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Abstract: Infection of pigs with the African swine fever virus (ASFV) leads to a devastating hemor-
rhagic disease with a high mortality of up to 100%. In this study, a CD2v gene deletion was introduced
to a genotype IX virus from East Africa, ASFV-Kenya-IX-1033 (ASFV-Kenya-IX-1033-∆CD2v), to
investigate whether this deletion led to reduced virulence in domestic pigs and to see if inoculation
with this LA-ASFV could induce protective immunity against parental virus challenge. All pigs
inoculated with ASFV-Kenya-IX-1033-∆CD2v survived inoculation but presented with fever, reduced
appetite and lethargy. ASFV genomic copies were detected in only one animal at one time point.
Seven out of eight animals survived subsequent challenge with the pathogenic parental strain (87.5%)
but had mild to moderate clinical symptoms and had a gross pathology compatible with chronic
ASFV infection. All mock-immunised animals developed acute ASF upon challenge with ASFV-
Kenya-IX-1033 and were euthanised upon meeting the humane endpoint criteria. ASFV genome copy
numbers after challenge were similar in the two groups. ASFV-Kenya-IX-1033-∆CD2v is therefore a
useful tool to investigate the development of immunity to ASFV genotype IX, but safety concerns
preclude its use as a candidate vaccine without further attenuation.

Keywords: African swine fever; CD2v; vaccine; gene deletion

1. Introduction

African swine fever virus (ASFV) is a large double-stranded DNA virus of the As-
farviridae family. It is responsible for the disease known as African swine fever, usually
leading to an acute severe haemorrhagic disease with high mortality rates. However, some
field strains induce mild or subclinical disease with low mortality. ASF is endemic in sub-
Saharan Africa and Sardinia, with 24 genotypes detected in sub-Saharan Africa [1]. More
recently, outbreaks of ASF caused by genotype II ASFV (referred to as the Georgia strain)
have occurred in Eastern Europe, South-East Asia, China and the Island of Hispaniola [2].
Vietnam has issued a commercial permit for the use of a live-attenuated ASF vaccine (LA-
ASFV) based on the Georgia strain [3], but the use of the vaccine is not permitted in the rest
of the world.

Several other LA-ASFV strains with different gene deletions have been tested for
virulence and protection against challenge with the parental virus strains, with several can-
didate LA-ASFV providing 100% protection against challenge with the parental strain [4].
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The virulence of these LA-ASFV is reduced when used to infect domestic pigs due to the
deletion of genes associated with virulence. The gene deletions can be induced either
naturally (present in field strains), after prolonged cell culture, or introduced using genome
editing techniques [5–10].

One of the candidate genes for gene deletion to reduce the virulence of ASFV is CD2v. The
CD2-like protein, also known as CD2v, EP402R, or 8-DR, is responsible for the characteristic
rosette formation of erythrocytes around ASFV-infected cells and binding of extracellular virus
particles to erythrocytes, and plays a role in the immunomodulation of host responses [11–14].
It is the only protein confirmed to be present on the external envelope of the virus particle [15].
However, confocal microscopy has revealed that most of the expressed protein is expressed
inside the infected cell rather than on the cell surface [14,16]. Some low-virulence ASFV
isolates are non-haemadsorbing and have a truncated or deleted CD2v protein [17,18].
Furthermore, the experimental deletion of CD2v from the virulent BA71 genotype I strain led
to a complete attenuation upon in vivo infection [19] and partial attenuation was also seen
when CD2v was deleted from Benin∆DP148R [11]. In contrast, the deletion of CD2v (8-DR) in
the Malawian strain Lil-20/1 did not change disease onset, disease course, or mortality, but
a delay was seen in the onset of viraemia and there was a reduction in viraemia titres [12].
Similarly, the deletion of CD2v in the Georgia strain did not lead to a reduction in virulence
in vivo and led to a limited reduction in viraemia [20]. Thus, the deletion of CD2v can have a
different effect on the virus depending on the ASFV strain used.

As it is unclear whether an LA-ASFV based on a particular strain can protect against
challenge with more distant ASF viruses, there is a need to develop LA-ASFV with the
appropriate background for use in different geographical areas. This is particularly relevant
for sub-Saharan Africa, where different genotypes are circulating simultaneously. A well-
characterised genotype IX strain, ASFV-Kenya-IX-1033, is available that can be used for the
generation of LA-ASFV with a genotype IX backbone [8,21,22]. In this study, a CD2v gene
deletion was introduced to ASFV-Kenya-IX-1033 (ASFV-Kenya-IX-1033-∆CD2v) to investigate
whether this deletion led to reduced virulence in domestic pigs, and to see if inoculation with
this LA-ASFV could induce protective immunity against parental virus challenge.

2. Materials and Methods
2.1. Animal Experiments

The animal experiment was conducted in the ABSL-2+ facility at the International
Livestock Research Institute (Nairobi, Kenya). Ethical approval was provided by the ILRI
Institutional Animal Care and Usage Committee (IACUC2020-11). On arrival at the ILRI
facilities, pigs were dewormed and vaccinated against foot and mouth disease and held in
a quarantine facility for at least 21 days prior to the start of the experiment. Only healthy
animals, which were seronegative for ASFV and which had no detectable ASFV genome
copies prior to the start of the experiment, were included in the study. The pigs were crosses
between Duroc and Large White, weighing between 45 and 70 kg at the start of the study.

Details on the experimental design can be found in Figure 1a. After the quarantine
period, animals were assigned to their experimental groups and transferred to the ABSL-2+
facilities for acclimatisation. On Day 0, animals were inoculated by intramuscular injection
in the neck with either 103 TCID50 of ASFV-Kenya-IX-1033-∆CD2v or PBS. One animal per
group was euthanised on Day 27 and the remaining 8 animals per group were challenged on
Day 31 with 102 HAD50 ASFV-Kenya-IX-1033. Clinical signs, including rectal temperature,
lethargy, anorexia, respiratory distress, vomiting, signs of skin haemorrhage and diarrhoea,
were recorded as previously described [23]. Animals were euthanised when predetermined
humane endpoint criteria were met or at the end of the study and PM investigation was
performed. Titres of the stocks used for immunisation and challenge were confirmed by
back titration. EDTA blood and serum were collected regularly for the determination of
viral titres. Pieces of tissue were collected at PM for viral titre determination.
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2.2. ASF Viruses for Immunisation and Challenge

Animals were immunised with 103 TCID50 ASFV-Kenya-IX-1033-∆CD2v. The con-
struction of this virus is detailed in Hübner et al. [24] and in vitro growth and genome
analysis of this virus is described in Abkallo et al. [8]. The titre of the stock was determined
by TCID50 by observing fluorescent foci (dsRed) using fluorescent microscopy.

For challenge, 102 HAD50 ASFV-Kenya-IX-1033 was used. Details on the virus, includ-
ing whole genome analysis, are detailed in Hemmink et al. [21,22]. The titre of the stock
was determined by HAD50 assay on pulmonary alveolar macrophages.

2.3. PBMC Isolation

Blood was collected from each animal in heparinised vacutainer tubes (Ref: 368480,
BD). PBMCs were isolated using the Ficoll PaqueTM (Ref: 17.1440.03, GE Healthcare,
Uppsala, Sweden) density gradient centrifugation technique. Briefly, the heparinised blood
was mixed with an equal volume of sterile PBS, layered on Ficoll Paque and centrifuged
at 1650× g for 30 min at RT with no brakes. The interphase layer containing PBMCs was
collected, topped up with sterile 1xPBS and spun at 670× g for 10 min with brakes on. The
pellet was resuspended in 10 mL of tris-ammonium chloride and incubated in a water
bath set at 37 ◦C for 10 min to lyse residual RBC. The cell suspension was spun at 300× g
for 10 min to remove residual platelets. The cell pellet was washed twice by suspending
in 1xPBS and spun at 300× g for 10 min. After washing, PBMCs were re-suspended in
complete RPMI1640 ((Ref: R4130-10L, Sigma) supplemented with 10% foetal bovine serum
(Ref: A4766, GIBCO), 1% L-glutamine (Ref: 21051040, Thermo Fisher Scientific) and 1%
penicillin/streptomycin (Ref: HP10.1, Roth).

2.4. IFN-γ ELISPOT

ELISPOT plates (Ref: MAHAS4510Millipore,) were coated with 100 µL per well of
1:1000 diluted mouse anti-pig IFN-γ antibody (clone P2G10 (Ref: 559961, BD Pharmingen))
in carbonate buffer and left overnight at 4 ◦C. The plates were washed five times using
sterile PBS (200 µL per well) and blocked with 4% skimmed milk in PBS (Marvel original,
Premier Foods group, Thame, United Kingdom) for 2 h at room temperature. The plates
were washed five times with PBS, before adding 50 µL of antigens: Medium, Con A
(10 ug/mL) or ASFV-Kenya1033-IX (MOI = 0.1). PBMC were seeded at 5.0 × 105 per well,
and plates were incubated overnight at 37 ◦C with 5% CO2.

Plates were washed five times with 200 µL per well of 0.05 % Tween 20 in PBS (PBS-
Tween). Then, 100 µL of 1:2000 diluted biotinylated mouse anti-pig IFN-γ antibody (clone
P2C11 (Ref: 559958, BD Pharmingen)) was added to each well and incubated for 2 h
at room temperature. Plates were washed five times with PBS-Tween, before 100 µL of
1:1000 diluted streptavidin alkaline phosphatase (Ref: SA1008, Invitrogen) was added to
each well and incubated at room temperature for 1 h. The plates were washed six times
with PBS-Tween, and 50 µL of the SIGMAFAST TM BCIP®/NBT substrate (Ref: B5655,
Sigma) was added per well and incubated for 20 min in the dark. The plates were washed
with tap water to stop the reaction and then immersed in 1% formaldehyde solution for
10 min to inactivate residual viruses. Finally, the plates were washed in tap water and kept
at room temperature to air dry. The spots were counted using the AID classic ELISPOT
reader (AID AutoImmun Diagnostika GMBH).

2.5. Determination of Antibody Response

Blood was collected from each animal in serum-separating vacutainer tubes (Ref:
367837, BD) and centrifuged at 1500× g for 10 min and serum-harvested. ASFV anti-
p72 antibodies were detected using the Ingezim PPA Compac Kit (Ref: 11.PPA.K3, Ingenesa,
Madrid, Spain) according to the manufacturer’s protocol. Briefly, 50 µL of serum was
added to the wells of the ELISA plate with 50 µL diluent to give a 1:1 dilution. Plates
were incubated at 37 ◦C for 1 h, followed by 4 washes with wash solution, before adding
100 µL of diluted conjugate dilution to each well. Plates were incubated at 37 ◦C for 45 min
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and washed 5× in wash solution. Then, 100 µL of substrate was added per well and
incubated in the dark for 15 min at room temperature before adding 100 µL of stop solution.
Optical densities were read immediately at 450 nm wavelength using the Synergy HTX
multi-mode reader (Ref: S12FA, BioTeK). Percentage of blocking was calculated according
to the manufacturer’s protocol.

2.6. Determination of Viral Titres by p72/B646L qPCR

p72/B646L qPCR was used to assess the virus DNA content in EDTA blood and tissue
samples. Genomic DNA was extracted from 200 µL of EDTA anti-coagulated blood using
the Zymo Quick-DNA miniprep DNA extraction kit (Ref: D3025, Zymo research, USA). For
the detection of ASFV genome copies in tissues, approximately 0.01 g to 0.025 g of splenic,
submandibular and gastrohepatic lymph tissue was weighed and DNA was extracted
using the Qiagen Dneasy Blood and Tissue Kits (Ref: 69506, Qiagen, Hilden, Germany).
qPCR was performed as per the OIE-recommended real-time PCR assay according to
King et al. [25], but primer and probe sequences were adapted to the Genotype IX chal-
lenge strain. Primer sequences were (P72-F ‘CTGCTCACGGTATCAATCTTATCGA’, P72-R
‘GATACCACAAGATCAGCCGT’ and P72 probe ‘FAM-CCACGGGAGGAATACCAACCC
AGCG-TAMRA3’. The plasmid standard dilutions and qPCR conditions are described in
Abkallo et al. [8].

3. Results
3.1. Clinical Signs after Immunisation

Animals were immunised by inoculation with ASFV-Kenya-IX-1033-∆CD2v or by mock
immunisation using PBS and challenged 31 days later with the parental pathogenic ASF-
Kenya-IX-1033 (Figure 1a). All pigs inoculated with ASFV-Kenya-IX-1033-∆CD2v survived for
31 days after immunisation, indicating that the virulence of ASFV-Kenya-IX-1033-∆CD2v was
reduced compared to ASFV-Kenya-IX-1033, which induces 100% mortality within 4–7 days
of inoculation [21]. However, the presence of mild to moderate clinical signs in all pigs
demonstrated that the virus was not fully attenuated, and residual virulence was present
(Figure 1c,d). Eight out of nine animals had fever (rectal temperature ≥39.5 ◦C) in the follow-
up period after immunisation; this fever occurred at different time points and for different
durations. Some animals had more than one period of fever. Six animals had a high rectal
temperature (≥40.5 ◦C) for at least one day. In contrast, none of the pigs inoculated with
PBS had a body temperature over 39.5 ◦C (Figure 1d). Lethargy was seen in seven animals
immunised with ASFV-Kenya-IX-1033-∆CD2v, at different time points after immunisation
and for different durations. Some animals had more than one incident of lethargy. In the
PBS-inoculated group, two animals, which were treated for lameness, were less active and
thus were scored as lethargic during the study. The remaining animals in the PBS group
were all active after inoculation.

Joint swelling and lameness occurred in both groups, with joint swelling in all animals
inoculated with ASFV-Kenya-IX-1033-∆CD2v, among which four pigs required treatment
due to lameness. In the PBS group, seven out of nine animals experienced joint swelling,
albeit smaller in size than the ASFV-Kenya-IX-1033-∆CD2v-inoculated group, of which
two required treatment due to lameness.

Furthermore, the weight gain in the 28 days following inoculation with ASFV-Kenya-
IX-1033-∆CD2v (2.2 kg ± 2.9) was reduced compared to the PBS group (4.3 kg ± 2.9),
although this was not statistically significant due to the high variation in weight gain
between pigs (data not shown).

3.2. Survival and Clinical Signs after Challenge with ASFV-Kenya-IX-1033

After challenge, PBS mock-immunised animals all developed clinical signs compatible
with acute ASF and met the humane endpoint criteria between 4 and 8 days post challenge.
In contrast, among the animals immunised with ASFV-Kenya-IX-1033-∆CD2v, only one
animal met the humane endpoint criteria at 9 days post challenge, with the remaining
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animals surviving until the end of the study (Figure 1b). Three of the surviving animals
had a fever (rectal temperature ≥39.5 ◦C) and the other four animals appeared clinically
normal after challenge; they did not have fever, had a normal appetite and were active
throughout the 20-day follow-up period.
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Figure 1. Experimental design, survival and clinical evaluation after immunisation and challenge.
(a) Experimental design: pigs underwent quarantine for at least 21 days prior to the start of the
study. DPI 0: pigs were immunised with ASFV-Kenya-IX-1033-∆CD2 or PBS; DPI 31: pigs were
challenged with ASFV-Kenya-IX-1033. The experiment was terminated on DPI 51. (b) Kaplan–Meier
survival curve after challenge with wildtype ASFV-Kenya-IX-1033 in animals after immunisation
with ASFV-Kenya-IX-1033-∆CD2 (green) or PBS (blue) and challenge with ASFV-Kenya-IX-1033.
Days post challenge (DPC). (c) Cumulative clinical scores in animals after immunisation with ASFV-
Kenya-IX-1033-∆CD2 (green) or PBS (blue) and challenge with ASFV-Kenya-IX-1033. (d) Rectal
temperatures in animals after immunisation with ASFV-Kenya-IX-1033-∆CD2 (green) or PBS (blue)
and challenge with ASFV-Kenya-IX-1033.

3.3. Immune Responses after Immunisation with ASFV-Kenya-IX-1033-∆CD2v

Humoral and cellular immunity induced by ASFV-Kenya-IX-1033-∆CD2v were as-
sessed by IFN-γ ELISpot and competitive p72 ELISA (Figure 2). There was a detectable
IFN-γ response in all animals inoculated with ASFV-Kenya-IX-1033-∆CD2v using PBMC
isolated at day 21 and in vitro stimulation with ASFV-Kenya-IX-1033. The magnitude of the
IFN-γ responses varied between 292 and 941 SFU per million cells depending on the animal
(Figure 2a). The humoral immune response was more uniform, with a 100% blocking in the
competitive p72 ELISA for all animals immunised with ASFV-Kenya-IX-1033-∆CD2v from
14 days after challenge (Figure 2b).
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Figure 2. Immune responses after immunisation with ASFV-Kenya-IX-1033-∆CD2v. (a) IFN-γ
ELISPOT using PBMC isolated from animals at day 21 after immunisation with ASFV-Kenya-IX-1033-
∆CD2 (green) or PBS (blue) and stimulation with either medium or ASFV-Kenya-IX-1033 wildtype
at MOI of 0.1 (WT). Statistical analysis was carried out using multiple t-test. Asterisks indicate
the statistical difference between experimental groups (**** p < 0.0001). (b) Percentage blocking in
competitive p72 antibody ELISA in animals after mock immunisation with PBS (blue) or ASFV-Kenya-
IX-1033-∆CD2 (green).

3.4. Viral Titres after Immunisation with ASFV-Kenya-IX-1033-∆CD2v and Challenge with
ASFV-Kenya-IX-1033

Except for one time point in one animal, the p72 copy number, as assessed by qPCR,
was below the lower limit of detection (1250 copies/mL) in the blood of animals immunised
with ASFV-Kenya-IX-1033-∆CD2v. Post challenge, the p72 copy number increased in
all animals with peaks in the ASFV-Kenya-IX-1033-∆CD2v-immunised animals between
1.5 × 105 and 3.9 × 109 copies per ml of blood and between 2.8 × 105 and 3.9 × 109 copies
per ml of blood for the PBS immunised animals (Figure 3a). Thus, immunisation with
ASFV-Kenya-IX-1033-∆CD2v does not appear to prevent the replication of the virus after
challenge with ASFV-Kenya-IX-1033. However, the p72 copy numbers in the spleen were
significantly lower in the ASFV-Kenya-IX-1033-∆CD2v-immunised group (Figure 3b). Most
animals in the ASFV-Kenya-IX-1033-∆CD2v survived until the end of the study and were
clinically normal at the time of euthanisation. In contrast, the PBS-immunised animals
exhibited severe clinical signs and were euthanised after 4–8 days due to meeting the
humane endpoint criteria.
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animals challenged with ASFV-Kenya-IX-1033. The lower limit of detection of the qPCR was
1250 genome copies/mL or 1250 genome copies/g. When copy numbers were under 1250 genome
copies/mL or g or when no Ct value was determined during qPCR, the value was registered as 100

copies/mL. Statistical analysis was carried out using multiple t-test. Asterisks indicate the statistical
difference between experimental groups (**** p < 0.0001).
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3.5. Gross Pathological Lesions after Immunisation with ASFV-Kenya-IX-1033-∆CD2v and
Challenge with ASFV-Kenya-IX-1033

Animals were euthanised either when the human endpoint criteria were met or at the
end of the study (Day 51). A post-mortem investigation was performed to assess whether
gross pathology lesions were present. All animals in the mock-immunised group and
challenged with ASFV-Kenya-IX-1033 exhibited gross pathological signs consistent with
acute ASFV infection; lymph nodes were enlarged and either marbled, had haemorrhages,
or had a blood clot-like appearance. Mild to moderate lung oedema was also observed. In
contrast, animals inoculated with ASFV-Kenya-IX-1033-∆CD2v had lymph nodes without
haemorrhages or a blood clot-like appearance. Six out of nine animals inoculated with
ASFV-Kenya-IX-1033-∆CD2v had mild to severe fibrinous pericarditis at post-mortem
investigation, whereas no pericarditis was observed in the PBS group (Figure 4). This
suggests that the pericarditis is related to the infection with ASFV-Kenya-IX-1033-∆CD2v.
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Figure 4. Gross-pathology after immunisation with ASFV-Kenya-IX-1033-∆CD2 and challenge with
ASFV-Kenya-IX-1033. (A) Representative pictures of hearts of pigs after mock immunisation with
PBS and challenge with ASFV-Kenya-IX-1033. (B) Representative pictures of hearts of pigs after
immunisation with ASFV-Kenya-IX-1033-∆CD2 and challenge with ASFV-Kenya-IX-1033.

4. Discussion

The CD2v gene was deleted by a double homologous recombination from the highly
pathogenic ASFV-Kenya-IX-1033 isolate propagated on wild boar lung (WSL) cells [24].
The aim of this study was to investigate the effect of this deletion on the virulence of the
virus, and whether the CD2v-deleted virus induced protection against challenge with the
parental virus. The virulence of ASFV-Kenya-IX-1033-∆CD2 was significantly reduced
in vaccinated pigs compared to the parental virus [21], with all animals surviving after
immunisation. The CD2v gene was selected for deletion to generate an ASFV strain with
reduced virulence, since some low-virulence ASFV isolates are non-haemadsorbing and
have a truncated or deleted CD2v protein [17,18]. Furthermore, the experimental deletion of
CD2v from the virulent BA71 (p72 genotype I) strain resulted in complete attenuation [19],
whereas the deletion of CD2v (8-DR) in the Malawian strain Lil-20/1 and the Georgia strain
(p72 genotype II) did not reduce virulence in vivo and resulted in a limited reduction in
viraemia following challenge [12,20].

Petrovan et al. deleted CDV2v (locus EP402R) from the genome of Benin∆DP148R.
This led to a reduction in virulence as compared to Benin∆DP148R. However, there
was still residual virulence as pigs had transient increased rectal temperatures above
40.5 ◦C, lethargy and reduced appetite [11]. The effect of CD2v deletion from ASFV-Kenya-
IX-1033 thus seems most similar to the deletion of CD2v from Benin∆DP148R, with a
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reduction in mortality and severity of clinical symptoms but retention of a degree of vir-
ulence. Thus, the development of LA-ASFV vaccines using different genotypes/strains
appears to be more complicated than simply introducing the same gene deletion to a
particular viral strain. A gene deletion can lead to complete attenuation, partial attenuation,
or no attenuation depending on the specific target strain into which it is introduced. It will
be important for the future development of LA-ASFV vaccines to understand the reason
for these differences in attenuation.

Non-haemadsorbing naturally attenuated ASFV strains may have additional genomic
changes; therefore, the reduced virulence might not be fully attributable to the changes
in the CD2v locus alone but could be due to other genomic changes or a combination
of the deletion/disruption of CD2v and other genomic changes. For CD2v-knockout
strains generated by genome editing techniques, the genome changes other than the
targeted deletion are expected to be limited, but for non-adsorbing naturally attenuated
ASFV strains, changes may be present elsewhere in the genome, such as in the multigene
families (MGF). In the case of the CD2v deletion mutants generated by genome editing
techniques, whole-genome sequence information was not included in the publications
describing Malawi Lil-20/1∆8-DR [12] and Benin∆DP148R∆EP402R [11] and the presence
of undesired mutations can therefore not be excluded. However, targeted sequencing
across the site of deletion was performed to confirm the deletion and the site of reporter
gene insertion in the case of the mutated Benin virus [11]. No undesired genomic changes
were detected in Georgia∆CD2v [20], whereas for the BA71 strain seven point mutations
were detected, of which one was a non-synonymous change in the open-reading frame
of the D250R gene leading to an amino acid substitution from histidine to tyrosine [19]. For
ASFV-Kenya-IX-1033-∆CD2, four SNPs were detected compared to ASF-Kenya-IX-1033 [21].
Two were previously described as SNPs between the macrophage-grown and WSL-grown ASF-
Kenya-IX-1033 and thus are likely to have occurred prior to the introduction of the gene deletion.
These comprise a non-synonymous SNP in g5R and a synonymous SNP in k11L. Of note, both
the macrophage and WSL-grown stocks of ASFV-Kenya-IX-1033 are highly pathogenic, so these
SNPs do not influence the virulence of ASFV-Kenya-IX-1033 [21]. In addition, two synonymous
SNPs were detected in the j15R gene of the CD2v deletion mutant.

Despite the 100% survival rate after inoculation with ASFV-Kenya-IX-1033-∆CD2v, the
strain had residual virulence when inoculated in pigs. The animals exhibited intermittent
fever, joint swelling, and some had periodic lethargy. On post-mortem investigation, marbled
lymph nodes and fibrinous pericarditis were seen in most animals, whereas pericarditis was
not observed in the PBS-inoculated group, suggesting that ASFV-Kenya-IX-1033-∆CD2v is
responsible for the observed pericarditis. Fibrinous pericarditis is described after chronic
infection following infection with several low-virulence ASFV strains [17,26–28]. However,
animals immunised with Benin∆DP148R∆EP402R, which had an additional deletion to
CD2v, did not have any macroscopic lesions except for lympho-adenopathy [11]. No details
with regard to macroscopic lesions after immunisation with BA71∆CD2v are provided
in the manuscript [19]. In human medicine, idiopathic viral infections are believed to be
responsible for 80–90% of pericarditis cases, including viruses such as Coxsackie B virus,
HIV and influenza [29].

Although the cause of pericarditis is likely to be ASFV, it cannot be ruled out that the
pigs had an underlying condition which presented due to immune suppression caused by
ASFV-Kenya-IX-1033-∆CD2v inoculation. Haemophilus parasuis (Glasser disease), Streptococ-
cus suis, Mycoplasma hyopneumoniae (Enzootic pneumonia) and mycoplasma hyorhinus are
known to cause fibrinous pericarditis in domestic pigs. Limited information on the prevalence
of these pathogens on the African continent is available. However, Dione et al. found sero-
prevalences for Mycoplasma hyopneumonia in Masaka and Lira districts in Uganda of 10.1%
and 20.9%, respectively, and 68.2% and 73%, respectively, for Streptococcus suis [30,31]. Pigs
are thus likely to be exposed to/infected with other pathogens, which could influence the
success of LA-ASFV when deployed in the field. Even though the animals were apparently
health, the animals included in this study were only tested for the presence/absence of
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ASFV by qPCR and seronegativity for ASFV by ELISA. The presence of co-infections in
these pigs can therefore not be excluded.

The immunity induced after inoculation with ASFV-Kenya-IX-1033-∆CD2v protected
87.5% of the animals against mortality following challenge with virulent parental ASFV. All
animals developed detectable immune responses to ASFV; 100% blocking was seen using
the competitive p72 antibody ELISA from 2 weeks after inoculation, and strong ASFV-
specific IFN-γ responses were detected using ELISpot. However, the one immunised animal
that met the humane endpoint criteria had immune responses similar to the protected
animals, suggesting that additional responses may also be important. Although immunity
induced by ASFV-Kenya-IX-1033-∆CD2v prevented mortality after parental ASFV chal-
lenge, it did not prevent the development of clinical symptoms and macroscopic lesions
consistent with chronic ASFV infection [26]. Reis et al. investigated antibody responses
after infection with the low virulence ASFV/NH/P68 strain against different ASFV recom-
binant proteins and compared the responses of asymptomatic and chronically infected
animals. For the proteins NP419L/DNA ligase, CP312R, B646L/p73, K196R/thymidine
kinase and K205R, the antibody titres were significantly higher in animals that developed
lesions [32]. It is, therefore, possible that some of the immune responses induced by ASFV-
Kenya-IX-1033-∆CD2v may contribute to the development of chronic ASF. A more in-depth
immunological investigation of both the cellular and humoral responses is required to shed
further light on the precise role of different components of the immune response.

The deletion of CD2v from certain ASFV strains has resulted in LA-ASFV that cause
low or no mortality and induce protection against pathogenic ASFV challenge. The at-
tenuated BA71∆CD2v virus protected against homologous and heterologous challenge
in a dose-dependent manner. The highest doses used, 3.3 × 104 PFU and 1 × 106 PFU,
protected against homologous challenge with BA71 and heterologous challenge with
E75 and the Georgia strain [19]. Similarly, all animals surviving immunisation with
Benin∆DP148R∆EP402R were protected upon challenge with the parental Benin strain [11].
For ASFV-Kenya-IX-1033-∆CD2v, partial protection (87.5%) against parental ASFV-Kenya-
IX-1033 was observed. For Benin∆DP148R∆EP402R and ASFV-Kenya-IX-1033-∆CD2v,
protection against strains other than the parental strain was not tested. In future, it will
be important to know if strains can protect against more distant ASF viruses, especially in
sub-Saharan Africa, where multiple ASFV strains circulate simultaneously in certain regions.
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