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pesticide residues in food jelly of honey
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Residues are detectable in royal and
worker jelly, but no information available
for drone jelly.

Occurrence of residues mainly depends on
application method and exposure sce-
nario.
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ARTICLE INFO ABSTRACT

Editor: Henner Hollert The increasing loss of honey bee colonies is assumed to be caused by various factors such as habitat degradation, par-
asites, pathogens, or the exposure to environmental pollutants like pesticides in agriculture practice. Different bee-

Keywords: related products like honey, bee bread, wax, and pollen can be contaminated by pesticides and some of them might
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affect colony health. Stored nectar and pollen serve as nutritional sources for nurse bees to produce food jelly for
queen, worker, and drone larvae and contaminants might be transferred. For the risk assessments, it is necessary to un-
Pesticide transmission derstand the occurrences of residues in larval food jelly and to evaluate factors influencing the concentration of con-
Contamination flow taminants. This review summarizes the current literature dealing with residue analysis of pesticides in food jelly to
Plant protection products assess the pesticide transfer, to evaluate factors influencing pesticide appearance in jelly, and to deduce risk for larvae.
Previous studies determined residues of different pesticides in royal jelly, and one in worker jelly. It was demonstrated
that 30 out of 176 analyzed pesticides were detectable in different royal jelly samples. If residues remain in food jelly,
this is mainly related to the used application and exposure method. It is shown that an artificial exposure (e.g., by
forced feeding) results in higher detectable residues compared to field-realistic exposure scenarios (e.g., spray applica-
tions on plants). All detected concentrations were predominantly below the toxicity values for honey bee larvae, but
sub-lethal effects should be considered. Moreover, it was demonstrated that there are still knowledge gaps about the
contamination pathway of pesticides, dilution or accumulation factors within the hive, degradation time in bee-
related matrices, and the impact on larval physiology. Filling those gaps is of major importance to consider realistic
exposure scenarios in the risk assessment and to allow for sufficient protection level of honey bee brood.
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1. Introduction

Honey bees are essential for agriculture by providing pollination service
and for the economy by their production of honey, propolis, wax and royal
jelly. They forage on different plant products like nectar, honey dew, or pollen,
which represent their nutritional resources. Collected food is brought back to
the hive and stored as honey or bee bread. While foraging, bees are exposed to
pollutants, pathogens, and parasites, which could lead to diseases and repre-
sent risks for colonies. In particular, habitat degradation, diseases, intoxication
by pesticides, and malnutrition have been proposed as drivers of increasing
numbers of colony losses (Osterman et al., 2021). Pesticides like insecticides,
fungicides, and herbicides are applied to control insect pests, fungal diseases,
undesirable vegetation, and to secure the crop yield. The prophylactic use of
pesticides increases the risk of accumulation within the bee colony and envi-
ronment (Goulson et al., 2015). Pesticides and their metabolites account for
several lethal as well as sub-lethal effects such as reduced learning or colony
performance of non-target pollinating insects, like honey bees, with insecti-
cides proven to be the most harmful (Alkassab and Kirchner, 2017; Cullen
et al., 2019; Desneux et al., 2007; Johnson, 2015). Hence, information about
residue occurrence of pollutants such as pesticides in in-hive products are nec-
essary to enable risk evaluation of colony and larval development. For a better
understanding of the topic, different matrices have been evaluated for pesti-
cide residues. Most of the studies focused on pollen, wax, honey, and detected
single compounds or mixtures of different pesticides (El Agrebi et al., 2020;
Mitchell et al., 2017).

However, pesticide residues not only remain in honey, wax, or pollen,
but are further transferred to other hive matrices like larval food jelly
(Davis and Shuel, 1988; Kast and Kilchenmann, 2022). Contaminated nec-
tar and pollen are collected by foraging honey bees, incorporated, and
stored as honey and bee bread, where pesticide residues can accumulate
(Dively et al., 2015). These products are the nutritional basis for nurse
bees to produce larval food in their hypopharyngeal and mandibular glands
(Winston, 1987). The ratio of glandular secretions within food jelly is
dependent on the different larvae sexes, castes, and age. Queen larvae are
continuously fed with a mixture of glandular secretions, called royal jelly,
during their entire life cycle, whereas worker and drone larvae receive a dif-
ferent secretion mixture added with pollen and honey-sac content, which
changes during larval development (von Planta, 1888; Winston, 1987).

Several reports demonstrated toxicity of different pesticides with
effects on larval development (DeGrandi-Hoffman et al., 2013; Kast and
Kilchenmann, 2022; Shi et al., 2020). For example, a cross-fostering
experiment with the fungicide boscalid combined with the fungicide
pyraclostrobin reduced survival of worker larvae (Fisher et al., 2021).
Milone et al. (2021) reported an impact of a multiple-pesticide exposure
on the nutritional composition of royal jelly. They detected changes in
the metabolome, proteome or phytosterol composition in royal jelly of col-
onies treated with pesticides. In contrast, others did not detect any signifi-
cant negative effects on larval development driven by pesticide exposure
(Dai et al., 2019; Wood et al., 2020). All of them considered concentrations
of pesticides at field relevant levels. Beyond the larval well-being,

measuring residues in food jelly is of relevance in context of human food
safety. By the consumption of honey or pollen and the use of royal jelly in
traditional and modern medicine (Pasupuleti et al., 2017), humans might
also be exposed to pesticide residues remaining in these products.

So far, the toxicological effects on adult bees as well as on larvae were
assessed, and residues were described in different hive matrices. Primarily,
detection was realized in the framework of food safety. However, literature
is lacking information about: 1) Residue analysis of worker and drone jelly,
2) Main factors that have an impact on residue occurrence, 3) Which con-
centration of residues can be detected in food jelly? 4) Are the remaining
residues toxic for larvae and can they lead to sub-lethal effects? 5) Impact
of residues in larval food jellies on larval physiology, 6) Transmission path-
ways of pesticides within the colony, 7) Do pesticides accumulate in bee
matrices or do residue concentrations decrease throughout the pathway
from plant to jelly? and 8) Degradation time of pesticides in bee matrices
like pollen, honey, and wax. Here, we address these open topics and aim
to answer the first four questions using published data and discuss the re-
maining questions in context of risks for honey bee larvae.

2. Material and methods

The online library Web-of-Science was used to search for relevant liter-
ature in the field of pesticide residue analysis in honey bee food jelly. The
literature search was performed using the following terms: [(royal, worker,
and drone) jelly], [honey beel], [pesticide], [residue], and specific pesticide
names of the commonly used pesticides within these studies (access date
March 30th, 2022). Overall, 42 studies dealing with pesticides in jelly
were found. Criteria for including resulting studies for further evaluations
were 1) the detection of pesticide residues in either royal, worker or
drone jelly and 2) method application on at least samples which had been
produced for commercial purposes (e.g., royal jelly samples bought in su-
permarkets and drug stores). Articles with a focus on A) the development
of a detection method for residue analysis without practical consideration,
and B) of veterinary drugs, were excluded from further analyses (further in-
formation in Table S1). After filtering for the given conditions, 24 studies
remained and 18 were excluded.

For discussing the effects and observations after pesticide treatment the
following data were extracted from all relevant articles: type of food jelly
(royal, worker, or drone jelly), substance (pesticide), sampling time point
(day after initial exposure), application method and duration (acute and
chronic), the initial concentration used for exposure [ng/gl, and the de-
tected concentration in food jelly [ng/g]. The exposure scenarios described
within the studies can be divided into two distinct groups: artificial expo-
sure or field-realistic exposure. Studies using artificial exposure were
based on using spiked diets in form of syrup or pollen, which was applied
ad libitum inside the hive over time. In turn, in field-realistic assays, sub-
stances were applied via fumigation inside the hive (beekeeping practice)
or via spray application of plants (agricultural practice) based on the re-
quired application recommendations. To compare the different studies of
different exposure scenarios the pesticide transfer was calculated. The
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term is defined by dividing the detected residue concentration in food jelly
by the initially applied concentration given as a percentage.

Statistical analyses were done using the open-source software R (Version
4.1.3) and the integrated development environment RStudio (Version
2022.02.0). Correlations between pesticide transfer and sampling time point
after initial exposure, or the octanol-water-partition coefficient, were done
using a linear regression analysis with a significance level of 0.05.

3. Results and discussion

Overall, royal jelly samples were analyzed for 176 different pesticides and
their metabolites, and finally 30 different substances were detected in 24 stud-
ies (Table 1). All studies assessed jelly samples for residues in a range of 1-16
different pesticides, despite one, which screened commercial royal jelly sam-
ples for 127 pesticides without detecting any residues (Martinez-Dominguez
et al.,, 2014). Detected pesticide concentrations varied from 0.005 to
3,860.25 ppb. The most frequently detected substances were the acaricide
coumaphos (eight times), the strobilurine fungicides azoxystrobin and
pyraclostrobin (each three times), and the acaricide tau-fluvalinate (four
times) (Table 1). Thirty-three percent of all studies used an artificial exposure
scenario with 22 substances being detected, and 33% used a field-realistic ex-
posure scenario resulting in seven cases of pesticide detection. Only couma-
phos was detected in both exposure scenarios. The remaining 34% of the
studies applied their specific detection method on commercial samples bought
in supermarkets and only three substances out of 149 were detectable. Thus,
70% of the detected substances were related to an artificial exposure, 20%
to a field-realistic exposure and 10% to commercial samples.

Only a single study focused on pesticide residues in worker jelly
throughout larval development (Table 2) (Bohme et al., 2019). They fed
contaminated pollen artificially inside the hive and screened the larval
food for 13 pesticides and in 12 cases residues were detectable. The insec-
ticide tau-fluvalinate was detected with the highest pesticide transfer, re-
spectively 14%. To our knowledge, not any data for residues in drone
jelly are currently available.

3.1. The impact of exposure time, duration, and application method on residue
detectability

The methods of pesticide application varied from a field-realistic expo-
sure via a spray application on plants like oil-seed rape (Li et al., 2017a,
2017b), to an artificial worst-case-like scenario of a continuous long-time
oral exposure (Bohme et al., 2018; Dively et al., 2015; Milone et al.,
2021; Milone and Tarpy, 2021; Ricke et al., 2021). In addition to spiked
pollen patties, Milone and Tarpy (2021) reared queen larvae in contami-
nated wax cups. Thus, the larvae and royal jelly were double-exposed,
which is assumed to have led to the higher amounts of pesticide residues
(Table 1, Table S2). The used sampling or jelly production system influ-
ences the residue amount as well. It was shown that residue concentration
was higher when sampling royal jelly from natural cells compared to sam-
pling from artificial cells used for queen rearing (Karazafiris et al., 2022).

The pesticide transfer ranges in jelly from 0.00001% up to 58% (95% CI
[1.91%, 9.49%]). To determine the main factors influencing if pesticides
will remain detectable in jelly, these percentages were compared among ap-
plication methods. Higher values were obtained for artificial exposure sce-
narios (Table 1, Table S2). For the field-realistic exposures, a pesticide
transfer of maximum 0.13% was detected for residues, while samples of ar-
tificial exposures had a median of 1% with a range from 0.01% to 58.64%
of residues. Artificial exposure, for example spiked pollen patties, which
were directly applied inside the hive, strongly forced the exposure on larvae
to the applied pesticide concentrations. The in-hive feeding facilitates the
consumption of the contaminated food and minimizes the dilution of the
residues. Furthermore, artificial exposure might cause accumulation in
food jelly, which results in higher detections and residue concentrations.
Exposure outside the hive represents a realistic dilution of residues and
worker bees consequently might be exposed to lower concentrations
while foraging. The sampling time point does not correlate with the
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pesticide transfer (R = —0.0047, p = 0.3946), which means that the appli-
cation method and exposure scenario are the main factors influencing the
occurrence and pesticide transfer in royal jelly (Fig. S1).

The highest pesticide concentrations were found in wax and pollen (El
Agrebi et al., 2020; Mullin et al., 2010; Sanchez-Bayo and Goka, 2014), in-
dicating that some pesticides can accumulate in lipophilic environments,
for instance in wax due to its lipophilic physicochemical character
(Giroud et al., 2019). Different analysis of wax samples from locations in
Germany or Belgium showed that in 50% to 97.3% of the samples pesticide
or veterinary drug residues were found in a range of 1 to 38 different sub-
stances each (Alkassab et al., 2020; El Agrebi et al., 2020). An analysis of
adult bee, wax, pollen, and other bee-related matrices across North
America showed that 60% of the in-hive samples were at least contami-
nated with one systemic pesticide (Mullin et al., 2010). Further, it was
shown that capping wax, which is freshly produced by bees to seal honey
cells, was significantly less contaminated than recycled wax of honey,
brood, or pollen combs (El Agrebi et al., 2020). Wax obtained by commer-
cial suppliers was found to be contaminated with the acaricide tau-
fluvalinate although it was classified as pesticide-free or natural, and a
transfer of tau-fluvalinate was detectable from treatment strips to larvae
and pollen (Fulton et al., 2019). Thus, it can be concluded that residues re-
main longer in wax and wax recycling might lead to pesticide accumula-
tion. Additionally, a positive correlation between residue concentrations
in wax and in in-hive samples like beebread, honey, larvae, or pupae was
proven (Alkassab et al., 2022). These high amounts of residues accumu-
lated in wax might then be transferred in royal, worker, or drone jelly. How-
ever, the increasing pesticide transfer detected in royal jelly does not
correlate with lipophilicity (Fig. S2), represented with the octanol-water
partition coefficient of substances (pesticide transfer ~ octanol-water parti-
tion coefficient: p = 0.2281, R = 0.0087). Therefore, the outcome of this
metadata analysis showed that the lipophilic character of a substance influ-
ences its residue occurrence in wax (Alkassab et al., 2022; Fulton et al.,
2019) but not if residues will subsequently be transferred into jelly.

Commercial jelly samples lack information about their origin and expo-
sure routes. These samples were screened mostly for a previously defined
repertoire of the most used pesticides in beekeeping practice or agriculture
such as acaricides or pyrethroid insecticides. The sample analysis was done
without knowledge on the potential presence of the pesticides themselves.
In commercial samples, 2.01% of the inspected pesticides were found. Con-
sequently, those results should be taken with caution due to the lack of in-
formation on exposure, sampling conditions, and sample processing. This
most likely explains the discrepancy between substances that were detected
in samples of field or fumigation studies but not in commercial jelly samples
(Table 1, Table S2).

As concluded the exposure scenario (i.e., artificial feeding of spiked
samples) had the greatest influence on the detectability of residues in
jelly. The exposure scenario should be considered depending on the re-
search aim. An artificial exposure with spiked diets inside the hive or di-
rectly fed to the bees ensures the exposure to the active substance and
potential effects on bees can be assigned. It represents a viable method in
understanding the transfer routes of pesticides inside the hive, but the de-
tected concentrations may not reflect residues in-field under natural condi-
tions. If residue concentrations are aimed to be measured, a field-realistic
scenario should be preferred. In agricultural practice, pesticides are applied
to plants and bees might be exposed during their foraging flights. The for-
aging behavior and processing by the bees could lead to a decrease of
residue concentrations and thus to lower pesticide transfer. Commercial
jelly samples might be used only to validate detection methods, but conclu-
sions should be taken with caution. In future studies, the methodology
(exposure scenario) should be considered to enable comparisons with
other studies. The pesticide transfer can differ significantly under different
methodological conditions like larval age at time of jelly collection, storing
method, sampling time point within the season, and honey bee sub-species.
When samples are taken in early season during spring or directly after a
Varroa treatment, the residue concentrations can be higher. A consistent ex-
perimental setup is mandatory over all studies.
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Table 1

Summary of all pesticides and their metabolites found in royal jelly samples. All substances that have not been detected, but royal jellies have been screened for, are summa-
rized separately in Table S2. The lipophilicity of each substance is given by their octanol-water partition coefficient, the higher the value the higher is their lipophilicity, or
lower their hydrophilicity. Field-realistic exposure is defined as an application via fumigation or sprayed on plants based on the required agricultural or beekeeping practice.
Artificial exposure is based on using spiked diets in form of syrup or pollen, which was applied ad libitum inside the hive over time. The pesticide transfer was calculated by
dividing the detected concentration by the initial concentration given in percent. (NI — no information, NA — not available, ppb — parts per billion e.g. [ng/g], a.s. — active
substance).

Substance Class’ Sampling time Application Exposure Initial Detected Pesticide Octanol-water ~Reference
point [days post scenario concentration  concentration transfer  partition coeff.
application] (a.s.) [ppb] [ppb] [%]
1,4-Dichlorobenzene 1 13 Exposed to fumigated Field-realistic 30 g PDCB 82.2-1,520.6 NA 3.44 Tananaki et al.,
wood powder 2009
14C-Carbofuran I 3 Feeding contaminated Artificial 12 1.97 16.42 1.80 Davis and Shuel,
syrup 1988
14C-Dimethoate I 3 Feeding contaminated Artificial 12 2.87 13.91 0.75 Davis and Shuel,
syrup 1988
Acetamiprid I 2 Feeding contaminated Artificial 787.89 0.67-1.92 0.24 0.80 Bohme et al., 2018
pollen (70 g)
Amitraz A 48 Feeding contaminated diet ~ Artificial 9-32,900 12.75-3,860.25 11.73 NA Milone and Tarpy,
(metabolite) (46 d) 2021
Amitraz A 3 days old larvae  Feeding contaminated Artificial NA <7 NA NA Milone et al., 2021
(metabolite) pollen, rearing in
contaminated wax (35 d)
Atrazine H 48 Feeding contaminated Artificial 25-61 3.94 6.46 2.70 Milone and Tarpy,
pollen, rearing in 2021
contaminated wax (35 d)
Azoxystrobin F 2 Feeding contaminated Artificial 674.17 0.56-0.91 0.13 2.50 Bohme et al., 2018
pollen, rearing in
contaminated wax (35 d)
Azoxystrobin F 48 Feeding contaminated Artificial 56-78 2.24 2.87 2.50 Milone and Tarpy,
pollen (70 g) 2021
Bromopropylate A Commercial NI NI NI 81 NA 5.40 Notardonato et al.,
2014
Carbendazim F 3-22 Exposed to sprayed plants Field-realistic 432,000 77-550 0.13 1.48 Li et al., 2017b
Chlorantraniliprole I 4 Feeding contaminated Artificial 26,000 45 0.17 2.86 Ricke et al., 2021
pollen
Chlorothalonil F 48 Feeding contaminated diet ~ Artificial 13,000-16,000 1,409.7-1,740.45 10.88 2.94 Milone and Tarpy,
(46 d) 2021
Chlorothalonil F 3 days old larvae  Feeding contaminated Artificial 7,700 <250 3.24 2.94 Milone et al., 2021
pollen, rearing in
contaminated wax (35 d)
Chlorpyrifos I 48 Feeding contaminated Artificial 20-113 8.9-12.9 11.42 4.70 Milone and Tarpy,
pollen, rearing in 2021
contaminated wax (35 d)
Coumaphos A 7-56 Spray (50 ml/colony) Artificial 0.64 g/1 10-92 NA 4.13 Balayannis, 2001
Coumaphos A 1-42 Exposed to sprayed strips, ~Field-realistic 100,000 0.269-0.477 0.0005 4.13 Karazafiris et al.,
chronic (6 weeks) 2022
Coumaphos A 1-42 Exposed to sprayed strips, Field-realistic 3,260 0.011-0.062 0.002 4.13 Karazafiris et al.,
chronic (6 weeks) 2022
Coumaphos A 1-292 Exposed to sprayed strips ~ Field-realistic 100,000 0.06-12.52 0.0125 4.13 Karazafiris et al.,
and sampling after (42 days) 2022
treatment
Coumaphos A 48 Feeding contaminated diet  Artificial 1,680-1,870 5.9-170 9.09 4.13 Milone and Tarpy,
(46 d) 2021
Coumaphos A 3 days old larvae  Sprinkling onto bees Field-realistic 4,700 5.93 0.16 4.13 Milone et al., 2021
Coumaphos A 5-6 Sprinkling onto bees Field-realistic 640,000 170-210 0.03 4.13 Skerl et al., 2010
Coumaphos A 5-6 Feeding contaminated Artificial 640,000 250-400 0.06 4.13 Skerl et al., 2010
pollen, rearing in
contaminated wax (35 d)
Coumaphos A 48 Feeding contaminated Artificial 0-12 0.47-1.42 11.83 NA Milone and Tarpy,
(metabolite) pollen, rearing in 2021
contaminated wax (35 d)
DEET I 48 Feeding contaminated Artificial 0-92 7-8 8.69 2.18 Milone and Tarpy,
pollen, rearing in 2021
contaminated wax (35 d)
Diflubenzuron 1 4 Feeding contaminated Artificial 66,000 367 0.56 3.89 Ricke et al., 2021
pollen
Dimoxystrobin F 2 Feeding contaminated Artificial 581.51 0.42-0.68 0.12 3.59 Bohme et al., 2018
pollen (70 g)
Imidacloprid I 40 Feeding contaminated Artificial 20-100 0.30-1.00 1.00 0.57 Dively et al., 2015
diet (6 weeks)
Metolachor H 48 Feeding contaminated Artificial NA 25.2 NA 3.40 Milone and Tarpy,
pollen, rearing in 2021
contaminated wax (35 d)
Metolachor H 3 days old larvae  Feeding contaminated Artificial NA <25 NA 3.40 Milone et al., 2021
diet (46 d)
Propachlor H Commercial NI NI NI 14.9 NA 1.60 Martinez-Dominguez

et al.,, 2016
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Table 1 (continued)
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Substance Class’ Sampling time Application Exposure Initial Detected Pesticide Octanol-water ~Reference
point [days post scenario concentration  concentration transfer  partition coeff.
application] (a.s.) [ppb] [ppb] [%]

Propiconazole F 4 Feeding contaminated Artificial 88,500 109 0.12 3.72 Ricke et al., 2021
pollen

Prosulfocarb H 2 Feeding contaminated Artificial 634.4 0.52-0.9 0.14 4.48 Bohme et al., 2018
pollen (70 g)

Pyraclostrobin F 2 Feeding contaminated Artificial 730.44 0.52-1.07 0.15 3.99 Bohme et al., 2018
pollen (70 g)

Pyraclostrobin F 4 Feeding contaminated Artificial 51,000 47-52 0.10 3.99 Johnson and Percel,
pollen (600 g) 2013

Tebuconazole F 3 days old larvae  Rearing in contaminated Artificial 412 80 19.40 3.70 Raimets et al., 2022
wax

t-Fluvalinate A 2 Feeding contaminated Artificial 721.02 1.56 0.22 7.02 Bohme et al., 2018
pollen (70 g)

t-Fluvalinate A 1-42 Spray (50 ml/colony), Field-realistic 206,000 0.005-0.028 0.00001 7.02 Karazafiris et al.,
chronic (6 weeks) 2022

t-Fluvalinate A 48 Feeding contaminated Artificial NA 189-230.9 NA 7.02 Milone and Tarpy,
pollen, rearing in 2021
contaminated wax (35 d)

Thiacloprid 1 2 Feeding contaminated Artificial 480.38 0.93-2.16 0.45 1.26 Bohme et al., 2018
pollen (70 g)

Thiamethoxam 1 commercial NI NI NI 0.15-0.25 NA —0.13 Giroud et al., 2019

Thymol A 48 Feeding contaminated Artificial 89-2,200 2-1,290 58.64 3.30 Milone and Tarpy,
pollen, rearing in 2021
contaminated wax (35 d)

Thymol A 3 days old larvae  Feeding contaminated Artificial NA 34-447 NA 3.30 Milone et al., 2021
diet (46 d)

Triadimefon F 3-22 Exposed to sprayed plants Field-realistic 216,000 4-10 0.004 3.18 Liet al., 2017a

Triadimenol F 3-22 Exposed to sprayed plants Field-realistic NA 1-17 NA NA Liet al., 2017a

(metabolite)

1A — acaricide, I — insecticide, F — fungicide, H — herbicide.

3.2. Variance among food jellies and transmission

Throughout their development, honey bee larvae of different castes and
sexes receive individual feeding intensities. While queen larvae are fed
about 1,600 times, resulting in an average total amount of 1.5 g royal
jelly, worker larvae receive only about 4 to 47 feeding visits depending
on larval developmental stage (Jung-Hoffmann, 1966; Lindauer, 1952;
Seifert et al., 2020). The amount of food jelly increases with developmental
stage of worker and drone larvae, but measured quantities fluctuate within
and among studies. Overall, queen larvae receive about one to two orders of
magnitude more food than worker and drone larvae. (Table S3). Bchme
et al. (2018, 2019) measured both, the residues remaining in royal jelly
and in worker jelly after exposure to pollen patties provided or fed ad
libitum inside the hive that were spiked with 13 different pesticides. The
comparison of the findings in both studies shows that the remaining pesti-
cide residues were higher in worker jelly compared to the residues detected
in royal jelly (Table 1, Table 2). The pesticide transfer in worker jelly was
2.39% to 13.99%, and in royal jelly 0.12% to 0.45% (Bohme et al., 2018,
2019).

As already mentioned, food jelly for queen and worker larvae is pro-
duced by glands of the nurse bees and consists of a mixture of protein con-
taining clear and lipid containing milky secretions (Haydak, 1970).
Contrary to queen larvae, worker and drone larvae are additionally feed
with pollen starting from day three of their development (Rortais et al.,
2005; von Planta, 1888). Five percent of the 50 or 79 mg protein needed
for worker or drone larval development originates from pollen (Hrassnigg
and Crailsheim, 2005). During worker development, 2 to 7 mg of pollen
is added to worker jelly (Bohme et al., 2019). Royal jelly is free of pollen
or contains only trace amounts (Haydak, 1970; von Planta, 1888). Conse-
quently, worker and drone jelly possess an additional contamination source
via pollen compared to royal jelly. The expected positive correlation be-
tween the amount of pollen grains and pesticide residues in worker jelly
was proven recently (Bohme et al., 2019). The latter demonstrated that
the more pollen grains were incorporated into worker jelly, the higher res-
idues of pesticides were detected.

For a better understanding of the contamination pathway of food jellies,
it is necessary to evaluate the in-hive distribution and possible resulting di-
lution of substances. Only a few studies have focused on additional in-hive
matrices and thus investigated pesticide distribution (Table S4). After pes-
ticide application to the field, foragers collect contaminated nectar and pol-
len, store it in form of honey and bee bread, and nurse bees consume the
stored food for producing food jelly. Consequently, contaminates will be
transferred from plants via foragers into the colony, and further via nurse
bees into the food jelly. Most of the previous studies applied pesticides
via spiked pollen or syrup within colonies, which does not correspond to
a field-realistic pathway but to a worst-case scenario. However, pesticide
concentrations decrease with every transmission vector and only small
amounts, with a pesticide transfer median of 0.5%, remained detectable
in royal jelly (Table S4). The dilution, (i.e., the decrease of pesticide trans-
fer) is caused by the transfer of contaminated material throughout the hive.
Pesticides are sprayed on plants and will contaminate nectar. The nectar
will be consumed by foraging bees, brought into the hive, received by in-
hive worker bees, and they will process nectar to honey which dilutes resi-
due concentrations. Nurse bees will share and consume amounts of these to
produce larval food in their head glands which dilutes again the residues.
The same might be a scenario from contaminated and stored pollen, via
the bee bread stage (including several microorganisms), to larval food pro-
ducing nurse bees. Only in one case the percentage of remaining residues in
royal jelly amounted to 19.4% (Raimets et al., 2022). In this study, queens
were reared directly in prepared contaminated wax cells and royal jelly was
sampled three days after acceptance, which corresponds to an artificial ex-
posure scenario (Raimets et al., 2022). The transfer of contaminants within
the hive was further assessed with alternative environmental toxins like
plant secondary metabolites. Lucchetti et al. (2018) examined the transfer
of the phytochemical echimidine from bee bread into royal jelly within
an in vitro approach and demonstrated that echimidine was transferred
from provided pollen into bee bread and via the nurse bees into royal
jelly. Finally, they could show that the detected residues measured in
royal jelly were three orders of magnitude lower than those measured in
bee bread and below the sub-lethal concentration examined for bee larvae.
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Table 2
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Summary of all pesticides and their metabolites found in worker jelly samples. All substances that have not been detected, but worker jellies have been screened for, are sum-
marized separately in Table S2. The lipophilicity of each substance is given by their octanol-water partition coefficient, the higher the value the higher is their lipophilicity, or
lower their hydrophilicity. Field-realistic exposure is defined as an application via fumigation or sprayed on plants based on the required agricultural or beekeeping practice.
Artificial exposure is based on using spiked diets in form of syrup or pollen, which was applied ad libitum inside the hive over time. The pesticide transfer was calculated by
dividing the detected concentration by the initial concentration given in percent. (NI — no information, NA — not available, ppb — parts per billion e.g. [ng/g], a.s. — active

substance).
Substance Class’  Sampling time point Application Exposure Initial Detected Pesticide Octanol-water ~ Reference
[days post scenario concentration  concentration  transfer partition coeff.
application] (a.s.) [ppbl] [ppb] [%]

Acetamiprid 1 3-6 Feeding contaminated Artificial ~ 9,021.8 99.5-871.0 9.65 0.80 Bohme et al., 2019
pollen (60 g)

Azoxystrobin F 3-6 Feeding contaminated Artificial 835.4 3.6-76.9 9.21 2.50 BGhme et al., 2019
pollen (60 g)

Boscalid F 3-6 Feeding contaminated Artificial 653.7 4.8-37.7 5.77 2.96 Bohme et al., 2019
pollen (60 &)

Dimethenamid-P H 3-6 Feeding contaminated Artificial 908.5 3.8-21.7 2.39 1.89 Bohme et al., 2019
pollen (60 g)

Dimoxystrobin F 3-6 Feeding contaminated Artificial 595.4 3.1-35.0 5.88 3.59 Bohme et al., 2019
pollen (60 g)

Methiocarb 1 3-6 Feeding contaminated Artificial 1,115.2 8.2-26.6 2.39 3.18 Bohme et al., 2019
pollen (60 g)

Prosulfocarb H 3-6 Feeding contaminated Artificial 731.1 3.5-24.8 3.39 4.48 Bohme et al., 2019
pollen (60 g)

Pyraclostrobin F 3-6 Feeding contaminated Artificial 772.6 2.9-47.5 6.15 3.99 Bohme et al., 2019
pollen (60 g)

Tebuconazole F 3-6 Feeding contaminated Artificial ~ 2,552.6 20.6-125.3 4.91 3.70 Bohme et al., 2019
pollen (60 g)

t-Fluvalinate I 3-6 Feeding contaminated Artificial 469.5 8.9-65.7 13.99 7.02 Bohme et al., 2019
pollen (60 g)

Thiacloprid 1 3-6 Feeding contaminated Artificial 4455 6.0-45.6 10.23 1.26 Bohme et al., 2019
pollen (60 g)

Triadimenol F 3-6 Feeding contaminated Artificial 935.5 25.7-51.8 5.54 3.18 Bohme et al., 2019
pollen (60 g)

1 A — acaricide, I — insecticide, F — fungicide, H — herbicide.

A major problem in evaluating the risk of pesticides for bees is the lack
of information on the degradation of pesticide residues in in-hive matrices
like beebread (Roessink and van der Steen, 2021). Degradation depends on
several factors such as temperature, humidity, half-life, pH, and UV-
radiation. The degradation time in water is the only information available
for detectable substances (Pesticide Properties Database (PPDB), 2021).
However, extrapolation from water-based degradation to food jelly is not
possible due to its different physicochemical character such as the more
acidic pH. Nevertheless, the degradation of pesticides in pollen might be
neglectable due to the seasonal fast consumption of stored pollen. When
pollen rich sources are available, bees consume 75% of the stored pollen
within a week after collection and overall 95% after two weeks (Roessink
and van der Steen, 2021). Thus, it can be assumed for a worst-case scenario
that bees consume the initial exposure concentration applied to pollen dur-
ing the flowering season. Degradation of pesticides in bee bread, the proc-
essed, stored pollen, might be relevant only in late summer to autumn when
bees prepare for overwintering and store pollen over months.

The comparison of the pesticide transfer between the different food
jellies highlights that most studies focus on the residue analysis in royal
jelly. Only one dealt with residues in worker jelly and none with drone
jelly. Further evaluations should investigate all types of jellies and compare
their pesticide transfer as there are known differences in jelly composition
and feeding routines. Further, the contamination pathway starting with the
exposed plants, via the foraging honey bee to stored material, and the nurs-
ing bees who feed the larvae, should also be investigated. This would gain
a better understanding on the distribution of contaminants, respectively
pesticides, within the hive and enable more specific prevention
measures.

3.3. Larval risk
Pesticide residues were detected in a wide range of concentrations and

thus it should be investigated whether these residues can be toxic to bee lar-
vae. The toxicity of chemicals to honey bee larvae are calculated based on

the mortality of the test organisms given as lethal dose (LD,) or no observed
effect dose (NOED), specified in pg (substance) per larva. To determine the
individual risk for larvae, the approximate incorporated amount of the sub-
stance per larva (dose) was calculated here. Thereto, the detected residue
concentrations (ppb) were multiplied by 1.5 g, which corresponds to the av-
erage total amount of royal jelly consumed by a single queen larva (Jung-
Hoffmann, 1966). Altogether, the calculated dose based on the detected
concentrations in food jelly were predominantly below the toxicity values
(median: 46.46-times lower) determined for bee larvae independent of
the exposure scenario (Table S5). Consequently, larvae might not be
harmed lethally due to the remaining residues in food jelly, considering a
worst-case assumption of 1.5 g consumption. However, in agricultural prac-
tice, a mixture of different pesticides and pesticide adjuvants are applied
(Wernecke et al., 2019, 2021). Thus, bees are exposed to a cocktail of
those substances. Different modes of action or the physicochemical charac-
ter of the active substances may affect their interaction and detoxification,
and consequently could lead to additive or synergistic effects on bees
(Wernecke et al., 2019, 2021).

Indirect sub-lethal effects related to queen development have been re-
ported. For instance, the protein profile of royal jelly was affected when
bees were exposed to the glyphosate-containing product Roundup®. In par-
ticular, Major royal jelly protein 3, which is related to social immunity and
signaling among bees, was downregulated under treatment indicating sub-
lethal effects on disease resistance of bees (Chaves et al., 2021). Neverthe-
less, there are other proteins proven for their antimicrobial activity in
food jelly, which might be beneficial in context of larval social immunity,
for instance in alternative plant protection by using potentially harmful
microorganisms (Erler and Moritz, 2016; Erler et al., 2022). Another sub-
lethal effect of pesticide exposure is the degradation of hypopharyngeal
glands of the nursing bees (Berenbaum and Liao, 2019; Hatjina et al.,
2013; Zaluski et al., 2017). Alterations of the hypopharyngeal glands by
pesticides like neonicotinoids can affect the quantity and quality of food
jelly and consequently lead to larval mortality (Schott et al., 2021;
Wessler et al., 2016).
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4. Conclusion

The assessment of pesticide residues in food jellies is complex and dif-
ferent interacting parameters must be considered. For instance, residues
are transferred vertically via different transmission steps from the source
of exposure into jelly, and horizontally within the honey bee colony. Accu-
mulation for instance in pollen or wax, or a decrease of concentrations
throughout the transmission pathway are possible.

Foraging bees bring contaminated nectar and pollen in the colony and
thus different matrices like honey, bee bread, or wax will be contaminated.
Nursing bees produce glandular secretions after consumption of these con-
taminated stored products and further feed the larvae. Honey bee queen,
worker, and drone larvae might be exposed to the remaining residues. It
was shown in several studies that residues of pesticides can be detected in
food jelly, in a wide range. The pesticide transfer is influenced by the exposure
scenario, respectively an artificial scenario leads to higher amounts. A consis-
tent experimental setup among studies is mandatory when residues are to be
compared. Although, the risk evaluation showed that residues are predomi-
nantly below the toxicity values concluding no direct lethal effects, sub-
lethal effects should not be underestimated. However, there is still a lack of in-
formation on the distribution, transfer, and degradation of pesticides within
the colony. Further studies have to be conducted filling those data gaps.
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