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1. Abstract

Classical swine fever (CSF) is one of the most important re-emergent swine diseases worldwide. 

Despite concerted control efforts in the Andean countries, the disease remains endemic in several 

areas, limiting production and trade opportunities. In this study, we aim to determine herd-level risk 

factors and spatiotemporal implications associated with CSF. We analysed passive surveillance 

datasets and vaccination programmes from 2014 to 2020; Then, structured a herd-level case-con-

trol study using a multivariable logistic model containing 339 cases, and a spatiotemporal Bayesian 

model, considering 115 thousand premises, 2.3 million annual vaccine doses and a population of 

1.6 million pigs distributed in 1,006 parishes. Our results showed that the risk factors that in-

creased the odds of CSF occurrence were swill feeding (OR 9.28), time of notification (OR 2.18), 

animal entry in the last 30 days (OR 2.08), lack of CSF vaccination (OR 1.88), age of animals 

between 3-6 months (OR 1.58) and being in the coastal region (OR 1.87). Spatiotemporal models 

showed that the vaccination campaign reduced the risk by 33% while temperature increased the 

risk by 17%. The calculated priority index aims to facilitate the intervention process that should be 

focused on a couple of provinces, mainly in Morona Santiago and Los Rios as well as in specific 

parishes around the country. Our findings provide insight and understanding of the risk factors as-

sociated with CSF in Ecuador, which stands for the Andean region; even though the results are 

specific for the implementation of risk-based surveillance for CSF, data and methods could be valu-

able for the prevention and control of diseases such as African swine fever, or porcine reproductive 

and respiratory syndrome. In conclusion, the results highlight the complexity of the CSF control 

programme, the need to inform decision-makers, involve stakeholders and implement better 

strategies to update continental health policies to eradicate swine diseases.
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2. Introduction

With the growing demand for animal protein in the Andean region, especially pork, diseases such 

as classical swine fever (CSF) are gaining importance as they are limiting local production and po-

tential export opportunities for affected countries. The per capita consumption of pork has in-

creased in Ecuador from 7.3 kg in 2010 to 10 kg in 2016 (www.aspe.org.ec). The overall import-

ance of pig production is related not only to meat consumption but also to cultural traditions. In An-

dean communities, pigs play a central role as a source of protein, festivities and savings (1). 

Classical swine fever is considered the most relevant re-emerging viral disease of pigs and is 

caused by a virus belonging to the Pestivirus genus within the family Flaviviridae (2). The only nat-

ural reservoirs are members of the Suidae family (domestic and wild pigs). Clinical signs are vari-

able and depend on the viral strain, host immune response, age, general health status and con-

comitant infections (3).

The presentations of the disease include acute, chronic and persistent forms according to their dur-

ation rather than their different acute, chronic and persistent manifestations (4,5). Transmission oc-

curs mainly by direct contact between infected and susceptible animals via the oronasal route but 

also indirectly through people, clothes, vehicles, equipment, and ingestion of contaminated and un-

dercooked meat as part of swill feeding (6). Outbreaks of CSF usually have dramatic con-

sequences when control measures are implemented. These include long quarantine periods, 

movement restrictions, emergency vaccination, culling of the pig population and major impacts on 

animal welfare (7,8). For instance, the 1998 epidemic in the Netherlands, had an estimated cost of 

2.3 billion US dollars and the destruction of 10 million pigs (9). Countries with endemic status are 

banned from exporting pigs and their products, therefore the impact of the disease on the economy 

and public health worldwide is enormous. In Ecuador, the economic impact caused annually by 

CSF was estimated by the NVS to be 6 million US dollars, considering only animal mortality. As 

many of the involved people are from households with low income, the impact of CSF on particular 

poor people becomes evident.

In South America, the disease is considered endemic in Guyana, Suriname, the North and North-

east regions of Brazil and the Andean Community, and these regions struggle to implement suc-

cessful control programs (10,11).

The national CSF eradication Project in Ecuador was established in 2012 with significant improve-

ments against CSF by the National Veterinary Service (NVS). The first national vaccination 

strategy was gradually initiated in 2014 with a locally produced lapinised Chinese strain vaccine 

(12). As a result, the highest historical coverage was achieved in 2019 (2.7 million doses) due to a 

compulsory vaccination campaign, government subsidies and coordination with stakeholders (com-

mercial and industrial producers’ associations). However, the field response and data analysis ca-

pacity of the veterinary service is limited, and in 2020, the disease is still present (https://
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wahis.oie.int). In this regard, the NVS plans to enhance their analysis capacity and apply risk-

based surveillance. One of the main challenges in applying risk-based surveillance is to find the 

factors associated with the occurrence of a given disease; in the case of CSF, the disease and as-

sociated risk factors have been well studied for developed countries (13–18). However, in develop-

ing countries, where due to very particular production systems, the risk factors may be different, 

these are yet to be understood. Recently, for some countries in South America such as Colombia 

(19), Brazil (20), and Peru (21), this issue has been addressed.

Despite the importance and need for local CSF risk factors, little is still known about them in 

Ecuador, generating a lack of knowledge to inform control measures and public policy. This is the 

first time that official data from the NVS has been analysed to determine risk factors for the period 

from 2014 to 2020. 

The objectives of this study were to determine the risk factors associated with the occurrence of 

CSF and to analyse the spatiotemporal implications in order to identify the regions most at risk.

3. Materials and methods

3.1 Datasets

Data were collected by the NVS from January 2014 to November 2020 in mainland Ecuador, ex-

cluding the Galapagos Islands, as it is a recognised CSF free zone (2). The information was stored 

in two databases: (1) Ecuador’s animal health information system (SIZSE) created to record paper 

questionnaires for notifiable diseases, suspicious events and laboratory results from passive sur-

veillance since 2014 (https://sistemas.agrocalidad.gob.ec/sizse/); and (2) the Unified information 

manager (GUIA) developed by the NVS to manage cadastre, mass vaccination campaign against 

CSF, and movements since 2016 (https://guia.agrocalidad.gob.ec/agrodb/ingreso.php). Shapefiles 

of administrative units of Ecuador were downloaded from the Institute of Statistics and Census 

(INEC) (https://www.ecuadorencifras.gob.ec/division-politico-administrativa/). 

All raw data were then imported and processed with R version 4.2.1 (https://CRAN.R-project.org/).

3.2 Factors influencing the risk (variables captured by the surveillance system)

The retrospective analysis used the variables collected historically by the surveillance system. The 

databases were merged using the individual identification of the owner of the premises.

The variables included in the analysis were selected based on published literature, biological 

plausibility and considering their association with the occurrence of classical swine fever. 

(14,22,23). Subsequently, they were organised considering risk characteristics according to the 

RiskSur Surveillance design framework (www.fp7-risksur.eu) (24) and classified into the population 

level, herd level and animal level. 
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Using the variables included in the passive surveillance system, a case‒control study was struc-

tured to identify factors associated with CSF occurrence. Herds of pigs with a positive laboratory 

test for CSF were classified as case herds, and those with a negative result were classified as con-

trols (Figure 1).

Figure 1. Spatial representation of the study area and location of cases and controls of CSF in 
Ecuador study period 2014–2020.

3.3 Questionnaire

The surveillance system used a questionnaire designed to obtain information on veterinary health 

events, including the demographic data of the premises, geographic location, chronology (dates of 

notification and follow-up), animal species, vaccination declaration, clinical signs, presumptive syn-

drome, collection of material, characteristics of samples, laboratory test results, animal population, 

animal movement and probable origin of the disease.

The information was collected by trained NVS veterinarians following the data protection proced-

ures of Ecuadorian authorities. The information recorded throughout the country was continually 

monitored by the national surveillance team (headquarters), who checked the data for complete-

ness and errors. 

Laboratory testing was performed at the National Reference Laboratory (headquarters in Quito). 

Virus detection was carried out by a commercially available antigen ELISA (PrioCheck® CSFV) 

based on the double antibody sandwich (DAS) principle with a sensitivity of 97% and a specificity 

of 99% (25) and by qRT‒PCR using Roche® reagents (26) with a sensitivity and specificity of ≥ 

95%.

3.4 Multivariable logistic analysis 
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All analyses were performed at the herd level and stratified according to CSF status (case or con-

trol). Variables were organised by type, continuous variables were transformed into dummies, set-

ting their levels according to biological or legal cut-off points. Descriptive statistics assessed the 

distribution of cases and controls. The dependent variable was the binary variable infected with 

CSF. The evaluation of individual variables of the Ecuadorian surveillance system was based on 

the association of each explanatory variable with the binary farm-level outcome, using univariate 

logistic regression (27). We avoided case‒control matching due to the potential of creating selec-

tion bias, losing precision, statistical power and not having a prior local analysis of strong well-

measured confounding variables (28). 

A multivariate logistic regression model (Eq. 1) was used to assess the association of explanatory 

variables with the outcome formulated as follows:

log( p(X )/(1−p(X )))=β0+β1X1+β2 X2+…+βpXp [1]

where Xj: is the jth predictor variable and βj is the coefficient estimate for the jth predictor variable. 

The final model selection used a manual forward stepwise approach (29). We included each vari-

able in descending order of statistical significance in the univariate models. Statistically significant 

variables (chi-square association test < 0.05) were kept in the final model. For each insertion of 

new variables, we observed the changes in the odds ratio (OR) and the significance of each beta βi 

(Wald test) assessing them at each step. Variables were used only if their completeness was ≥ 

0.85. Confounding was assessed using causal diagrams (30,31). Collinearity was analysed using 

variance inflation factors analysis (32).  The goodness of fit of the final model was measured using 

the conditional R2 (33) and the Hosmer‒Lemeshow goodness of fit test (GOF) (p > 0.05) (34).

3.5 Spatiotemporal Bayesian analysis

The analysis used the population and cases restricted to 2017-2020 due to the lack of cadastral 

and vaccination information prior to the implementation of the increased official vaccination in 

2017. Data were organised to contain the aggregated annual population over each parish (1040) 

using time-series missing value imputation (35) for areas without information. Variables were 

centred and scaled by dividing the centred value by the standard deviation. The variables used to 

fit the model were the number of CSF vaccine doses applied per km2, average temperature (C) 

and average precipitation (mm), constructing several models. Temperature and precipitation were 

extracted from (https://worldclim.com/) at a spatial resolution of 2.5 arc-minutes (~5 Km2). 

Parish vaccination coverage was adjusted considering the population and the doses applied 

against CSF, considering 1.55 as the average number of doses a pig receives in a calendar year, 

according to the average lifespan from birth to slaughter (234 days) (36). We used penalised prior-

ity priors model complexity, specified by the divergence between a flexible model and a baseline 

model; To define the spatial random effect, a neighbourhood matrix from the polygon list was 
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needed, based on regions (parishes), that share two or more boundary points. The spatiotemporal 

model uses the disease count Yij observed in area i and time period j, modelled as:

Y ij∼Po (Eijθij); i=1 , ...N ; j=t 1 , ..., tN [2]

where Eij is the expected number of cases and θij is the relative risk, both in the given area (i) 

and time period (t) (Equation 2). Three sets of components for log (θij) were considered:

log(θij)=α+ui+vi [3]

where alpha represents an overall risk in the study region, ui is the correlated heterogeneity that 

models the spatial dependence between the relative risks, and vi is the unstructured exchangeable 

component that models uncorrelated noise (Equation 3).

log(θij)=α0+Ai+B j+C ij+var 1+var 2+var ...n  [4]

where Ai represents the spatial group, Bj is the temporal group, and Cij is the space-time interaction 

group (Ai = ui + vi ) using the most popular model to spatial disease known as Besag-York-Mollié 

(BYM) (37), where the clustering component ui is modelled with the conditional autoregressive dis-

tribution (CAR) (38), smoothing the data when two areas share a common boundary given by the 

neighbourhood matrix (Bj = βtj). Using an independent and identically distributed Gaussian random 

effect (iid). (Cij = δitj), where ui + vi is an area random effect, βtj is a linear trend term in time tj, and 

δitj is an interaction random effect between area and time (Equation 4) (39). 

To evaluate the models, we used the deviance information criterion (DIC) and the posterior predict-

ive p value. To suggest parish in priority of care, we used the priority index (PI) which is a risk-

based percentage scale that ranks the units of analysis, given by the fitted effects weighted by their 

probability and a cut-off value (40). The models were implemented using the integrated nested 

laplace approximation (INLA) (41). We used choropleth maps to represent the spatiotemporal dis-

tribution of the population, observed cases, expected cases, infection risk (relative risk) and priority 

index.

All analyses were run in R V4.2.0.

4. Results

4.1 Descriptive analysis of the variables influencing the risk

The full dataset contained 63 variables, most of which were used for administrative purposes. Fif-

teen variables selected for the univariate analysis consisted of 6 dichotomous, 6 nominal and 3 

continuous variables. They were then classified into the population level (n=4), herd level (n=9) 

and animal level (n=2). Notification time was transformed into a dummy variable considering a cut 
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point of 7 days (one week). The age of the animals was considered cut-off points of 2 and 6 

months due to the official CSF vaccination recommendation: first dose applied after 45 days of age 

and revaccination at 180 days of age (Table 1).

Table 1. Description of variables influencing risk and their levels. Data available in Ecuador’s CSF 
surveillance system from 2014 to 2020, levels grouped by risk characterisation. 

Factors influencing 

risk 

Description of variables captured by the surveillance 

system

Category

†Control program
Active national control program (vaccination and mobilisation 

control) on the movement of interview.
Dichotomic ¶

† Natural region
Natural region of the premise according to their location and 

administrative provincial division.

Amazon, coastal, 

highlands

† Network community
Community to which the premise belongs according to its 

parish location (42).
5 communities

† Year Year of the event. 2014–2020
‡ Animal entry Reception of pigs within 30 days of onset of clinical signs. Dichotomic ¶

‡ Notification time
Number of days from onset of clinical signs to notification to 

the NVS.
0–7,>7

‡ Other species Existence of species other than swine in the premise. Dichotomic
‡ Size of the farm Number of pigs on the premises. 1–25, 26–189, >190, 

‡ Swill feeding
Evidence of feeding pigs with swill feed, home-made 

leftovers.
Dichotomic ¶

‡ Type of farm Classification of premises according to production category.
Backyard, Family, 

Commercial,Industrial
‡ CSF vaccination 

declaration 

Owner’s declaration of vaccination against CSF in its 

premise.
Dichotomic ¶

‡ CSF vaccination 

record

Official record of vaccination against CSF within the last 180 

days.
Dichotomic ¶

‡ Who makes the 

notification
Person who contacted the NVS to make the notification. Owner, NVS, Sensor

§ Age Age in months of sampled animals. 1–2, 3–6, >=7

§ Breed Breed of the animals on the premise.
Landrace (white), 

Indigenous (black).
Levels of risk characterisation: † Population level, ‡ Herd level, § Animal level. ¶ Dichotomic: 0=No, 1=Yes.

The average time for official notification to the NVS was more than one week (9.3 days) for cases 

and one week (7.0 days) for controls. The median farm size was similar for cases (13.5 pigs) and 

controls. The mean age of pigs was similar for cases and controls (~5 months) (Table 2).

Table 2. Descriptive measures of continuous variables from the 2014–2020 CSF risk factor ana-
lysis in Ecuador. 

Case herds (n=338) Control herds (n=916)

Mean ± SD Median(Q2,Q) Range Mean ± SD Median(Q2,Q) Range

Notification time 9.29 ± 9.13 7 (3–13) 0–70 7.00 ± 13.37 3 (2–7) 0–201
Size of the farm 38.54 ± 13 (6–33) 1– 125.4 ± 13 (6–27) 1–
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101.95 1323 893.54 13,804

Age (months) 5.06 ± 5.54 3 (2–5) 1–48 5.89 ± 7.69 3 (2–5) 1–72

Farmer vaccination declaration was higher for case herds (71%) than for control herds (6%). Re-

cording of vaccination (based on official records) was lower (46%) for cases than for controls 

(60%). Both cases (96%) and controls (78%) had a high percentage of swill feed use. The entry of 

animals within the last 30 days was recorded in 39% of cases and 22% of controls. Only 5% of the 

cases and 4% of controls have other species on the property (Table 3).

Historical case presentation decreased over the years, with the highest proportion of cases (48%) 

occurring between 2014 and 2015 and the lowest (14%) occurring between 2019 and 2020. The 

proportion of cases (43%) and controls (45%) was highest in the highlands. More than half of the 

case notifications (51%) were reported by the owner, followed by health sensors (42%), which are 

volunteers selected by the NVS to enhance the surveillance system directly from the community 

across the country. There was a higher proportion of cases (30%) in the third community network, 

located in the centre of the country. The highest proportion of cases was in commercial production 

(31%) (Table 3).

4.2 Description of cases and controls

The surveillance database contained 1,254 questionnaires, 338 of which were confirmed CSF 

cases. The farm categories were 50.79% family (637), followed by 28.39% commercial (356), 

17.98% backyard (224) and 0.03% industrial (37); the distribution of cases and controls over time 

is illustrated in Figure 2; The highest case presentation corresponded to October 2015 with 14 

monthly cases, followed by March 2014 with 13 cases, and the lowest corresponded to 2020 with ≤ 

2 monthly cases.

Figure 2. Distribution of events (cases and controls) reported between 2014 and 2020 in Ecuador; 
bars represent monthly counts, height and colours of bars according to the type of herd (different 

scales on the y-axis).
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Distributed by months, the mean number of cases was 4.39 ± 3.09; with controls, the mean was 
11.31 ± 6.38 There was a tendency to increase twice a year around April and October (Figure 3).

Figure 3. Boxplots of monthly distribution of CSF cases and controls from 2014 to 2020 in Ecuador 
(different scales on the y-axis). 

4.3 Multivariable logistic analysis

According to the univariable models, twelve out of 15 assessed variables were associated with 

CSF (p<0.20). We found a paradoxical fit (Type III error) opposite of the true effect (42), produced 

by CSF vaccination declaration; giving an incorrect direction of association and increasing the odds 

when the farmer declares vaccination (38.67 OR), instead of the expected protective effect con-

ferred by the vaccine. The natural region showed a higher risk to the coastal region. The univari-

able analysis is presented in Table 3. 

Table 3. Results of univariable logistic regression analyses, to assess associations of CSF during 
2014–2020 in Ecuadorian swine herds. Variables are ordered by their level of significance.

Variable Category
Tot

al

Cases 

(Percentage)

OR 

(crude)
CI (95%)

Chi-

Square 

(signif.)
CSF vaccination declaration No 959 98 (0.1) 1

Yes 295 240 (0.81) 38.34 (26.75–54.94) 2.20E-16***
Swill feeding No 216 13 (0.06) 1

Yes 1038 325 (0.31) 7.12 (4.16–13.29) 2.51E-14***
Notification time 7 days 882 191 (0.22) 1

>7 days 372 147 (0.4) 2.36 (1.82–3.07) 7.46E-11***
Animal entry (last 30 days) No 920 207 (0.22) 1

Yes 334 131 (0.39) 2.22 (1.7–2.91) 3.65E-09***
CSF vaccination record Yes 710 157 (0.22) 1

No 544 181 (0.33) 1.76 (1.37 – 2.26) 1.01E-05***
Natural Region Highlands 558 146 (0.26) 1

Coastal 311 112 (0.36) 1.59 (1.18-2.14) **
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Amazon 385 80 (0.21) 0.74 (0.54-1.01) 3.37E-05 .
Year 2019-2020 244 48 (0.2) 1

2016-2018 526 129 (0.25) 1.33 (0.90-1.97)

2014-2015 484 161 (0.33) 2.03 (1.39-3.01) 0.0001***
Age (months) 1-2 426 93 (0.22) 1

3-6 588 186 (0.32) 1.68 (1.25-2.27) ***

>=7 248 60 (0.24) 1.14 (0.77-1.68) 0.001
Control Program No 609 190 (0.31) 1

Yes 645 148 (0.23) 0.66 (0.51 – 0.84) 0.0009**
Who does the notification Owner 736 171 (0.23) 1

NVS 86 25 (0.29) 1.35 (0.79 – 2.27)

Sensor 432 142 (0.33) 1.62 (1.23–2.12) 0.0015***
Size of the farm >190 53 8 (0.15) 1

1-25 910 232 (0.25) 1.92 (0.88 – 4.8) .

26-189 293 99 (0.34) 2.86 (1.27-7.31) 0.0028 **
Network Community 1 219 53 (0.24) 1

2 157 57 (0.36) 1.78 (1.11–2.87) *

3 359 102 (0.28) 1.24 (0.83–1.87)

4 184 49 (0.27) 1.14 (0.71–1.83)

5 335 77 (0.23) 0.93 (0.62–1.43) 0.027

Breed
Indigenous 

black 93 20 (0.22) 1

Landrace 970 260 (0.27) 1.33 (0.79–2.36) 0.2680 †
Other species in the premise No 1205 322 (0.27) 1

Yes 51 17 (0.33) 1.37 (0.76 – 2.49) 0.2900 †
Type of farm Industrial 37 6 (0) 1

Commercial 356 106 (0.08) 2.19 (0.86–6.6) .

Family 637 169 (0.13) 1.86 (0.75–5.56)

Backyard 224 57 (0.05) 1.76 (0.68–5.53) 0.2699 †
† Indicates an association p > 0.20, these variables were excluded in the multivariable models. Signif.: *** 

p<0.001, ** p<0.01, * p<0.05, . P<0.1. CI: Confidence interval. 

During the stepwise forward selection of variables we evaluated 8 models; thus, variables that were 

not statistically significant (p>0.05), or had an incorrect direction of association (self-declaration of 

vaccination) were excluded. Variables that showed a strong association (p<0.0001) in the univari-

able model, maintained their individual and model significance when adjusted in the final multivari-

able model (Table 4).

Table 4. Multivariable logistic regression model assessing the associations of variables with the 
odds of CSF between 2014 and 2020 in Ecuador. 

Variable Category Estimate SE OR (95% CI) Signif.
Intercept -4.175 0.356

‡ Swill feeding
No - - 1
Yes 2.228 0.305 9.28 (5.30–17.68) ***

‡ Notification time
1–7 days - - 1
>7 days 0.778 0.147 2.18 (1.63–2.90) ***
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‡ Animal entry (last 30 days)
No - - 1
Yes 0.734 0.149 2.08 (1.55–2.79) ***

‡ Vaccination record CSF
Yes - - 1
No 0.629 0.139 1.88 (1.43–2.47) ***

† Natural Region
Highlands - - 1
Coastal 0.627 0.169 1.87 (1.34–2.61) ***
Amazon -0.127 0.169 0.88 (0.63–1.23)

§ Age (months) 1–3 - - 1
3–6 0.460 0.158 1.58 (1.16–2.16) **
>= 7 0.340 0.206 1.40 (0.93–2.09)

Chi-sqrt: 0.0128 *, GOF Hosmer-Lemershow: 0.788, AUC: 0.746, D2: 0.148, R2: 0.143. 
Significance: *** 0.001, ** 0.01. Levels of risk characterisation: † Population level, ‡ Herd 
level, § Animal level.

Factors that substantially increased the odds of CSF occurrence at the herd level were swill feed-

ing (OR 9.28), notification time (OR 2.18), entry of animals in the last 30 days (OR 2.08) and lack 

of CSF vaccination (OR 1.88). At the population level: being in a coastal region (OR 1.87) and at 

the animal level: age of animals between 3–6 months (OR 1.58) (Table 4, Figure 4). The final lo-

gistic model presented good fit (GOF=0.79, AUC=0.75). Individual collinearity diagnostics for each 

variable resulted in individual GVIFs below 1.062. There was no outlier with a significant influence 

on model fitting, according to the Bonferronni outlier test (p=0.0072); also, there was no correlation 

between residuals.

Figure 4. Variables associated with the odds of classical swine fever in Ecuador 2014-2020.

4.4 Spatiotemporal descriptive analysis

The Ecuadorian administrative division has 1,040 parishes; 16 were removed because of being is-

lands and 18 were located in the Amazon rainforest with no record of domestic pigs. The length of 

the neighbouring areas was 4,024 (1,006 for each year), with 271 (6.49%) imputed gaps. When 

comparing the imputed data with the original dataset, they were not significantly different (t-test: 

p=0.55). The final neighbour list contained 1,006 parishes with an average of 5.71 parish neigh-

bours. The average parish area was 198.03 ± 249.48 km2, with a range from 2.23 to 2,429.64 km2. 

The annual average of registered premises was 115,411.8, housing an average of 1,633,922 pigs. 
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The annual average of CSF vaccine doses between 2017 and 2019 was 2,375,290, expressed as 

vaccine doses per square kilometre from 15.7 in 2017 to 23.0 in 2020; the highest average vaccin-

ation coverage was 81% in 2019, and the lowest was 60% in 2017. The number of applied doses 

increased from 1.8 millions in 2017 to 2.4 millions in 2020. The annual average of premises 

was 115,411 (Table 5).

Table. 5 Centrality measures of model variables (fixed effects) aggregated by parish distribution in 
Ecuador.

2017 2018 2019 2020

Variable Average 
Median 

(max) 
Average 

Median 

(max)
Average 

Median 

(max)
Average Median (max) 

Doses CSF/km2 15.74 2.31 (976.5) 23.78
4.15 

(1057.6) 
27.63 

5.08 

(1,282)
23.0 4.2 (1,477.3)

Population of pigs 1,671.3 
284 

(224,448)
1,948.7 

391 

(256,107)
2,030.4 

447 

(254,042)
1,867.1 434.5 (227,186)

Vaccine coverage % 60 64 (129) 71 80 (108) 81 100 (105) 70 73 (103)

What stands out in figure 5 is the decline of the number of observed cases, corresponding to 39 in 

2017, 60 in 2018, 33 in 2019 and 13 in 2020; it is possible to observe a significant reduction in the 

number of cases specially in the highlands over the years.

Figure 5. Representation of the number of observed CSF cases (number of positive premises) in 
Ecuador grouped by parish from 2017 to 2020. 

Figure 6 reveals that there was a marked higher density on the number of doses of CSF applied by 

square kilometre in the western centre (Santo Domingo), the north (Carchi), west south (El Oro) 

and the central highlands (Cotopaxi, Chimborazo), this general pattern repeated over the years, 

however there were 105, 78, 52 and 62 parishes without vaccination coverage in 2017, 2018, 2019 

and 2020 (white on Figure 6).
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Figure 6. Classical swine fever vaccination density per square kilometre in Ecuador. Polygons of 
the parishes on the map. White parish without applied doses.

Temperature and precipitation in Ecuador are modulated by the Andes mountains, warmer temper-

atures on the Amazon and Coastal regions and cooler temperatures on the highlands. There is a 

range difference of 11 °C in the Coastal, 20.5 °C in the Highlands and 18.9 °C in the Amazon. 

Precipitation on the Amazon is almost 3 times higher than the highlands and two times compared 

with the Coastal (Table 6).

Table 6. Descriptive measures of covariants spatiotemporal model in Ecuador. 

Coastal Highlands Amazon
Covariate Mean ± SD (range) Mean ± SD (range) Mean ± SD (range)
Doses vac. Km2 18.93 ± 69.83 (0–636.9) 19 ± 61.01 (0–976.5) 1.77 ±2.99 (0–15.26)
Temperature 24.36 ± 1.63 (15–26) 14.26 ± 4.43 (4.6–25.1)  20.60 ± 4.19 (6.8–25.7)
Precipitation 1362.24 ± 712.20 (122–3253) 1012.89 ± 434.16 (432–3824) 2718.53 ± 957.47 (722–4482)

4.5 Spatiotemporal Relative Risk

The annual average relative risk dropped from 4.01 in 2017 to 1.30 in 2020. Regarding the doses 

of vaccine applied per km2, they behaved as an expected protective factor, which means that an 

increase in one SD in the doses applied per kilometre decreased the risk by 33%. Temperature 

was a risk factor, considering that an increase in one SD in temperature degree increased the risk 

by 16.7%. Precipitation had no effect: RR=1.00 (1.00–1.001) (Table 7), and the spatial distribution 

of risk is shown in Figure 8.

Table 7. Summary statistics of the effect of covariates on the estimated risk (RR) of CSF in a spati-
otemporal Bayesian model.

Covariate

Univariate Multivariate Relative risk

Mean 0.95 % CI) DIC Mean (0.95 % CI) DIC RR (0.95 % CI)

Intercept – – – -2.26 (-3.30 – -1.31) 1140 – –

Time (years) – – – -0.36 (-0.51 – -0.21) – 0.70 (0.60 – 0.81)

Doses by Km2 -0.309 (-0.68 – 0.02) 1188 -0.41 (-0.77 – -0.09) – 0.67 (0.46 – 0.91)

Temperature 0.158 (0.11 – 0.21) 1142 0.15 (0.11 – 0.20) – 1.17 (1.12 – 1.22)

Precipitation 0.001 (0.00 – 0.001) 1156 – – – – –
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The proportion of variance explained by each component was 57% for the random effect (iid), a 

major contributor to the explained variance, and 43% for the spatiotemporal (besag). The DIC 

mean deviance was 1,140 and the effective number of parameters was 136.7. 

Hot spots of increased risk were spatially identified on the map, in the coastal southwestern and 

also the southeastern Amazon, reducing the risk over the years (Figure 7). 

Figure 7. Spatiotemporal representation of the relative risk (RR) of CSF in Ecuador. 

According to the priority index (PI), prime concern parishes are located in the eastern Amazon as 

Tundayme, followed by Tachina in the northwestern and Paletilla in the southern zone (Figure 8). 

The provinces with higher risk, considering the average RR per province in the year 2020, were 

Morona Santiago (3.68), Los Rios (3.12) and Santa Elena, (3.07).

Figure 8. Spatiotemporal representation of the priority index (PI) to fight classical swine fever in 
Ecuador. 

5. Discussion

When countries mount resource-intensive control strategies for high-impact disease as CSF but fail 

to reach the goal of control and elimination, a deeper analysis of the disease dynamics and the im-

plemented control interventions is needed to identify strategic intervention points. Despite the fact 

that in general terms many CSF risk factors are known, their relevance in the specific setting of a 

pig sector and the respective control program is ideally assessed using all available data.
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Swill feeding is one of the main risk factors for CSF transmission; it is common and rooted in the 

cultural tradition of backyard producers (43); therefore, it is very likely to be a key disease driver of 

the disease in endemic areas of Andean countries. The Agricultural Health Law of 2019 (44), es-

tablished best practices for animal feed, but lacked specific regulations on swill. Consideration 

needs to be given to promoting risk-reducing practices such as heat treatment (45) and stricter reg-

ulations that prohibit the use of animal protein as a feed source for pigs.

Vaccination misreporting could be related to the producer’s lack of knowledge regarding veterinary 

treatments linked with injections (vaccination, iron supplementation in piglets, deworming or other). 

Fear associated with owners’ legal responsibilities and misunderstandings during the interviews 

may also lead to misreporting (46). In Indonesia, vaccination against CSF resulted in an increased 

risk of CSF due to inaccurate vaccination claims (23); considering these facts, reporting behaviour 

could be further analysed as an early target of the surveillance programme (47); suggesting that 

communication and health education activities might be advisable to improve producers’ under-

standing of animal disease prevention and control practices.

Our findings on increased risk at the age of 3-6 months could be related to the fact that young an-

imals might be more likely to be exposed to CSFV because this is the age at which they are nor-

mally marketed. The age with increased risk for CSF also reflects a complicated age from the im-

munological perspective. Maternal immunity fades out after three months (48), and animals not 

vaccinated become susceptible just as animals vaccinated too early where maternal antibodies in-

terfere with the vaccination. Nowadays, the established recommendation for piglets in Ecuador is a 

primary vaccination at relatively early 45 days and revaccination every 6 months. This practice 

might have to reassess once targeted sero-surveillance studies to clarify the effects of vaccination 

ages and herd immune status. 

Maternal-derived antibody (MDA) interference is the most common factor affecting the induction of 

protective immunity against CSFV; in Thailand the vaccination program has been implemented for 

decades without achieving eradication (49). In addition, emergency vaccination protocols imple-

mented in very young piglets, especially during an outbreak, could be further analysed. It would be 

necessary to evaluate diagnostic tools (rapid test) (50) that could detect non clinical, persistent 

CSF forms in the field, as well as apply vaccination serological monitoring tools (51). 

Cases occurred on farms that recorded vaccination, this could be related to illegal movements of 

unvaccinated animals (52); and, they could also be a result of vaccination failures due to poor 

handling and malpractice as evidenced in Colombia (4,19). The risk associated with temperature in 

the spatiotemporal analysis, could be related to vaccination failures, as the vaccine cold-chain in 

regions such as the Amazon and the Coastal with average temperatures above 20 degrees 

Celsius, which corroborates that vaccination strategies alone are not sufficient to eradicate the dis-
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ease (53,54); possible antigenic alteration due to vaccination pressure and their effects on disease 

epidemiology could also be further analysed (55,56).

The identified individual parish risk could help identify neglected territories; as in many developing 

countries with limited resources for disease control, prioritisation is often done on the basis of his-

toric surveillance information; therefore, reduced surveillance sensitivity may leave areas of high 

risk unnoticed. Our model included all parishes and considered the influence of their neighbours to 

improve the predictions (57). Concepts such as spatial RR or excess risk might be difficult to inter-

pret outside the scientific community, but the priority index (PI) could facilitate understanding and 

communication of which parishes should be prioritised.

The identification of the risk factors should respond to the initial demand of the NVS and contribute 

to the implementation of a risk-based surveillance strategy for CSF. As risk factors are specific for 

each disease new studies could be implemented using depurated data and methodology for preval-

ent diseases where symptomatology could be confused with CSF such as the porcine reproductive 

and respiratory syndrome (58,59), also prepare the surveillance system for re-emerging diseases 

such as African swine fever, currently detected in Central America (60,61).

In total, the results indicate once again the complexity a CSF control program is facing, particularly 

if the pig sector is diverse and comprises a large share of farms falling under the subsistence or 

backyard category. Here, NVS faces risky production methods combined with reduced knowledge 

on disease prevention and compliance with sanitary regulations.  
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