 nucleotide substitution process with a 
relaxed molecular clock (Drummond et al. 2006) defined by a Log-
normal(0.001, 1.25) prior (Beerens et al. 2017; Fusaro et al. 2017; 
Alarcon et al. 2018). The origin of the tree was given a Lognor-
mal(−0.2, 0.2) distribution prior, corresponding to the median date 
1 July 2016 (95 per cent HPD: 6 February 2016–19 October 2016) 
(Beerens et al. 2017; Fusaro et al. 2017; Świętoń and Śmietanka 
2018) and assumed to be associated to the deme ‘wild birds in the 
four countries’, since the source of the first poultry farm outbreak 
in the four countries was likely attributed to infected migratory 
wild birds from Northern Eurasia (EFSA et al. 2017). All Re param-
eters were given a Lognormal(0, 1) distribution prior (Iglesias et al. 
2011; Grear et al. 2018; Andronico et al. 2019). The become non-
infectious rate was given a Lognormal(52, 0.6) distribution prior 
(Grear et al. 2018; Leyson et al. 2019; Willgert et al. 2020). For each 
deme, the sampling proportion was given a uniform distribution 
prior with lower and upper bounds informed by the number of 
sequences and reported poultry farm outbreaks/wild bird cases 
(FAO 2021). Given the severity of the clinical signs affecting the 
majority of poultry combined with active surveillance around 
reported poultry farm outbreaks (EFSA et al. 2017), the number of 

unreported poultry farm outbreaks was considered relatively low 
in all countries. On the contrary, given the difficulty of catching 
and sampling wild birds, it was assumed that infected wild birds 
were significantly under-sampled, relative to poultry farms.

Predictors of H5N8 virus spread between poultry farms 
across borders
The MTBD model was extended with a GLM to inform the H5N8 
virus spread between poultry farms across borders by 19 time-
independent predictors (Lemey et al. 2014; Müller, Dudas, and 
Stadler 2019): the 2016 live poultry trade (FAOSTAT, 2016), the 2016 
poultry density in the source and destination deme (FAOSTAT, 
2016), the 2014 poultry farm density in the source and destina-
tion deme (EFSA et al. 2017), the 2017 farm outbreak density in 
the source and destination deme (FAO 2021), and the 2021 human 
density in the source and destination deme (Wikipedia 2021), 
whether two countries shared borders and the distance between 
countries’ centroids. To account for potential missing predictors, 
we also included predictors to assess the virus spread from or 
to one individual country (SI Appendix Table S5). In this GLM 
parametrization, the between-deme Re parameters act as the out-
come to a log-linear function of the predictors. For each predictor 
i, the GLM parametrization also includes a regression coefficient 
𝛽i which quantifies the (log) contribution of the predictor and a 
binary indicator variable 𝛿i which quantifies the probability of 
the predictor to be included in the model (SI Appendix Table S2). 
To avoid collinearity among predictors, predictors were removed 
when the Pearson correlation exceeded >0.7 (SI Appendix Fig. S7). 
To reduce the effect of different predictors’ magnitude, all non-
binary predictors were log-transformed and standardized before 
inclusion in the GLM. BFs were used to determine the contribution 
of each predictor in the GLM (Kass and Raftery 1995; Lemey et al. 
2014; Magee et al. 2015). BFs were calculated for each predictor to 
quantify which of the posterior and prior inclusion probabilities 
of the given predictor in the model (𝛿I = 1) is more likely. The cut-
off of the substantial contribution of a given predictor in the GLM 
was set at 3.2 (Kass and Raftery 1995), implying that its posterior 
inclusion probability in the model was 3.2-fold more likely than 
its prior inclusion probability (0.50).

Inference of model parameters, structured trees, and epi-
demic trajectories
Phylodynamic analysis was implemented using the BDMM-Prime 
package (Vaughan, 2022) for BEAST v2.6.3 (Bouckaert et al. 2014) 
and the BEAGLE library (Ayres et al. 2012) to improve computa-
tional performance. Posterior phylogenetic trees and parameters 
of the nucleotide substitution model, of the relaxed clock model, 
of the MTBD model, and of the GLM were estimated using Markov 
chain Monte Carlo chains. All analyses were run for 40–50 million 
steps across three independent Markov chains and states were 
sampled every 10,000 steps. The first 10 per cent of steps from each 
analysis were discarded as burn-in before states from the chains 
were pooled using Log-Combiner v2.6.3 (Bouckaert et al. 2014). 
Convergence was assessed in Tracer v1.7 (Rambaut et al. 2018) by 
ensuring that the estimated sampling size values associated with 
the estimated parameters were all >200.

The structured phylogenetic trees (i.e. when phylogenetic trees 
are associated with a specific deme along their branches (Vaughan 
et al. 2014)) were inferred by applying a stochastic mapping algo-
rithm (Freyman and Höhna 2019) implemented in BDMM-Prime 
(Vaughan, 2022) to a subsampled set of posterior phylogenetic 
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trees and model parameters (n = 500) generated by the MTBD anal-
ysis. The MCC tree was obtained from the structured trees in 
TreeAnnotator v2.6.3 (Bouckaert et al. 2014) and annotated using 
the ggtree package (Yu et al. 2017) in R v4.0.2 (Team 2013). The 
epidemic trajectories (i.e. the number of newly infected hosts 
per deme over time, due to within-deme and between-deme 
transmission (Vaughan et al. 2019)) were simulated from a sub-
sampled set of posterior phylogenetic trees and model parameters 
(n = 500) generated by the MTBD analysis (Vaughan, 2022).

To test the robustness of the phylodynamic analysis with 
respect to changes in the Re priors, a separate set of analyses 
were performed using broader and tighter priors on the within-
deme Re (Lognormal(0,2) or Lognormal(1,1)) and between-deme Re

(Unif(0,5)).

Data availability
All H5N8 genome sequences of HA segment are available in 
the GISAID database (https://www.gisaid.org). The prior values 
and distributions of the model parameters are described in 
SI Appendix Table S2. Details on the predictor data are available 
in SI Appendix Table S5. The BEAST 2 XML file used to perform the 
phylodynamic analysis, together with the accession numbers of 
the genome sequences and the R scripts are available from https://
github.com/ClaireGuinat/h5n8_bdmm-prime.git.

Supplementary data
Supplementary data are available at Virus Evolution online.
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