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Sexing assay for chickens and other birds for large- scale application 
based on a conserved sequence variant in CHD1 genes on W and Z 
chromosomes

Several PCR- based methods are known for sexing of 
chickens and other birds (Çakmak et al., 2017; Eiras 
et al., 2018; Gruszczyńska & Grzegrzółka, 2021; Morinha 
et al., 2012). While some methods for bird sexing are suit-
able for large- scale analyses (Chen et al., 2012; Clinton 
et al., 2016; He et al., 2019; Margulis & Danielli, 2019; 
Morinha et al., 2013; Rosenthal et al., 2010), research is 
still ongoing because most of these methods are costly 
and time consuming. Here we report a newly developed, 
easy to use competitive allele- specific PCR (KASP) 
assay that is suitable for large- scale sexing in chickens 
and other birds. The KASP assay is based on an A/G dif-
ference in exon 17 between the W-  and Z- chromosomal 
variants of the conserved chromodomain helicase DNA 
binding protein 1 (CHD1) in exon 17 (Figure S1). Sex- 
specific primers were designed up-  and downstream of 
this variant in CHD1 genes to amplify a product of 46 
bp (Figure 1; Table S1, Figure S1). The amplicon over-
laps with the PCR product for sex genotyping of the 
method of Fridolfsson and Ellegren (1999) (Figure S1). 
Furthermore, similar sequences were obtained from 
NCBI databases using blast (https://blast.ncbi.nlm.nih.
gov/Blast.cgi) for duck, goose, quail and turkey and were 
aligned with the chicken sequence (Figure 1).

In total, 734 chicken samples with known sex were 
analysed (Table S2). In addition, 55 samples of other spe-
cies of the orders Galliformes and Anseriformes were 

analysed (Table S2). If the sex of non- chicken samples 
was unknown it was verified by multiplex PCR modi-
fied from Fridolfsson and Ellegren (1999) (Table S1, 
Figure S1). Samples were mainly taken from an exten-
sive DNA collection, which was set up within the frame-
work of the projects AVIANDIV (Lyimo et al., 2014) and 
SYNBREED (www.synbr eed.tum.de).

Each KASP reaction contained 20– 50 ng of template 
DNA, KASP v. 4.0 2× Master mix standard ROX and the 
KASP- by- Design assay mix (LGC Genomics). The stan-
dard KASP thermal cycling conditions according to LGC 
protocols were performed in an Eppendorf Mastercycler 
(Eppendorf). After amplification, microplates were an-
alysed with FLUOstar Omega (BMG Labtech) using 
excitation and emission values of 485/520  nm for the 
FAM- labelled- FRET cassette, 530/560 nm for the HEX- 
labelled- FRET cassette and 584/620  nm for the ROX 
standard.

All chickens, ducks, geese, quails and turkeys were 
correctly assigned to their sex using the newly developed 
KASP assay (Table S2). This newly developed KASP 
assay is well suited to chicken, duck, goose, quail and 
turkey for efficient sex determination on a larger scale.
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Evaluation of truncating variants in the LCORL gene in relation to 
body size of goats from Switzerland

BACKGROU N D

More than 200 years ago, the formation of goat breeds 
began through morphological standardisation, espe-
cially of coat colour and body size, and systematic selec-
tion to improve production traits (Burren et al., 2016). 
In Switzerland, breed formation, followed by various 
breeding objectives and selection programmes, resulted 
in 10 modern goat breeds (Henkel et al., 2019). Recently, 
the VarGoats project generated individual whole genome 
sequencing data from representatives of these Swiss 
breeds beside 116 further Capra hircus breeds, including 
the Boer goat originating from Africa, to understand the 
consequences of domestication and breeding (Denoyelle 
et al., 2021).

Variation in stature or body size in domestic animals 
such as cattle or dogs is generally controlled by fewer 
genes with greater effects than in humans (Bouwman 
et al., 2018; Plassais et al., 2019). The ligand- dependent 
nuclear receptor corepressor- like gene (LCORL) gene en-
coding a transcription factor has been repeatedly found 
to be associated with measures of skeletal frame size and 
adult height in humans and dogs (Plassais et al., 2019; 
Soranzo et al., 2009). Alternative splicing results in mul-
tiple LCORL transcript variants. Similar to humans, in 
goats, one transcript is long encoding isoform X1 (1864 

aa, XP_017904811.1) and several that are significantly 
shorter (e.g. 601 aa, XP_017904814.1), differing signifi-
cantly in the sequence of the last exons. Alignment of the 
human (NP_001381375.1) and caprine (XP_017904811.1) 
LCORL protein sequences revealed a strong 82% match. 
Recently, a search for signatures that are shared across 
large- sized goat breeds revealed that five medium- to- 
large- sized Pakistani goat breeds had a common selec-
tion signature on chromosome 6 in a region harbouring 
the LCORL gene (Saif et al., 2020). Subsequent sequenc-
ing analyses proposed a frameshift variant in LCORL 
exon 7 (p.Ser277fs) as potentially causal variant mediat-
ing the body size- increasing effect (OMIA 002246- 9925). 
The long LCORL isoform X1 contains a DUF4553 
DNA- binding domain from amino acid position 1404 to 
1860 within the deleted segment of the derived caprine 
allele. Due to strong conservation of this DNA- binding 
domain across mammals it could be speculated that, in 
large goats, the truncation may disrupt transcription 
factor binding of LCORL with its target. The same was 
reported for dogs, as a single nucleotide insertion in the 
last exon of the long isoform of LCORL, resulting in a 
premature stop codon after amino acid 1221 and a sig-
nificantly truncated protein, has never observed small 
breeds, whereas it is present in medium and large breeds 
(OMIA 002246- 9615) (Plassais et al., 2019).
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